

22nd February 2018

Renewable Energy in East Africa:

Technical Potential and Policy Challenges

Giacomo Falchetta

FEEM, PhD student and ESP researcher

Co-authors:

Giovanni Occhiali, Manfred Hafner, Simone Tagliapietra

Outline

1. East Africa

- \circ Overview
- Energy mix and key issues
- Electricity access

2. RE: technical potential

- o Overview, by country
- RE resources mapping

3. RE: deployment challenges

- Technological considerations
- Cost profiles and energy sources rivalry
- o On/off-grid trade-off framework
- Financial constraints: public and private issues
- Role of transboundary cooperation
- RE natural gas interaction in East Africa

4. Policy implications

- $\,\circ\,$ On-grid (urban) and off-grid (rural) policy
- \circ Conclusion

1. East Africa

EA, overview

	Burundi	Kenya	Malawi	Mozambique	Rwanda	Tanzania	Uganda	S. Africa
Population (million)	10.524	48.461	18.091	28.829	11.917	55.572	41.487	55.908
Population growth rate (2015-16)	+3.1%	+2.6%	+2.9%	+2.9%	+2.4%	+3.1%	+3.3%	+1.6%
Pop. urban share	12%	26%	16%	33%	30%	32%	16%	65%
Pop. rural share	88%	74%	84%	67%	70%	68%	84%	35%
PPP GDP (mil. int. 2011 \$)	8,187	153,000	21,155	35,089	22,803	150,336	76,702	739,419
PPP GDP/ capita (\$)	778	3,156	1,169	1,217	1,913	2,787	1,849	13,225
IHDI	0.276	0.391	0.328	0.280	0.339	0.396	0.341	0.435

World Bank (2017), UN (2017), World Bank (2017)

- 271 million: **3.6%** of world's **total population** (2.9% excluding South Africa)
- Expected to reach 569 million by 2050 (UN Population Division 2017, medium fertility scenario)
- 1.5% of global primary energy consumption (0.2% excluding South Africa)
- o 261 TWh electricity consumption in 2015 (310 TWh in Italy, 1/5th population)

1.2

EA, energy situation

Figure 1: Primary energy mix in EA countries

Coal Oil Gas Biomass Nuclear Electricity/Heat

- Solid biomass: dominant in primary energy mixes (except SA) → health and socio-economic externalities, scarce productive use.
- 20% mean share of power transform. on TPES.
 Negligible share of elecricity in the mix.
- Vast majority of demand from residential level (65% average excluding SA), with industry and transport sectors lagging behind.

Giacomo Falchetta, Renewables in East Africa

Figure 2: Energy demand by sector in EA countries

Figure 3: Number of premature deaths due to indoor air pollution from the use of solid fuels in 2016

1.3.1. EA, electricity access (i)

Country	Burundi	Kenya	Malawi	Mozambique	Rwanda	Tanzania	Uganda	S. Africa
Installed capacity (MW)	68	2,269	353	2,556	211	1,187	922	46,963
Electrification rate (2017)	10%	65%	11%	29%	30%	33%	19%	86%
Urban	35%	78 %	49 %	57%	72%	65%	23%	87%
Rural	6%	60%	3%	15%	12%	17%	19%	83 %
Target	25%	100%	30%	100%	70%	50%	26%	100%
(Year)	(2025)	(2020)	(2020)	(2025)	(2018)	(2025)	(2022)	(2020)

IEA (2017), World Bank (2017), CIA (2015), various governmental energy strategies and visions

- Share of EA population without access: 90% in 2000, 61% in 2016 (IEA 2017), but absolute number increased by 8 million units (same interval).
- Persistent urban-rural imbalance
- Limited grid extent and intercconections.
- Even in urban areas, access not guaranteed and productive uses undermined by outages.
- Ambitious targets, still unclear how to reach them.

1.3.2. EA, electricity access (ii)

Figure 4: Electricity access rates in urban (left) and rural (right) East Africa

1.3.3. GIS: Spatial determination of population without access against grid

Figure 5: Existing electricity transmission and distribution grid in EA and population without access

Author's elaboration on Ardene-World Bank (2017), NOAA (2017), SEDAC (2016)

2. RE in EA: Technical potential

Renewable energy in EA: technical potential

Energy endowments/potential of EA countries, by source

Country/Source	PV	CSP	Wind	Small hydro	Large hydro	Geoth	Oil	N. gas	Coal
Burundi									
Kenya									
Malawi									
Mozambique									
Rwanda									
Tanzania									
Uganda									
South Africa									

Red: unavailable/unviable; yellow: partially viable; green: abundant and viable

- Energy resources endowment: heterogeneous
- Renewables more **evenly distributed** than fossil fuels.
- Overall abundance of untapped potential → technically sufficient to satisfy growing regional demand and promote exports.

Example of resources mapping: Kenya

Figure 6: Kenya electricity grid over most relevant areas for solar and wind potential; pop. density

Author's elaboration on Ardene-World Bank (2017), IRENA – MapRE (2017)

- GIS plots: areas with technically feasible solar and wind potential vs. grid and its bearing provide interesting insights on the economics of RE.
- Especially overlaid to **population density** data.

3. RE in EA: Deployment challenges

RE deployment: challenges

- Widespread abundance of untapped resources, heterogeneous mixes
- Common challenges and objectives across countries in the region.
- → Which are the main issues for RE deployment and how can governments intervene?

Technology	Economics	Transboundary cooperation	Main policy challenges	
Path dependency of infrastructure and energy mix	On-grid/off-grid efficiency trade-off	Infrastructure development	Investment attractiveness and the role of IPPs	
Off-grid technology and storage	Subsidies, public debt, and willingness-to-pay for electrification	Energy resources sharing	Subsidies, FiTs, and policy instruments	
Threats posed by large-scale projects	Uncertainty over future costs and developments	Cooperation spillovers	Payment schemes and behavioural considerations	

RE deployment: challenges

- Widespread abundance of untapped resources, heterogeneous mixes
- Common challenges and objectives across countries in the region.
- → Which are the main issues for RE deployment and how can governments intervene?

Technology	Economics	Transboundary cooperation	Main policy challenges	
Path dependency of infrastructure and energy mix	On-grid/off-grid efficiency trade-off	Infrastructure development	Investment attractiveness and the role of IPPs	
Off-grid technology and storage	Subsidies, public debt, and willingness-to-pay for electrification	Energy resources sharing	Subsidies, FiTs and policy instruments	
Threats posed by large-scale projects	Uncertainty over future costs and developments	Cooperation spillovers	Payment schemes and behavioural considerations	

Technological considerations

- Fouquet (2017): Energy systems subject to strong and long-lived path dependence:
 - \rightarrow technological, infrastructural, institutional and behavioural lock-ins.
- During industrialisation/development, large flexibility → threat of energy-intensive pathways take-up, detrimental to long-run prosperity despite tackling short-run issues.
- Trade-off large grid-connected projects vis-à-vis small and localised ones in investment decisions. Also consider:
 - scale and network dynamics
 - expected changing costs profiles and technological advances (not only upfront costs)
 - ways to **complement** limitations of modern renewables.
- → RES: long-term benefits (energy independency) and steep learning curves (Creutzig et al. 2017).
- Spatially optimal locations to locate large infrastructure projects: not only expected capacity, but also distribution basin.

Cost profiles and energy sources rivalry

Levelised cost of electricity (LCOE) allows comparing different technologies on the basis of the minimum unit price a user must pay for each system to break even.

Figure 7: LCOE 2010-2017

Giacomo Falchetta, Renewables in East Africa

Source: IRENA Renewable Cost Database. Note: Size of the diameter of the circle represents the size of the project.

3.3.1. On/off-grid trade-off framework (i)

Author's elabration

Giacomo Falchetta, Renewables in East Africa

The optimisation problem faced by public decision-makers

• Off/mini-grid solutions only competitive where distance such that **expanding the grid is inefficient** (beyond optimal geographic boundary).

\circ **MC** of grid expansion upward-sloped

→ Hard infrastructure fixed costs imply progressively fewer consumers reached as system expands in remote areas (population, geography, institutions).

 Least-cost mix of centralized and decentralized power depends on:

a) cost of grid expansion (remoteness, geography, population);

b) relative costs of locally available energy sources.

3.3.2. Excursus: on-grid/off-grid uses

Figure 9: Illustrative technology options for electricity access

IEA (2017)

1) New Policies Scenario (IEA 2017)

Main grid extension serves half of newly connected households by 2030.
 In rural areas, decentralised power systems most cost-effective solution for more than 65% of HHs, with 20% off-grid solar PV and 11% mini-grid networks.

2) Multi-scenario spatial-economic analysis (Deichmann et al. 2011; Mentis et al. 2017)

 Decentralised off-grid solutions lowest cost option only for a minority of households in EA

• **Optimal geographic boundary** rather **remote** from main grid (future cost reductions accounted).

 From the household perspective, on/off-grid potentially complements rather than substitutes (outages, budget constaints).

Grimm et al. (2017): RCT-based experiment for off-grid PV appliances in rural Rwanda

→ Estimated willingness-to-pay (WTP) for different typologies of PV appliances in villages with no grid: elicited values in 38% - 52% range of market prices.

Result: Approach based on the private market alone unlikely to reach broader population!

Implication: Off-grid technology requires public subsidies/'pay-as-you-go' plans, otherwise lack of demand at market prices.

NB: traditional biomass - **no explicit price or opportunity cost** to anchor on.

→ Publicly-subsidised but privately-purchased alternative to:

(i) deliver off-grid electricity at the household level(ii) render biomass collection and the related social costs at least more visible and reduce energy-derived externalities.

Transboundary cooperation (i)

3.5.

Figure 10: Existing and planned grids in EA: zoom near borders

3.6.

Transboundary cooperation (ii)

- Scarcity of interconnectors to transfer power across borders determines low access levels in EA (besides insufficient power generation).
- → Interconnected high-voltage grid to fix country-level imbalances and shortages.
- Bilateral agreements for power exchange already in place between neighbouring countries in EA, but regional interconnections not optimised and failure to meet contractual obligations.
 - Also, in previous plans no coordinated planning for the expansion of generation capacity (Expogroup, 2017).
- Cooperation necessary condition for realisation of large projects involving transboundary resources, e.g. river basins and large hydro dams.
- W/ coordinated + interconnected grid systems, cheapest power always consumed first. Under excess capacity, complement others by selling excess supply beyond borders and trigger win-win scenario (WU et al. 2017).

3.7.1. NG reserves in EA: risk or opportunity for renewables deployment?

Substantial natural gas reserves in EA, estimated at:

- 2,832 bcm (Mozambique)
- 1,614 bcm (Tanzania)

Contracts signed with international majors mainly for LNG exporting (Asian market) → Potentially higher netback prices than domestic prices (but strong competition)

2004 (M & T): production start
2016: 190,000 TJ (M.); 34,000 TJ (T.)
Increasing trends

What could be the implications for domestic renewable energy deployment?
 Is there a 'rivalry' risk between NG and RE domestically, or room for a complementarity?

3.7.2. A RE – NG complementarity?

- Solar + wind: abundance in most countries; intermittency (storage) issues.

- Hydropower: large untapped potential, but risk of climate-induced disruptions; competition for water resources.

NB: Overreliance on hydro in electricity mix of the region: Burundi (91.2%), Malawi (88%), Mozambique (100%), and Uganda (94%). (Figures from RISE 2017)

 Turner et al. (2017); IPCC (2015): potential long-term/short-lived climate change impacts on hydro availability.

Electricity output fluctuations and short-lived extreme events (Conway et al. 2015; Occhiali 2016) economic impact.

- Geothermal: reliable baseload power; heterogeneous availability in the region; large site identification costs raise LCOE.

3.7.3. A RE – NG complementarity?

NG can play a fundamental role, but it is unlikely that it will displace renewables:

• **Diversification** of the energy mix likely to have a positive role in guaranteeing energy security in EA.

o NG resources: baseload/complement to cope with

 \circ intermittency and storage issues of solar and wind power

 \circ Hydropower issues.

o NG in urban centres and their industry to:

o foster development of the transport, fertilizers and manufacturing sectors,

o serve non-electric needs in rural areas (e.g. LPG tanks distribution).

• However, capital intensive gas pipelines.

 NG distribution constraints to domestic consumption in EA - rural regions particularly - where distance from grid is long and population scattered in villages with low density.

Renewables cheapest option in most areas if electrification is massive and diffuse!

4. Policy implications

Policy (urban and on-grid)

- Suitable investment environment and tackling of macroeconomic and political instability, weak protection of contract and property rights to attract investment (funding and IPPs).
- Incentives to enter the market with competitive tendering processes following principles of efficiency and cost-effectiveness (rather than direct negotiation with govern. actors).
- Renewable energy feed-in-tariffs (REFITs) to foster investment in infrastructure and provide guaranteed return into the future NB: In the case of IPPs procuring large power plants, FiTs provide price certainty and long-term contracts.
- Complementarity RE/NG (net of current + future external costs) to achieve least-cost electrification scenario, and serve major urban centres and industry + transport and agricultural sectors.

Issue: upfront costs higher than most consumers are willing/able to pay.

> Subsidies schemes for grid connection / off-grid infrastructure installation to complement the low ability-to-pay.

> Context: comprehensive electrification and development plans looking at specificities of regions (role of Independent Energy Authorities).

Implementation of institutional conditions: Renewable Energy Authorities, w/ sufficient discretion and autonomy to:

- Regularly update national electrification plans
- Lobby national governments for means of implementation
- Encourage private actors to invest offering long-term standardised PPAs and transparent rules (including for future interconnections)
- > Offer connection grants, subsidies, and incentives to potential customers.

4.2.2. Policy (rural and off-grid) (ii)

- Feed-in-tariffs (FiTs) beneficial for small RE projects: communities relying on "free" biomass unwilling to invest relevant proportion of their incomes to achieve electrification without a predictable economic return.
- > **NB** design caveats:
 - Avoid market distorsion
 - > Be flexible to different technologies + changing costs and conditions.
- Electricity providers' billing schemes to accommodate needs of creditconstrained households and nudge to gain access -> trigger win-win scenario for both provider and consumer.
- > Behavioural considerations e.g. information and the default contract type
- Small energy firms cooperation w/ state-owned electricity companies to create integrated business-to-business arrangements and increase access to potential markets and funding. → special & context-specific focus on projects (business models and financial solutions).

Conclusion

References

•Arderne, C., & World Bank. (2017). Africa - Electricity Transmission and Distribution Grid Map. Retrieved from https://energydata.info/dataset/africa-electricity-transmission-and-distribution-2017 •CIA, Central Intelligence Agency. (2017). The World Factbook 2017. Retrieved from https://www.cia.gov/library/publications/the-world-factbook/index.html

•Conway, D., van Garderen, E. A., Deryng, D., Dorling, S., Krueger, T., Landman, W., ... Dalin, C. (2015). Climate and southern Africa's water-energy-food nexus. Nature Climate Change, 5(9), 837-846. https://doi.org/10.1038/nclimate2735

•Creutzig, F., Nemet, G., Luderer, G., Goldschmidt, J. C., Agoston, P., & Pietzcker, R. C. (2017). The underestimated potential of solar energy to mitigate climate change. Nature Energy, 2(9), 17140. https://doi.org/10.1038/nenergy.2017.140

•Deichmann, U., Meisner, C., Murray, S., & Wheeler, D. (2011). The economics of renewable energy expansion in rural Sub-Saharan Africa. Energy Policy, 39(1), 215–227.

•Expogroup. (2017, August 9). EAST AFRICA: LIGHTING EAST AFRICA. Retrieved from http://expogr.com/rwanda/lightexpo/detail_news.php?newsid=5019&pageid=2

•Fouquet, R. (2016). Path dependence in energy systems and economic development. Nature Energy, 1, 16098.

•Grimm, M., Lenz, L., Peters, J., & Sievert, M. (2017). Demand for off-grid solar electricity-Experimental evidence from Rwanda.

•IEA. (2017a). WEO 2017 Special Report: Energy Access Outlook. International Energy Agency. Retrieved from https://www.iea.org/publications/freepublications/publication/weo-2017-specialreport-energy-access-outlook.html

•IEA. (2017b). World Energy Outlook 2017. Retrieved from https://www.iea.org/weo2017/

•lkejemba, E. C. X., Mpuan, P. B., Schuur, P. C., & Van Hillegersberg, J. (2017). The empirical reality & sustainable management failures of renewable energy projects in Sub-Saharan Africa (part 1 of 2). Renewable Energy, 102(Part A), 234–240. https://doi.org/10.1016/j.renene.2016.10.037

Institute for Health Metrics and Evaluation (IHME. (2017). Global Burden of Disease from Household Air Pollution.

·IPCC. (2015). Fifth Assessment Report - The Physical Science Basis. Retrieved 17 January 2018, from http://www.ipcc.ch/report/ar5/wg1/

•IRENA. (2017). Data and Statistics. Retrieved 15 February 2018, from http://resourceirena.irena.org/gateway/dashboard/?topic=4&subTopic=16

•Mentis, D., Howells, M., Rogner, H., Korkovelos, A., Arderne, C., Eduardo Zepeda, ... Scholtz, E. (2017). Lighting the World: the first application of an open source, spatial electrification tool (OnSSET) on Sub-Saharan Africa. Environmental Research Letters, 12(8), 085003. <u>https://doi.org/10.1088/1748-9326/aa7b29</u>

•NOAA/NGDC Earth Observation Group -Defense Meteorological Satellite Progam, Boulder. (n.d.). Retrieved 2018. from -17 January https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html

•Occhiali, G. (2016). Power Outages, Hydropower and Economic Activity in Sub-Saharan Africa (PhD thesis). University of Birmingham. Retrieved from Power Outages, Hydropower and Economic Activity in Sub-Saharan Africa

•RISE. (2017). RISE Renewable Indicators for Sustainable Energy. Retrieved from http://rise.esmap.org/

•SEDAC - NASA. (2015). Gridded Population of the World (GPW) v4. Retrieved 15 January 2018, from http://sedac.ciesin.columbia.edu/data/collection/gpw-v4

•Turner, S. W. D., Ng, J. Y., & Galelli, S. (2017). Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model. The Science of the Total Environment, 590–591, 663–675. https://doi.org/10.1016/j.scitotenv.2017.03.022

•United Nations Population Division. (2017). World Population Prospects: The 2017 Revision. Retrieved from https://esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf •United Nations. (2015). Energy Statistics Yearbook 2014. United Nations Publications.

•World Bank. (n.d.-b). World Bank Data. Retrieved 20 November 2017, from https://data.worldbank.org/

