

NOTA DI LAVORO

Attractiveness, Anthropometry or Both? Their Relationship and Role in Economic Research

By Sonia Oreffice, University of Surrey and IZA Climent Quintana-Domeque, University of Oxford and IZA

Economy and Society Series

Series Editor: Giuseppe Sammarco

Attractiveness, Anthropometry or Both? Their Relationship and Role in Economic Research

By Sonia Oreffice, University of Surrey and IZA Climent Quintana-Domeque, University of Oxford and IZA

Summary

We analyze how attractiveness rated at the start of the interview is related to weight (controlling for height), and BMI, separately by gender and also accounting for interviewer fixed effects, in a nationally representative sample. We are the first to show that height, weight, and BMI all strongly contribute to male and female attractiveness when attractiveness is rated by opposite-sex interviewers, whereas only thinner female respondents are considered attractive by same-sex interviewers; that is, anthropometric characteristics are irrelevant to male interviewers in assessing male attractiveness. In addition, we estimate the interplay of these attractiveness and anthropometric measures in labor and marital outcomes such as hourly wage and spousal education, showing that attractiveness and height matter in the labor market, whereas both male and female BMI are valued in the marriage market instead of attractiveness.

Keywords: Beauty, BMI, Height, Weight, Wage, Spousal Education JEL Classification: D1, J1

Address for correspondence: Climent Quintana-Domeque University of Oxford Department of Economics Manor Road Building Manor Road Oxford OX1 3UQ United Kingdom E-mail: climent.quintana-domeque@economics.ox.ac.uk

Attractiveness, Anthropometry or Both? Their Relationship and Role in Economic Research^{*}

Sonia Oreffice University of Surrey and IZA Climent Quintana-Domeque University of Oxford and IZA

September 2014

Abstract

We analyze how attractiveness rated at the start of the interview is related to weight (controlling for height), and BMI, separately by gender and also accounting for interviewer fixed effects, in a nationally representative sample. We are the first to show that height, weight, and BMI all strongly contribute to male and female attractiveness when attractiveness is rated by *opposite*-sex interviewers, whereas only thinner female respondents are considered attractive by *same*-sex interviewers; that is, anthropometric characteristics are irrelevant to male interviewers in assessing male attractiveness. In addition, we estimate the interplay of these attractiveness and anthropometric measures in labor and marital outcomes such as hourly wage and spousal education, showing that attractiveness and height matter in the labor market, whereas both male and female BMI are valued in the marriage market instead of attractiveness.

JEL Classification Codes: D1, J1. Keywords: Beauty, BMI, Height, Weight, Wage, Spousal Education.

^{*}Quintana-Domeque (corresponding author): University of Oxford, Department of Economics, Manor Road Building, Manor Road, Oxford OX1 3UQ, United Kingdom; climent.quintana-domeque@economics.ox.ac.uk. The usual disclaimers apply.

1 Introduction

The salience of physical attributes to economic behavior and socioeconomic outcomes is well-established in the social sciences, where research consistently reports that physical attributes such as "beauty" (attractiveness) and anthropometric measures (height, weight, and body mass index¹) are significantly related to human capital accumulation, labor and marriage market outcomes.² Not only "beauty pays", the attractive earn higher wages and have higher educated spouses and better dates (Biddle and Hamermesh, 1998; Hamermesh and Biddle, 1994; Hitsch, Hortaçsu and Ariely, 2010; Mobius and Rosenblat, 2006), but also anthropometry does. Indeed, taller individuals earn higher wages (Case and Paxson, 2008; Lundborg, Nystedt and Rooth, 2014), heavier women tend to earn lower wages (Cawley, 2004), and heavier individuals tend to marry less educated and heavier spouses (Averett and Korenman, 1996; Chiappori, Oreffice and Quintana-Domeque, 2012).

Although the existing research has unveiled several interesting patterns using either attractiveness or anthropometric measures, it suffers from two potential limitations. First and foremost, most studies assess attractiveness using (facial) frontal photographs often rated by undergraduate students (Biddle and Hamermesh, 1998; Hitsch, Hortaçsu and Ariely, 2010; Mobius and Rosenblat, 2006; Rooth, 2009), self-ratings (Hitsch, Hortaçsu and Ariely, 2010), or interviewer ratings at the end or during the interview (Hamermesh and Biddle, 1994; Hamermesh, Meng and Zhang, 2002). It is well-known that frontal photographs do not provide all the relevant information on "beauty" and that later-in-the-interview ratings also reflect other respondents' characteristics well beyond attractiveness (Biddle and Hamermesh, 1998), while undergraduate students may not be the relevant population of interest to assess physical attractiveness (Conley and McCabe, 2011).

Furthermore, all this work on physical attributes and socioeconomic outcomes typically uses *either* anthropometric *or* "beauty" measures, but not *both* types of measures in a *na*-

¹BMI is defined as the individual's body weight (in kg) divided by the square of his/her height (in meters).

²Attractiveness has even been linked to criminal behavior (Mocan and Tekin, 2010).

tionally representative sample. This is unfortunate, because it has not been established yet whether the observed anthropometric "premia" (or "penalties") in the labor and marriage markets are indeed reflecting "beauty premia".³

In this paper we break new ground in the analysis of anthropometry and attractiveness in economic research. First, we use nationally representative data where the respondents provide information on their anthropometric attributes (height and weight) and the interviewer assesses their attractiveness *at the start* of the interview on an 11-point Likert scale. The fact that our measure of attractiveness is based on the assessment of the interviewer *seeing* the individual and rating his/her overall attractiveness rather than a photograph of part of his/her body, that this happens at the start of the interview, and that our sample is nationally representative, allows us to provide a reliable answer to the following questions: *Do anthropometric characteristics explain attractiveness? When and to what extent?*

Second, we use anthropometric measures (weight, height, and body mass index) together with attractiveness ratings to circumvent potential omitted variable biases of relying only on one of these measures. Specifically, we present evidence on whether anthropometric measures, attractiveness ratings, or both, are associated with "premia" in the labor market, in terms of hourly wages, and in the marriage market, in terms of spousal socioeconomic "quality" measured by his/her education. Indeed, we can provide a plausible answer to one of the open questions in the social sciences regarding attractiveness and socioeconomic outcomes: Is it attractiveness, anthropometry or both that matter(s) for socioeconomic outcomes? When and why?

Our analysis uses the German General Social Survey (ALLBUS) data for 2008 and 2012, two nationally representative cross-sections of the German population. We run least squares regressions of attractiveness on anthropometric measures and several groups of control variables, including age, region, year, interviewer fixed effects, number of children, and health status. No matter which combination of controls we use, we find that height,

³These drawbacks are present in economic studies as well as in sociology and evolutionary psychology, where samples tend to be small and very selected (e.g., Tovée et al., 1991).

weight, body mass index (BMI) and obesity (BMI ≥ 30) all strongly contribute to male and female attractiveness when attractiveness is rated by *opposite*-sex interviewers, whereas only female anthropometric measures are relevant when attractiveness is assessed by *same*-sex interviewers. To the best of our knowledge, we are the first to show that anthropometric characteristics are *irrelevant* to male interviewers in assessing male attractiveness, while they are *important* for both male and female interviewers in assessing female attractiveness, using nationally representative data, a reliable attractiveness measure, and interviewer fixed effects.

This is a new and intriguing finding that may suggest an explanation for the commonly observed gender-asymmetric relationship between BMI (or weight controlling for height) and hourly wages, and the instead similar correlation between own BMI and spousal socioeconomic status of both men and women. For instance, Cawley (2004) shows that BMI is negatively related to wages for (white) women, but not for men, in the US,⁴ while Chiappori, Oreffice and Quintana-Domeque (2012) show that heavier individuals (men or women) tend to have less educated and heavier spouses. We contend that BMI (or weight controlling for height) is in general negatively valued in the marriage market because individuals in the heterosexual marriage market are of opposite-sex with respect to potential spouses, whereas in the labor market potential employers could be of any gender, and if anything, more likely to be male, so that BMI is less likely to be perceived as a bad attribute for male workers.

One immediate concern regarding our evidence on the role of the gender of the interviewer in predicting attractiveness from anthropometric measures is that (on average) individuals interviewed by same-sex individuals may be *different* than those interviewed by oppositesex interviewers.⁵ However, when testing for mean differences of respondents by sex of the interviewer (individually or simultaneously), and separately for men and women, we find

⁴Garcia and Quintana-Domeque (2006) report different qualitative relationships between weight (controlling for height) and hourly wages for men (null or positive) and women (negative) in Austria, Denmark and Portugal.

⁵In particular for men, where the role of anthropometric characteristics in explaining attractiveness depends on the gender of the interviewer.

that individuals interviewed by same-sex interviewers have the *same* average characteristics as those interviewed by opposite-sex interviewers. In other words, sex of the interviewer can be thought of as being as good as randomly assigned across respondents. Another issue is that "contextual" effects could be affecting the way interviewers assess attractiveness. To account for this possibility, we add characteristics of the context in which the interview is taking place. Reassuringly, all of our previous findings are robust to this additional adjustment.

In the second part of our analysis, we look for the presence of attractiveness and anthropometric "premia" in the labor and marriage markets, considering *both* types of measures at the same time and disentangling their roles for the first time in a nationally representative data set. We show that for both men and women *attractiveness* and *height*, but not weight, are positively related to hourly wage rates, consistent with the well-documented beauty and height "premia" in earnings (e.g., Case and Paxson, 2008; Hamermesh, 2011; Lundborg, Nystedt and Rooth, 2014). Regarding spousal socioeconomic "quality", we find that heav*ier* individuals, both men and women, tend to have less educated spouses irrespective of their rated attractiveness, highlighting the importance of BMI in the marriage market and showing that a low BMI does not simply represent a beauty "premium". We also compute the trade-off between the attributes of own BMI and own education, and find that it is the same for married men and women. What is more, this evidence strengthens the interpretation that BMI is perceived as one of the relevant dimensions of attractiveness in the marriage market for both men and women, in line with the recent findings in Chiappori, Oreffice and Quintana-Domeque (2012), and earlier evidence that heavier women tend to have poorer husbands (Averett and Korenman, 1996).

To the best of our knowledge, this is the first study to document that attractiveness and anthropometry may both play a relevant but different role in explaining labor and marital outcomes, and to specifically show the extent of this influence for men and women in a nationally representative sample. In particular, our findings suggest that the more superficial attribute of rated attractiveness influences employment relationships but not the deeper one-to-one long-term ones that marriages represent, where instead body shape rather than rated attractiveness matters. Overall, this analysis represents a step toward our understanding of the evaluation and role of different physical attributes in explaining socioeconomic outcomes, by being able to compare both types of physical attributes (anthropometry and beauty) in two different markets. More generally, our work is part of a growing empirical literature on the role of "non-economic" characteristics in both the labor and the marriage markets, which encompasses economics and other social sciences.

To emphasize the relevance of our contributions to the literature, we refer to the main aspects in Hamermesh, Meng and Zang (2002) and Hitsch, Hortaçsu and Ariely (2010). Hamermesh, Meng and Zang (2002) consider *end*-of-interview ratings, which may be affected by other factors related to the interview process per se, and anthropometric measures as health controls, *without* reporting their point estimates of the latter, to analyze primping and beauty of working women from Shangai. Hitsch, Hortaçsu and Ariely (2010) estimate mate preferences and sorting patterns using attractiveness and anthropometric measures from an online dating service in the US. However, theirs is not a nationally representative data source, attractiveness is *self*-rated, and profile photographs are uploaded by users and then rated by students, with photographs available *only* for 27.5% of the sample. Moreover, although the authors claim that height and weight are self-reported with "only small levels of misrepresentation", the nature of measures to be reported with non-classical errors, that is, people over-reporting their heights (and their other "good" traits) and under-reporting their weights (and their other "negative" attributes).⁶

The paper is organized as follows. Section 2 describes the data. Section 3 estimates when and to what extent anthropometric characteristics explain physical attractiveness. Section 4 considers the interplay of anthropometric measures and attractiveness on socioeconomic

 $^{^{6}}$ In particular, this is a concern also for the self-reported annual income of the users' profiles, with this variable being available for only 50% of the sample.

outcomes. Section 5 concludes the paper.

2 Data Description

Estimation is carried out on the German General Social Survey (ALLBUS) data, a biennial survey that started in 1980 on "the attitudes, behaviour, and social structure of persons resident in Germany": a nationally representative cross-section of the German population is questioned every two years, and detailed demographic and socioeconomic information at the individual and household level is collected for thousands of respondents. In addition, the interviewer's identifier and main demographic characteristics (e.g., age and sex) are also recorded, which would prove useful in our present analysis.⁷

We use the cumulative series ALLBUS GESIS-Cumulation 1980-2012, focusing our study on the waves of 2008 and 2012, i.e., the *only* waves containing information on *both* attractiveness and anthropometric measures.⁸ Our main variables of interest are height (in cm), weight (in kg), and BMI (body mass index) of the respondent as well as his/her attractiveness, which is rated by the interviewer. The respondent's attractiveness is available in all recent waves, is reported on an 11-point (Likert) scale from 1 to 11 (from unattractive to attractive), and is asked to the interviewer both at the start and at the end of the interview. To use a measure of physical attractiveness not contaminated by the interviewing process per se, we follow Gehrsitz (2014) and Hamermesh and Abrevaya (2013) and use the measure recorded *at the start* of the interview, along with the numerical identifier of the interviewer.

In particular, when we analyze attractiveness and estimate its determinants, we will control for interviewer fixed effects, and further distinguish observations by opposite- and same-sex pairs of interviewer-respondents, whereas when we consider attractiveness as ex-

⁷Interviews are performed with CAPI (computer assisted personal interviewing).

⁸In the ALLBUS some questions are asked in some or alternate waves. The anthropometric measures are not available in 2010 or in the years before 2008, so that we use the waves of 2008 and 2012, the latter being the most recently released. An additional feature of these anthropometric measures is that they are not asked in the basic questionnaire but in the rotating ISSP modules "Health" or "Leisure time and sports" to about 50% of the respondents in selected years (other respondents are asked other "split" questionnaires).

planatory variable for marital and labor outcomes, we will standardize it by subtracting the average attractiveness rating of the corresponding interviewer from each rating, and divide this difference by the standard deviation of his/her rating, in the same vein as in Mobius and Rosenblat (2006) or Hitsch, Hortaçsu and Ariely (2010).

To perform our analysis, we work with an additional set of variables: age, gender, a West-East region and a 2008-2012 year dummy-variable indicators, along with self-reported health status (we construct a dummy variable equal to 1 for satisfactory health status or better), number of biological and non-biological children, and education. In the ALLBUS data, educational attainment is measured through a series of yes/no questions on the attainment of specific types of certificates in schools and universities according to the features and dual paths of the German education system. We construct a binary variable which takes value of 1 if the respondent has a university or polytechnic degree, or a master/technician college certificate (i.e., "some college and above"), and 0 otherwise.⁹

To be able to measure socioeconomic outcomes of respondents and their spouses, we also consider the respondent's own net monthly income and hours worked per week to generate the log of the hourly wage rate (own net monthly income divided by hours worked), and the spouse's education. Note that neither own net monthly income nor hours worked per week is available for the spouse.

The main analysis considers men and women who are German citizens born in Germany, between 25 and 50 years of age and with BMI in the range 18.5 to 39.99, to keep uniform reference groups with respect to attractiveness and marital and labor market outcomes, and to exclude (medically) morbid obese or underweight individuals (WHO, 2009). The restriction on place of birth and German citizenship is prompted by the fact that being foreign-born may be related differently to attractiveness. Finally, observations are weighed by the available East-West weight to adjust for the oversample of East German respondents and make the sample nationally representative.

 $^{^{9}\}mathrm{This}$ schooling variable and the related dummy are not defined for those respondents who are still in school.

Table 1 presents the descriptive statistics for female and male respondents, separately. The average age is about 39, and 80% of the sample lives in the former West Germany. Women report being on average slightly less healthy and less educated than men, while men exhibit a higher average BMI but a lower average attractiveness than women. Men are slightly overweight (with an avearage BMI of 26.2 and an obesity rate of 14%), and their mean attractiveness rating is 7.7, while women score 8.2 on average, although the rating standard deviations are the same. This higher mean female rating is consistent with a large body of findings across disciplines and data sets, reporting that on average women are rated more attractive than men (e.g., Doorley and Sierminska, 2012; Gehrsitz, 2014; Hamermesh and Biddle, 1994).

[Table 1 about here]

The features in Table 1 indicate that the ALLBUS nationally representative data are reliable and of high quality. First, there are very few missing values (1.17% for education, 0.04% for health, 2.66% for BMI, and 0% for attractiveness). Second, and perhaps more important, the distribution of key variables, such as anthropometric measures, are realistic and comparable to other well-known German data sets (e.g., GSOEP) and stylized facts (OECD, 2014). In addition, although not reported in the table, the observable characteristics of our interviewers clearly reveal that they are not undergraduates: they are on average 59 years old. Moreover, 40% of them are women and their average schooling level is 2.6 (on a scale from 1 to 5). Hence, they are older than our respondents, whose average age is 39, less likely to be female than our respondents (48%), and also less educated than them (3.4).

Finally, it is worth emphasizing that attractiveness is measured here *at the start* of the interview and on an 11-point scale in a nationally representative sample, rather than by a later-in-the-interview rating (Hamermesh and Biddle, 1994; Hamermesh, Meng and Zhang, 2002), a self-assessed one (Hitsch, Hortaçsu and Ariely, 2010), or a (facial) photograph (Biddle and Hamermesh, 1998; Hitsch, Hortaçsu and Ariely, 2010; Mobius and Rosenblat, 2006). In particular, Biddle and Hamermesh (1998) state that "a photograph captures

only facial features and to some extent grooming, and captures them imperfectly", while an attractiveness rating (during or at the end of the interview) would be "contaminated by other information about the subject obtained during an interview", which are exactly the drawbacks that our empirical analysis overcomes.

3 Do Anthropometric Measures influence Attractiveness?

This section provides evidence on the relationship between anthropometric characteristics and attractiveness. We assess the predictive power of (self-)reported anthropometric measures in explaining attractiveness as rated by the interviewer at the start of the interview.

3.1 Main results: all interviewers

Table 2 displays a series of least square regressions of attractiveness on anthropometric measures for men and women, separately. There are three types of regressions (depending on the control variables used), grouped into three different panels according to the anthropometric measure(s) being used: panel A, panel B, and panel C.¹⁰

[Table 2 about here]

Panel A contains the point estimates of regressions of attractiveness on height and weight, which indicate that taller female and male respondents are both ranked as being more attractive by the interviewers, while weight plays a role only in explaining female attractiveness: heavier females are ranked as being less attractive by the interviewers. In columns (1) and (2), we report the estimates corresponding to the baseline regression, which

 $^{^{10}\}mathrm{Heterosked}$ asticity robust standard errors clustered at the interviewer's level are used in all the empirical analysis.

only controls for the age of the respondent, a West-East dummy-variable indicator and a 2008-2012 year dummy-variable indicator. If we control for interviewer fixed effects, columns (3) and (4), the results are robust and even stronger (the size of the coefficients –in absolute value– increases). Finally, controlling for a healthy dummy variable and the number of children does not change our findings, as we can see in columns (5) and (6). Panel B displays the point estimates of regressions of attractiveness on BMI. Interestingly, BMI is *uncorrelated* with male attractiveness, but is negatively correlated with female attractiveness. In panel C we report the estimated coefficients associated to the obesity indicator: they are all negative and statistically significant for both men and women.

It is worth noting that the statistical significant associations exhibit sizable point estimates. For example, column (1) in panel A indicates that for women, a one standard deviation increase in weight is associated to a 0.29 standard deviation decrease in attractiveness, that a one standard deviation increase in height is associated to a 0.17 standard deviation increase in attractiveness, while panel B indicates that a one standard deviation increase in BMI is associated to a 0.27 standard deviation decrease in attractiveness. In panel C we can see that going from non-obese to obese leads to a 0.64 standard deviation decrease in attractiveness for women and a 0.44 standard deviation decrease in attractiveness for men.

3.2 Additional results: opposite-sex versus same-sex interviewers

Taken at face value, the results in Table 2 indicate that, while weight is relevant in explaining female attractiveness, its role in explaining male attractiveness is null, except for the particular case of obesity that matters for both genders. Hence, one may be tempted to conclude that BMI is a good proxy for female attractiveness, but not for male attractiveness. Albeit this gender asymmetry may seem a reasonable finding (e.g., Tovée et al., 1998, 1999; and Swami, 2008), it is at odds with the recent empirical evidence on attractiveness and marriage market patterns in the US. In this regard, Chiappori et al. (2012) using PSID data, find that both heavier men and women tend to have "worse" spouses in terms of socioeconomic (lower education/wage) and anthropometric (higher BMI) characteristics.

The empirical analysis in this subsection is developed to explore these issues and reconcile our apparently contradictory patterns, without simply resorting to the argument that tastes for female and male characteristics are different in the US and Germany. An alternative explanation to *de gustibus non est disputandum* is that the *gender of the interviewer* is playing a role in assessing attractiveness and in how it is related to height and weight. To explore such a possibility, we re-estimate the regressions of Table 2 splitting our sample of respondents according to whether they were interviewed by *opposite*-sex individuals, Table 3, or by *same*-sex interviewers, Table 4.

[Table 3 about here]

Once we perform the analysis by allowing different coefficients depending on the gender of the interviewer, we find that female (male) interviewers do take into account weight, BMI, and obesity in assessing male (female) attractiveness: once we focus on opposite-sex interviewers, both male and female BMI measures significantly affect physical attractiveness.

Interestingly enough, the point estimates and statistically significance for women in Table 3 are basically the same as in Table 2, suggesting that both male and female interviewers assess their anthropometric features similarly (as it can be confirmed in Table 4). Conversely, for men, Table 3 shows a significant influence of weight and BMI on their attractiveness, while Table 2 reports none, and larger estimated coefficients on the obesity indicator in Table 3 than in Table 2.

[Table 4 about here]

Indeed, Panel B in Table 4 shows that the point estimates for BMI regarding male physical attractiveness are virtually zero, while those regarding female attractiveness are a bit smaller than those in Table 3 but very close to those in Table 2; for obesity, the same patterns of results are observed in panel C. Male interviewers do not consider weight, BMI, or obesity, when assessing male respondents.¹¹

In summary, anthropometric characteristics are "irrelevant" to male interviewers in assessing male attractiveness, while they are important for female interviewers in assessing both male and female attractiveness. These are quite remarkable findings, and this paper is the first to document them on a nationally representative sample.

We conclude this subsection with a remark. Hamermesh and Biddle (1994) write that "within a culture and at a point in time there is tremendous agreement on standards of beauty". Our analysis helps to clarify such a statement: we show that these standards and their anthropometric determinants may differ by *gender*.

3.3 Bias from the respondent or the interviewer

One may be concerned that the sex of the interviewer affects the way the respondent reports his/her anthropometric measures, namely height and weight (BMI is constructed). Table 5 reports the respondents' mean characteristics by interviewer's sex. Remarkably enough, the means of weight, height, BMI and obesity are the same for those interviewed by same-sex interviewers and those interviewed by opposite-sex interviewers: there is no evidence that the sex of the interviewer is related to the way the respondent reports his/her anthropometric measures. Indeed, one can see in Table 5 that all the average characteristics for both men and women interviewed by same- and opposite-sex interviewers are the same. If anything, sex of the interviewer can be thought of as being as good as randomly assigned across respondents.

[Table 5 about here]

¹¹The fact that BMI has a stronger impact on female than male attractiveness is consistent with evolutionary psychology. For instance, Tovée et al. (1998, 1999) find that BMI is the primary determinant of female sexual attractiveness, and Swami (2008) compares the relevance of BMI to other body shape measures between genders, in small samples. Also, focusing only on female attractiveness measured with photograph ratings, Conley and McCabe (2011) report that male ratings are negatively affected by BMI, while Tovée and Cornelissen (2001) that there is no difference between the ratings of male and female undergraduate students.

While we can control for interviewer fixed effects, the context in which the interview is performed may be different within interviewers. If the way an interviewer assesses attractiveness is context-dependent, this may lead to biases. To assess the importance of these potential biases, we check the robustness of our results to controlling for characteristics of the context in which the interview is taking place. We try to capture these contextual effects by including dummy variables for the type of building where the respondent lives. The results of this analysis are reported in Table 6. In this Table, we re-estimate Tables 2, 3 and 4, and display the estimates corresponding to the most complete specification (columns (5) and (6)). If anything, our results are robust to contextual effects.

[Table 6 about here]

4 Attractiveness, Anthropometric Measures and Socioeconomic Outcomes

While in the first part of the paper we analyzed the power of anthropometric measures in predicting attractiveness, we now *simultaneously* consider the role of anthropometric measures and attractiveness in explaining two important outcomes in the labor and the marriage market, namely, wages and spousal education.

A large body of literature in the social sciences has studied how physical attributes affect such outcomes, typically considering *either* anthropometric *or* beauty measures, but not both simultaneously. Studies on obesity, wages and employment use an obesity indicator or BMI (or weight controlling for height) to estimate labor market penalties for heavier (females) individuals (Cawley, 2004; Garcia and Quintana-Domeque, 2007; Rooth, 2009), finding somewhat mixed results. On the other hand, papers on height and the labor market find an earnings "premium" for taller individuals (Case and Paxson, 2008; Lundborg, Nystedt and Rooth, 2014). Moreover, recent work on attractiveness and the marriage market links these anthropometric measures to matching patterns and spouse quality (Chiappori, Oreffice and Quintana-Domeque, 2012; Oreffice and Quintana-Domeque, 2010). On the other hand, since the seminal work by Hamermesh and Biddle (1994), a literature on the "economics of beauty" has developed, estimating a beauty "premium" in the labor or marriage markets (Hamermesh and Biddle, 1994; Mobius and Rosenblat, 2006; Doorley and Sierminska, 2012; Gehrsitz, 2014) and in online dating (Hitsch, Hortaçsu and Ariely, 2010).

4.1 Attractiveness, Anthropometric Measures and Wages

In this subsection, we focus on the relationship between attractiveness, anthropometric measures and wages conditional on working full-time. We want to measure these correlations depending on whether we include either attractiveness or anthropometric measures, or both. Specifically, we present least square regressions where the dependent variable is the log hourly wage rate, with five different specifications according to whether we include standardized attractiveness and/or anthropometric measures (weight and height, or BMI), grouped into two different panels according to the additional controls being used: panel A and panel B. Given the asymmetric relationships found in the literature by gender (Averett and Korenman, 1996; Cawley, 2004), we conduct our analysis separately for men and women, with findings for women in Table 7 and for men in Table 8.

Table 7 shows that both height and attractiveness are positively and significantly related to hourly wage rates, also when controlling for BMI. Although in panel B the estimated coefficient of attractiveness loses significance when more controls are included, its point estimates remain similar across all specifications, with the significance loss most likely due to lack of power. As to the anthropometric measures, for working women, height is always relevant and positively related to wages, whereas BMI is not. This is consistent with Garcia and Quintana-Domeque (2007) not finding a clear penalty for heavier women, although we also control for attractiveness and height, which seems to be the key trait here. The height "premium" in wages is consistent with Case and Paxson (2008), while the beauty "premium" is well-known (Hamermesh and Biddle, 1994). It is fair to say that the sample of women is much smaller due to the selection into working, which appears to be much more stringent in Germany than in the US. Indeed, the following evidence on working men presents a similar but more significant relevance and comparison among physical attributes.

[Table 7 about here]

In Table 8, one can see that attractiveness is the most significant physical attribute in explaining male wages, followed by height, whereas weight and BMI do not play any role. This pattern holds across all specifications and panels. More attractive and taller workers earn higher hourly wages, and this is true for both men and women. In the appendix, Table A1, we present the same type of analysis, with the obesity indicator instead of the variable BMI. The estimated coefficients reflect the same qualitative results as in Tables 7 and 8.

[Table 8 about here]

These findings are in line with the obesity literature, which does not tend to find any heavy weight penalty for men (e.g., Cawley, 2004), and with the evidence on the height premium (Case and Paxson, 2008; Lundborg, Nystedt and Rooth 2014), although here we control for attractiveness in addition to anthropometric measures, and attractiveness exhibits a strong significance. In turn, the evidence on the positive influence of attractiveness on wages is consistent with the literature using beauty ratings instead of anthropometric measures to assess the relevance of attractiveness on labor outcomes, since the seminal work by Hamermesh and Biddle (1994). For instance, Mobius and Rosenblat (2006) find a sizable beauty "premium" in wages in a lab experimental setting, while Gehrsitz (2014) reports that good looks improve labor market outcomes for both men and women, as do Doorely and Sierminska (2012) but focusing only on women.

Overall, two aspects of our empirical analysis stand out. First, it is remarkable that height is positively related to the wages of both men and women even after conditioning on attractiveness. Second, it is attractiveness rather than BMI or weight that relates to wages, suggesting that low BMI may be appreciated in the labor market, as other studies report, not because it reflects fitness and health, but as a pure physical attribute (looks). In the next subsection, we turn to the implications of the same physical attributes in a different market, characterized by one-to-one long-term relationships.

4.2 Attractiveness, Anthropometric Measures and Spousal Education

In this subsection, we look at the relationship between attractiveness, anthropometric measures and spousal educational attainment, which is considered an important proxy for the socioeconomic "quality" of the spouse in the marriage market (e.g., Browning, Chiappori and Weiss, 2014). We present least square regressions where the dependent variable is spousal education (a binary indicator for some college and above), with five different specifications according to whether we include standardized attractiveness and/or anthropometric measures (weight and height, or BMI), grouped into two different panels according to the additional controls being used: panel A and panel B. We perform our estimations separately by gender, with findings for women in Table 9 and for men in Table 10.

Table 9 shows that thinner women tend to have better educated husbands, with the effect of BMI or weight statistically significant at least at the 5% level across specifications. It is interesting to note that female weight and BMI are predictors of her husband's education even after accounting for her education and attractiveness. Our findings suggest that what makes a woman attractive in the marriage market is not what is perceived attractive by an interviewer, which could simply capture a superficial visual assessment and not the actual quality of a potential mate in one-to-one long-term relationships.

[Table 9 about here]

Results for men are reported in Table 10 and are remarkably similar. Here again, attractiveness per se does not play any role in terms of spousal quality, while weight and BMI do in general. In the appendix, Table A2, we present the same type of analysis, with the obesity indicator instead of the variable BMI. The estimated coefficients reflect the same qualitative results as in Tables 9 and 10.

[Table 10 about here]

It is reassuring that the above evidence on men and women is consistent with the marriage market patterns in the US. Specifically, our evidence strengthens recent findings on matching in the marriage market, where male and female BMI, proxying physical attractiveness, significantly shapes matching patterns: heavier men and women tend to sort with heavier and less educated spouses (Chiappori, Oreffice and Quintana-Domeque, 2012), while previous work showed that own (female) weight is negatively associated to spousal education (Averett and Korenman, 1996).

Our novel comparison of the role of anthropometric measures with that of interviewers' attractiveness ratings in the marriage market is also informative to interpret previous findings on beauty and marital outcomes (Hamermesh and Biddle, 1994; Gehrsitz, 2014). The evidence presented here shows that a pivotal role in the relationship between beauty and actual attractiveness is played by BMI, possibly a more objective conveyor and "sufficient statistic" of an individual's characteristics than rated beauty. Indeed, the key force in spousal physical attractiveness seems to be body shape, suggesting that beauty measures may capture this type of attractiveness when they are found to be significantly related to marital outcomes.

Finally, our finding that BMI is a relevant determinant of attractiveness is consistent with the evolutionary psychology literature, where it emerges that BMI is a major factor in determining female (sexual) attractiveness, and that BMI should be a more important attribute in women since it is related to reproductive fitness (e.g., Tovée et al., 1998, 1999). The interesting twist is that, with nationally representative data, we show that this influence of BMI on physical attractiveness holds also for men and it is significantly strong for men and women also when we control for other demographic, physical, and socioeconomic characteristics. The comparison of these assessments of attractiveness and anthropometric measures in different markets seems to indicate that these physical attributes have different implications for individual outcomes once it is possible to analyze them all simultaneously, as we do here.

4.2.1 Is the trade-off between BMI and education similar for men and women?

Under certain assumptions¹², the rate at which the marriage market allows an individual to trade-off own BMI and own education can be measured by the ratio of the coefficients of BMI and education. In Table 11 we test whether the ratio of the estimated coefficients on BMI and education is the same for married women and men, that is, whether the tradeoff between BMI and education is the same across genders. The test is performed after simultaneously estimating the regressions in column (5) of panel B in Tables 9 and 10. Surprisingly enough, the Adjusted Wald Test has an F-statistic of 0.24 (p-value=0.6223), so that we cannot reject the null hypothesis that the ratio of these coefficients is the same for women and men. This is an interesting result on how the marriage market perceives individual attributes.

[Table 11 about here]

5 Conclusions

We examine how attractiveness rated at the start of the interview is related to weight (controlling for height), BMI, and obesity, separately by gender and also accounting for interviewer fixed effects, in a nationally representative sample. Using the German General

 $^{^{12}}$ Chiappori, Oreffice and Quintana-Domeque (2012) show that two crucial assumptions are required. The first is separability: the observable characteristics for women (respectively for men) matter only through a one-dimensional index. The second one is conditional independence: conditional on the female index (respectively male index), the distribution of female unobservable characteristics (respectively male unobservable characteristics) is independent of the female observable characteristics (respectively male unobservable characteristics).

Social Survey (ALLBUS) data for 2008 and 2012, we run least squares regressions of attractiveness on anthropometric measures and several groups of control variables, including age, region, year, interviewer fixed effects, number of children, and health status. No matter which combination of controls we use, we find that height, weight, body mass index (BMI), and obesity *all* strongly contribute to male and female attractiveness when attractiveness is rated by *opposite*-sex interviewers, whereas only female anthropometric measures are relevant when attractiveness is assessed by *same*-sex interviewers. To the best of our knowledge, we are the first to show that anthropometric characteristics are *irrelevant* to male interviewers in assessing male attractiveness, while they are *important* for both male and female interviewers in assessing female attractiveness.

Moreover, we estimate the interplay of these attractiveness and anthropometric measures in labor and marital outcomes such as hourly wage and spousal education, considering *both* types of measures at the same time and disentangling their roles for the first time in a nationally representative data set. We show that both attractiveness and height matter in the labor market, whereas both male and female BMI are valued in the marriage market instead of attractiveness.

These findings are consistent with the well-documented beauty and height "premia" in earnings (e.g., Case and Paxson, 2008; Hamermesh, 2011; Lundborg, Nystedt and Rooth, 2014; Mobius and Rosenblatt, 2006) as well as with the role of BMI as one of the relevant dimensions of attractiveness in the marriage market for both men and women (Chiappori, Oreffice and Quintana-Domeque, 2012) and earlier evidence that heavier women tend to have poorer husbands (Averett and Korenman, 1996). However, none of the previous studies considers both anthropometric measures and attractiveness (beauty) simultaneously in a nationally representative data set, with attractiveness measured at the start of the interview.

References

- Averett, Susan and Sanders Korenman. 1996. "The Economic Reality of the Beauty Myth." Journal of Human Resources 31 (2):304–330.
- Biddle, Jeff E. and Daniel S. Hamermesh. 1998. "Beauty, Productivity, and Discrimination: Lawyers' Looks and Lucre." *Journal of Labor Economics* 16 (1):172–201.
- Browning, Martin, Pierre-André Chiappori, and Yoram Weiss. 2014. *Economics of the Family*. Cambridge University Press.
- Case, Anne and Christina Paxson. 2008. "Stature and Status: Height, Ability, and Labor Market Outcomes." Journal of Political Economy 116 (3):499–532.
- Cawley, John. 2004. "The Impact of Obesity on Wages." *Journal of Human Resources* 39 (2):451–474.
- Chiappori, Pierre-André, Sonia Oreffice, and Climent Quintana-Domeque. 2012. "Fatter Attraction: Anthropometric and Socioeconomic Matching on the Marriage Market." Journal of Political Economy 120 (4):659–695.
- Conley, Dalton and Brian J. McCabe. 2011. "Body Mass Index and Physical Attractiveness:
 Evidence From a Combination Image-Alteration/List Experiment." Sociological Methods
 & Research 40 (1):6–31.
- Doorley, Karina and Eva Sierminska. 2012. "Myth or Fact? The Beauty Premium across the Wage Distribution." *IZA Discussion Paper* 6674.
- Garcia, Jaume and Climent Quintana-Domeque. 2007. "Obesity, Employment, and Wages in Europe." Advances in Health Economics and Health Services Research 17.
- Gehrsitz, Markus. 2014. "Looks and Labor: Do Attractive People Work More?" *LABOUR* 28 (3):269–287.

- Hamermesh, Daniel S. 2011. "Beauty Pays: Why Attractive People Are More Successful." Princeton University Press .
- Hamermesh, Daniel S. and Jason Abrevaya. 2013. "Beauty is the promise of happiness?" European Economic Review 64:351–368.
- Hamermesh, Daniel S. and Jeff E. Biddle. 1994. "Beauty and the Labor Market." American Economic Review 84 (5):1174–1194.
- Hamermesh, Daniel S., Xin Meng, and Junsen Zhang. 2002. "Dress for success does primping pay?" Labour Economics 9 (3):361–373.
- Hitsch, Gunter J., Ali Hortaçsu, and Dan Ariely. 2010. "Matching and Sorting in Online Dating." American Economic Review 100 (1):130–63.
- Lundborg, Petter, Paul Nystedt, and Dan-Olof Rooth. 2014. "Height and Earnings: The Role of Cognitive and Noncognitive Skills." *Journal of Human Resources* 49 (1):141–166.
- Mobius, Markus M. and Tanya S. Rosenblat. 2006. "Why Beauty Matters." American Economic Review 96 (1):222–235.
- Mocan, Naci and Erdal Tekin. 2010. "Ugly Criminals." *Review of Economics and Statistics* 92 (1):15–30.
- Oreffice, Sonia and Climent Quintana-Domeque. 2010. "Anthropometry and Socioeconomics among Couples: Evidence in the United States." *Economics and Human Biology* 8 (3):373–384.
- Rooth, Dan-Olof. 2009. "Obesity, Attractiveness, and Differential Treatment in Hiring: A Field Experiment." Journal of Human Resources 44 (3):710–735.
- Swami, Viren. 2008. "The influence of body weight and shape in determining female and male physical attractiveness." Advances in Psychology Research 56.

- Tovée, M.J. and P.L. Cornelissen. 2001. "Female and Male Perceptions of Female Physical Attractiveness in Fron-View and Profile." *British Journal of Psychology* 92 (2):391–402.
- Tovée, M.J., D. Maisey, J.L. Emery, and P.L. Cornelissen. 1999. "Visual Clues to Female Physical Attractiveness." *Proceedings: Biological Sciences* 266 (1415):211–218.
- Tovée, M.J., S. Reinhardt, J.L. Emery, and P.L. Cornelissen. 1998. "Optimum Body-Mass Index and Maximum Sexual Attractiveness." *The Lancet* 352 (9127):548.
- WHO. 2009. "Global Health Risks: mortality and burden of disease attributable to selected major risks." World Health Organization, Geneva.

Table 1. Summary sta	atistics. ALLB	BUS: 2008, 2012.

Panel A. Women	Ν	Mean	SD	Min	Max
Age	514	39.1	7.5	25	50
Height (cm)	514	167.6	5.9	150	186
Weight (kg)	514	67.5	12.5	48	120
BMI (kg / m ²)	514	24.0	4.2	18.5	38.87
Obese (BMI \ge 30)	514	0.11	0.31	0	1
Attractiveness (1-11)	514	8.2	1.8	1	11
West	514	0.82	0.39	0	1
Health Status (at least satisfactory)	514	0.90	0.30	0	1
Education (some college and above)	494	0.26	0.44	0	1
Number of Biological Children	511	1.45	1.18	0	6
Number of Non-Biological Children	511	0.01	0.12	0	2
Panel B. Men	Ν	Mean	SD	Min	Max
Age	561	39.4	7.4	25	50
Height (cm)	561	180.2	6.7	158	200
Weight (kg)	561	85.0	12.5	53	135
BMI (kg / m ²)	561	26.2	3.6	18.52	39.85
Obese (BMI \ge 30)	561	0.14	0.35	0	1
Attractiveness (1-11)	561	7.7	1.8	1	11
West	561	0.81	0.40	0	1
Health Status (at least satisfactory)	561	0.92	0.27	0	1
	1	0.27	0.48	0	1
Education (some college and above)	551	0.37	0.48	0	1
Education (some college and above) Number of Biological Children	551 553	0.57 1.11	0.48 1.15	0	5

Note: We focus our analysis on German citizens born in Germany, aged 25-50 and with BMI in the range 18.5-39.99. Attractiveness is assessed by the interviewer at the start of the interview. Observations have been weighted to adjust for the oversample of East German respondents. See *ALLBUS: German General Social Survey-Cumulation 1980-2012*.

	(1) Female	(2) Male	(3) Female	(4) Male	(5) Female	(6) Male
Panel A.						
Weight	-0.042***	-0.009	-0.048***	-0.014	-0.044***	-0.013
C	(0.009)	(0.008)	(0.013)	(0.011)	(0.013)	(0.011)
Height	0.053***	0.047***	0.073***	0.063***	0.066***	0.066***
	(0.017)	(0.014)	(0.020)	(0.021)	(0.020)	(0.021)
Baseline controls?	YES	YES	YES	YES	YES	YES
Interviewer FE?	NO	NO	YES	YES	YES	YES
Additional controls?	NO	NO	NO	NO	YES	YES
Adjusted R-squared	0.10	0.05	0.41	0.30	0.43	0.30
Panel B.						
BMI	-0.117***	-0.032	-0.140***	-0.043	-0.128***	-0.042
	(0.027)	(0.024)	(0.036)	(0.036)	(0.035)	(0.035)
Baseline controls?	YES	YES	YES	YES	YES	YES
Interviewer FE?	NO	NO	YES	YES	YES	YES
Additional controls?	NO	NO	NO	NO	YES	YES
Adjusted R-squared	0.09	0.03	0.41	0.26	0.42	0.27
Panel C.						
Obese	-1.15***	-0.793***	-1.42***	-0.843***	-1.34***	-0.828***
	(0.34)	(0.24)	(0.42)	(0.29)	(0.39)	(0.29)
Baseline controls?	YES	YES	YES	YES	YES	YES
Interviewer FE?	NO	NO	YES	YES	YES	YES
Additional controls?	NO	NO	NO	NO	YES	YES
Adjusted R-squared	0.06	0.05	0.36	0.29	0.39	0.29
Observations	514	561	514	561	511	553
Clusters	215	211	215	211	213	211

Table 2. LS regressions of attractiveness on anthropometric measures.

Note: Baseline controls: age, West region dummy variable and 2012 year dummy variable. Additional controls: health dummy variable (1 if at least satisfactory, 0 otherwise), number of biological children and number of non-biological children. Observations have been weighted to adjust for the oversample of East German respondents. Standard errors clustered at the interviewer level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

	(1) Female	(2) Male	(3) Female	(4) Male	(5) Female	(6) Male
Panel A.						
Weight	-0.044***	-0.025**	-0.053***	-0.032*	-0.049***	-0.037**
Height	(0.011) 0.054*** (0.016)	(0.012) 0.084*** (0.022)	(0.012) 0.071*** (0.022)	(0.017) 0.096*** (0.031)	(0.012) 0.063*** (0.022)	(0.018) 0.107*** (0.035)
Baseline controls? Interviewer FE?	YES NO	YES NO	YES	YES	YES YES	YES YES
Additional controls?	NO	NO	YES NO	YES NO	YES	YES
Adjusted R-squared	0.11	0.12	0.48	0.30	0.49	0.31
Panel B.						
BMI	-0.123*** (0.033)	-0.080** (0.039)	-0.152*** (0.035)	-0.093* (0.055)	-0.139*** (0.035)	-0.103* (0.053)
Baseline controls?	YES	YES	YES	YES	YES	YES
Interviewer FE? Additional controls?	NO NO	NO NO	YES NO	YES NO	YES YES	YES YES
Adjusted R-squared	0.10	0.08	0.47	0.25	0.49	0.25
Panel C.						
Obese	-1.12*** (0.42)	-1.25*** (0.38)	-1.38*** (0.32)	-1.45*** (0.42)	-1.32*** (0.29)	-1.48*** (0.45)
Baseline controls?	YES	YES	YES	YES	YES	YES
Interviewer FE?	NO	NO	YES	YES	YES	YES
Additional controls?	NO	NO	NO	NO	YES	YES
Adjusted R-squared	0.05	0.11	0.40	0.30	0.43	0.30
Observations	281	246	281	246	278	243
Clusters	130	85	130	85	128	85

Table 3. LS regressions of attractiveness on anthropometric measures where attractiveness is assessed by *opposite*-sex interviewers.

Note: Baseline controls: age, West region dummy variable and 2012 year dummy variable. Additional controls: health dummy variable (1 if at least satisfactory, 0 otherwise), number of biological children and number of non-biological children. Observations have been weighted to adjust for the oversample of East German respondents. Standard errors clustered at the interviewer level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

	(1)	(2)	(3)	(4)	(5)	(6)
	Female	Male	Female	Male	Female	Male
Panel A.	_					
Weight	-0.039***	0.003	-0.042*	0.003	-0.038*	0.006
Height	(0.014)	(0.010)	(0.022)	(0.014)	(0.022)	(0.013)
	0.049*	0.021	0.067*	0.041	0.057	0.040
	(0.029)	(0.017)	(0.036)	(0.027)	(0.036)	(0.029)
Baseline controls?	YES	YES	YES	YES	YES	YES
Interviewer FE?	NO	NO	YES	YES	YES	YES
Additional controls?	NO	NO	NO	NO	YES	YES
Adjusted R-squared	0.07	0.02	0.34	0.30	0.34	0.31
Panel B.	_					
BMI	-0.110***	0.008	-0.124**	-0.000	-0.111*	0.008
	(0.040)	(0.028)	(0.061)	(0.041)	(0.060)	(0.040)
Baseline controls?	YES	YES	YES	YES	YES	YES
Interviewer FE?	NO	NO	YES	YES	YES	YES
Additional controls?	NO	NO	NO	NO	YES	YES
Adjusted R-squared	0.07	0.01	0.34	0.28	0.34	0.29
Panel C.						
Obese	-1.17**	-0.467	-1.44*	-0.313	-1.34*	-0.256
	(0.52)	(0.30)	(0.72)	(0.35)	(0.68)	(0.31)
Baseline controls?	YES	YES	YES	YES	YES	YES
Interviewer FE?	NO	NO	YES	YES	YES	YES
Additional controls?	NO	NO	NO	NO	YES	YES
Adjusted R-squared	0.05	0.02	0.32	0.29	0.34	0.29
Observations	233	315	233	315	233	310
Clusters	85	126	85	126	85	126

Table 4. LS regressions of attractiveness on anthropometric measures where attractiveness is assessed by *same*-sex interviewers.

Note: Baseline controls: age, West region dummy variable and 2012 year dummy variable. Additional controls: health dummy variable (1 if at least satisfactory, 0 otherwise), number of biological children and number of non-biological children. Observations have been weighted to adjust for the oversample of East German respondents. Standard errors clustered at the interviewer level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

Table 5. Respondents' mean characteristics by interviewer's sex.

	W	omen		Ν	/Ien	
Panel I. One-by-one estimation	Intervie	ewer's sex		Intervie	wer's sex	
	Same	Opposite	Difference	Same	Opposite	Difference
Age	39.5	38.8	-0.7	39.8	39.0	-0.8
			(0.7)			(0.7)
Height	167.1	167.9	0.8	180.2	180.3	0.1
			(0.5)			(0.6)
Weight	68.1	67.1	-1.0	85.0	85.0	0.0
			(1.2)			(1.1)
BMI	24.4	23.8	-0.6	26.2	26.1	-0.1
			(0.4)			(0.3)
Obese	0.13	0.09	-0.04	0.15	0.13	-0.02
			(0.03)			(0.03)
Attractiveness	8.08	8.25	0.17	7.64	7.73	0.09
			(0.24)			(0.21)
West	0.81	0.82	0.01	0.78	0.83	0.05
			(0.05)			(0.06)
Year 2012	0.48	0.50	0.02	0.52	0.52	0.00
			(0.07)			(0.08)
Health status (at least satisfactory)	0.90	0.90	0.00	0.92	0.93	0.01
			(0.03)			(0.02)
Education (some college and above)	0.31	0.23	-0.08*	0.35	0.41	0.06
			(0.04)			(0.05)
Number of Biological Children	1.40	1.48	0.08	1.11	1.10	-0.01
			(0.12)			(0.10)
Number of Non-Biological Children	0.013	0.013	0.000	0.08	0.10	0.02
			(0.010)			(0.03)
Panel II. Simultaneous estimation						
Adjusted Wald Test		$F_{12,203} = 1.1$	5	F _{12,19}	$_{9} = 0.58$	
-		1 0.2			0.0541	

Note: The means in Panel I are obtained from individual regressions of each of the variables in the column on an interviewer's sex indicator. *Difference* is the coefficient on the interviewer's sex indicator (the difference in means between respondents interviewed by opposite-sex interviewers and those interviewed by same-sex interviewers). Panel II contains the result of the Adjusted Wald Test (Ho: no mean differences in *any* of these characteristics) after simultaneous estimation of all the previous individual regressions and its associated p-value. Observations have been weighted to adjust for the oversample of East German respondents. Standard errors clustered at the interviewer level are reported in parentheses. *** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1

p-value = 0.3200

p-value = 0.8541

	Attractiveness assessed by:							
	Interviewer	s of any sex	Opposite-sex	•	Same-sex i	nterviewers		
	(1)	(2)	(3)	(4)	(5)	(6)		
	Female	Male	Female	Male	Female	Male		
Panel A.	_							
Weight	-0.040^{***}	-0.011	-0.038***	-0.035*	-0.041*	0.008		
Height	(0.013) 0.065*** (0.021)	(0.012) 0.063*** (0.021)	(0.014) 0.071*** (0.023)	(0.019) 0.105*** (0.036)	(0.023) 0.069* (0.039)	(0.012) 0.037 (0.026)		
F-test contextual variables p-value	$\begin{array}{c} F_{7,212} \!=\! 1.95 \\ 0.0635 \end{array}$	$\begin{array}{c} F_{7,210} \!=\! 7.02 \\ 0.0000 \end{array}$	$\begin{matrix} F_{6,127} = 1.81 \\ 0.1020 \end{matrix}$	$\begin{matrix} F_{6,84} \!=\! 1.47 \\ 0.1991 \end{matrix}$	$\begin{array}{c} F_{7,84}\!=\!16.25\\ 0.0000 \end{array}$	$\begin{array}{c} F_{7,125} \!=\! 4.29 \\ 0.0003 \end{array}$		
Adjusted R-squared	0.46	0.32	0.53	0.31	0.45	0.35		
Panel B.								
BMI	-0.114*** (0.037)	-0.036 (0.037)	-0.114*** (0.042)	-0.099* (0.058)	-0.111* (0.060)	0.016 (0.035)		
F-test contextual variables p-value	$\begin{array}{c} F_{7,212} {=} 1.81 \\ 0.0858 \end{array}$	$\begin{array}{c} F_{7,210} \!=\! 2.57 \\ 0.0147 \end{array}$	$\begin{array}{c} F_{6,127} \!=\! 1.29 \\ 0.2674 \end{array}$	$\begin{array}{c} F_{6,84} \!=\! 2.55 \\ 0.0259 \end{array}$	$\begin{array}{c} F_{7,84} \!=\! 17.56 \\ 0.0000 \end{array}$	$\begin{array}{c} F_{7,125} = 2.17 \\ 0.0415 \end{array}$		
Adjusted R-squared	0.45	0.29	0.52	0.25	0.44	0.33		
Panel C.								
Obese	-1.24*** (0.42)	-0.800** (0.31)	-1.12*** (0.38)	-1.42*** (0.50)	-1.27* (0.67)	-0.245 (0.32)		
F-test contextual variables p-value	$F_{7,212} = 2.86 \\ 0.0071$	$F_{7,210} = 2.28 \\ 0.0295$	$\begin{array}{c} F_{6,127} = 2.06 \\ 0.0625 \end{array}$	$\begin{matrix} F_{6,84} = 2.78 \\ 0.0162 \end{matrix}$	$F_{7,84}$ = 17.40 0.0000	$\begin{array}{c} F_{7,125} {=} 2.05 \\ 0.0535 \end{array}$		
Adjusted R-squared	0.43	0.31	0.48	0.29	0.42	0.33		
Observations Clusters	510 213	553 211	278 128	243 85	232 85	310 126		

 Table 6. LS regressions of attractiveness on anthropometric measures after accounting for contextual variables.

 Attractiveness assessed by:

Note: All regressions include age, a West region dummy variable, a 2012 year dummy variable, a health dummy variable (1 if at least satisfactory, 0 otherwise), the number of biological children, the number of non-biological children, and contextual variables are 7 dummy variables for the type of building where the respondent lives. Observations have been weighted to adjust for the oversample of East German respondents. Standard errors clustered at the interviewer level are reported in parentheses. *** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1

5 5	i O			•	
	(1)	(2)	(3)	(4)	(5)
Panel A.	_				
Attractiveness Standardized	0.065*		0.051		0.060*
	(0.035)		(0.035)		(0.035)
Weight		-0.002	-0.001		
Height		(0.003) 0.012**	(0.003) 0.010*		
neight		(0.005)	(0.005)		
BMI		(0.002)	(0.005)	-0.006	-0.003
				(0.007)	(0.008)
Education	0.316***	0.330***	0.305***	0.341***	0.312***
	(0.065)	(0.061)	(0.066)	(0.060)	(0.065)
Observations	279	309	279	309	279
Clusters	138	163	138	163	138
Adjusted R-squared	0.16	0.18	0.17	0.17	0.16
Panel B.	_				
Attractiveness Standardized	0.056*		0.044		0.053
	(0.034)		(0.033)		(0.034)
Weight		-0.001	-0.000		
		(0.003)	(0.003)		
Height		0.011**	0.009*		
BMI		(0.005)	(0.005)	-0.004	-0.002
Bivii				(0.007)	(0.002)
Education	0.306***	0.326***	0.298***	0.335***	0.304***
	(0.067)	(0.063)	(0.068)	(0.061)	(0.067)
Observations	279	309	279	309	279
Clusters	138	163	138	163	138
Adjusted R-squared	0.16	0.18	0.17	0.17	0.16

 Table 7. LS regressions of log hourly wage rate on attractiveness and anthropometric measures. Women.

	(1)	(2)	(3)	(4)	(5)
Panel A.	_				
Attractiveness Standardized	0.097***		0.092***		0.096***
Weight	(0.028)	-0.002	(0.028) 0.002		(0.028)
Height		(0.002) 0.009***	(0.002) 0.006*		
-		(0.003)	(0.003)		
BMI				-0.009 (0.007)	-0.007 (0.007)
Education	0.269*** (0.054)	0.288*** (0.051)	0.262*** (0.054)	0.293*** (0.051)	0.265*** (0.054)
		. ,		. ,	× ,
Observations Clusters	384 156	415 185	384 156	415 185	384 156
Adjusted R-squared	0.20	0.19	0.20	0.19	0.20
Panel B.	_				
Attractiveness Standardized	0.101***		0.100***		0.101***
***	(0.028)	0.000	(0.028)		(0.028)
Weight		-0.002 (0.002)	-0.001 (0.002)		
Height		0.002	0.007*		
8		(0.004)	(0.004)		
BMI				-0.008	-0.006
— · ·				(0.007)	(0.007)
Education	0.269*** (0.056)	0.287*** (0.053)	0.261*** (0.055)	0.293*** (0.053)	0.264*** (0.055)
Observations	378	409	378	409	378
Clusters	156	185	156	185	156
Adjusted R-squared	0.20	0.20	0.21	0.20	0.21

Table 8. LS regressions of log hourly wage rate on attractiveness and anthropometric measures. Men.

	(1)	(2)	(3)	(4)	(5)
Panel A.	_				
Attractiveness Standardized	0.044 (0.031)		0.011 (0.035)		0.018 (0.033)
Weight	(0.051)	-0.007*** (0.003)	-0.007^{**} (0.003)		(01055)
Height		0.009 (0.006)	0.012* (0.007)		
BMI				-0.019*** (0.007)	-0.021** (0.008)
Education	0.435*** (0.065)	0.412*** (0.065)	0.404*** (0.068)	0.417*** (0.063)	0.410*** (0.065)
Observations	262	291	262	291	262
Clusters Adjusted R-squared	130 0.15	156 0.17	130 0.17	156 0.17	130 0.17
Panel B.	_				
Attractiveness Standardized	0.038 (0.033)		0.010 (0.036)		0.016 (0.035)
Weight	(0.055)	-0.006** (0.003)	-0.007** (0.003)		(0.055)
Height		0.009 (0.006)	0.011 (0.007)		
BMI				-0.018** (0.007)	-0.019** (0.008)
Education	0.437*** (0.066)	0.416*** (0.067)	0.412*** (0.070)	(0.007) 0.422*** (0.064)	(0.008) 0.418*** (0.067)
Observations	261	289	261	289	261
Clusters Adjusted R-squared	129 0.16	154 0.17	129 0.19	154 0.17	129 0.17

Table 9. LS regressions of spousal education on attractiveness and anthropometric measures. Women.

	(1)	(2)	(3)	(4)	(5)
Panel A.	_				
Attractiveness Standardized	-0.025 (0.028)		-0.034 (0.028)		-0.031 (0.028)
Weight	(0.028)	-0.004 (0.003)	-0.006^{**} (0.003)		(0.028)
Height		0.010* (0.005)	0.009*		
BMI		()	(0.000)	-0.013 (0.008)	-0.019** (0.008)
Education	0.251*** (0.047)	0.273*** (0.047)	0.249*** (0.048)	0.275*** (0.047)	0.250*** (0.047)
Observations	230	251	230	251	230
Clusters Adjusted R-squared	125 0.10	145 0.13	125 0.12	145 0.13	125 0.12
Panel B.	_				
Attractiveness Standardized	-0.036 (0.030)		-0.044 (0.030)		-0.042 (0.030)
Weight	(0.000)	-0.003 (0.003)	-0.006** (0.003)		(0.02.0)
Height		0.008 (0.005)	0.007 (0.005)		
BMI				-0.011 (0.008)	-0.017** (0.008)
Education	0.270*** (0.049)	0.283*** (0.048)	0.264*** (0.048)	0.288*** (0.048)	0.266*** (0.049)
Observations	226	247	226	247	226
Clusters Adjusted R-squared	125 0.11	145 0.13	125 0.13	145 0.13	125 0.13

Table 10. LS regressions of spousal e	education on attractiveness and anth	ropometric measures. Men.

	Women	Men
Attractiveness Standardized	0.016	-0.042
	(0.034)	(0.029)
BMI	-0.019**	-0.017**
	(0.008)	(0.008)
Education	0.418***	0.266***
	(0.066)	(0.048)
Observations	4	87
Clusters	165	
Ratio of coefficients		
BMI/Education	-0.046*	-0.064**
	(0.023)	(0.030)
Adjusted Wald Test	$F_{1,164} = 0.24$	
-	p-value	= 0.6223

 Table 11. Do women and men face similar trade-offs? Simultaneous estimation of spousal education on attractiveness, BMI and education.

Note: Attractiveness standardized is obtained by subtracting from an individual's attractiveness rating the average rating of the corresponding interviewer, and dividing this difference by the standard deviation of these ratings. Regressions include: age, a West region dummy variable, a 2012 year dummy variable, a health dummy variable (1 if at least satisfactory, 0 otherwise), the number of biological children and the number of non-biological children. (Linearized) standard errors that take into account the survey design (clusters and weights) are reported in parentheses. Observations have been weighted to adjust for the oversample of East German respondents. *** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1

Table A1. LS regressions of log hourly wage rate on attractiveness and obesity.				
	(1) Female	(2) Female	(3) Male	(4) Male
Panel A.				
Attractiveness Standardized		0.061 (0.037)		0.094*** (0.028)
Obese	-0.076 (0.088)	-0.046 (0.097)	-0.136** (0.062)	-0.109* (0.063)
Education	0.343*** (0.060)	0.313*** (0.065)	0.293*** (0.051)	0.264*** (0.054)
Observations	309	279	415	384
Clusters	163	138	185	156
Adjusted R-squared	0.17	0.16	0.19	0.20
Panel B.				
Attractiveness Standardized		0.051 (0.035)		0.098*** (0.027)
Obese	-0.071	-0.048	-0.143**	-0.117*
	(0.089)	(0.096)	(0.062)	(0.065)
Education	0.336***	0.303***	0.293***	0.263***
	(0.061)	(0.067)	(0.052)	(0.055)
Observations	309	279	409	378
Clusters	163	138	185	156
Adjusted R-squared	0.17	0.16	0.20	0.21

APPENDIX

0	(1)	(2)	(2)	(4)
	(1) Female	(2) Female	(3) Male	(4) Male
Panel A.	_			
Attractiveness Standardized		0.031 (0.031)		-0.028 (0.027)
Obese	-0.253^{***} (0.089)	-0.247** (0.100)	-0.038 (0.079)	-0.102 (0.069)
Education	0.429*** (0.060)	0.422*** (0.064)	0.278*** (0.048)	0.252*** (0.048)
Observations	291	262	251	230
Clusters	156	130	145	125
Adjusted R-squared	0.17	0.17	0.12	0.10
Panel B.	_			
Attractiveness Standardized		0.027 (0.033)		-0.039 (0.029)
Obese	-0.234** (0.093)	-0.236** (0.102)	-0.026 (0.080)	-0.093 (0.070)
Education	0.431*** (0.062)	0.426*** (0.065)	0.291*** (0.049)	0.270*** (0.049)
Observations	289	261	247	226
Clusters	154	129	145	125
Adjusted R-squared	0.17	0.17	0.12	0.11

Table A2. LS	regressions	of spousal	education or	1 attractiveness	and obesity.

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI

Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:

http://www.feem.it/getpage.aspx?id=73&sez=Publications&padre=20&tab=1 http://papers.ssrn.com/sol3/JELJOUR_Results.cfm?form_name=journalbrowse&journal_id=266659

http://ideas.repec.org/s/fem/femwpa.html http://www.econis.eu/LNG=EN/FAM?PPN=505954494

http://ageconsearch.umn.edu/handle/35978

http://www.bepress.com/feem/

NOTE DI LAVORO PUBLISHED IN 2014

CCSD	1.2014	Erin Baker, Valentina Bosetti, Karen E. Jenni and Elena Claire Ricci: <u>Facing the Experts: Survey Mode and</u> Expert Elicitation
ERM	2.2014	Simone Tagliapietra: <u>Turkey as a Regional Natural Gas Hub: Myth or Reality? An Analysis of the Regional</u> <u>Gas Market Outlook, beyond the Mainstream Rhetoric</u>
ERM	3.2014	Eva Schmid and Brigitte Knopf: <u>Quantifying the Long-Term Economic Benefits of European Electricity</u> System Integration
CCSD CCSD	4.2014 5.2014	Gabriele Standardi, Francesco Bosello and Fabio Eboli: <u>A Sub-national CGE Model for Italy</u> Kai Lessmann, Ulrike Kornek, Valentina Bosetti, Rob Dellink, Johannes Emmerling, Johan Eyckmans, Miyuki Nagashima, Hans-Peter Weikard and Zili Yang: <u>The Stability and Effectiveness of Climate Coalitions: A</u>
CCSD	6.2014	<u>Comparative Analysis of Multiple Integrated Assessment Models</u> Sergio Currarini, Carmen Marchiori and Alessandro Tavoni: <u>Network Economics and the Environment:</u> <u>Insights and Perspectives</u>
CCSD	7.2014	Matthew Ranson and Robert N. Stavins: <u>Linkage of Greenhouse Gas Emissions Trading Systems: Learning</u> from Experience
CCSD	8.2013	Efthymia Kyriakopoulou and Anastasios Xepapadeas: <u>Spatial Policies and Land Use Patterns: Optimal and</u> <u>Market Allocations</u>
CCSD	9.2013	Can Wang, Jie Lin, Wenjia Cai and ZhongXiang Zhang: <u>Policies and Practices of Low Carbon City</u> <u>Development in China</u>
ES	10.2014	Nicola Genovese and Maria Grazia La Spada: <u>Trust as a Key Variable of Sustainable Development and Public</u> Happiness: A Historical and Theoretical Example Regarding the Creation of Money
ERM	11.2014	Ujjayant Chakravorty, Martino Pelli and Beyza Ural Marchand: <u>Does the Quality of Electricity Matter?</u> Evidence from Rural India
ES	12.2014	Roberto Antonietti: <u>From Outsourcing to Productivity, Passing Through Training: Microeconometric</u> Evidence from Italy
CCSD	13.2014	Jussi Lintunen and Jussi Uusivuori: <u>On The Economics of Forest Carbon: Renewable and Carbon Neutral But</u> Not Emission Free
CCSD	14.2014	Brigitte Knopf, Bjørn Bakken, Samuel Carrara, Amit Kanudia, Ilkka Keppo, Tiina Koljonen, Silvana Mima, Eva Schmid and Detlef van Vuuren: <u>Transforming the European Energy System: Member States' Prospects</u>
CCSD	15.2014	Within the EU Framework Brigitte Knopf, Yen-Heng Henry Chen, Enrica De Cian, Hannah Förster, Amit Kanudia, Ioanna Karkatsouli, Ilkka Keppo, Tiina Koljonen, Katja Schumacher and Detlef van Vuuren: <u>Beyond 2020 - Strategies and Costs</u>
CCSD	16.2014	for Transforming the European Energy System Anna Alberini, Markus Bareit and Massimo Filippini: <u>Does the Swiss Car Market Reward Fuel Efficient Cars?</u> Evidence from Hedonic Pricing Regressions, a Regression Discontinuity Design, and Matching
ES	17.2014	Cristina Bernini and Maria Francesca Cracolici: <u>Is Participation in Tourism Market an Opportunity for</u> Everyone? Some Evidence from Italy
ERM	18.2014	Wei Jin and ZhongXiang Zhang: <u>Explaining the Slow Pace of Energy Technological Innovation: Why Market</u> <u>Conditions Matter?</u>
CCSD	19.2014	Salvador Barrios and J. Nicolás Ibañez: <u>Time is of the Essence: Adaptation of Tourism Demand to Climate</u> <u>Change in Europe</u>
CCSD	20.2014	Salvador Barrios and J. Nicolás Ibañez Rivas: <u>Climate Amenities and Adaptation to Climate Change: A</u> Hedonic-Travel Cost Approach for Europe
ERM	21.2014	Andrea Bastianin, Marzio Galeotti and Matteo Manera: <u>Forecasting the Oil-gasoline Price Relationship:</u> Should We Care about the Rockets and the Feathers?
ES	22.2014	Marco Di Cintio and Emanuele Grassi: <u>Wage Incentive Profiles in Dual Labor Markets</u>
CCSD	23.2014	Luca Di Corato and Sebastian Hess: Farmland Investments in Africa: What's the Deal?
CCSD	24.2014	Olivier Beaumais, Anne Briand, Katrin Millock and Céline Nauges: <u>What are Households Willing to Pay for</u> Better Tap Water Quality? A Cross-Country Valuation Study
CCSD	25.2014	Gabriele Standardi, Federico Perali and Luca Pieroni: <u>World Tariff Liberalization in Agriculture: An</u> Assessment Following a Global CGE Trade Model for EU15 Regions
ERM	26.2014	Marie-Laure Nauleau: <u>Free-Riding on Tax Credits for Home Insulation in France: an Econometric Assessment</u> <u>Using Panel Data</u>

CCSD	27.2014	Hannah Förster, Katja Schumacher, Enrica De Cian, Michael Hübler, Ilkka Keppo, Silvana Mima and Ronald D. Sands: <u>European Energy Efficiency and Decarbonization Strategies Beyond 2030 – A Sectoral Multi-</u> model Decomposition
CCSD	28.2014	Katherine Calvin, Shonali Pachauri, Enrica De Cian and Ioanna Mouratiadou: <u>The Effect of African Growth</u> on Future Global Energy, Emissions, and Regional Development
CCSD	29.2014	Aleh Cherp, Jessica Jewell, Vadim Vinichenko, Nico Bauer and Enrica De Cian: <u>Global Energy Security under</u> <u>Different Climate Policies, GDP Growth Rates and Fossil Resource Availabilities</u>
CCSD	30.2014	Enrica De Cian, Ilkka Keppo, Johannes Bollen, Samuel Carrara, Hannah Förster, Michael Hübler, Amit Kanudia, Sergey Paltsev, Ronald Sands and Katja Schumacher. <u>European-Led Climate Policy Versus Global</u> <u>Mitigation Action. Implications on Trade, Technology, and Energy</u>
ERM	31.2014	Simone Tagliapietra: <u>Iran after the (Potential) Nuclear Deal: What's Next for the Country's Natural Gas</u> <u>Market?</u>
CCSD	32.2014	Mads Greaker, Michael Hoel and Knut Einar Rosendahl: <u>Does a Renewable Fuel Standard for Biofuels</u> <u>Reduce Climate Costs?</u>
CCSD ES	33.2014 34.2014	Edilio Valentini and Paolo Vitale: <u>Optimal Climate Policy for a Pessimistic Social Planner</u> Cristina Cattaneo: <u>Which Factors Explain the Rising Ethnic Heterogeneity in Italy? An Empirical Analysis at</u> Province Level
CCSD	35.2014	Yasunori Ouchida and Daisaku Goto: <u>Environmental Research Joint Ventures and Time-Consistent Emission</u> Tax
CCSD	36.2014	Jaime de Melo and Mariana Vijil: <u>Barriers to Trade in Environmental Goods and Environmental Services:</u> How Important Are They? How Much Progress at Reducing Them?
CCSD	37.2014	Ryo Horii and Masako Ikefuji: <u>Environment and Growth</u>
CCSD	38.2014	Francesco Bosello, Lorenza Campagnolo, Fabio Eboli and Ramiro Parrado: <u>Energy from Waste: Generation</u> <u>Potential and Mitigation Opportunity</u>
ERM	20 2014	
CCSD	39.2014 40.2014	Lion Hirth, Falko Ueckerdt and Ottmar Edenhofer: <u>Why Wind Is Not Coal: On the Economics of Electricity</u> Wei Jin and ZhongXiang Zhang: <u>On the Mechanism of International Technology Diffusion for Energy</u> <u>Productivity Growth</u>
CCSD	41.2014	Abeer El-Sayed and Santiago J. Rubio: <u>Sharing R&D Investments in Cleaner Technologies to Mitigate Climate</u> <u>Change</u>
CCSD	42.2014	Davide Antonioli, Simone Borghesi and Massimiliano Mazzanti: <u>Are Regional Systems Greening the</u> <u>Economy? the Role of Environmental Innovations and Agglomeration Forces</u>
ERM	43.2014	Donatella Baiardi, Matteo Manera and Mario Menegatti: <u>The Effects of Environmental Risk on</u> <u>Consumption: an Empirical Analysis on the Mediterranean Countries</u>
CCSD	44.2014	Elena Claire Ricci, Valentina Bosetti, Erin Baker and Karen E. Jenni: <u>From Expert Elicitations to Integrated</u> Assessment: Future Prospects of Carbon Capture Technologies
CCSD	45.2014	Kenan Huremovic: <u>Rent Seeking and Power Hierarchies: A Noncooperative Model of Network Formation</u> with Antagonistic Links
CCSD	46.2014	Matthew O. Jackson and Stephen Nei: <u>Networks of Military Alliances, Wars, and International Trade</u>
CCSD	47.2014	Péter Csóka and P. Jean-Jacques Herings: Risk Allocation under Liquidity Constraints
CCSD	48.2014	Ahmet Alkan and Alparslan Tuncay: Pairing Games and Markets
CCSD	49.2014	Sanjeev Goyal, Stephanie Rosenkranz, Utz Weitzel and Vincent Buskens: <u>Individual Search and Social</u> <u>Networks</u>
CCSD	50.2014	Manuel Förster, Ana Mauleon and Vincent J. Vannetelbosch: <u>Trust and Manipulation in Social Networks</u>
CCSD	51.2014	Berno Buechel, Tim Hellmann and Stefan Kölßner: Opinion Dynamics and Wisdom under Conformity
CCSD	52.2014	Sofia Priazhkina and Frank Page: <u>Formation of Bargaining Networks Via Link Sharing</u>
ES	53.2014	Thomas Longden and Greg Kannard: <u>Rugby League in Australia between 2001 and 2012: an Analysis of</u> <u>Home Advantage and Salary Cap Violations</u>
ES	54.2014	Cristina Cattaneo, Carlo V. Fiorio and Giovanni Peri: <u>What Happens to the Careers of European Workers</u> when Immigrants "Take their Jobs"?
CCSD	55.2014	Francesca Sanna-Randaccio, Roberta Sestini and Ornella Tarola: <u>Unilateral Climate Policy and Foreign</u> <u>Direct Investment with Firm and Country Heterogeneity</u>
ES	56.2014	Cristina Cattaneo, Carlo V. Fiorio and Giovanni Peri: <u>Immigration and Careers of European Workers: Effects</u> <u>and the Role of Policies</u>
CCSD	57.2014	Carlos Dionisio Pérez Blanco and Carlos Mario Gómez Gómez: <u>Drought Management Plans and Water</u> <u>Availability in Agriculture. A Risk Assessment Model for a Southern European Basin</u>
CCSD	58.2014	Baptiste Perrissin Fabert, Etienne Espagne, Antonin Pottier and Patrice Dumas: <u>The Comparative Impact of</u> <u>Integrated Assessment Models' Structures on Optimal Mitigation Policies</u>
CCSD	59.2014	Stuart McDonald and Joanna Poyago-Theotoky: Green Technology and Optimal Emissions Taxation
CCSD	60.2014	ZhongXiang Zhang: <u>Programs, Prices and Policies Towards Energy Conservation and Environmental Quality</u> in <u>China</u>
CCSD	61.2014	Carlo Drago, Livia Amidani Aliberti and Davide Carbonai: <u>Measuring Gender Differences in Information</u> Sharing Using Network Analysis: the Case of the Austrian Interlocking Directorship Network in 2009
CCSD	62.2014	Carlos Dionisio Pérez Blanco and Carlos Mario Gómez Gómez: <u>An Integrated Risk Assessment Model for the</u> Implementation of Drought Insurance Markets in Spain
CCSD	63.2014	Y. Hossein Farzin and Ronald Wendner: <u>The Time Path of the Saving Rate: Hyperbolic Discounting and</u> Short-Term Planning
CCSD	64.2014	Francesco Bosello and Ramiro Parrado: <u>Climate Change Impacts and Market Driven Adaptation: the Costs</u> of Inaction Including Market Rigidities
CCSD	65.2014	Luca Di Corato, Cesare Dosi and Michele Moretto: Bidding for Conservation Contracts

CCSD	66.2014	Achim Voß and Jörg Lingens: <u>What's the Damage? Environmental Regulation with Policy-Motivated</u>
CCSD	67.2014	Bureaucrats Carolyn Fischer, Richard G. Newell and Louis Preonas: <u>Environmental and Technology Policy Options in the</u>
CCSD	68.2014	<u>Electricity Sector: Interactions and Outcomes</u> Carlos M. Gómez, C. Dionisio Pérez-Blanco and Ramon J. Batalla: <u>The Flushing Flow Cost: A Prohibitive</u> <u>River Restoration Alternative? The Case of the Lower Ebro River</u>
ES	69.2014	Roberta Distante, Ivan Petrella and Emiliano Santoro: Size, Age and the Growth of Firms: New Evidence
CCSD	70.2014	from Quantile Regressions Jaime de Melo and Mariana Vijil: <u>The Critical Mass Approach to Achieve a Deal on Green Goods and</u>
ERM	71.2014	Services: What is on the Table? How Much to Expect? Gauthier de Maere d'Aertrycke, Olivier Durand-Lasserve and Marco Schudel: <u>Integration of Power</u>
ERM	72.2014	<u>Generation Capacity Expansion in an Applied General Equilibrium Model</u> ZhongXiang Zhang: <u>Energy Prices, Subsidies and Resource Tax Reform in China</u>
CCSD	73.2014	James A. Lennox and Jan Witajewski: <u>Directed Technical Change With Capital-Embodied Technologies:</u> Implications For Climate Policy
CCSD	74.2014	Thomas Longden: <u>Going Forward by Looking Backwards on the Environmental Kuznets Curve: an Analysis of</u> <u>CFCs, CO2 and the Montreal and Kyoto Protocols</u>
ERM	75.2014	Simone Tagliapietra: <u>The EU-Turkey Energy Relations After the 2014 Ukraine Crisis. Enhancing The</u> Partnership in a Rapidly Changing Environment
CCSD	76.2014	J. Farlin, L. Drouet, T. Gallé, D. Pittois, M. Bayerle, C. Braun, P. Maloszewski, J. Vanderborght, M. Elsner
0000	/ 012011	and A. Kies: <u>Delineating Spring Recharge Areas in a Fractured Sandstone Aquifer (Luxembourg) Based on</u> Pesticide Mass Balance
CCSD	77.2014	F. Branger and P. Quirion: <u>Reaping the Carbon Rent: Abatement and Overallocation Profits in the European</u>
		Cement Industry, Insights from an LMDI Decomposition Analysis
CCSD	78.2014	Johannes Emmerling : <u>Sharing of Climate Risks across World Regions</u>
CCSD	79.2014	Brigitte Knopf, Nicolas Koch, Godefroy Grosjean, Sabine Fuss, Christian Flachsland, Michael Pahle, Michael
		Jakob and Ottmar Edenhofer: <u>The European Emissions Trading System (EU ETS): Ex-Post Analysis, the</u>
CCSD	80.2014	<u>Market Stability Reserve and Options for a Comprehensive Reform</u> Yana Rubashkina, Marzio Galeotti and Elena Verdolini: <u>Environmental Regulation and Competitiveness:</u>
CC3D	00.2014	Empirical Evidence on the Porter Hypothesis from European Manufacturing Sectors
ES	81.2014	Fabio Sabatini and Francesco Sarracino: <u>E-participation: Social Capital and the Internet</u>
CCSD	82.2014	Lorenzo Carrera, Gabriele Standardi, Francesco Bosello and Jaroslav Mysiak: Assessing Direct and Indirect
		Economic Impacts of a Flood Event Through the Integration of Spatial and Computable General Equilibrium
		Modelling
CCSD	83.2014	Christophe Charlier and Sarah Guillou: <u>Distortion Effects of Export Quota Policy: an Analysis of the China –</u>
		<u>Raw Materials Dispute</u>
CCSD	84.2014	Elisa Calliari: <u>Loss & Damage: a Critical Discourse Analysis</u>
CCSD	85.2014	Frédéric Branger and Philippe Quirion: <u>Price versus Quantities versus Indexed Quantities</u>
CCSD CCSD	86.2014 87.2014	Vladimir Otrachshenkoy: <u>The Passive Use Value of the Mediterranean Forest</u>
CCSD	87.2014	Elisa Calliari and Jaroslav Mysiak <i>with contributions from</i> Silvia Santato and María Máñez Costa: <u>Partnerships</u> for a Better Governance of Natural Hazard Risks
CCSD	88.2014	Patrice Bougette and Christophe Charlier: <u>Renewable Energy, Subsidies, and the WTO: Where Has the</u>
CCSD	00.2014	Green' Gone?
ES	89.2014	Shuai Gao, Wenjia Cai, Wenling Liu, Can Wang and ZhongXiang Zhang: <u>Corporate Preferences for Domestic</u>
		Policy Instruments under a Sectoral Market Mechanism: A Case Study of Shanxi Province in China
CCSD	90.2014	Marzio Galeotti, Yana Rubashkina, Silvia Salini and Elena Verdolini: Environmental Policy Performance and
		its Determinants: Application of a Three-level Random Intercept Model
CCSD	91.2014	Laura Diaz Anadon, Valentina Bosetti, Gabriel Chan, Gregory Nemet and Elena Verdolini: <u>Energy Technology</u> Expert Elicitations for Policy: Workshops, Modeling, and Meta-analysis
ERM	92.2014	Lawrence M. Murphy, Ron Ondechek Jr., Ricardo Bracho, John McKenna and Hamilton Clark: <u>Clean Energy</u>
		- Bridging to Commercialization: The Key Potential Role of Large Strategic Industry Partners
CCSD	93.2014	Tim Keighley, Thomas Longden, Supriya Mathew and Stefan Trück: Quantifying Catastrophic and Climate
		Impacted Hazards Based on Local Expert Opinions
CCSD	94.2014	Steve Charnovitz and Carolyn Fischer: <u>Canada – Renewable Energy: Implications for WTO Law on Green and</u> Not-so-Green Subsidies
ERM	95.2014	Simone Tagliapietra: <u>Towards a European Energy Union. The Need to Focus on Security of Energy Supply</u>
ERM	96.2014	Jacopo Bonan, Stefano Pareglio and Massimo Tavoni: <u>Access to Modern Energy: a Review of Impact</u>
		Evaluations
ERM	97.2014	Anna Alberini and Andrea Bigano: <u>How Effective Are Energy-Efficiency Incentive Programs? Evidence from</u>
		Italian Homeowners
ES	98.2014	Rafael González-Val: War Size Distribution: Empirical Regularities Behind the Conflicts
ERM	99.2014	Robert Marschinski and Philippe Quirion: <u>Tradable Renewable Quota vs. Feed-In Tariff vs. Feed-In Premium</u>
EDIA	100 001 :	under Uncertainty
ERM	100.2014	Wei Jin and ZhongXiang Zhang: From Energy-intensive to Innovation-led Growth: On the Transition
CCSD	101 2014	<u>Dynamics of China's Economy</u> Vassiliki Manoussi and Anastasios Xepapadeas: <u>Cooperation and Competition in Climate Change Policies:</u>
000	101.2014	Mitigation and Climate Engineering when Countries are Asymmetric
CCSD	102.2014	
ES	103.2014	
		Matter?

- ES 104.2014 Raouf Boucekkine, Fabien Prieur and Klarizze Puzon: On the Timing of Political Regime Changes: Theory and Application to the Arab Spring
- CCSD 105.2014 Samuel Carrara and Emanuele Massetti: Should We Ban Unconventional Oil Extraction to Reduce Global
 Warming?

 106.2014
 Sonia Oreffice and Climent Quintana-Domeque: <u>Attractiveness, Anthropometry or Both? Their Relationship</u>
- ES and Role in Economic Research