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Foreword 
 
Economic development is an essential component of the life of human societies: it is 
crucial to provide better living conditions to present to future generations. Poverty 
eradication, better nutrition, access to energy, health and education are objectives 
almost unanimously shared by all societies, but require economic development to be 
achieved. Resources in our planet are however finite, and living conditions do not 
depend only on economic development but also on the quality of the environment. 
Among the threats to economic development and quality of life in this planet, climate 
change is certainly the most important one. But other threats, from biodiversity losses 
to lack of water availability, often closely interrelated with climate change, cannot be 
neglected when assessing the future prospect of human life on earth. This series’ goal is 
to provide a comprehensive and multidisciplinary approach to sustainable development 
and to analyze its economic, social and environmental components. FEEM’s « Climate 
Change and Sustainable Development » Series aims indeed at disseminating research 
carried out and knowledge developed within FEEM’s Climate Change and Sustainable 
Development program. Volumes will move from methodological tools (game theory, 
integrated assessment models, risk assessment tools, etc.) to economic and policy 
analysis of measures designed to control climate change, to offset its impacts and, more 
widely, to support and operationalize sustainable development.   
 
Premessa 
 
Lo sviluppo economico è una componente essenziale della vita delle nostre società: è infatti 
decisivo per fornire migliori condizioni di vita alle generazioni presenti e future. Ridurre la 
povertà, migliorare i livelli di nutrizione, fornire a tutti accesso all’energia, all’istruzione e ai 
servizi sanitari sono obiettivi unanimemente condivisi, ma che richiedono per essere 
raggiunti uno sviluppo economico diffuso e inclusivo. Le risorse del pianeta sono tuttavia 
limitate e le condizioni di vita non dipendono solo dallo sviluppo economico, ma anche dalla 
qualità dell’ambiente in cui viviamo. Il cambiamento climatico rappresenta oggi la più 
importante tra le minacce allo sviluppo economico e al miglioramento della qualità della 
vita sulla terra. Ma molte altre variabili, dalla perdita di biodiversità alla mancanza di 
risorse idriche, spesso dipendenti dal cambiamento climatico, vanno tenute in considerazione 
se si vuole capire quale possa essere il nostro futuro. L’obiettivo di questa collana è quello di 
fornire un approccio olistico e multidisciplinare allo sviluppo sostenibile, per poterlo 
analizzare in tutte le sue componenti: economiche, sociali, ambientali. La collana 
« Cambiamento Climatico e Sviluppo Sostenibile » è infatti uno degli strumenti con cui la 
Fondazione Eni Enrico Mattei vuole diffondere la ricerca e la conoscenza sviluppate dal suo 
programma “Climate Change and Sustainable Development”. I volumi di questa collana 
spaziano quindi dagli strumenti metodologici necessari per valutare le dinamiche dello 
sviluppo sostenibile (dalla teoria dei giochi ai modelli integrati dell’economia mondiale) fino 
all’analisi delle migliori misure di policy concepite per controllare il cambiamento climatico, 
per limitarne i suoi effetti e più in generale per sostenere e concretizzare uno sviluppo 
economico sostenibile. 
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Preface 
 

 

 
Carlo Carraro, Co-founder, Coalition Theory Network 

 

 

 

 

 

 

A beautiful dozen. Twelve papers presented in 20 years of meetings of the 
Coalition Theory Network (CTN). Twelve seminal contributions to the theory of 
coalitions and networks. Not necessarily the twelve best papers. Certainly many 
other excellent papers have been presented and discussed in these 20 CTN 
workshops. Nevertheless, these papers well represent the story of the Coalition 
Theory Network, from the origins to the various evolutions in these 20 years. In 
addition, they help to understand the achievements of the Coalition Theory 
Network and highlight the importance of the various CTN partners. 

But let’s start from the beginning. Twenty years ago! The Coalition Theory 
Network was indeed founded in 1995, when FEEM joined CORE – University of 
Louvain-la-Neuve in organizing a workshop on coalition formation and 
environmental games focused on the analysis of international environmental 
agreements and climate negotiations. The success of the workshop induced the 
organisers to widen the focus of the following CTN meetings to the burgeoning 
applications of coalition and network theory, and to undertake the formal 
creation of the Coalition Theory Network. The yearly meetings have continued for 
20 years, hosted in turn by the partner institutions, among which those that have 
joined in the meantime: after FEEM and CORE in 1995, GREQAM – University of 
Aix-Marseilles and CES – University Paris I joined in 1999, MOVE – Universitat 
Autònoma de Barcelona in 2000, Maastricht University and Vanderbilt University 
in 2006, and CSDSI – New Economic School of Moscow joined CTN in 2014. 

Year after year, CTN has progressively become a reference point for the study 
of network and coalition formation and their applications. Its workshops have 
been attended by an increasing number of scholars. Participation in CTN 
workshops has become highly selective, with less than 30% of submitted papers 
accepted for presentation. Thanks to its success, CTN is now a well established 
association of eight high-level scientific and academic institutions, whose aim is 
the advancement and dissemination of research in the area of network and 
coalition theory. 
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All of the most important contributors to the theory of coalitions and 
networks have attended one or more CTN workshops. Most have delivered 
keynote lectures, all have presented papers that have been later published in top 
economic journals. The CTN web site (http://www.coalitiontheory.net/) is 
certainly the best specialised repository of knowledge on coalitions and networks. 

How, then, could 12 papers be selected out of more than 500 papers 
presented at the CTN workshops? And why? Even though quite a small drop in 
the CTN ocean, this sample of papers is very informative about the story and the 
accomplishments of the Coalition Theory Network. Most of the twelve papers 
belong to the first years of CTN: they are a sort of memory of the foundations of 
this network. Foundations lying on the support received from the network 
partners above all. But also lying on the contribution of specific persons. From 
Henry Tulkens (CORE) to Domenico Siniscalco (FEEM), from Francis Bloch 
(GREQAM and now Paris I) and Antoine Soubeyran (GREQAM) to Salvador 
Barberà (Barcelona), from Scott Barrett (now at Columbia University) to Shlomo 
Weber (now at the New School of Economics in Moscow), from Myrna Wooders 
(Vanderbilt) to Hubert Kempf (Paris I), from Debraj Ray (NYU) to Matt Jackson 
(Stanford) and Michael Finus (now at University of Bath). And of course many 
others, whose names can be found in this volume or in the program of the CTN 
workshops available at http://www.coalitiontheory.net/. 

The twelve papers, therefore, have been certainly chosen for their quality, but 
not only that. They first and foremost represent the eight partners of CTN. They 
outline the ideas and the vision at the origin of the network. They highlight the 
research topics that drove the interest on coalitions first and on networks then.  

For example, the prominence given to contributions to the theory of 
international environmental coalitions can be explained because this was the seed 
that gave rise to many other ideas and theoretical developments. International 
environmental cooperation, as well as international cooperation over other global 
economic, social or military issues, was, and still is, increasingly important 
worldwide. The range of topics on which negotiations to achieve a substantial 
degree of cooperation among countries and regions are underway is indeed wide. 
Transnational issues, such as trade and financial flows liberalization, migration, 
technological co-operation, development aid, disease control and climate change 
are the most important issues discussed in G-8, G-20 and other international 
meetings.  

The common feature of these issues is a high degree of interdependence 
among countries: in general, the welfare of each country depends on its own 
action as well as on the action of any other country. As a consequence, in most 
cases, unilateral policies can be jeopardized and possibly made useless by the 
other countries’ reaction. This is the well-known “tragedy of the commons”. 
International cooperation, which makes policy more effective and can also 
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redistribute the resulting gains among the cooperating countries, is therefore 
welfare improving. How to achieve these welfare improvements is therefore a 
relevant research question, which drove the first attempts by CTN researchers to 
identify mechanisms and policies to foster international cooperation. 

The study of countries’ interactions when dealing with an international or 
global economic problem can obviously be represented as a game, and the 
emergence of cooperation as the decision to form a coalition. That’s why it 
became important to study the formation of coalitions. But the study of agents’ 
behaviour when forming a coalition led CTN researchers to analyse other forms, 
simpler or more complex, of agents’ interaction. In a coalition, all players forming 
a coalition interact with all other coalition members and, as a group, with all the 
other players of the game. In a network, some players cooperate with others, 
other players possibly with only one player, some players may not even interact 
with others, while still belonging to the same game. These more detailed and 
articulated forms of interactions are studied by the theory of networks, whose 
applications have been wide, possibly even wider than those of coalition theory.  

This is why in this volume you will find chapters focusing on trade networks, 
or on the theory of organisations, or on homophily and friendship. The theory of 
networks has indeed a large spectrum of applications, and the properties of 
networks have been the subject of many contributions to CTN workshops (partly 
captured in this book as well). Network theory aims to provide a unified 
framework for analyzing the relation between agents’ position in the network and 
their actions and welfare. More generally, a model is needed to explain how the 
whole structure of the network (or the beliefs that agents hold in this structure) 
affect agents’ behavior and welfare. The study of network formation and of the 
games played in networks under local and limited information is indeed one of the 
most challenging and frequently studied issues at present. Applications of the 
theory of networks also include the governance of economic unions, the 
formation of industrial cartels and collaborations, the patterns of racial 
integration in social networks, and the endogenous evolution and structure of 
institutions, etc. 

This volume therefore represents a tribute to research developed by the 
Coalition Theory Network, and presented at the CTN annual workshops, on the 
occasion of the 20th anniversary of its foundation. It is a tribute to the eight 
partners of the Coalition Theory Network and to all the colleagues who have 
contributed to its success. It is finally a tribute to the wide array of useful and 
interesting applications of the theory of coalitions and networks, partly 
underutilised by applied economists, that CTN helped to develop and 
disseminate. 

The success of the Coalition Theory Network is certainly explained by the 
vision and commitment of the eight CTN partners, and by the intellectual 
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achievements of the many game theorists and economists who attended CTN 
workshops. However, CTN is also strongly indebted to the work and dedication of 
Silvia Bertolin, who has been in charge of the CTN secretariat for about fifteen 
years and who has managed its web site, prepared the quarterly newsletter and, 
above all, maintained friendly and cooperative links among all partners. And even 
this book would not have been published without Silvia’s work, perfectly 
complemented by the excellent contributions of Martina Gambaro and Barbara 
Racah.  

On its 20th anniversary, the Coalition Theory Network is still very lively and 
increasingly attractive for young researchers. For its 20th anniversary workshop, 
the number of submissions has achieved a record number. And partnership is 
likely to further develop. I hope this volume will help retrace the past of the 
Coalition Theory Network, while at the same time stimulating its future 
developments and success. 

 
Venice, March 2nd 2015  
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Strategies for the International Protection  
of the Environment 

 
 

* 
Carlo Carraro and Domenico Siniscalco 

 
 
 

Paper presented at the CTN Workshop 1994. Reprinted from Journal of Public Economics 52(3), 
October 1993, 309–328, with permission from Elsevier. 

 
 
 

This paper analyses profitability and stability of international agreements to protect 
the environment in the presence of trans-frontier or global pollution. Each country 
decides whether or- not to coordinate its strategy with other countries. A coalition is 
formed when conditions of profitability and stability (no free-riding) are satisfied. It is 
shown that such coalitions exist; that they tend to involve a fraction of negotiating 
countries; and that the number of signatory countries can be increased by means of 
self-financed transfers. However, expanding coalitions requires some form of 
commitment. Such schemes of commitment and transfers can even lead to cooperation 
by all countries. 

 
 
 
1. Introduction 
 
A large amount of pollutants are discharged in the atmosphere and water 
systems, as a result of human activity in each country. The emissions often affect 
other countries, as well as the global environment. In economic terms, each 
polluting country benefits from using the environment as a receptacle for 
emissions but, at the same time, is also damaged by environmental deterioration. 
While the benefit is related to domestic emissions only, the damage is related to 
both domestic and foreign emissions which negatively affect the environment. 
Hence, a problem of international externalities arises which, in the present 

                                                           
 We are grateful to K.J. Arrow, C. D’Aspremont, M. Hoel, K.G. Maler, P. Michel and two anonymous referees, 

for helpful comments and suggestions on a previous version of this paper. The usual disclaimers apply. 
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institutional setting, can be solved only by voluntary agreements among sovereign 
countries. Such agreements have been quite common in recent years,1 and they 
seem to share some features: they are often characterized by cooperative 
behaviour among the individual countries involved; they usually have only a sub-
group of the negotiating countries as signatories (partial cooperation); and they 
tend to use various forms of transfers, typically to the developing countries, as a 
key instrument for increasing the number of signatories. 

The existing literature on the protection of the international environment 
does not sufficiently convey the characteristics of international agreements 
mentioned above. The traditional contributions on trans-national commons 
describe countries’ environmental interaction as a one-shot Prisoner’s Dilemma, 
where free-riding inevitably leads to the ‘tragedy of commons’ (for a discussion, 
see Ostrom, 1990). In more recent works on the subject, the repetition of the 
Prisoner’s Dilemma, under appropriate assumptions, can enlarge the set of 
equilibrium outcomes, and characterize situations where all countries cooperate 
(for a discussion, see Maler, 1989; Barrett, 1992). Partial cooperation and the 
role of transfers, however, are not usually considered in either approach. 

This paper presents a general framework to analyse the profitability and 
stability of international agreements to protect the environment in the presence of 
trans-frontier or global pollution. In our analysis, international negotiations are 
modelled as games in which sovereign countries bargain over emission control. 
With respect to emission control, countries may choose to act either cooperatively 
or non-cooperatively. In the former case, cooperative agreements can involve a 
sub-group of countries, whose number can be expanded by means of ‘self-
financed’ welfare transfers. The framework re-interprets results which were already 
presented in the recent environmental literature with reference to specific cases 
(e.g. Maler, 1989; Newbery, 1991; Barrett, 1991, 1992; Hoel, 1992; Kaitala et al., 
1992). More importantly, it provides new results on the emergence of partial 
cooperation, transfers, and the role of commitment. 

The main conclusions of the paper can be summarized as follows: 
 

(i) the strategic interaction among countries in a common environment does 
not necessarily lead to the ‘tragedy of commons’, but there is a wide range of 
possible voluntary agreements to control emissions; 

(ii) beyond non-cooperative emission control, there exist partial cooperative 
agreements among sub-groups of countries (coalitions) which are profitable 
and stable; 

(iii) gains from partial cooperation can be used to expand existing coalitions by 

                                                           
1  Experts quote more than 150 international agreements which have been signed to protect the 

environment in various regions. The protocols on CFC, and the ongoing negotiation on global warming 
provide examples of agreements at the global level. 
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inducing other countries to cooperate using self-financed welfare transfers. 
To sustain broader coalitions by means of transfers, however, a minimum 
degree of commitment must be introduced into the game, thus changing its 
rules. The various forms of commitment proposed in the paper are less 
demanding than a commitment of cooperation by all players, since they may 
involve only a fraction of the cooperating countries. Such schemes of partial 
commitment and transfers can even lead to cooperation by all countries. 
 
The paper is organized as follows. In Section 2, the general framework is 

introduced and some kinds of agreements which can lead to pollution control are 
defined. Results on• stable coalitions, the role of transfers and commitment are 
also provided. In Section 3, the main results and implications of the proposed 
framework are discussed. Finally, in Section 4, some extensions of the model are 
proposed, together with the scope for further work. 

 
2. The Analytical Framework 
 
2.1 Players, payoffs, strategies 
Consider n countries (n ≧ 2) that interact in a common environment, and 
bargain over emission control of a specific pollutant. Each country i benefits 
from using the environment as a factor of production and as a receptable for 
emissions. The welfare of each country, however, is negatively affected both by 
its own emissions xi and by other countries’ emissions x–i, where x–i is the vector  
(x1, …, xi – 1, xi + 1, …, xn). 

Country i’s benefit and damage can be represented in the welfare function 
Pi(x) = Bi(xi) – Di(xi, x–i), where Bi(xi) denotes benefits arising from the use of the 
environment for production and consumption activities; Di(xi, x–i) denotes 
damages (welfare losses) resulting from pollution emissions;2 and 
x  (x1 … xn) = (xi, x-i) is the vector of all countries’ emissions. 

Let us consider the benefit function Bi(xi). It is assumed that a reduction in 
pollution, which can be achieved through domestic environmental policies, is 
costly and reduces benefits. The benefit function, which depends on abatement 
costs, is related to the level of technology, the economic structure, the level of 
development, and the endowment of resources of a country. By technology we 
mean more than the mechanical process of turning inputs into outputs; we mean 
useful knowledge and experience, institutions and organizational structures, 
norms and values that govern the processes of production and exchange. 

The damage function Di(xi, x–i) depends on a country’s perception of the 
effects of emissions of a given pollutant, as well as on the evaluation of such 
                                                           
2 The parameters of the damage function may include the i-th row of the transportation matrix A = {ij}, 

where ij is the share of the country j’s emissions affecting country i. 
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effects. Consequently, the damage function is based on a subjective evaluation of 
environmental goods. The specific functional form of Di(·) can be determined 
using appropriate models of environmental impact evaluation. In such models, an 
index usually summarizes both the measurement of the relevant physical damages 
and their evaluation. 

Countries consider one pollutant at a time. Let i, be the maximum level of 
pollution emissions for country i. It is computed by maximizing environmental 
benefits Bi(xi) without taking into account the associated costs evaluated through 
the function Di(·). Moreover, i can be seen as a measure of a country’s size and 
level of development. The ‘emission game’ between the n countries is defined by a 
triple (N, S, P), and by appropriate rules: as usual, N = {1 … n} is the set of players, 
S = S1  ···  Sn, where S1 = [0,i], is the strategy space, and P = (P1(x)...Pn(x)) is the 
payoff vector. Complete information is assumed. Problems arising from 
asymmetric information will briefly be mentioned in Section 4. 

By taking into account reciprocal externalities, a country may decide whether 
or not to cooperate with other countries in order to reduce total emissions. At this 
stage, we assume that cooperative agreements are not binding. The decision 
regarding whether or not to. cooperate is the outcome of a ‘metagame’ in which 
each country anticipates the choice (cooperative or non-cooperative) of the other 
countries, and the relative outcomes in terms of emission levels.3  

Let us begin by analysing the outcomes of the game under alternative strategic 
combinations. First, we assume that countries play simultaneously and non-
cooperatively. Thus, country i’s optimal level of emissions is determined by equating 
marginal benefits with marginal costs, given the emission levels set by the other 
countries. The solution of the system of first order conditions determines the Nash 
equilibria of the game. For simplicity’s sake, we assume the equilibrium to be 
unique. The Nash equilibrium of the non-cooperative game can also be determined 
by computing the fixed point of countries’ best-reply functions. Let Ri(x), x = (x1 … xn), 
the country i’s best-reply function, where Ri(x) = {x1: Pi(xi, x–i) ≧ Pi(si, x–i), for all si  Si}. 
The non-cooperative equilibrium x0 is defined by x0 = R(x0), where R(x) = (R1(x) ... Rn(x)). 

Alternatively, countries can decide to set emissions cooperatively. In this case, 
we assume that a bargaining process takes place in order to achieve a Pareto 
optimal outcome. The bargaining process may Iead to the formation of a 

                                                           
3 We restrict our analysis to one-shot games. In terms of additional equilibrium outcomes, analysing 

repeated games would be fruitful only if appropriate trigger or stick/carrot strategies could sustain 
cooperation as an equilibrium outcome. The level of emissions, however, can hardly be conceived as a 
trigger variable which can be increased strategically in response to other countries’ defection. Some reasons 
are the following: firstly, emission reduction, in cases such as C02 or CFC, involves substantial and 
irreversible investments. Secondly, expanding emissions as a retaliation could generate environmental 
damage primarily to the triggering country. Finally, an increase in emissions can hardly be used as a 
selective punishment. Other effective punishments (e.g. trade protectionism) could be even more costly 
for the triggering country and therefore, not credible. For these reasons, we believe that trigger or 
stick/carrot strategies are not particularly helpful in sustaining environmental cooperation. 
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coalition among j countries, where j goes from 2 (the smallest feasible coalition) 
to n (when all countries set emissions by taking into account reciprocal 
externalities). We define ‘full cooperation’ as a situation in which a coalition 
formed by n countries emerges, while a ‘partial cooperation’ is a coalition formed 
by 2 ≦ j < n countries. In this work, we determine the cooperative outcome of the 
game by using the Nash bargaining solution.4 Moreover, we use the non-
cooperative equilibrium )...( 00

1
0

nxxx   as the threat point of the bargaining 
process.5 Stated more formally, j countries will act cooperatively when they set 
emissions maximizing the joint product of the difference between Pj(x) and 0

iP , 
where 0

iP denotes the non cooperative welfare. 
Before setting emission levels, each country must therefore decide whether or 

not to act cooperatively. This decision can be modelled by defining a ‘metagame’ 
in which countries choose between the cooperative and the non cooperative 
strategy by anticipating the outcomes of the related emission game.6  
 
2.2 Profitability and stability of coalitions 
Let Pi(j) be country i’s welfare when it decides to cooperate, and j – 1 when other 
countries also cooperate; whereas Qi(j) is its welfare when country i does not join 
the coalition formed by j countries. Moreover, let j stand for the set of 
cooperating countries, and J 0 denote the set of countries that play non-
cooperatively. Let us suppose, for simplicity, that all countries are symmetric, i.e. 
the welfare function is not country specific. We do not therefore index the welfare 
functions P and Q and their parameters. 

A minimum requirement must be met for an environmental coalition to be 
formed: the welfare of each country signing the cooperative agreement must be 
larger than the non-cooperative welfare. In other words, country i gains from 
joining the coalition, with respect to its position when no countries cooperate, if 
P(j) > P 0. This Ieads to: 
 
Definition 1. A coalition formed by j players is profitable if P(j) > P 0 for all countries 
belonging to J. 
 

Of course, this only represents a minimum requirement that may not suffice to 
induce many countries to sign a cooperative agreement. The main problem preventing 

                                                           
4  This assumption is not crucial, because, in the rest of the analysis, all countries will be assumed to have 

the same benefit and damage functions. As was pointed out by a referee, in this case any bargaining 
solution in the literature would give the same result. 

5  In a two-player game, this means interpreting Rubinstein’s alternating offers model as a model in which 
players face a risk that, if the agreement is delayed, then the opportunity they hope to exploit it jointly 
may be lost (see Binmore et al. ,1986). 

6  Most environmental studies model this ‘metagame’ as a one-shot Prisoner’s dilemma, in which non-
cooperation is the dominant strategy. 
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the formation of any coalition is the possibility of free-riding by some countries. Free-
riding can be explained as follows: since one country can profit from the reduction 
of emissions by cooperating countries, it has an incentive to let other countries to 
sign the cooperative agreement. If all countries are symmetric, no cooperation takes 
place. In other words, the ‘metagame’ in which countries choose between cooperation 
and non-cooperation is represented as a Prisoner’s dilemma. As we will see, 
however, this representation of countries’ strategic choice may not be appropriate. 

The problem can also be stated more formally. For each country, the crucial 
comparison is between P(j), the country’s payoff for belonging to the j-coalition, 
and Q(j – 1), the country’s payoff when it exists the coalition, and lets other j – 1 
countries sign the cooperative agreement. Let Q(j – 1) – P(j) be a country’s 
incentive to defect from a coalition formed by j players, whereas P(j + 1) – Q(j) is 
the incentive for a non-cooperating country to join a j-coalition [which, 
consequently, becomes a (j + 1)-coalition]. Thus, a stable coalition can be defined 
as follows: 

 
Definition 2. A coalition formed by j players is stable if there is no incentive to defect, 
i.e. Q(j – 1) – P(j) < 0, for all countries belonging to J, and there is no incentive to 
broaden the coalition, i.e, P(j + 1) – Q(j) < 0, for all countries belonging to J 0. 

 
This definition corresponds to that of cartel stability presented in the 

oligopoly literature (see D’Aspremont and Gabszewicz, 1986, a similar definition 
is also used in Barrett, 1991). 

It has been shown that under fairly general conditions stable coalitions exist (see 
Donsimoni et al., 1986). However, this does not satisfactorily address the problem 
of protecting international commons because, as has been demonstrated both in 
the oligopoly and in the environmental literature (see, for example, D’Aspremont 
et al., 1983; D’Aspremont and Gabszewicz, 1986; Carraro and Siniscalco, 1991; 
Hoel, 1992), stable coalitions are generally formed by j ≦ n players, where j is a 
small number, regardless of n.7 This leads us to the following question: can the j 
cooperating countries expand the coalition through self-financed welfare transfers 
to the remaining players? 

Given the previously stated rules of the game, the answer is no. This is 
demonstrated by the following proposition: 
 
Proposition 1. Suppose no countries can commit to the cooperative strategy. Then, in this 
case, no self-financed transfer T from the j cooperating countries to the other non-cooperating 
countries can successfully enlarge the original coalition. 

                                                           
7  More satisfactory results are presented in Barrett (1991), who shows that, under certain conditions, and 

given a specific functional form for the welfare function, large stable coalitions exist. 



 

7 
·················· 

Coalitions and Networks 

Coalitions and Networks Chap 1 
 

Proof. For the transfer to be self-financed, it cannot be larger than the gain that 
the j players obtain from moving to a (j + 1)-coalition. Furthermore, in order to 
add one player to a j-coalition, the transfer T must be larger than the loss incurred 
by the j + 1 player by entering it. These two conditions yield: 
 

[P(j + 1) – P(j)] ≧ T  > Q(j) – P(j + 1) (1) 
 

This condition makes it possible to self-finance an enlarged coalition. 
However, is this broadened coalition stable? The j + 1 player does not defect if the 
transfer is larger than Q(j) – P(j + 1). However, by definition of stable coalition, 
P(j + 1) < Q(j): the j players of the original coalition have therefore an incentive to 
defect; their incentive being greater because of the transfer made to the j + 1 
player. Hence, the (j + 1)-coalition is unstable.      
 

This leads to the following conclusion: welfare transfers from countries 
belonging to a stable coalition to non-cooperating countries cannot be used to 
expand the initial coalition, unless the rules of the game are changed. There are 
various rules that can lead to the formation of larger stable coalitions. We will 
focus our attention on the role of commitment. If all countries were committed to 
cooperation, obviously no free-riding would exist. We show, however, that there 
are several, less demanding forms of commitment which, if associated with 
appropriate welfare transfers, can lead to large stable coalitions. There are two 
crucial elements in our analysis: partial commitments (only a subset of the n 
countries commit to co-operation), and welfare transfers (bribing). 
 
2.3 Expanding coalitions 
Hereafter, we shall analyse the implications of four types of commitment, that 
could serve as possible blueprints for environmental cooperation. Of course, other 
types of institutional mechanisms could be proposed as well.  

The four types of commitments are: 
 

(i)  Only the j countries belonging to the stable coalition commit to cooperation 
(stable coalition commitment). 

(ii)  The j countries are committed to cooperation and any new signatory, as 
soon as it enters the expanded coalition, must commit to cooperation as well 
(sequential commitment). 

(iii)  The number of committed countries is such that appropriate transfers can induce 
all other countries to cooperate (full-cooperation minimum commitment). 

(iv)  A subset of non-cooperating countries commits to transfer welfare in order 
to induce the remaining non-signatories to cooperate, and to guarantee the 
stability of the resulting coalition (external commitment). 
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As has already been shown, it is necessary to impose constraints on the 
amount of transfers allowed: if no restriction were imposed, all non-signatories 
could be bribed. Therefore, we assume: 

 
(i)  transfers must be self-financed, i.e. the total transfer T must be lower than 

the gain that the committed countries obtain from expanding the coalition; 
(ii)  the move to a larger coalition must be Pareto-improving, i.e. all countries 

must be better off than in the situation preceeding the coalition expansion, 
and better off with respect  to the case of no-cooperation (the larger 
coalition must be profitable); and 

(iii)  committed countries choose the transfer in order to maximize the number of 
signatories (given the above two constraints).8  
 
Given these restrictions, the following question can be asked: Under what 

conditions can partial commitments and transfers expand the initial j-coalition? 
Some answers are provided by the following propositions: 

 
Proposition 2 – Stable coalition commitment. Suppose the j countries belonging to the 
stable coalition are committed to cooperation. If P(j + s) > P(j) and Q(j + s) > Q(j) for all 
positive s, s ≦ n – j – 1, then at most r countries can be induced to join the initial coalition, 
where r is the largest integer satisfying: 
 

r < j[P(j + r) – P(j)]/[Q(j + r – 1) – P(j + r)] (2) 
 
Proof. The initial j countries can use their gains resulting from broadening the 
coalition in order to finance other countries’ cooperation. This gain is equal to 
j[P(j + r) – P(j)], and it is positive if P(j + r) > P(j). In order for transfers to be self-
financed, they must be greater than the incentive to defect for the r countries that 
have to enter the coalition. This incentive is equal to r[Q(j + r – 1) – P(j + r)]. 
Hence: 

 
j[P(j + r) – P(j)] > r[Q(j + r – 1) – P(j + r)] (2') 

 
Moreover, the maximum transfer j[P(j + r) – P(j)] must be larger than the 

total loss suffered by entering countries; this loss is equal to r[Q(j) – P(j + r)]. 
This condition can be expressed as follows: 

 

                                                           
8  Notice that transfers enter a country’s payoff in an additive way. Otherwise, each cooperating country 

would maximize its payoff with respect to both emissions and transfers. This would be the case if transfers 
were carried out using policy instruments which interact with other economic variables, and with 
emissions in particular. Such an extension of the paper is discussed in the concluding section. 
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j[P(j + r) – P(j)] > r[Q(j) – Q(j + r – l) + (Q(j + r – 1) – P(j + r))] (3) 
 

Notice that [Q(j) – Q(j + r – l)] ≤ 0 and [Q(j + r – 1) – P(j + r)] > 0. Hence, (2') 
implies (3). Since (2) implies (2'), the proposition is proved. The newly entered 
countries have no incentive to defect, and benefit from joining the coalition; 
moreover, the initial cooperating countries benefit from expanding the coalition, 
and are committed to cooperation. Therefore, the new equilibrium constitutes a 
Pareto improvement.      
 

The meaning of Proposition 2 is the following: starting from a j-coalition, the 
commitment of its members induces, through appropriate transfers, other r 
countries to join the initial coalition; notice that r is larger, the larger the gain 
attained from expanding the coalition, and the lower the incentive to defect from it. 
 
Proposition 3 – Sequential commitment. Suppose that a stable coalition formed by j 
countries exists. If each country, when entering the coalition, commits to cooperation, and if 
P(j + s) > P(j + s – 1) for all 1 ≦ s ≦ r, then at most r countries can be induced to join the 
initial coalition if 
 

j + s > [Q(j + s – 1) – P(j + s – 1)]/[(j + s) – P(j + s –1)] (4) 
 
for all 1 ≦ s ≦ r, and, when j + r <n, 
 

j + r < [Q(j + r) – P(j + r + 1)]/[P(j + r + 1) – P(j + r)] (4') 
 
Proof. Suppose that j countries form a stable coalition, and are committed to 
cooperation. For one more country to be induced to cooperate, the transfer must 
be lower than or equal to the total gain derived from moving to a (j + 1)-coalition, 
and larger than the loss incurred by the entering country. This gives 
 

j[P(j + 1) – P(j)] > Q(j) – P(j + 1) > 0 (5) 
 
Suppose this condition is satisfied and that the (j + 1)th country, when 

entering the coalition, commits to cooperation. An additional country can be 
induced to join the coalition if 
 

(j + 1)[P(j + 2) – P(j + 1)] > Q(j + 1) – P(j + 2) > 0. (6) 
 

By iterating this reasoning, one can say that r countries can be induced to 
join the initial coalition through appropriate transfers, and the sequential 
commitment, if 
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(j + s – l)[P(j + s) – P(j + s –1)] > Q(j + s – 1) – P(j + s) > 0 (7) 
 
for all 1 ≦ s ≦ r. If this condition is satisfied for all s such that j < s ≦ n – j, then all 
countries will join the coalition. Thus, full cooperation can be achieved. 

Otherwise, the coalition cannot be expanded further if 
 

(j + r)[P(j + r + 1) – P(j + r)] < Q(j + r) – P(j + r + 1) (7') 
 

Full cooperation cannot always be achieved because there may exist values of 
r for which the gain from further broadening the coalition is lower than the loss 
incurred by the entering country, i.e. the transfer would not be sufficient to induce 
one more country to join the coalition. 

Eq. (7) can be re-written as: 
 
j + s > [Q(j + s – 1) – P(j + s – 1)]/[P(j + s) – P(j + s – 1)] (8) 
 

for all 1 ≦ s ≦ r, and 
 

j + r < [Q(j + r) – P(j + r + 1)]/[P(j + r + 1) + P(j + r)]. (8') 
 

It should be noted that, when the (j + r)-coalition is formed, all countries gain 
from broadening the coalition. Moreover, given the assumption regarding 
commitment, the coalition is stable.      
 

Proposition 3 has two implications. First, as in the case of stable coalition 
commitment, the expanded coalition is larger, the larger the gain from moving to a 
wider coalition, and the lower the incentive to defect from it. Secondly, this form of 
commitment is more demanding than the previous one, since it eliminates the 
problem of guaranteeing the coalition stability (by the sequential commitment 
assumption). Hence, unless (4') holds for some r < n – j, full cooperation can be 
achieved. 
 
Proposition 4 – Full-cooperation minimum commitment. If Q(n – 1) > Q(i) for all 
positive i < n – 1, at least a fraction 
 

i/n > [Q(n – 1) – P(n)]/[Q(n – 1) – P(i)] (9) 
 
of the n countries must be committed to a cooperative strategy for all n countries to cooperate. 
 
Proof. Let us assume that i countries are committed to cooperation regardless of 
the size of the coalition that is formed. Suppose the i countries offer transfers to 
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induce the other (n – i) countries to join the coalition. The total transfer T must 
be less than or equal to the gain that the i players achieve from entering the n-
coalition. Moreover, this transfer should compensate the (n – i) players for the 
loss from joining the coalition, and should also offset their incentive to defect 
from the n-coalition. In order to compensate the (n – i) players for the Ioss from 
joining the n-coalition, the following condition must be met: 
 

i[P(n) – P(i)] ≧ T > (n – i)(Q(i) – P(n)) (10) 
 

This condition ensures that the enlarged coalition is self-financed. It can be 
re-written as 
 

i(Q(i) – P(i)) > n(Q(i) – P(n)) (10') 
 

In order to offset the incentive to deviate from the n-coalition, the gain P(n) 
plus the transfer i(P(n) – P(i))/(n – 1) must be larger than the defector’s welfare 
Q(n – 1), i.e. rearranging the equation 
 

i(Q(n – 1) – P(i)) > n(Q(n – 1) – P(n)) (11) 
 
which is equivalent to (9). Notice that both sides of the equation are positive. Eq. 
(11) can be re-written as 
 

i[(Q(n – 1) – Q(i)) + (Q(i) – P(i))] > n[(Q(n – 1) – Q(i)) + (Q(i) – P(n))] (11') 
 

Let us show that (11') implies (10'). Assume that (11') holds as an equality. 
Thus, we can solve it with respect to Q(i) – P(i). This expression can then be 
substituted into eq. (10'), yielding (n – i)[Q(n – 1) – Q(i)] > 0, which is satisfied for 
all positive i < n – 1. Hence, condition (9) guarantees that both the financing 
condition (10) and the no-defection condition (11) are satisfied. As a consequence, 
the (11') players that join the initial coalition have no incentive to defect. The 
initial i players are instead committed to cooperation. Finally, the move to the n-
coalition is a Pareto improvement.      
 

Proposition 4 states that there exists a minimum number of countries that 
should commit to cooperation for all the remaining countries to be induced to 
cooperate using appropriate transfers. The minimum number of committed 
cooperating countries decreases as the gain from moving from the i-coalition to 
the n-coalition increases, and as the incentive to defect from the latter decreases. 

The last case we would like to explore considers how an environmental 
coalition can be expanded using external commitment. Non-cooperating 
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countries gain when the cooperative agreement is expanded (because they receive 
less emissions). Consequently, a subset of these countries could find it profitable 
to induce other non-signatories to enter the coalition, and to secure its stability. 
Suppose, then, that a fraction of non-cooperating countries commits to finance 
environmental cooperation (emission reduction in other countries). What is the 
largest number of countries that can be induced to form a stable coalition? 
 
Proposition 5 – External commitment. Suppose that j countries cooperate, and that n – j – r 
non-cooperating countries commit to transfer welfare both to induce r non-signatories to 
cooperate, and to guarantee the stability of the resulting coalition. If P(j + s) > P(j) and 
Q(j + s) > Q(j) for all positive s ≦ n – j – 1, a stable (j + r)-coalition can be formed if 
 

(j + r)/n < 1/(1 + ), (12) 
 
where  = [Q(j + r – 1) – P(j + r)]/[Q(j + r) – Q(j)]. 
 
Proof. Assume there exists a stable j-coalition. The (n – j – r) countries who do not 
join the coalition gain from financing, through appropriate transfers, a larger 
coalition, if Q(j + r), their payoff when the (j + r)–coalition is formed, less 
(Q(j + r – 1) – P(j + r))(j + r)/(n – j – r), the transfer to the (j + r) cooperating 
countries, is larger than Q(j), their payoff before broadening the coalition. This is 
true if (12) holds. Moreover, Q(j + r) – (Q(j + r – 1) – P(j + r))(j + r)/(n – j – r) must 
be larger than P(j + r + 1), i.e. no additional countries want to join the coalition. 
This is true if 
 

(n – j – r)[Q(j + r) – P(j + r + 1)] > (j + r)[Q(j + r – 1) – P(j + r)], (13) 
 

which can be written as 
 

n[Q(j + r) – P(j + r + 1)] > (j + r)[Q(j + r) – P(j + r) + Q(j + r – 1) 

–P(j + r + 1)]. (13') 
 

Comparing (12) and (13'), it is easy to see that (12) implies (13') [and 
therefore (13)]. 

Finally, we have to prove that the players in the (j + r)-coalition have no 
incentive to defect. This is true if P(j + r), the welfare when the (j + r)-coalition is 
formed, plus Q(j + r – 1) – P(j + r), the transfer each cooperating country receives, 
is not lower than Q(j + r – 1), the welfare that each cooperating country would 
receive by defecting from the coalition. This implies Q(j + r – 1) ≧ Q(j + r – 1), 
which obviously holds (we assume that whenever a country is indifferent between 
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cooperation and defection, it cooperates). Moreover, P(j + r) + [Q(j + r – 1)– P(j + r)] 
is larger than P(j), the welfare that countries in the stable coalition received before 
its expansion, because P(j + r) > P(j) by assumption and Q(j + r – 1) – P(j + r) > 0 
by the stability condition; it is also larger than Q(j), the welfare that countries 
entering the coalition received before, because Q(j + r – 1) > Q(j) by assumption. 

As a consequence, all players in the (j + r)-coalition do not defect, all players 
outside the coalition do not want to join it, and the move to a (j + r)-coalition 
constitutes a Pareto improvement.      
 

The conclusion reached is the following: r additional countries can be 
induced to cooperate, and the (j + r)-coalition is stable if the remaining (n – j – r) 
non-cooperating countries commit to carry on appropriate transfers to the (j + r) 
cooperating countries. The dimension of the resulting coalition increases as the 
incentive to defect from a (j + r)-coalition decreases, and as the gain that non-
cooperators achieve from moving to a (j + r)-coalition increases. 
 
3. Results and Applications to Environmental Agreements 
 
3.1 Some general comments 
The framework proposed in the previous section aims at explaining the emergence 
of environmental cooperation without the help of trigger or stick/ carrot 
mechanisms. Our approach was chosen because, to our knowledge, no 
international negotiation to protect the environment has ever used pollution as a 
triggering variable, and because partial cooperation and transfers seem to be 
common features of many recent agreements in this field. 

The crucial steps of the analysis are two: we first characterize stable coalitions, 
and give some formal conditions for their existence (subsection 3.2). We then use 
such stable coalitions as a starting point for wider coalitions, expanded by means 
of transfers and commitments (subsection 3.3). The existence of small stable 
coalitions is a result already obtained in the most recent environmental literature. 
Subsection 3.3 on expanded coalitions provides some new results. 

The whole framework deserves some general comment, at this stage. If stable 
coalitions exist, the ‘metagame’ in which countries decide whether or not to 
cooperate is not a Prisoner’s dilemma. Assume that a j-stable coalition is formed: by 
definition, no incentive to defect exists (Q(j – 1) < P(j)). All countries, however, have 
an additional incentive not to cooperate. Since non-cooperating countries gain from 
the others’ cooperative behaviour, each country has an incentive to !et other 
countries form the coalition (Q(j) > P(j)). This is not a Prisoner’s dilemma because 
the situation in which one group of countries cooperates and the others do not is 
an equilibrium of the ‘metagame’. This is shown by the 2 x 2 example in Table 1.  
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Table I 
 

  Country h 
  C N 

Country i 
C P(j + l), P(j + l) P(j), Q(j) 
N Q(j), P(j) Q(j – 1), Q(j – l) 

 
In this table, C and N denote the cooperative and non-cooperative strategies, 

respectively, and the payoff pairs indicate countries’ welfare, as defined in the 
previous section. Table 1 represents a situation in which j – 1 countries cooperate. 
A stable coalition is formed by j countries. Countries i and h are the marginal 
countries with respect to the stable coalition. Both i and h have an incentive to 
join the coalition (by definition of stability). Country i’s most preferred outcome is 
the one in which it lets h cooperate. However, if country h does not act 
cooperatively, country i will choose to do so, in order to belong to the stable 
coalition (by definition of stability). Formally, this is implied by the following 
inequalities: Q(j) > P(j + 1) > P(j) > Q(j – 1). The first and the last inequalities are 
implied by the stability of the j-coalition; P(j + 1) – P(j) holds by assumption (see 
subsections 2.2 and 2.3). Hence, non-cooperation is not the dominant strategy. 
This game is known as a chicken game (a game belonging to the class of 
coordination games). There are two equilibria (N, C) and (C, N), but all countries 
have an incentive to let the others cooperate.9 The game has no dominant 
strategy; countries’ attempts to choose non-cooperation, in order to let the others 
cooperate, may lead to the worst possible outcome (N, N). The cooperative 
outcome (C, C) is not Pareto optimal. 

A stable coalition can be expanded by transfers to non-cooperating 
countries, provided some form of commitment takes place. The intuition behind 
this result is simple. Welfare transfers to non-cooperating countries decrease by T 
the payoff of the countries belonging to the j-coalition, preserving profitability 
(transfers are self-financed), but creating instability. The instability has to be dealt 
with by some form of commitment. As we anticipated in the introduction, the 
various forms of commitment we analyse are less demanding than the 
commitment by all players, assumed in cooperative games. In our framework, the 
                                                           
9  The impasse can be solved by the introduction of asymmetries into the game. If countries have different 

preferences, technology or environmental endowment, it is possible to determine which countries are 
likely to form a coalition. For example, in the case of external commitment, countries with higher 
abatement costs are likely to finance emission reductions in countries with lower abatement costs, who 
therefore form the coalition. In the case of stable coalition commitment, countries in which 
environmental policy is part of a package of coordinated policies, or large countries that heavily affect the 
global environment, are more likely to commit themselves to cooperation, thus attracting other 
cooperators. If the game were repeated, countries with higher discount rate would be more likely to form a 
coalition. 
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commitment of only a fraction of the n countries can ensure the stability of wider 
coalitions, and can even lead to full cooperation. 

Notice, moreover, that welfare transfers are indeed impossible and/or 
inefficient if they are based only on emission reductions. The simplest instrument 
to transfer wealth is probably cash. There are, however, other appropriate 
instruments, such as trade or debt policy and technology transfers. 
 
3.2. Stable coalitions and best-reply functions 
Over and above the previous comments, a number of specific questions deserve 
answers: Under what economic conditions does a stable coalition exist? How 
many countries belong to the stable coalition? Which form of commitment is 
likely to increase the number of countries belonging to the stable coalition? What 
is the size of the largest coalition in each different case? 

To answer such questions, it is necessary to specify a particular form for the 
benefit and damage functions of the different countries. Under such restriction, 
the environmental literature does provide some helpful insights into stable 
coalitions: for example, Barrett (1991), Carraro and Siniscalco (1991) and Hoel 
(1992) show that stable coalitions far the protection of the environment exist under 
reasonable specifications of the benefit and damage functions. The same conclusion 
is reached in the cartel stability literature (see D’Aspremont et al., 1983; and 
Schmalensee, 1987, for example). More general results on the existence of stable 
coalitions in oligopolistic markets can be found in D’Aspremont and Gabszewicz 
(1986) and Donsimoni et al. (1986). These results prove that there are cases in 
which the metagame describing countries’ interaction in environmental negotiations 
is not a Prisoner’s dilemma. These works also show that stable coalitions are 
generally formed by a subset of all players of the game, and that this subset is 
often small. Only Barrett (1991) using a specific example, provides numerical 
simulations in which the number of cooperating countries approximates n. 

In addition, there is one result which appears in most of the works on the 
international environment, but is seldom discussed: the pattern of interdependence 
among countries, as described by the slope of their best-reply function, is crucial 
for understanding the effectiveness of cooperative and non-cooperative emission 
control. The reason being that the more negative the slope of the best-reply 
functions, the larger the incentive to deviate from any coalition [i.e. Q(j – 1) – P(j) 
in the game]. Drawing from results proved in Carraro and Siniscalco (1991), we 
would like to clarify the role played by the slope of countries’ best-reply function. 

Let us first consider non-cooperative emission control. Countries that 
interact in a common environment with mutual externalities set their emissions by 
equating their own marginal benefit to marginal damage, given the emissions set 
by the other countries. In this context, country i’s actual emissions are generally 
lower than emissions i, which maximize its benefit function. Moreover, non-
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cooperative emissions are increasingly reduced as the slope of the best-reply 
functions become increasingly negative. The literature shows this is the case when 
the impact of foreign emissions for country i is high, the perceived damage is high, 
and the benefit (abatement cost) is low (on this point see Barrett, 1991; and 
Carraro and Siniscalco, 1991).  

The reason that lies behind this result is intuitively simple. The best-reply 
functions reflect, inter alia, the marginal damage produced by foreign countries’ 
emissions. If this marginal damage to country i is relevant, then the best non-
cooperative response of country i to an expansion of foreign emission is an 
emission reduction. This reduction will be greater, the lower the benefit of 
domestic emissions, and vice versa. The difference between I and the actual non-
cooperative emissions of country i is therefore positively related to the slope of 
country i’s best-reply function. 

Let us now consider cooperation. In this case, countries bargain over 
emission levels in order to achieve an optimal aggregate outcome, taking into 
account reciprocal externalities. As is well known, cooperation among all 
countries is profitable and optimal, but it is intrinsically undermined by free- 
riding. However, if the best-reply functions are orthogonal or near orthogonal, 
there is some scope for partial cooperation in the form of agreements among 
small groups of countries, which can be profitable and stable. The reason, again, 
has to do with free-riding behaviour, as reflected by the best reply function of a 
country which does not belong to the partial coalition. If this best-reply function 
is negatively sloped, the non-cooperating country will expand its emissions if the 
coalition restricts them, offsetting the effort of the cooperating countries. If, on 
the contrary, the best-reply functions are orthogonal or near orthogonal, the free-
rider will simply enjoy the cleaner environment without paying for it, but will not 
offset the emission reduction by the cooperating countries. 

Similarly, with negatively sloped best-reply functions, the number of countries 
is also crucial for the existence of stable coalitions. If n is large, a stable coalition 
is unlikely to exist, as a cooperative contraction by few countries is offset by the 
reactions of many others (see Barrett, 1991;  and Carraro and Siniscalco, 1991).10 

The above considerations suggest that, in environmental agreements, there is 
a sort of trade-off. When the best-reply functions are negatively sloped there is a 
high degree of interdependence. Likewise, non-cooperative emission control can 
lead to substantial emission reduction. But if one or more countries unilaterally or 
cooperatively reduces emissions, this contraction is offset by an expansion by the 
non-cooperating countries. This kind of interaction undermines all kinds of 
cooperation, as the free-riding behaviour implies a substantial loss for countries 

                                                           
10  Notice that high perceived damage, low abatement cast, and high impact of foreign emissions are only 

necessary conditions for the negative slope of the best-reply functions. Separable damage functions imply 
orthogonal best-reply functions, whatever the other parameters. 
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who wish to cooperate. With an orthogonal or near-orthogonal best-reply 
function the situation is somehow reversed. Non-cooperative emission control 
leads to small emission reductions, but the scope for cooperation is now greater: 
if a number of countries cooperatively reduce their emissions, this reduction is not 
offset by free-riders, who simply enjoy a better environment but do not directly 
damage countries which cooperate. In this case, then, stable coalitions exist. 
 
3.3. Transfers and commitments 
The result that stable coalitions are formed by a subset of the n countries, and 
that this subset is often small, led us to consider strategies for expanding stable 
coalitions. Coalition expansions can be achieved through welfare transfers and 
some form of commitment. How much can a stable coalition be expanded? 
Which type of commitment leads to full cooperation? 

Proposition 1 in section 2 holds for any form of the benefit and damage 
function: it shows that any attempt to expand a stable coalition by means of 
transfers is flawed without some form of commitment. This point, which may be 
relevant to the environmental policy debate, has already been discussed in section 
2 and subsection 3.1. 

We have attempted, therefore, to explore various forms of commitment in 
order to sustain expanded coalitions. 

The ‘stable coalition commitment’ (Proposition 2) is the first to be discussed. 
Let us suppose a stable coalition exists. If all members of the coalition commit to 
cooperation, they can use the gains resulting from moving to a larger coalition to 
bribe other countries. How many countries can be induced to enter the coalition 
using this strategy? 

The existing environmental literature is not very helpful in addressing these 
issues, as they are relatively new. One specific example we provide elsewhere 
(Carraro and Siniscalco, 1991), assuming symmetric countries and linear-quadratic 
benefit and damage functions, shows that the answer depends once more on the 
slope of the best-reply functions. With orthogonal (or near-orthogonal) best-reply 
functions, a stable coalition of three countries can induce four other countries to 
cooperate, irrespective of n. When the best-reply functions become negatively 
sloped, the possibility of bribing other countries gradually decreases to zero. 

Besides the example mentioned above, we believe that this type of 
commitment can be relevant to capture some features of the current negotiation 
on global warming: why should a group of countries which already cooperate (say 
EC countries) commit and transfer ‘new and additional resources’ to other 
countries (say the LDCs)? 

Sequential commitment, discussed in Proposition 3, is possibly less realistic, 
but shows how it is possible to reach wider coalitions. Countries belonging to a 
stable coalition commit to cooperation and bribe other countries. As any of the 
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latter countries joins the coalition, it must commit in order to further expand 
the coalition. In this way, it is easy to show that, with orthogonal (or near-
orthogonal) best-reply functions, sequential commitment leads to full 
cooperation, as the conditions on the stability of the coalition itself are removed 
by this form of commitment. 

Full cooperation can also be achieved if about 60 percent of the n countries 
commit to cooperation (we are referring here to Proposition 4), while the external 
commitment of Proposition 5, again with orthogonal or near-orthogonal best-reply 
functions, can induce about 70 percent of the n countries to cooperate. The latter 
case can be helpful in understanding the recent proposal by some industrial 
countries (e.g. the Scandinavian countries) to subsidize environmental programmes 
in other countries (e.g. Eastern Europe; see Kaitala et al., 1992). 

As the above discussion has already pointed out, if the best-reply functions 
are negatively sloped, all the results are generally less favourable. In particular, 
sequential commitment does not Iead to full cooperation, and the impact of 
each type of commitment decreases as the slope of the best-reply functions 
increases (in absolute value). 

As examples can provide only anecdotes and special results, we believe that a 
better understanding of environmental negotiations can only come from serious 
applied work. Only empirical work can justify alternative specifications of countries’ 
interdependence. Only empirical work, moreover, can support an intuition we 
submit: while in the traditional case of common property goods (fisheries, 
pastures, forests, etc.) the payoff functions give rise to non-orthogonal best-reply 
functions, in the case of some global pollutants, e.g. CO2 or CFC, the best-reply 
functions are probably orthogonal (or near orthogonal).11  
 
4. Conclusions and Scope for Further Work 
 
In the next few years the international protection of the environment will 
increasingly rely on international agreements, although they often involve 
substantial difficulties. To what extent can the proposed analysis be useful, and 
how can it be extended? 

The analytical framework we proposed is highly simplified and the results 
obtained must be interpreted with great caution. However, given the difficulties 
and failures of many attempts to reach global agreements, it shows a promising 
route for research and policy analysis. 

Firstly, the framework and the results show that it is rather sterile to study 
optimal agreements among all countries, if such agreements are profitable but 

                                                           
11  Indeed, we can hardly think of any countries that expand their own CO2 or CFC emissions in response to 

other countries’ reductions. As the above discussion has suggested, this leaves room for cooperative 
agreements. 
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intrinsically unstable. The structure of such agreements can be useful as a 
benchmark, but it is very unlikely to be realized in practice. Secondly, they show 
that there is a full range of possible agreements among sovereign countries to 
protect the international environment. There are cases in which an effective 
protection can be obtained non-cooperatively. In other cases, an effective 
environmental protection can be reached through partial co-operation and 
transfers. 

Coming to the scope for further work, a number of relevant issues have still 
to be addressed. First, it would be useful to provide a sort of taxonomy relating 
the various pollutants to appropriate damage functions. Only then would it be 
possible to contextualize policy analysis, obtaining meaningful results for each 
case. Secondly, it would be useful to re-appraise the instruments to implement 
cooperation. Emissions in many cases, are very difficult to monitor. The various 
economic instruments needed to implement an agreement, therefore, must be 
designed in a way that prevents cheating. So far, the literature has compared the 
various agreements in terms of efficiency, i.e. maximum profitability. Our analysis 
proposes another criterion: an instrument must be efficient, but it must also be 
effective in preventing or discouraging free-riding. In other words, it must also be 
designed to promote the stability of the agreements. 

Finally, three extensions should be attempted: 
 

(i)  Asymmetric information should be introduced. Countries’ preferences can 
hardly be observed. If we remove the assumption of complete information, 
each country that is induced to enter a coalition would be tempted to 
overstate the damage and claim for greater incentives. The solution to this 
problem is to embody an appropriate information or self-selection premium 
in the transfer to each country that enters the coalition. 

(ii)  It would be relevant to introduce some asymmetries into the game (by 
assuming for example different damage and abatement costs across 
countries), in order to evaluate coalition profitability and stability when 
countries have different incentives to join it. 

(iii)  The benefit function should account for the interaction between 
environmental variables and the policy instruments designed to carry on 
transfers. This prevents the analysis of environmental policy as such, but 
implies its integration into a wider analysis which accounts for other 
economic variables in each country’s payoff. 
 
A last point concerns institutions. In the present setting there is not an 

institution that has the authority to impose supernational regulations on 
countries and regions. Stable and expanded coalitions can be seen as a first step 
towards such institutions, as the member countries would find it costly to 
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individually perform the transfer, the monitoring, and the enforcement activities 
which are usually associated with the management of a cooperative agreement. 
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This paper analyzes a sequential game of coalition formation when the division of the 
coalitional surplus is fixed and the payoffs are defined relative to the whole coalition 
structure. Gains from cooperation are represented by a valuation which maps coalition 
structures into payoff vectors. I show that any core stable coalition structure can be 
attained as a stationary perfect equilibrium of the game. If stationary perfect equilibria 
may fail to exist in general games, a simple condition is provided under which they exist 
in symmetric games. Furthermore, symmetric stationary perfect equilibria of symmetric 
games generate a coalition structure which is generically unique up to a permutation of 
the players. A general method for the characterization of equilibria in symmetric games 
is proposed and applied to the formation of cartels in oligopolies and coalitions in 
symmetric majority games.  

 
 
 
1. Introduction 
 
Since the publication of Theory of Games and Economic Behavior, the study of 
endogenous formation of coalitions has been one of the most intriguing and 
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challenging problems open to game theorists. Many solution concepts such as Von 
Neumann and Morgenstern’s stable sets (Von Neumann and Morgenstern, 1944) 
and Aumann and Maschler’s bargaining set (Aumann and Maschler, 1964) were in 

fact primarily designed as ways to solve the problem of joint determination of a 
coalition structure and the allocation of the coalitional surplus among coalition 
members. While these approaches proved fruitful in the study of many situations 
of cooperation, they mostly rely on the assumption that gains from cooperation 
can be defined independently of the coalitions formed by external players.1 Using 
the terminology introduced by Shubik (1982), cooperative game theory has focused 
on games with orthogonal coalitions which are well-suited to situations of pure 
competition but fail to capture the effects of externalities among coalitions. The 
objective of this paper is to propose a model of formation of coalitions in 
nonorthogonal games where payoffs depend on the whole coalition structure. 

The presence of externalities among coalitions introduces a new difficulty in 
the study of endogenous coalition formation. When players decide to form a 
coalition, they must take into account the reaction of external players to the 
formation of the coalition. The sequential model analyzed in this paper addresses 
this problem by explictly describing a procedure in which individual players, when 
deciding to form a coalition, consider the consequences of their actions on the 
behavior of the other players. However, to keep the analysis tractable and 
concentrate on the role played by externalities on the formation of the coalition 
structure, I do not model the allocation of the coalitional surplus among members 
of a coalition, and assume instead that the coalitional worth is distributed 
according to a fixed sharing rule. Gains from cooperation are then represented by a 
valuation which maps coalition structures into vectors of individual payoffs. 

Arguably, the assumption that payoffs are determined by a fixed rule is very 
restrictive and may seem a high price to pay for allowing externalities among 
coalitions. But valuations arise naturally in two distinct categories of economic 
models and the study of coalition formation in games represented by a valuation 
may appear fruitful in the resolution of these models. 

First, valuations are considered in the models of coalition formation studied by 
Myerson (1978), Shenoy (1979), Hart and Kurz (1983) and Aumann and Myerson 
(1988). In these models, the formation of coalitions is viewed as a two-stage 
process where players form coalition in the first stage and decide on the allocation 
of the coalitional surplus, given a fixed coalition structure, in the second stage. 
Hence, at the time coalitions are formed, players evaluate the payoffs they receive in 
each coalition structure according to a fixed rule.  

The exact characterization of the rule employed in the second stage depends 

                                                           
1  Two important exceptions are Thrall and Lucas (1963)’s study of games in partition function form and 

Aumann and Drèze (1974)’s analysis of games with fixed coalition structures. 
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on the situations considered in the different models. In Myerson (1978)’s threats 
and settlement game, the fair settlement function assigns to each collection of 
coalitions (not necessarily a coalition structure) a unique vector of payoffs.  

Shenoy (1979) uses as an evaluation rule Aumann and Drèze (1974)’s 
extension of the Shapley Value to games with fixed coalition structures. In Hart 
and Kurz (1983)’s analysis, players evaluate coalition structures according to a 
different extension of the Shapley Value first analyzed by Owen (1977). In 
Aumann and Myerson (1988)’s study of formation of links among players, the 
valuation used is Myerson (1977)’s extension of the Shapley Value to games with 
cooperation graphs of players.2 

Second, valuations emerge in various applications of Game Theory to 
Industrial Organization and Public Economics involving competing coalitions of 
economic agents. The study of the formation of cartels in oligopolies leads to a 
natural definition of a valuation representing, for each cartel structure, the payoffs 
obtained by the firms belonging to the different cartels.3 Similarly, the formation of 
associations of firms which agree to share some common resource but behave as 
competitors on the market can be analyzed with the use of a valuation.4 The 
analysis of the provision of local public goods in a spatial setting where members of 
a community can benefit from the public goods provided in neighboring 
communities also requires the use of a valuation.5 As a final example, the formation 
of customs unions allowing national firms to compete in a market characterized by 
the existence of different customs unions also leads to the definition of a valuation. 

Cooperative solution concepts for games represented by a valuation were 
introduced by Shenoy (1979) and Hart and Kurz (1983) in their models of 
endogenous coalition formation.6 To predict which coalitions will be formed, they 
propose different definitions of stability of coalition structures.7 The variety of 
stability concepts accounts for the fact that, in games described by a valuation, the 
payoffs obtained by members of a blocking coalition depend on the reaction of the 
external players. The solution concepts range from the core stability concept, which 
supposes a very optimistic conjecture about the reaction of the external players since 
players deviate if there exists a coalition structure in which they are better off to the 
                                                           
2 In Myerson (1978) and Hart and Kurz (1983), the emphasis is put on the axiomatic derivation of a 

reasonable valuation rather than on the first stage game of coalition formation. This paper, by contrast, 
focuses on the game of coalition formation. 

3 Salant et al. (1983) were the first to point out in a simple model the problems of cartel formation in 
oligopolies. Yi and Shin (1995) contains a very complete description of the derivation of the valuation in 
the cartel problem. 

4 The study of associations of firms, which can be interpreted as Research Joint Ventures or standardization 
committees, is taken up in a distinct paper (Bloch, 1995). 

5 Guesnerie and Oddou (1981) analyze the provision of local public goods in a model with orthogonal 
coalitions but discuss the role of externalities among communities. 

6 Hart and Kurz (1983) analyze strong equilibria of a noncooperative game where players simultaneously 
announce coalitions. 

7  Other concepts of stability of coalition structures are surveyed in Greenberg (1995). 
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 stability concept which is based on pessimistic conjectures since a coalition only 
deviates when it is guaranteed to obtain a higher payoff independently of the 
reaction of the other players. The study of stable coalition structures raises three 
important difficulties. First, the definitions of stability rely on ad hoc assumptions 
on the behavior of the other players after a coalition has deviated. Second, all 
definitions of stability assume that external players react to the formation of a 
coalition in a myopic way. Hence, when a coalition forms, its members do not take 
into account the final result of their decisions but only the immediate reaction of the 
other players. Finally, even the less restrictive definition of stability ( stability) may 
not be useful, since  stable coalition structures fail to exist in situations which are 
not easily characterized. (Hart and Kurz (1984) give an example of a game without 
stable structure which is otherwise well-behaved.) 

By contrast, in this paper, I explicitly model the formation of coalitions as a 
noncooperative sequential process in the spirit of Rubinstein (1982)’s alternating 
offers bargaining game and its extensions to n players by Selten (1981) and 
Chatterjee et al. (1993). Players are ranked according to an exogenous rule of 
order. The first player starts the game by proposing the formation of a coalition. If 
all prospective members accept the proposal, the coalition is formed. If one player 
rejects the proposal, she becomes the initiator in the next round. The important 
feature of the game is that, once a coalition is formed, the game is only played 
among the remaining players and that established coalitions may not seek to 
attract new members nor break apart. Hence, by agreeing to group in a coalition, 
players commit to stay in that coalition.  

I restrict my attention to stationary strategies and establish the following 
properties of stationary perfect equilibria. I first show that, if the game always 
admits a subgame perfect equilibrium, stationary perfect equilibria may fail to 
exist. A sufficient condition for the game to admit a stationary perfect equilibrium 
is that the valuation and all its restrictions to smaller sets of players admit core 
stable structures. Furthermore, any core stable coalition structure can be reached 
as a stationary perfect equilibrium of the extensive form game of coalition 
formation, provided that the set of stationary perfect equilibria is nonempty. I 
then study the restricted class of symmetric games where all players are ex ante 
identical. In this class of games, using a result due to Ray and Vohra (1995), I 
provide a simple condition under which symmetric stationary perfect equilibria 
exist, and I show that the coalition structures they generate are generically unique 
up to a permutation of the players. Furthermore, I provide a general method for 
the characterization of the coalition structures generated by symmetric stationary 
perfect equilibria in symmetric games. This method is used to derive equilibrium 
coalition structures in two situations: the formation of cartels in a symmetric 
oligopoly and the symmetric majority games discussed by Hart and Kurz (1984). 

The game analyzed here is similar to games of coalition formation proposed 
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by Selten (1981), Chatterjee et al. (1993), Moldovanu (1992) and Winter (1993) 
in the context of games in coalitional form. The games they analyze have the same 
sequence of moves as the one described above. The crucial difference between 
their games and mine stems from differences in the action spaces. By fixing the 
division of the payoffs, I restrict the actions of the agents to announcements of 
coalitions whereas they study a more general framework where players announce 
both a coalition and the division of the coalitional worth. A further difference is 
due to the underlying specification of gains from cooperation since they do not 
allow for externalities among coalitions. Given these differences, the results they 
obtain are not directly comparable to mine. 

Different extensive form procedures of coalition formation in games represented 
by a valuation were proposed by Aumann and Myerson (1988) and Shin and Yi 
(1995). The procedure in Aumann and Myerson (1988) is defined for games where 
players evaluate cooperation graphs rather than coalition structures. The particular 
feature of cooperation graphs where coalition members need not unanimously agree 
to admit new members leads them to define a game where links can be formed at 
any stage. This approach cannot easily be applied to situations where gains from 
cooperation accrue when coalitions are formed, rather than bilateral links among 
players. Yi and Shin (1995) analyze games based on a ‘matching procedure’. Players 
announce coalitions and coalitions are formed whenever all its members have made 
identical announcements. In general, the equilibria they obtain are very different from 
the equilibria of the infinite horizon game analyzed in this paper. 

The paper is organized as follows. The game of sequential formation of 
coalitions is introduced and the equilibrium concept defined in Section 2. In Section 
3, I analyze the relations between stationary perfect equilibria and stability concepts 
for coalition structures in games described by a valuation. Section 4 is devoted to 
the analysis of symmetric games. I present applications of the model to the formation 
of cartels in oligopolies and of coalitions in symmetric majority games in Section 5. 
My concluding remarks and some directions for future research appear in Section 6. 

 
2. Sequential Formation of Coalitions 

 
In this section, I introduce the sequential game of coalition formation and the 
equilibrium concept that I will use. The set of players is denoted N, with 
cardinality n. The index i will refer to the players. A coalition T is a nonempty 
subset of players. A coalition structure π is a partition on the set N. The set of 
all coalition structures is denoted by . For any subset K of N, the set of 
partitions on K is denoted K  with typical element πK. 

Gains from cooperation are described by a valuation v which maps the set 
of coalition structures  into vectors of payoffs in n. The component vi(π) 
denotes the payoff obtained by player i if the coalition structure π is formed. I 
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assume that payoffs are normalized so that any player, by opting to leave the 
game can get a strictly positive payoff. Formally, i  N , minπ  {{i}} vi(π)> 0. 

A rule of order  is an ordering of the players, which is used to determine the 
order of moves in the sequential game of coalition formation. 

The sequential game of coalition formation is defined by the exogenous 
specification of the valuation v and of the rule of order . To emphasize this 
dependence, I denote the game of coalition formation by (v, ). 

The game (v, ) proceeds as follows. The first player according to the rule of 
order  starts the game by proposing the formation of a coalition T to which she 
belongs. Each prospective member responds to the proposal in the order determined 
by . If one of the player rejects the proposal, she must make a counteroffer and 
propose a coalition T to which she belongs. If all members accept, the coalition 
is formed. All members of T then withdraw from the game, and the first player in 
N \ T starts making a proposal.8 

This game describes in the simplest way a procedure where coalitions are 
formed in sequence. The main characteristic of the game is that, once a coalition 
has been formed, the game is only played among the remaining players. The 
extensive form thus embodies a high degree of commitment of the players. When 
players agree to join a coalition, they are bound to remain in that coalition. They 
can neither leave the coalition nor propose to change the coalition at later stages 
of the game. Figure 1 depicts the extensive form of the game with three players. 

A history h t at date t is a list of offers, acceptances and rejections up to period 
t. At any point in the game (, v), a history h t determines 

 
 a set )(ˆ thK  of players who have already formed coalitions 
 a coalition structure π     formed by the players in )(ˆ thK  
 an ongoing proposal (if any) )(ˆ thT  
 a set of players who have already accepted the proposal 
 a player who moves at period t . 

 
Player i is called active at history ht  is it is her turn to move after the history ht. 

The set of histories at which player i is active is denoted Hi. A strategy i  for player i 
is a mapping from Hi  to her set of actions, namely 

 
i(ht)  {Yes, No} if T̂(ht)   

i (ht )  {T  N \ K̂(ht), i  T } if T̂(ht) =  

When T̂(ht)  , player i is a respondent to the offer T̂(ht) =  and she can  
                                                           
8  Each time a coalition T is proposed, the order of responses is fixed by  independently of the history or 

the identity of the proposer. Hence, for example, if player 2 proposes the formation of a coalition 
{1, 2, 3}, player 1 responds first and player 3 responds after player 1. 

)(ˆ thK
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Figure 1. The game  
 
choose to accept or reject it. If T̂(ht)  , either a coalition has just formed and 
player i is the first player in N \ K̂(ht) according to the rule of order , or player i 
has just rejected an offer. In both cases, it is her turn to propose a new coalition T 
which must be a subset of the remaining players to which she belongs. 

I restrict my attention to strategies which only depend on the payoff-
relevant part of the history. For a player i active at history h t, the only 
payoff-relevant features of the history are the set K of players who left the 
game, the partition πK representing the coalitions they formed and the current 
offer T . In particular, the set of players who have already accepted the offer T 
is uniquely determined by the rule of order . 

A strategy i is stationary if it only depends on the state s = (K, πK, T) where K 
is a (possibly empty) subset of N, πK is a partition of K and T is a (possibly empty) 
subset of N \K. Formally, letting T  (i, K) define the collection of subsets of N \ K 
to which player i belongs, a stationary strategy is a mapping from the set of states 
at which player i is active, Si, to a set of actions, where 

i(K, K, T)  {Yes, No} if T   

i(K, K, )  T  (i, K) 

Any strategy profile  = {i}i  N determines an outcome (π(), t()) of the game. 
If the game ends in a finite number of periods, π() is a coalition structure on the 
set N, and t() is the period at which the agreement has been reached. 

I assume that players do not discount the future. In the case of an infinite 
play of the game, players who have not formed a coalition receive a payoff of zero. 

a

b b c b 

c c b c c b b c 

a ab ac abc

bc b N Y N Y N Y 

Y N c 

a  ab     bc  abc 

{a} {bc} c c {a} {b} {c} {ab} {c} {ac} {b} {abc} 

c  ac      bc  abc b  ab     bc  abc 

N  Y c b
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More precisely, suppose that a subset N \ K of the players does not reach an 
agreement in a finite number of periods. Payoffs are then given by 

vi(π()) = 0 for all players in N \ K 

vi (π()) = max πK  π vi(π) for all players in K. 

Definition 2.1. A subgame perfect equilibrium  * is a strategy profile such that i  N, 
h t

  Hi, i, vi(π(*i   (h t),  *–i)) ≥ vi(π(i (ht),  *–i). 
 
Definition 2.2. A stationary perfect equilibrium  * is a subgame perfect equilibrium 
where i  N, *i   is a stationary strategy. 
 

A coalition structure  generated by a subgame perfect equilibrium is called 
an equilibrium coalition structure (ECS). Coalition structures generated by stationary 
perfect equilibria are called stationary equilibrium coalition structures (SECS). The set 
of stationary equilibrium coalition structures is denoted SECS(v, ). 

 
Remark 2.3. Since every player obtains a higher payoff by leaving the game than by 
disagreeing forever, an infinite play of the game cannot be part of a subgame 
perfect equilibrium. Hence, the concept of an equilibrium coalition structure is 
well defined. 
 

The payoffs of the game described above are not continuous at infinity. 
Hence the existence of a subgame perfect equilibrium is not guaranteed. To 
circumvent this difficulty, I first show that any subgame perfect equilibrium of the 
game with sufficiently high discounting is a subgame perfect equilibrium of the 
game (v, ). To be more precise, let (v, ) denote the game where strategies 
and moves are defined as above but payoffs are given by: vi() = ))(()(  

i
t
i v . 

 
Proposition 2.4. There exists  (0, 1) such that, if i,  i > , any sub-game perfect 
equilibrium of   (v, ) is a subgame perfect equilibrium of  (v, ). 
 
Proof. Observe first that, since  is finite, the set of payoffs of the game, v() is 
finite. Hence, the set of possible coalition structures formed in  (v, ) is finite. In 
particular, this implies that, as  varies continuously from 0 to 1, the strategy 
profiles of the game can only lead to a finite number of coalition structures. 
Hence, there exists a  such that, for all ,  > , if * is a subgame perfect 
equilibrium of  (v, ), then * is a subgame perfect equilibrium of      (v, ). 

Consider now  > ,  and let * be a subgame perfect equilibrium of  (v, ). 
Then, for any player i, any history ht in Hi, any strategy i  and any   [, 1), 
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t       
i (*i (h

t),*–i ) vi(π(*i, *–i)) ≥  
t
i

(i(ht),*–i ) vi(π(i, *–i)).

Taking limits as  goes to 1, 

vi(π(*i   (ht),  *–i)) ≥ vi(π(i  (ht),  *–i)). 

Hence, * is a subgame perfect equilibrium of (v, ).      
 
Corollary 2.5. For any valuation v and any rule of order , there exists a subgame perfect 
equilibrium of the game (v, ). 

 
Proof. Fix a   > . The game  (v, ) is a finite action game of perfect information 
and is continuous at infinity. Hence, by a result of Fudenberg and Levine (1983) 
(Corollary 4.2, p. 262), the game  (v, ) has a subgame perfect equilibrium. 
From Proposition 2.4, any subgame perfect equilibrium of  (v, ) is a subgame 
perfect equilibrium of (v, ).      

 
By imposing stationarity, I require that strategies only depend on the payoff- 

relevant part of the history. In the framework analyzed here, the payoff-relevant 
part of the history is summarized by the state s characterizing the coalition 
structure formed by the previous players and the ongoing offer. Chatterjee et al. 
(1993) and Moldovanu (1992) show that, when players bargain over the division 
of the coalitional worth, the set of nonstationary perfect equilibria may be very 
large, and stationarity is a useful restriction to refine the set of subgame perfect 
equilibria. A striking aspect of the game analyzed here is that stationary perfect 
equilibria may fail to exist. This point is illustrated by the following example. 

 
EXAMPLE 2.6.     N = {a, b, c}, and  defines a < b < c. 
 

π va(π) vb(π) vc(π) 

a|b|c 1 1 1 
ab|c 3 2 1 
ac|b 2 1 3 
a|bc 1 3 2 
abc 1 1 1 

 
In this example, player a wants to form a coalition with player b, player b with 

player c, and player c with player a. 
To show that the game (v, ) does not admit any stationary equilibrium 

coalition structure, observe first that the three coalition structures {{a, b, c}}, 
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{{a}, {b}, {c}} and {{a}, {b, c}} cannot be supported by any equilibrium since player a 
would benefit from deviating and offering the formation of the coalition {a, c} 
which player c would accept. The two other coalition structures {{a, b}, {c}} and 
{{a, c}, {b}} can be supported by equilibria in nonstationary strategies but not by a 
stationary perfect equilibrium. For {{a, b}, {c}} to be supported by a stationary 
perfect equilibrium, it must be that player c rejects the offer {b, c}. But, in 
equilibrium, player c will only reject the offer {b, c} if player a accepts the offer 
{a, c}. By stationarity, player b accepts the offer {a, b} irrespective of the history of 
rejections which have preceded it. Hence, since player b always accepts the offer 
{a, b}, player a cannot accept the offer {a, c}. Similarly, the coalition structure 
{{a, c}, {b}} is only supported by a strategy prescribing that player b rejects the offer 
{a, b}, implying that player c accepts the offer {b, c}. Since, by stationarity, player a 
always accepts the offer {a, c}, player c should reject the offer {b, c}. Hence, the 
game  (v, ) does not admit any stationary perfect equilibrium. 

However, the coalition structures {{a, b}, {c}} and {{a, c}, {b}} can be supported 
by equilibria in nonstationary strategies.9 To support these coalition structures as 
equilibria, one only needs to allow players to condition their actions on the 
number of times they have received an offer. Consider first the coalition structure 
{{a, b}, {c}} and the following strategies. Player a always accepts the offer {a, b} and 
proposes {a, b}. She rejects {a, b, c} and accepts {a, c} when, in the history ht, she 
has made the offer {a, b} to player b an odd number of times. Player b accepts {b, c} 
and proposes {b, c}. She rejects {a, b, c} and only accepts {a, b} if, in the history ht, 
the offer {a, b} has been made by player a an odd number of times. Player c accepts 
{a, c} and proposes {a, c}. She rejects {a, b, c} and only accepts {b, c} if, in the history 
ht, player a has made the offer {a, b} an even number of times. These strategies 
form a subgame perfect equilibrium of the game (in nonstationary strategies), and 
are depicted in Figure 2. A strategy profile supporting the coalition structure {{a, 
c}, {b}} can be constructed in a similar way. 

In Example 2.6, the three players play a symmetric role. Hence, no change in 
the rule of order can guarantee the existence of a stationary perfect equilibrium. 
Moreover, Example 2.6 is generic, since the nonexistence of a stationary perfect 
equilibrium is robust to small variations of the valuation. Nonexistence of 
stationary perfect equilibria is thus a robust phenomenon in games with more 
than three players. 

Note however that the nonexistence of a stationary perfect equilibrium in pure 
strategies in Example 2.6 is linked to the fixed sharing rule. If players were allowed 
to bargain freely over the worth of the coalition in a game with transferable utility, 
the nonexistence result would disappear. 

                                                           
9  These strategies are closely related to strategies constructed by Shaked to support any division of the 

payoffs in a three-person bargaining game (Sutton, 1986). 
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Figure 2. Nonstationary equilibrium strategies supporting the coalition structure {{a, b}, {c}} 
 
The central feature of Example 2.6 is the disagreement among players over 

the coalitions which should be formed. A similar problem was noted by Shenoy 
(1979) in Apex games, where a single big player faces a number of small players 
(Example 7.5, p. 150). The preferred coalition for the big player is the grand 
coalition, since it offers her the possibility of diluting the power of the small 
players. Small players, on the other hand, would rather form a two-member 
coalition with the big player. This disagreement among players about the 
coalition which should be formed leads, as in Example 2.6, to the nonexistence 
of a stationary perfect equilibrium. This suggests that a sufficient condition for 
the existence of an equilibrium coalition structure is high degree of unanimity 
among players about the coalitions they wish to form. While this point is not 
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pursued here, the class of symmetric games analyzed in Section 4 provides an 
example of games where players unanimously agree on the coalitions they want 
to belong to. 

 
3. Stable Coalition Structures 

 
In this section, I compare the equilibrium coalition structures with coalition 
structures satisfying cooperative concepts of stability. Concepts of stability in games 
with externalities require a specification of the reaction of external players to the 
formation of a coalition, and different assumptions on the behavior of external 
players give rise to different definitions of stability. Kurz (1988) distinguishes five 
models of reaction of the external players. The core stability concept, first 
introduced by Shenoy (1979), is based on the following dominance relation. A 
coalition structure  dominates a coalition structure  if there exists a coalition in 
 whose members receive strictly higher payoffs than in . A coalition structure is 
called core stable if it belongs to the core of the dominance relation. In effect, this 
definition of stability is very restrictive, since it assumes that, when a group of 
players deviate, they consider that external players react in such a way as to 
maximize the payoff of deviating players. 

Hart and Kurz (1983) propose four models of reaction of the external 
players. In the  model, coalitions which are left by some members dissolve. In the 
 model, members of coalitions which lose members remain together and form 
smaller coalitions. The last two stability concepts are based on the  and the  
cores.10 In the  model, a group K of players deviates if, for any possible reaction 
of the external players, namely any coalition structure N \ K of N \ K, there exists a 
coalition structure of K, K , such that all members of K are better off in the new 
coalition structure  = N \ K K . In the  definition, a group K of players deviates 
if there exists a coalition structure K such that, whatever the reaction of the 
external players, members of K are better off forming the coalition structure K. 

Letting, for any fixed valuation v, the sets of Core stable,  stable,  stable,  
stable and  stable coalition structures be denoted by CC(v), C (v), C (v), C (v) 
and C(v), the following lemma is easily established.11 

Lemma 3.1. For any valuation v, CC(v)  (C (v)  C (v))  C (v)  C (v). 

I will focus here on the two extreme concepts of core and  stability.12 
                                                           
10  See Aumann (1967) for a complete description of the  and  core concepts. 
11  Hart and Kurz (1983) derive the last three inclusions of the Lemma. The first inclusion is immediate, once 

one reinterprets the core stability concept in terms of reaction of the external players to the deviation of a 
group of players. 

12  The absence of coincidence between  stable structures and equilibrium coalition structures can be 
extended to the intermediate concepts of ,  , and   stability. 
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Formally, a coalition structure  is core stable if there does not exist a coalition K 
and a coalition structure  such that K   and i  K, vi( )  vi( ). A 
coalition structure  is  stable if there does not exist a coalition K and a partition 
Kon K such that, i  K, N \ K  N \ K , vi(K N \ K) > vi(). 

The next proposition shows that, when the set of stationary equilibrium 
coalition structures is nonempty, it contains the set of core stable structures. 

 
Proposition 3.2. Assume that there exists a rule of order  such that SESC(v, )  . Then 
CC(v)  SECS(v, ). 
 
Proof. Let    denote one rule of order for which SECS(v,    )  . Let   denote a 
coalition structure in CC(v). To prove the proposition, I construct a stationary 
perfect equilibrium     of the game (v,    ) such that  (    ) =  . I denote by T(i) the 
coalition to which player i belongs in the coalition structure .. A partition Kof a 
subset K of the players is called a subpartition of   if it is formed by the union of 
elements of .. The set of all subpartitions of   is denoted Sub(  ). Pick a stationary 
perfect equilibrium ≈  of the game (v,    ). A stationary strategy    i  for player i is 
then constructed as follows. 

Assume that a subset K of players, where i  K, has already formed  a 
coalition structure K. 

 If K Sub(  ),       i(K, K, ) = ≈ i (K, K, ) 

 If K Sub(  ),       i(K, K, ) = T(i) 

     i(K, K, T(i)) = Yes 

     i(K, K, T ) = Yes   if   vi((T )) > vi(  ) 

     i(K, K, T ) = No   if   vi((T )) ≤ vi(  ) 

where  (T ) is the coalition structure generated by ≈  after the coalition T   has 
been formed. 
 The strategy     prescribes that player i follows her part of a stationary perfect 
equilibrium ≈  if a coalition structure K off the equilibrium path has been formed, 
and that she forms the coalition T(i) otherwise. 
 It remains to check that     is a subgame perfect equilibrium of the game (v,    ). 
Observe first that, since ≈  is a stationary perfect equilibrium profile, the strategy 
profile   is a subgame perfect equilibrium if a coalition structure off the 
equilibrium path has been formed. Suppose now that the previous players have 
formed a coalition structure K in Sub(  ). To check that    is a subgame perfect 
equilibrium on the equilibrium path, consider the possible deviations for player i. 
 Player i can deviate by announcing a coalition structure T  T(i) when it is 
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her turn to announce a coalition. However, since    is a core stable structure, 
there exists a player j in T  such that vj((T )) ≤ vj(  ). Hence, any coalition T  

different from T(i) will be rejected. 
 If now player i receives an offer T(i), any deviation will lead to the formation 
of the coalition T(i), since any different offer by player i will be rejected by some 
player. 
 Finally, suppose that player i receives an offer T  T(i). If vi((T )) ≤ vi(  ), 
she cannot benefit from accepting the offer. If all other members of T accept 
the offer, the coalition T is formed and player i obtains a payoff vi((T ), 
whereas, by rejecting the offer, player i obtains the payoff vi(  ). If vi((T )) > 
vi(  ), player i should accept the offer, since her rejection would lead to the 
formation of the structure  , whereas her acceptance may either secure the 
formation of (T ), if no player following player i rejects the offer T, or yield 
the formation of T(i), if some player following player i rejects the offer T. 
 Since player i has no incentive to deviate from her strategy        i, the strategy 
profile    forms a subgame perfect equilibrium of the game (v,   ). 
Furthermore, by construction,  (    ) =  . Hence, CC(v)  SECS(v,  ).      
 
 In the statement of Proposition 3.2, I require the set of stationary perfect 
equilibria to be nonempty. This assumption is needed to show that, once a 
coalition structure is formed off the equilibrium path, the game still admits a 
stationary perfect equilibrium. The following example shows that the 
assumption cannot be relaxed. 

The game of Example 3.3 admits a unique core stable structure, the grand 
coalition which Pareto dominates any other coalition structure. However, the 
subgame following the formation of the coalition {a} is identical to the game in 
Example 2.6 and does not admit any stationary perfect equilibrium. 

 
EXAMPLE 3.3     N = {a, b, c, d}. 
 

π va(π) vb(π) vc(π) vd(π) 

abcd 5 5 5 5 
a|bc|d 1 3 2 1 
a|b|cd 1 1 3 2 
a|bd|c 1 2 1 3 
Others 1 1 1 1 

 
The difficulty illustrated by Example 3.3 can be alleviated by assuming that, 

in addition to the valuation v, all restrictions of the valuation to subsets of the 
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players admit a core stable structure.13 Since payoffs depend on the whole 
coalition structure, the restriction of the valuation v to a subset K of the players 
must entail a description of the partition formed by the external players. 

The restriction of the valuation v to a subset K of the players relative to the 
coalition structure N\K is defined as follows. v(K, N\K): K →  |K| where v(K, N\K )i 
(K) = vi(K  N\K). 
 
Lemma 3.4. Let v be a valuation such that CC(v)  , and, for any restriction v  of v, 
CC(v )  . Then, for any rule of order , SECS(v, )  . 

 
Proof. Let  be a fixed rule of order. I construct a stationary perfect equilibrium 
strategy profile. For any restriction v  of v to a subset K of the players, relative to 
the coalition structure N\K , pick a core stable structure. This core stable structure 
is denoted by CS(N\K ), and, for any player i in K, T (i, N\K ) denotes the coalition 
player i belongs to in CS(N\K ). 

Construct a stationary strategy profile  as follows. 
 
i (N\K,  N\K, ) = T (i, N\K)  

i (N\K,  N\K, T(i, N\K)) = Yes 

i (N\K,  N\K, T ) = Yes        if vi (C S( N \K   T )) > vi(C S(N \K )) 

i (N\K,  N\K, T ) = No        if vi (C S( N \K   T )) ≤ vi(C S(N \K )) 
 
To show that  forms a subgame perfect equilibrium, consider all possible 

deviations for player i. 
If player i proposes a coalition T   T(i,  N\K), one of the members of T  will 

reject the offer, since CS(N\K) is a core stable structure. Hence, player i cannot 
benefit from announcing a coalition different from T (i,  N\K). Similarly, by rejecting 
the offer T (i,  N\K), player i cannot obtain a higher payoff since the only coalition 
she can announce is the coalition T (i,  N\K). 

Suppose now that player i receives an offer T  off the equilibrium path. By the 
same argument as in Proposition 3.2, she should accept the offer only if the payoff 
she receives in the final coalition structure is higher than the payoff she receives in 
CS( N\K). The final coalition structure obtained after the formation of T , given 
the construction of the strategies, is the coalition structure C S( N\K  T ). Hence, 
no deviation from the strategy i can be profitable and the constructed strategy 
profile   is a stationary perfect equilibrium.      

 
Proposition 3.2 and Lemma 3.4 immediately lead to the following corollary. 

                                                           
13  This requirement is very similar to the condition of total balancedness for games without externalities. 
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Corollary 3.5. Let v be a valuation such that CC(v)  , and, for all restrictions v  of v, 
CC(v )  . Then, for any rule of order , CC(v)  SECS(v, ). 

 
Lemma 3.4 provides a sufficient condition for the existence of an equilibrium 

coalition structure. Corollary 3.5 shows that any core stable structure of a 
valuation v whose restrictions also admit core stable structures can be reached as 
the outcome of a stationary perfect equilibrium of the game of coalition 
formation. In the case of  stability, no such result can be expected. The following 
example shows that the sets of stationary equilibrium coalition structures and of 
 stable structures may be nonempty and disjoint. 
 
EXAMPLE 3.6 N = {a, b, c, d, e}. 
 

π va(π) vb(π) vc(π) vd(π) ve(π) 

ab|cd|e 4 4 3 3 1 
a|bc|d|e 1 5 5 4 1 
ae|bc|d 1 5 5 4 1 
a|bc|de 1 1 1 5 5 
ac|b|de 1 2 1 1 1 
a|b|c|de 1 2 1 1 1 
Others 1 1 1 1 1 

 
The game admits three  stable structures {{a}, {b, c}, {d}, {e}}, {{ae}, {bc}, {d}} 

and {{a}, {bc}, {de}}. To check that the coalition structure {{a}, {b, c}, {d}, {e}} is  
stable, observe that the only players who have an incentive to deviate are players 
d and e, who may want to form a coalition. However, their deviation is prevented 
by the formation of the coalition structure {{a, c}, {b}} by the three other players. 
The coalition structure {{ae}, {bc}, {d}} is  stable for the same reason. The 
structure {{a}, {bc}, {de}} is  stable because the only two profitable deviations can 
be prevented by the external players. If players a and b form the coalition {a, 
b}, the three other players can react by forming the structure {{c}, {d}, {e}}, inducing 
a payoff of 1 for the two deviating players. If player b decides to break the 
coalition with player c, the four external players can form the coalition {a, b, c, d} 
which yields a payoff of 1 for player b. 

These three coalition structures are the only  stable structures of the game. 
The coalition structure {{a, b}, {c, d}, {e}} is not  stable since players b, c and d can 
deviate and form the structure {{b, c}, {d}} in which they are guaranteed to obtain 
higher payoffs. All other coalition structures are Pareto dominated by the 
coalition structure {{a, b}, {c, d}, {e}} and hence are not  stable. 
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I now claim that the unique stationary equilibrium coalition structure of the 
game, independently of the rule of order , is the coalition structure {{a, b}, {c, d}, 
{e}}. Two cases must be distinguished, one where  assigns as the first player a or 
b, one where c, d or e are chosen to start the game. If player a starts the game, 
player a should offer the formation of a coalition {a, b}. This offer will be accepted 
by player b, since, if player b were to form the coalition {b, c}, players d and e 
would form a coalition, inducing a payoff of 1 for player b. Given that players a 
and b have formed a coalition, player c should offer to form a coalition with player 
d, who will accept. Hence, in equilibrium, the coalition structure {{a, b}, {c, d}, {e}} 
is formed. The same line of reasoning applies when player b starts the game. 

If now player c starts the game, she should offer the formation of the 
coalition {c, d}, since the offer {b, c} will be rejected by player b. This offer will be 
accepted by player d. In fact, player d has no incentive to form the coalition {d, e} 
since this induces player b to form the coalition {b}. Once the coalition {c, d} is 
formed, players a and b form the coalition {a, b}, yielding the coalition structure 
{{a, b}, {c, d}, {e}}. A similar line of reasoning applies to the cases where d and e 
start the game. 

Example 3.6 is robust to small variations of the valuation. Hence there exists 
a class of valuations v, such that SESC(v, )  , C(v)   and SECS(v, )  
C(v) = . 

The absence of coincidence between the sequential game of coalition 
formation and the model of  stability stems from two countervailing forces in the 
definitions of deviations. On the one hand, deviations in the sequential model are 
easier to obtain, because the external players who have already formed a coalition 
cannot freely react to the deviation. This suggests that there may exist  stable 
structures which cannot be outcomes of subgame perfect equilibria of the game. 
In Example 3.6, the coalition structures {{a}, {b, c}, {d}, {e}} and {{ae}, {bc}, {d}} are 
not stationary equilibrium structures, because, once players a, b and c have left the 
game, players d and e can deviate and form the coalition {d, e}. Similarly, the 
coalition structure {{a}, {bc}, {de}} cannot be obtained in a stationary perfect 
equilibrium, because b has an incentive to deviate after the coalition {d, e} has 
been formed. 

On the other hand, deviations in the sequential model are harder to obtain, 
because group deviations are not allowed, and players look forward to the final 
consequences of their deviations. Hence stationary equilibrium coalition structures 
are not necessarily  stable. In Example 3.6, the coalition structure {{a, b}, {c, d}, 
{e}} is not  stable, because players b, c and d may deviate jointly and form the 
coalition structure {{a}, {b, c}, {d}, {e}}. 
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4. Sequential Formation of Coalitions in Symmetric Games 
 

In this section, I analyze the formation of coalitions in the restricted class of 
symmetric games. Symmetric games are described by valuations where all players 
are ex ante identical. Hence, the payoffs received by the players only depend on 
coalition sizes and not on the identity of the coalition members. 

Formally, let p denote a permutation of the players in N. For any coalition 
structure  of N, let p denote the coalition structure obtained by permuting the 
players according to p. A valuation v is symmetric if and only if i  N, vi() = vpi( p). 

A symmetric game is a game described by a symmetric valuation. Observe that 
in symmetric games all members of a coalition receive the same payoff and 
payoffs only depend on the sizes of the coalitions. An important feature of 
symmetric games is that two coalition structures which only differ by the 
distribution on the players in the coalitions generate the same payoff distribution. 
This leads to the notion of equivalence of coalition structures in symmetric games. 

Two coalition structures  and   are called equivalent if there exists a 
permutation p of the players in N such that   = p. Two equivalent partitions are 
said to be equal up to a permutation of the players. The equivalence class of a 
coalition structure  is denoted by eq(). If the valuation v is symmetric, two 
equivalent partitions generate the same distribution of payoffs. Hence, in symmetric 
games, the study of coalitions can be restricted to the study of equivalence classes 
of partitions. An equivalence class of partitions can be identified with a list of 
coalition sizes, that is a sequence of positive integers adding up to n. I assume 
that the rule of order  is fixed, and let the players be indexed by the ordered set 
I = 1, 2,..., n. This can be done without loss of generality, since any coalition 
structure emerging as an equilibrium of the game (v,  ), for    , is equivalent 
to a coalition structure generated by an equilibrium of the game (v, ). Since the 
rule of order  is fixed, the game  will only be indexed by the valuation v. 

Since in a symmetric game, all players are ex ante identical, I restrict my 
attention to symmetric equilibria where all players adopt similar strategies. 
Formally, a strategy profile  = {i }i  N is called symmetric if and only if (i) at any 
two states s = (K, K, T ), s  = (K, K, T  )  with |T | = |T |  0, for any two players i  
T, j  T , i(s) = j (s ) and (ii) at any state s = (K, K, ), for any two players i, 
j  K| i(s)| = | j(s)|. In words, a strategy profile is symmetric if, at any state, all 
responders adopt the same strategy and all proposers announce coalitions of the 
same size. The set of coalition structures supported by symmetric stationary 
perfect equilibria is denoted SSECS(v). 

I first show that, in a symmetric game, any symmetric stationary perfect 
equilibrium coalition structure can be reached as the outcome of a finite game of 
choice of coalition sizes. Furthermore, under a simple condition proposed by Ray 
and Vohra (1995), any equilibrium outcome of the game of choice of coalition 
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sizes can be obtained as a symmetric stationary equilibrium coalition structure of 
the sequential game of coalition formation. Using this equivalence, I derive a 
sufficient condition under which a symmetric game admits a symmetric stationary 
equilibrium coalition structure and prove that this structure is generically unique. 

The game of choice of coalition sizes (v) is described as follows. Player 1 
starts the game and chooses an integer k1 in the interval [1, n]. Player k1 + 1 then 
moves and chooses an integer k2 in the set [1, n − k1]. Player k1 + k2 + 1 chooses at 
the next stage an integer k3 in the set [1, n − k1 − k2]. The game continues until the 
sequence of integers (k1, k2,..., kj ,..., kJ ) satisfies  kj = n. The game for three players 
is depicted in Figure 3. 

 

 
 
Figure 3. The game  
 

A strategy i for player i in the game (v) is a mapping from the set i − 1 to 
the set of integers in the interval [1, n − i − 1]. In words, for any coalition structure 
i −1 of the first i − 1 players, player i chooses a coalition size I (i − 1). All players 
need not be called to announce coalition sizes in the game. Observe, however, 
that, for any strategy profile , a single coalition structure  () is formed. The 
payoffs received by the players are then given by vi( ()). 

A strategy profile * is a subgame perfect equilibrium if and only if for all players i, 
for all coalition structures i − 1 in  i − 1 and for all strategies i, vi( ( i*(i −1), *-–i)) ≥ 
vi( (i (i − 1),  *– i )). As before, a coalition structure generated by a subgame perfect 
equilibrium  * is called an equilibrium coalition structure of the game (v). The set of 
equilibrium structures of (v) is denoted ECS (v). 
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Lemma 4.1.  For any symmetric valuation v, ECS (v)  . 
 
Proof. The game (v) is a finite game of perfect information with perfect recall. 
Hence it admits a subgame perfect equilibrium in pure strategies.      

 
In the next proposition, I show that any symmetric stationary equilibrium 

coalition structure of the game (v) can be reached as an equilibirum coalition 
structure of the game (v), up to a permutation of the players. 

 
Proposition 4.2. For any coalition structure  in SSECS(v) there exists a coalition structure 
 equivalent to  such that   ECS(v). 
 
Proof. Let  be the symmetric stationary perfect equilibrium of the game (v) 
supporting the coalition structure . I first show that the strategy profile  cannot 
involve any delay and that all offers prescribed by  are accepted. Suppose to the 
contrary that some player i rejects an offer T with |T | ≥ 2 at some state s = (K, K, T). 
Since the strategy profile  is symmetric, |i (K, K , )| = |T | and for all players 
j  i(K, K,), we have j(K, K , i(K, K , )) = i (K, K, T) = No. Hence offers 
are continuously rejected and the play of the game is infinite yielding a payoff of 0 
to player i. Since however min {{i}} vi() > 0, player i has an incentive to deviate 
and leave the game. This shows that, at a symmetric equilibrium , all offers are 
accepted. Hence the strategy  can be described by a list of offers made by the 
players at all states where they are proposers. 

As a second step, I show that we can assume without loss of generality that, 
at any two equivalent states s = (K, K, ) and s  = (K , K, ) where |K | = |K | and 
the two coalition structures K and K are equivalent, |i(s)| = |i(s )| to see this 
first reorder the players according to a rule of order ̂  consistent with the order in 
which the coalition structure  is formed. Now, for any set K with i  K, let K̂ 
denote the first ̂ -elements in N \ {i } and, for any partition K of K , let ̂  K denote 
the equivalent partition of K̂ . Construct then the strategy ̂  i as follows. At any 
state s = (K, K, ), let ̂  i(s) be a subset of N \ K containing i such that |̂  i(K, K, )| = 
|(K̂ , ̂K, )|. In words, I select for any state s = (K, K, ) a particular representative 
of the equivalence class eq(K) and ̂ i assigns the action chosen for this 
representative state to the entire equivalence class. Clearly, the strategy ̂   satisfies 
the condition that sets of the same cardinality are chosen at two equivalent states. 
Furthermore, given the particular order ̂  chosen, (̂  ) = (). It remains to show 
that ̂   forms a subgame perfect equilibrium of the game (v). To see this, consider 
a state s = (K, K, ) and note that, since the strategy ̂   is played, any action of 
player i induces a unique partition of the set N \K. Now suppose by contradiction 
that ̂  i is not an optimal choice, i.e. that there exists a strategy  i inducing a 
partition N\K such that vi(K  N\K) > vi (K  ̂  N\K) where ̂  N\K is the coalition 
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induced by ̂  i. Next consider a permutation p̂  of the players such that p̂ K = K̂.. 
Since the game is symmetric, vi(p(K  N \ K)) = vi(K  N \ K) > )ˆ( / KNkiv   = 

)),ˆ(( / KNki pv    contradicting the fact that i is an optimal choice at ).,ˆ,ˆ( KK   
Since we may assume, by the preceding step, that the strategy  assigns sets 

of the same cardinality at any two equivalent states, we are ready to construct a 
strategy profile  in the game (v) as follows. For any player i and any coalition 
structure i −1 of the preceding players, let i(i −1) = |i(K, K, )|. To show that  
forms a subgame perfect equilibrium of the game (v), suppose by contradiction 
that player i has a profitable deviation  i  i after the coalition structure i −1 is 
formed. I claim that this implies that player i has a profitable deviation from i in 
the game (v). To see this, suppose that a coalition structure K equivalent to i −1 
has been formed and let player i reject any offer T such that |T|  i and propose 
the formation of a coalition T  of size  i. Since  i is a profitable deviation in the 
game (v) and letting   denote the coalition structure induced by the choice  i, 
we must have vi( ) > vi(). Now, by symmetry, for all players j in T , vj( ) = vi( ) 
> vi() = vj( ), so that player i’s offer is accepted.      

 
While Proposition 4.2 guarantees that any symmetric equilibrium can be 

obtained as an equilibrium outcome of the game of choice of coalition sizes, it does 
not imply that the equilibrium coalition structures of the game  form symmetric 
stationary equilibrium outcomes of the sequential game of coalition formation. In 
fact, as noted by Ray and Vohra (1995), a stronger condition is needed for this 
assertion to hold : the coalitions formed in the game  must have the property that 
the players’ payoffs are decreasing in the order in which coalitions are formed. 

 
Proposition 4.3 (Ray and Vohra, 1995). Let  be an equilibrium coalition structure of the 
game (v) with the property that players’ payoffs are decreasing in the order in which 
coalitions are formed. Then there exists a coalition structure  equivalent to  such that  
  SSECS(v). 

 
Proof. Let  be the subgame perfect equilibrium supporting . Define a strategy i 
for player i in the game (v) as follows. At any state s = (K, K, ) let player i 
announce a subset T of N\K with |T | = j (j − 1) for the coalition structure j − 1 
equivalent to K . At any state s = (K, K, T) with T  , let i(s) = Yes if |T | = j(j −1) 
and i(s) = No otherwise. This strategy profile is symmetric and yields a coalition 
structure () equivalent to . It remains to show that it forms a stationary 
perfect equilibrium of the game (v). First consider player i’s possible deviation at 
a state s = (K, K, ) when it is her turn to make an offer. If she makes any offer T 
such that |T |  j (j −1) and |T | ≥ 2, her offer will be rejected. Hence player i will 
belong to a coalition formed later in the game and, by assumption, her payoff is 
lower than the one she obtains in coalition T . By the same reasoning, player i has 
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no incentive to reject an offer T where |T | = j (j −1). Finally, consider player i ’s 
response to an offer T with |T |  j (j −1). By rejecting the proposal and offering 
to form a coalition T of size |T | = j (j −1), she can secure the formation of the 
coalition structure . Since τ is a subgame perfect equilibrium of the game of 
choice of coalition sizes, vi( )≥ vi(K  N\K) for any other coalition structure N\K 
induced by the formation of a coalition T at state s = (K, K, ). Hence no player 
has any incentive to deviate from the strategy prescribed by .      

 
Propositions 4.2 and 4.3 provide a sufficient condition on the underlying 

valuation v for the equivalence between the symmetric stationary perfect 
equilibrum outcomes of the sequential game of coalition formation and the 
subgame perfect equilibrium outcomes of the game of choice of coalition sizes. 
This result is formally stated in the next corollary. 
 
Corollary 4.4. Suppose that, in the game (v), players’ payoffs are decreasing in the order  
in  which coalitions are formed. Then, for any coalition structure  in SSECS(v) and any 
coalition structure  in ECS(v), eq() = eq( ). 

 
Hence, under a simple condition, the game of choice of coalition sizes provides 

an easy method for the construction of equilibrium coalition structures in symmetric 
games. The exact nature of the restriction that players’ payoffs are decreasing in the 
order in which coalitions are formed is difficult to interpret. Ray and Vohra (1995) 
provide an example where the condition is violated and the subgame perfect 
equilibrium outcome of the game of choice of coalition sizes does not form a 
symmetric stationary perfect equilibrium of the sequential game. However, in 
most economic applications of coalitions with externalities, including the formation 
of cartels and of coalitions in majority games discussed in this paper, this condition 
is satisfied. The equivalence result of Corollary 4.4 can now be used to establish 
several important properties of equilibrium coalition structures in symmetric games. 

 
Corollary 4.5. Let v be a symmetric valuation such that, in the game (v), players’ payoffs 
are decreasing in the order in which coalitions are formed. Then SECS(v)  . 
 
Proof. Follows from Lemma 4.1 and Corollary 4.4.      
 

Corollary 4.4 also leads to a simple sufficient condition for the uniqueness of 
symmetric stationary equilibrium coalition structures in symmetric games. A 
valuation v is called strict if, for any player i, and for any two different partitions  
and , vi()  vi(). In a game described by a strict valuation, every agent receives 
different payoffs in different coalition structures. The next proposition shows that 
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the strictness condition is sufficient to guarantee the uniqueness of the equilibrium 
coalition structure in the game (v). 
 
Proposition 4.6. Let v be a strict symmetric valuation. Then the game (v) has a unique 
equilibrium coalition structure. 
 
Proof. The proof is by induction on the number n of players. If n = 1, the game (v) 
has a unique subgame perfect equilibrium. Suppose now that, for any n < n, the 
game admits a unique subgame perfect equilibrium, and consider the first player’s 
choices in a game with n players. For any choice of an integer k, the continuation 
game has less than n players, and thus admits a unique subgame perfect 
equilibrium  *({k}). Since the valuation is strict, there exists a unique k*, such that 

v1({k*}  (*({k*}) > v1({k}  (*({k}) k  k*. 

Hence the n player game admits a unique subgame perfect equilibrium.      
 
Proposition 4.6 implies that, if the valuation is strict, all equilibrium coalition 

structures of the game r(v) are equivalent. Hence I obtain the following corollary. 
 

Corollary 4.7. Let v be a strict symmetric valuation such that, in the game (v), players’ 
payoffs are decreasing in the order in which coalitions are formed. Then the game (v) has a 
unique symmetric stationary equilibrium coalition structure, up to a permutation of the 
players. 

 
5. Applications 

 
In this section, I apply the sequential model of coalition formation to two particular 
symmetric situations. I first analyze the formation of cartels in a symmetric Cournot 
oligopoly. The second application is based on Hart and Kurz (1984)’s study of 
endogenous coalition formation in symmetric majority games. In both applications, 
I derive the subgame perfect equilibrium of the game of choice of coalition sizes. It 
is straightforward to check that players’ payoffs are decreasing in the order in which 
coalitions are formed, so that the equivalence result of Corollary 4.4 can be applied. 

 
5.1 Cartels in a symmetric Cournot oligopoly 
It has long been noted that the formation of cartels in oligopolies involves a 
fundamental instability (See Stigler, 1968), since, once a cartel has been formed, 
members of the cartel obtain a lower profit than outsiders, and hence have an 
incentive to leave the cartel. Salant et al. (1983) analyze this instability in a simple 
symmetric Cournot oligopoly with linear demand and homogeneous goods, and 
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show that there exists a minimal profitable size of the cartel which is never lower 
than four fifths of the members of the industry. This cartel is however (intuitively) 
unstable since members of the cartel would prefer to stay out and let the other 
firms form a cartel. In the sequential model analyzed here, firms have the power to 
commit to stay out of the cartel. Hence, the unique equilibrium coalition structure 
predicts that firms choose to remain outside of the cartel, until the remaining 
firms form the cartel of minimal profitable size. 

More precisely, consider a Cournot oligopoly where firms face a linear inverse 
demand curve, D =  −  qi , where qi is the quantity produced by each firm i. All 
firms are assumed to have a constant marginal cost of . Suppose that K cartels 
have formed on the market, and that the structure of cartels is given by  = 
{T1, T2,..., Tk,..., TK }. Straightforward computations show that, in equilibrium, 
each cartel will produce qi*() = ( − )/(K + 1).14 Hence, firm i in the cartel T(i) of 
size t(i) obtains a payoff of 

2

2

1))((
)()(*





Kit
Pi

  

The problem of cartel formation can thus be summarized by the valuation 
defined by vi() = Pi*(). 

 
Proposition 5.1. Any equilibrium of the game of cartel formation is characterized by * = 
(T1* { j }j T1*) where t*  is the first integer following 25432 /)(  nn  (If 54 n is an 
integer, t* can take on the two values 25432 /)(  nn and ./)( 25452  nn ) 

  
Proof. See the Appendix.      

 
5.2. Coalitions in symmetric majority games 
In their study of endogenous coalition formation, Hart and Kurz (1983) advocate 
a two-stage approach, where players evaluate their payoffs, in any coalition structure, 
according to a fixed rule (Owen, 1977)’s extension of the Shapley Value to games 
with coalition structures), and play a game of coalition formation using the value 
as their expected payoff. Owen (1977)’s value differs from Aumann and Drèze 
(1974)’s value in assuming that players bargain over the worth of the grand coalition, 
as opposed to the worth of the coalition they belong to in the coalition structure. 
The formation of a coalition is thus interpreted as a way for the players to modify 
the environment in which they bargain over the worth of the grand coalition.15 

                                                           
14  It is important to note that the equilibrium quantity produced by each cartel only depends on the 

number of cartels on the market. 
15  The axiomatic derivation of the two different values are given in Aumann and Drèze (1974) and Hart and 

Kurz (1983). The differences are thoroughly discussed in Hart and Kurz (1983). 
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Owen (1977)’s value is computed, for any game in coalitional function form 
w, any coalition structure  and any player i as 

 
i(w, ) = E(w(P  i) − w(P)), 
 

where the expectation is taken over any random order which is consistent with the 
coalition structure  (i.e. ranks consecutively members of any coalition in the 
coalition structure) and P is the set of predecessors of i according to the random 
order. 

Hart and Kurz (1984) apply Owen (1977)’s value to analyze the formation of 
coalitions in different types of games in coalitional function form. We consider 
here only symmetric majority games. 

 
Definition 5.2. A symmetric majority game M(n, m) is defined as follows. The number 
n is the total number of players, and the integer m (the majority) is any integer in the 
interval [(n + 1)/2, n]. The coalitional function is given by 
 
• w(T ) = 0 if t < m 
• w(T ) = 1 for t ≥ m, 
 
where T is any coalition, and t denotes the cardinality of coalition T . 

 
To compute the Owen value in the symmetric majority game M(n, m), let me 

consider a coalition structure  containing K coalitions,  = {T1, T2,..., Tk,... TK}. 
The total number of random orders consistent with the coalition structure  is  
K!t1!t2!...tk!...tK !, where tk denotes the number of elements of the coalition TK. It is 
then clear that for the incremental value of player i to be positive, it must be that 
player i is ordered at position m in the random order. Denoting by T(i) the 
coalition player i belongs to and letting i() denote the number of orderings of 
the coalitions in  such that a member of the coalition T(i) is at position m, I 
obtain the following simple expression for the Owen value 

!)(
)()(

Kit
i

i
  . 

Hence I can now define the valuation vi() = i(). The characterization of 
the equilibrium coalition structures is made difficult by the lack of structure of the 
function i(). In the absence of general characterization results, Table I describes 
the equilibrium coalition structures of any symmetric majority game with n ≤ 10.16 

                                                           
16  The computations leading to the characterization of the coalition structures are not reproduced here and 

are available from the author. 
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TABLE I. Coalition structures in symmetric majority games 
 

n = 3 
m = 2 m = 3    
ab|c a|b|c    

 abc    

n = 4 
m = 3 m = 4    
abc|d a|b|c|d    

 abcd    

n = 5 
m = 3 m = 4 m = 5   
abc|d|e ab|cd|e a|b|c|d|e   
abc|de abcd|e abcde   

n = 6 
m = 4 m = 5 m = 6   

abcd|e|f abc|de|f a|b|c|d|e|f   
abcd|ef  abcdef   

n = 7 
m = 4 m = 5 m = 6 m = 7  

abcd|e|f |g abcde|f |g abcdef |g a|b|c|d|e|f |g  
abcd|ef |g abcde|f g  ab|cd|ef |g abcdef g   
abcd|ef g   abc|def |g   

n = 8 
m = 5 m = 6 m = 7 m = 8  

abcde|f |g|h abcdef |g|h abcdef g |h a|b|c|d|e| f |g|h  
abcde| f g |h abcdef |gh  abcdef gh  
abcde| f gh abc|def |g|h    

 abc|def |gh    

n = 9 
m = 5 m = 6 m = 7 m = 8 m = 9 

abcde| f |g|h|i abcdef |g|h|i abcd|ef g|hi ab|cd|ef |gh|i a|b|c|d|e| f |g|h|i 
abcde| fg|h|i abcdef |gh|i abcd|ef g|h|i abcdef gh|i abcdef ghi 
abcde| fg|hi abcdef |ghi    
abcde| fgh|i     
abcde| fghi     

n = 10 
m = 6 m = 7 m = 8 m = 9 m = 10 

abcdef |g|h|i | j abcdef g|h|i | j abcdef gh|i | j abcdef ghi | j a|b|c|d|e|f |g|h|i|j 
abcdef |gh|i | j abcdef g|hi | j abcdef gh|ij  abcdef ghij 
abcdef |gh|i j abcdef g|hi j abcd|ef g|h|i | j   
abcdef |ghi | j  abcd|ef gh|ij   
abcdef |ghi j     
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The equilibrium coalition structures of symmetric majority games are not 
easily interpreted. When the majority required to win (m) is small, it appears that 
the minimal winning coalition forms, members of the winning coalition all obtain 
1/m and external members, who obtain 0, organize themselves freely. When the 
number of votes required to win increases, the share of any member of the 
winning coalition decreases and it may become profitable to form smaller 
coalitions. This effect explains why the minimal winning coalition does not 
necessarily form in the symmetric majority games M(5, 4), M(6, 5), M(7, 6), M(8, 6), 
M(9, 7), M(9, 8) and M(10, 8). However, if all votes are required to win, the only 
equilibrium coalition structures are the grand coalition and the coalition 
consisting of singletons. In fact, in that case, the probability to win is independent 
of the size of the coalition, and players should always try to form the smallest 
coalitions. Hence, the only possible equilibrium coalition structures are the 
coalitions consisting of singletons and the grand coalition which yield the same 
payoff of 1/n to all players. Finally, it should be noted that Hart and Kurz (1984) 
observed that the majority game M(10, 8) has no  stable coalition structure. 
However, in my framework, an equilibrium coalition structure exists for this game. 
 
6. Conclusions 
 
In this paper, I analyze a sequential noncooperative game of coalition forma- tion 
when the rule of payoff division is fixed and payoffs depend on the whole coalition 
structure. The extensive form of the game is closely related to the extensive forms 
proposed by Selten (1981), Chatterjee et al. (1993) and Moldovanu (1992) for 
games of coalitional bargaining. I show that any core stable structure can be 
obtained as the outcome of a stationary perfect equilibrium, provided that the set 
of stationary perfect equilibria is nonempty. I analyze games described by 
symmetric valuations and provide a condition under which, when all the players 
are identical ex ante, the game admits a symmetric equilibrium coalition structure 
which is generically unique up to a permutation of the players. I also provide 
examples to show that stationary perfect equilibria may fail to exist in general 
valuations and that the noncooperative approach followed here is unrelated to 
standard cooperative game-theoretic solution concepts. 

The determination of the equilibrium coalition structure in the sequential 
game of coalition formation is driven by two basic features of the extensive form. 
First, the exogenous rule of order imposes a fixed order of moves by players in the 
game. Depending on the valuation, players may have an advantage in moving 
first, second or in any other position in the game. The rule of order thus creates an 
asymmetry among players which is determined outside the game. An important 
direction for future research is to eliminate this asymmetry and to explore 
conditions under which the equilibrium of the extensive form game is independent 
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of the rule of order. This line of research has been pursued by Moldovanu and 
Winter (1995) in the context of games of coalitional bargaining. They show that 
order independent equilibria only exist when the underlying game in characteristic 
function form, as well as all its restrictions, have nonempty cores. 

The second important feature of the extensive form is the commitment power 
of the players. I assume that, by accepting the offer to join a coalition, players are 
bound to remain in that coalition whatever coalition structure the other players 
may form. This implies that coalitions are formed one after another and that 
coalitions may not compete to attract members. In fact, this sequential structure 
of the process of coalition formation is the feature of the extensive form which 
guarantees the existence of an equilibrium. Extensive form games where players do 
not commit to stay in a coalition can easily be constructed. The existence and 
characterization of equilibria in these games constitutes a difficult but important 
area for future research. 

Finally, the model analyzed in this paper assumes that the coalitional worth 
is divided according to a fixed sharing rule. While this approach greatly simplifies 
the analysis, it clearly restricts the applicability of the model. The study of 
extensive form procedures allowing players to bargain over the worth of coalitions 
seems to me to be the foremost topic for future research. 

 
Appendix: Proof of Proposition 5.1 

 
The proof consists in three steps. In the first two steps, I explicitly construct the 
stationary perfect equilibria of the game. Observe first that the only payoff- relevant 
part of any history of the game is the number of coalitions which have already 
been formed. To fix notations, let K be the number of coalitions already formed, and m 
be the number of remaining players in the game, after a given history. 

Step 1. After a given history, suppose that K coalitions have been formed, and 
that m players remain in the game. Suppose furthermore that, if a coalition of size 
 is formed, the remaining m −  players remain isolated. Then the optimal choice 
of  is given by: 

 * = 1 if   m ≤ (K + 1)2 

 * = m if   m ≥ (K + 1)2 

Given that the remaining m −  players form singletons, the optimal number 
of players in a coalition,  *, solves: 

2

2

2)(
)()(max








mK
F  

subject to 1 ≤  ≤ m. 
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The function 1/ (K + m −  + 2)2 is strictly decreasing for 1 ≤  ≤ (K + m + 2)/3, 
and strictly increasing for K + m + 2)/3 ≤  ≤ m. Hence, the optimal choice * is 
either 1 or m. Now, 
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Solving the quadratic in m, I obtain: 
  
F(1) ≤ F(m) if and only if m ≥ (K + 1)2. 
 

Step 2. The game admits two stationary perfect equilibria, given by 
 
Strategy 1. 
If m < (K + 1)2 choose  = 1 
If (K + 1)2 ≤ m < (K + 2)2 + 1 choose  = m 
If (K + 2)2 + 1 ≤ m choose  = 1 
 
Strategy 2. 
If m ≤ (K + 1)2 choose  = 1 
If (K + 1)2 < m ≤ (K + 2)2 + 1 choose  = m 
If (K + 2)2 + 1 < m choose  = 1. 

 
The two equilibria only differ in the rules chosen to break ties. In the first 

equilibrium, if a player is indifferent between forming a cartel of size m or forming 
a singleton, she chooses to form a cartel. In the second equilibrium, she chooses 
to remain isolated. In the remainder of the proof, I focus on strategy 1, and show 
that given that ties are broken according to the rule that indifferent players choose to form 
coalitions, strategy 1 is the unique stationary perfect equilibrium of the game. 

The proof is by induction on the number of remaining players in the game. If 
m = 2, the player before last chooses whether to form a cartel of size 2 or to remain 
isolated, in which case the last player remains isolated as well. Since K ≥ 0, 2 < 
(K + 2)2 + 1. Hence strategy 1 prescribes that a cartel is formed if and only if 2 ≥ 
(K + 1)2, and by Step 1, this is the unique optimal strategy for the player before last.  

Suppose now that, for any m  < m, strategy 1 is the unique equilibrium 
strategy. Consider the different possibilities with m players remaining in the game. 

If m < (K + 1)2, then m  < m, m  < (K + 2)2. Hence, whatever coalition the 
player forms, all subsequent players choose to remain isolated. Then, by Step 1, 
the unique optimal strategy is to choose to form a singleton. 
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If now (K + 1)2 ≤ m < (K + 2)2 + 1, similarly, m  < m, m  < (K + 2)2. 
Hence, irrespective of the coalition formed by the player, the subsequent 

players choose to remain isolated and, by Step 1, since m ≥ (K + 1)2, the player 
should choose to form a coalition of size m. 

Finally, when m ≥ (K + 2)2 + 1, different possibilities have to be considered. 
The player may either choose to form a coalition  such that (m − ) ≥ (K + 2)2, in 
which case the remaining players form a coalition, or a coalition  such that  
(m − ) < (K + 2)2, in which case the remaining players choose to remain separate. 

When the coalition size  is such that (m − ) < (K + 2)2, the player’s payoff is 
given by: 

2

2

2 )(
)()(








mK

F . 

From Step 1, since m > (K + 1)2, the optimal choice of coalition size is *  = m. 
In the case where  is chosen small enough, other players form a coalition later in 
the game. Given the specification of the strategy, after the formation of the 
coalition of size , a group of players will choose to remain separate, and the last 
players will form a single coalition. The number of players who choose to remain 
isolated, , is the unique integer satisfying: 

(K + 2 + )2 ≤ (m −  − ) < (K + 3 + )2 + 1. 

A simple computation shows that  is the first integer following: 

*
2

5249 )()( 


KmK 
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Hence, the payoff to a player who chooses a coalition of size  where m −  ≤ 
(K + 2)2 is given by: 
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The optimal value * is thus the minimum over the interval [1, m − (K + 2)2] of 

the function 
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Next consider the derivative H of H, 
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A study of the sign of H shows that the function H is increasing up to the 
value ,/)( 32323273351616 mKmK  and decreasing thereafter. 

Hence, the optimal choice of , *, is either * = 1, or * = m − (K + 2)2. Now, a 
simple computation shows that the choice * = m − (K + 2)2 is dominated by * = m. 

To complete this step, it suffices to show that * = 1 is the optimal choice, 
that is that H(1) ≤ m (K + 2)2. 
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Step 3. The coalition structure generated by the stationary perfect equilibria 

corresponding to strategies 1 and 2 is given by * = (T1* { j }j T1*) where t 1* is the 
first integer following ./)( 25432  nn  (If )54 n is an integer, t 1* can take 
on the two values 25432 /)(  nn  and )./)( 25452  nn  

When K = 0, strategy 1 prescribes that the first player forms a singleton. In 
fact, singletons will continue to be formed as long as m ≥ (n − m + 2)2 + 1. The 
unique coalition formed will comprise t* members, where t* is the unique integer 
such that 

 
(n − t* + 1)2 ≤ t* < (n − t* + 2)2 + 1. 
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This paper identifies a domain of payoff functions in no spillover noncooperative games 
with Positive externality which admit a pure strategy Nash equilibrium. Since in 
general a Nash equilibrium may fail to exist, in order to guarantee the existence of an 
equilibrium, we impose two additional assumptions, Anonymity and Order 
preservation. The proof of our main result is carried out by constructing, for a given 
game G, a potential function ' over the set of strategy profiles in such a way that the 
maximum of ' yields a Nash equilibrium in pure strategies of G. 

 
 
 
1. Introduction 
 
One can easily find a variety of examples to support the claim that our economic 
and social life is often conducted within the structure of groups of agents. 
Individual consumers are, in fact, households, and the individual producers are, in 
fact, firms which are coalitions of owners of different factors of production. 
Society produces its public goods within a complex web of federal, state and local 
jurisdictions, and the political life is conducted through the rather complicated 
structure of political parties. 
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he reason for the existence of groups which usually contain more than one 
agent but less than the entire society lies in the conflict between increasing returns 
to scale provided by large groups on one hand and heterogeneity of agents’ 
preferences on the other hand. Indeed, it is often the case that firms create joint 
research ventures rather than conducting R&D independently in order to extract 
the gains from cooperation and obtain access to a larger pool of resources. 
However, given the heterogeneity of agents’ tastes, a decision-making process in 
large groups may lead to outcomes quite undesirable for some of its members. 
This observation supports the claim that, on many occasions a decentralized 
organization is superior to a large social structure. Instead of the grand coalition 
containing all agents in the economy, we often observe the emergence of coalition 
structures which consists of groups smaller than the entire society. 

In this paper, we will analyze the issue of stability of endogenously formed 
group structures in games with no spillovers, where the no spillover condition means 
that for every group of players choosing the same strategy, the payoff of every 
member of this group is independent of choices made by players outside of the 
group. Given the complexity of the general problem, there is not much hope for a 
stability result which will hold for the entire class of ‘group formation’ games. We 
shall therefore focus on subclasses of these games which may yield stable group 
structures. 

The goal of this paper is to study an interesting subclass of environments, 
satisfying not only the no spillover condition but also positive externality (PE), where 
increasing returns to the size of groups are reflected by the assumption that each 
player would enjoy a higher payoff from a given alternative in a larger group. One of 
the natural examples of such environments are those with ‘network externalities’ 
where the utility that a given user derives from the good depends upon the number 
of other users who are in the same ‘network’ as she. Consider, for example, the 
choice of word processors in a department . If there are many users of Word, it 
might be beneficial to ‘join the crowd’ and become a Word user, a decision to be 
welcomed by other Word users. Thus, this environment satisfies the positive 
externality condition. Moreover, if one of users of T 3 decides to switch to Word 
Perfect, the utility of the Word users would not be affected, thus yielding the no 
spillover condition. As Katz and Shapiro (1985) pointed out, there are several 
possible sources of positive consumption externalities.1 It could be through a direct 
physical effect of the number of purchasers on the quality of the product, where the 
utility that a consumer derives from purchasing a telephone, for example, depends 
on the number of other households or businesses that have joined the telephone 
network. There may be indirect effects that give rise to consumption externalities as 
well. For example, an individual purchasing a personal computer is affected by the 

                                                           
1  Liebowitz and Margolis (1994) referred to these circumstances as network effects. 
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number of other individuals or firms purchasing similar hardware because the 
amount and variety of software supplied for use with a given computer is usually an 
increasing function of the number of hardware units that have been sold. 

Another example is the local public goods economies (Guesnerie and Oddou, 
1981; Greenberg and Weber, 1986), where the members of every jurisdiction 
select a public good provision vector or a tax schedule, and each player is free to 
make her residential choice by comparing population composition and policy in 
each jurisdiction. Here the no spillover requirement simply means that a migration 
of an individual from jurisdiction B to jurisdiction C would not affect the utility of 
residents of jurisdiction A. Moreover, at least in small jurisdictions, cost benefits 
generated by sharing a burden of production of public goods among residents 
may outweigh congestion effects, in which case the cost of provision of a given 
level of public good declines with a number of residents in the jurisdiction. A 
possibility of the conflict between agglomeration and diversification arises here 
very naturally, since, for example, some residents could regard public education as 
quite important, while others might put a higher priority on police and fire 
protection services. The heterogeneity of agents’ preferences for public services 
may explain an emergence of a large number of different jurisdictions in the 
society, thus under lining the importance of study of group formation. 

In order to study different notions of stability of group structures we consider 
a game in normal form where each player chooses an alternative (strategy) from a 
common alternative set. The payoff of each player, obviously, depends on her 
chosen alternative and the set of players who made the same choice. We shall 
then identify a domain of payoff functions which yields the existence of a pure 
strategy Nash equilibrium when the number of players is finite. A Nash 
equilibrium is a relatively weak stability requirement which, in context of local 
public goods economy, represents the vector of individuals’ residential choices 
that no one would benefit by moving to another jurisdiction. Since our primary 
interest is in the study of group structures generated by unambiguous pure 
strategy individuals’ decisions (such as jurisdictional choice or selection of word 
processor), we consider in this paper Nash equilibria in pure strategies only. We 
shall also examine a notion of a strong Nash equilibrium in pure strategies when no 
group of individuals would benefit by jointly switching their alternatives. Since it is 
immune against not only individual but also any coalitional deviations, the notion 
of strong Nash equilibrium is, obviously, much more restrictive than that of a 
Nash equilibrium.2 

                                                           
2  Although it is not our goal here, we may consider alternative stability notions of group structures by 

employing other solution concepts, e.g., coalition-proof Nash equilibrium (Bernheim et al., 1987), which 
makes use of only credible coalitional deviations. Since the set of strong Nash equilibria is a subset of the 
set of coalition-proof Nash equilibria and the latter is a subset of the set of Nash equilibria, some of our 
results may be used to examine the existence of a coalition-proof Nash equilibria. 
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First we consider the case where, as in many models with network externalities 
(Farre ll and Saloner, 1985, 1988; Tirole, 1988; Arthur, 1989), the set of pure 
strategies for each player consists of two alternatives. We show then that the PE 
assumption alone guarantees the existence not only of a Nash equilibrium but 
even a strong Nash equilibrium (Proposition 2.2). The result is quite strong since 
it yields existence of a stable group structure while using a very demanding notion 
of stability. However, Proposition 2.2 cannot be extended to the case where the 
number of alternatives is larger than two. Thus, we impose a number of additional 
conditions on players’ payoff functions. The first is that of Anonymity (AN) which 
requires that each player’s payoff depends only on the number of players who 
make the identical choices and is independent of the names of individuals in each 
group. Order preservation (OP), together with anonymity, implies that for every 
player i the ranking of any two alternatives a and b remains the same if we add (or 
delete) the same individual to (or from) the set of those who choose these two 
alternatives. Our main result (Proposition 4.1) states that, for any number of 
alternatives, the assumptions PE, AN, and OP guarantee the existence of a (pure 
strategy) Nash equilibrium of a no spillover game. To prove this result, we show 
first that there is a convenient utility representation of each individual’s preferences. 
Using this representation, we then construct a potential function and demonstrate 
that its maximum gives rise to a (pure strategy) Nash equilibrium of our game. We 
show that Proposition 4.1 is tight in the sense that if we drop AN, a (pure strategy) 
Nash equilibrium might fail to exist even when the preferences of each player are 
single-peaked over the set of alternatives X (Example 4.4). We also point out that 
if we replace assumption OP by a weaker property order invariance (OI), which 
requires that for each player i the ranking over any two alternatives a and b 
remains the same as long as a and b are selected by the same number of players, 
then the set of (pure strategy) Nash equilibria might be empty even if individuals’ 
preferences are single-peaked (Example 3.1) It turns out that if we drop PE even 
for one player, a (pure strategy) Nash equilibria might fail to exist (Example 4.5). 
Furthermore, we show that, unlike in Greenberg and Weber (1986, 1993), a 
strong Nash equilibrium does not, in general, exist under the same assumptions 
that guarantee the existence of a pure strategy Nash equilibrium (Example 4.6). 

There are several papers which dealt with the existence of an equilibrium in 
local public good economy without congestion. First, Guesnerie and Oddou 
(1981) have derived the conditions on profiles of individuals’ preferences which 
yield the existence of the core of the associated game in characteristic function 
form. Greenberg and Weber (1986) prove the existence of a strong Nash equilibrium 
in a game with linearly ordered players whose preferences satisfy a kind of single 
crossing property condition. Demange (1994) generalized their result to the case 
where the hierarchical structure of the game is represented by a tree rather than a 
straight line as in the Greenberg and Weber (1986) model. 
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It is important to mention that all assumptions in this paper, except in 
Section 5, are imposed directly on individual preferences rather than on profiles of 
individuals’ preferences. In contrast, all aforementioned papers on local public 
goods impose various restrictions on profiles of preferences (a version of a single-
crossing property in Greenberg and Weber, 1986, and ‘intermediate’ profiles of 
preferences in Demange, 1994). Given a specific economical or political 
environment, it would be rather easy to verify the applicability of our results by 
simply checking whether the preferences of every individual satisfy positive 
externality, anonymity, or other assumptions than to deal with intricate 
conditions on profiles of preferences. Moreover, our main proposition does not 
make any use of single-peaked preferences which are imposed in the vast majority 
of the studies on local public goods economies. Thus, our model is quite different 
from those examined in the aforementioned papers. 

The paper most closely related to our model is that by Greenberg and Weber 
(1993), who proved the existence of a strong Nash equilibrium in the political 
party formation game. In this game each player has single-peaked preferences over 
a unidimensional set of alternatives, where the set of feasible alternatives of every 
party would expand with an increase in the number of its supporters. Thus, the 
players’ utilities are not directly affected by the number of players in a group, 
although the set of players choosing a given alternative affects its feasibility. Thus, 
their condition is stronger than the PE assumption used in Greenberg and Weber 
(1993). In addition, we do not make use of single-peakedness in order to prove 
the existence of a (pure strategy) Nash equilibrium. 

It is interesting to compare our results with the literature on congestion 
games. This class of games satisfies the negative externality assumption NE that 
represents decreasing returns to size: each player i is worse off if more players 
make an identical choice to that of i and thus join i’s group. Recently, Milchtaich 
(1996), Konishi et al. (1997a) and Quint and Shubik (1994) independently proved 
the existence of a pure strategy Nash equilibrium in no spillover games that satisfy 
NE and AN. Konishi et al. (1997a) show that under the same conditions there 
exists even a strong Nash equilibrium. Proposition 4.1 of this paper implies that if 
NE is replaced by PE, much more stringent conditions are needed in order to 
guarantee the existence of a pure strategy Nash equilibrium. Moreover, Example 
4.6 shows that even assumptions imposed in Proposition 4.1 do not, in general, 
yield the existence of a strong Nash equilibrium. 

As we indicated above, the main purpose of this paper is to identify a class of 
the no spillover games with positive externality which admits the existence of a 
Nash equilibrium without imposing any restrictions on profiles of players’ 
preferences. However, it is worth pointing out that the method of the proof of 
Proposition 4.1 can be used to obtain the existence of a Nash equilibrium for a 
more general class of preferences useful in many applications. The payoff 
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functions in this class satisfy are separable in terms of individuals’ preferences over 
alternatives and ‘externality’ effect. This effect is assumed to be common for all 
players and we show (Example 5.1) that this property is necessary to obtain the 
existence result. The paper is organized as follows: in the next section we present 
the model and state our first existence result for the case of two alternatives. In 
Section 3 we introduce additional assumptions and show that even PE, AN, and 
OI do not guarantee the existence of a pure strategy Nash equilibrium in no-
spillover games. In Section 4 we prove our main existence result and show the 
tightness of our assumptions. In Section 5 we demonstrate the existence of a pure 
strategy Nash equilibrium under the restriction on the preferences’ profiles and 
show that the common externality effect cannot be dispensed with. The utility 
representation result used in the proof of the main proposition is relegated to the 
Appendix. 
 
2. The Model 
 
Let X be a (finite or infinite) set of alternatives and N be a finite set of players. Each 
player i in N chooses an alternative ix  from the set X which is common to all 
players. The players’ choices constitute a (vector representation of) strategy profile 

),...,,( nxxx 21x . The set of all strategy profiles is, therefore, given by the product 
.XXXX N    Each player Ni has a preference ordering over strategy 

profiles which is represented by utility function .: Ni XU  The noncooperative 
game G is therefore represented by the triple (N, X, U) where Ni

iUU  }{  is the 
profile of players’ preferences. The main purpose of the paper is to derive sufficient 
conditions which yield the existence of a pure strategy Nash equilibrium of game G. 
Since we exclusively deal with pure strategy Nash equilibria, no confusion will arise 
when we use simply a ‘Nash equilibrium’ instead of a ‘pure strategy Nash 
equilibrium of the game G .  

Before introducing our assumptions, it is useful to observe that every strategy 
profile ),...,,( nxxx 21x  generates the partition )(xP  of the set of players over the 
alternative set according to their choices at x. Since the set of alternatives X is 
common for all players, we may represent this partition as XxxNP  ))(()( xx , where 
for each Xx the set )(xxN  denotes the set of those players who choose 
alternative x under the strategy profile x. Obviously, the partition )(xP  is uniquely 
determined by the strategy profile x. It is important to observe that the 
correspondence between the strategy profiles and the associated partitions is one-
to-one, and from the given partition )(xP  one can reproduce the strategy profile x. 

We shall restrict our attention to no-spillover games, where for each player i 
her payoff is not affected by the players whose choices are different from her 
strategy .ix  That is, if the choice of player j, jx  is different from ,ix  the payoff of 
i would not be affected if j switches her choice to any alternative x different from 
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.ix Formally, for any strategy profiles NXyx, and an alternative Xx such that 
 )()( yx yx NN , the payoff of every player )(xxNi is the same at x and y, 

that is, ).()( yx ii UU   Note that the no-spillover games allow for the simple 
representation of the payoff function of player i when she chooses alternative x 
given the strategy profile x: 
 

)).(,()( xx x
ii NxuU   

 
As we mentioned above, some natural examples of environments without 

spillovers are given by local public good economies and location choice games. In 
the example of a word processor choice, the no-spillover condition implies that 
the utility of T 3 users would not be affected if some faculty member switches from 
Word Perfect to Word. In this paper we consider only the no-spillover games. 

We first introduce the focus of this paper, positive externality, which requires 
that player i’s payoff increases if another player j who previously chose ij xx 
changes her strategy to ix . 

 
Assumption Positive Externality (PE). For any two players Nji , , for any subset of 
players NS  with Si  and Sj   and alternative Xx  we have ),( Sxui

}){,( jSxui  . 
 

Condition PE allows us to derive our first result. It states that in the case where 
the set of alternatives X consists of two elements, PE yields the existence of a Nash 
equilibrium of game G. The result is, in fact, even stronger as it yields the existence 
of a strong Nash equilibrium (Aumann, 1959). To recall: 

 
Definition 2.1. A strategy profile ),...,,( nxxx 21x  is a strong Nash equilibrium of game 
G if there exists no subset S of N and a strategy jx for each j in S, such that 

)()( xx jj UU   for all Sj  , where x  denotes the strategy profile which assigns jx  to 
every j in S and ix  to every player i who does not belong to S. 
 

That is, a strong Nash equilibrium is immune to any group deviation. Thus, it is 
a much stronger equilibrium concept than a Nash equilibrium which allows only for 
individual deviations. Our first result is:3 
  
Proposition 2.2 Let |X| = 2. Then, under PE, every ( no spillover) game G admits a strong 
Nash equilibrium.4 

                                                           
3  An alternative proof of this result could be derived by using Theorem 1 in Greenberg and Weber (1993). 
4  It is worthwhile to note a game whose set of alternatives consists of two elements trivially satisfies the no-

spillover condition. 
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Proof. Let X = a, b. Consider first the strategy profile x0 which assigns the 
alternative a to every player in N. If it is a strong Nash equilibrium of game G, we 
are done. Suppose, therefore, that there exists a coalitional deviation that benefits 
all deviating players, that is, there is a coalition S such ),(),( NauSbu ii  for all 

.Si  Let S1 be the maximal coalitional deviation (with respect to inclusion). By 
PE, S1 contains any other possible coalitional deviations from x0. Consider the 
strategy profile x1 which assigns alternative b to all players in S1 and alternative a 
to all other players, or, by using the partition representation of strategy profiles, 

).,\())(),(( 1111 SSNNN ba xx  We shall show that: 
 
Claim. A strategy profile x1 is a strong Nash equilibrium if and only if there is no subset S2 
of the set N \ S1 which can benefit all of its members by switching to alternative b; i.e., 

)\,(),( 121 SNauSSbu ii   for each .2Si   
 
Proof. Suppose that x1 is not a strong Nash equilibrium. Then there exists a 
deviation by coalition T which makes all members of T better off relatively to their 
payoff at x1 Since no subset of S1 can make all its members better off by offering 
some of them alternative a, the set )\( 1SNTT   is nonempty. 

Since ),(),( NauSbu ii 1  for all ,1Sj   it follows that no member of TT \  
can increase her payoff by switching back to a. Thus, every player in T  is offered b 
by the coalitional deviation T. Hence, all players in T  are better off by switching 
to b.      
 

The claim implies that if x1 is not a strong Nash equilibrium, then there exists a 
subset S2 of the set N \ S1 which can benefit all of each members by switching to 
alternative b; i.e., )\,(),( 121 SNauSSbu ii   for each .2Si   Let S2 be the maximal 
(with respect to inclusion) set satisfying this property. Consider then the strategy 
profile x2 whose partition representation is given by )).(\,( 2121 SSNSS  By using 
the arguments of the above claim repeatedly, we can show that the profile x2 is a 
strong Nash equilibrium if and only if there is no subset S3 of the set )(\ 21 SSN 
which can benefit all of each member by switching to alternative b, i.e., 

))(\,(),( 21321 SSNauSSSbu ii  for each .3Si   We continue this procedure 
by picking the largest coalitional deviation from the set of players choosing a and 
adding them to the set of players choosing b. Since the set of players n is finite, the 
procedure will be terminated in a finite number of steps. That is there exists a 
number K such that there is no subset of )(\ KSSSN  21  which can benefit 
its members by switching from a to b. The repeated use of the arguments of the 
above claim would imply that the strategy profile xK whose partition representation 
is given by )),(\( KK SSSSSSN   2121 is, indeed, a strong Nash 
equilibrium of the game G.      
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In the next section we shall provide an example that will illuminate the 
difficulties which do not allow us to extend Proposition 2.2 to the case with more 
than two alternatives. 
 
3. Example 
 
Before introducing the example which shows that a Nash equilibrium may fail to 
exist when the set of alternatives consists of more than two alternatives, we shall 
introduce several natural conditions on each player’s payoff functions. 

First is the condition of Anonymity, often employed in the literature, which 
requires that each player’s payoff depends only on the number of players who 
choose each strategy. 
 
Assumption Anonymity (AN). For any player Ni , for any NTS , such that 

,TSi   and |S| = |T|, the equality ),(),( TxuSxu ii   holds for every alternative 
,Xx where |B| denotes the cardinality of the set B. 

 
Condition AN allows us to use the notation 

 
|)|,(),( SxhSxu ii   

 
for every player ,Ni  every subset S of N with Si and every alternative .Xx  

The condition of order-invariance requires that players’ preferences over alternatives 
are independent of the number of players choosing them as long as the number of 
players choosing these alternatives is the same. In the context of the example of a 
word processor choice in the department, mentioned in the introduction, order 
invariance implies that if an individual prefers Word over Word Perfect when she is the 
only word processor user, then she would still prefer Word over Word Perfect if both 
processes are used by the same number of departmental members. Formally. 

 
Assumption Order-Invariance (OI). For any player ,Ni  for any NS  with Si and 
any two alternatives ,, Xyx   the inequality ),(),( SyuSxu ii   holds if and only if 

   ),(),( iyuixu ii   
 

Note that the OI is stronger than the no spillover condition. Thus, the set of 
games satisfying OI is the subset of the class of no spillover games. We now show 
that the conditions PE, AN, and OI do not guarantee the existence of a Nash 
equilibrium in the no spillover games. Indeed, consider the following example: 
 
EXAMPLE 3.1. Let N = {1, 2, 3, 4, 5, 6}, and X = {a, b, c}. Let the players’ payoff 
functions satisfy the following inequalities 
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h1(c, 4) > h1(a, 3) > h1(a, 2) > h1(b, 3) > h1(c, 3) > h1(b, 2); 
h2(b, 3) > h2(a, 3) > h2(b, 2) > h2(b, 1) > h2(a, 2) > h2(a, 1)> h2(c, k) for k = 1, ... , 6; 
h3(b, 2) > h3(c, 4) > h3(c, 3) > h3(b, 1) > h3(c, 2) > h3(c, 1) > h3(a, k) for k = 1, ..., 6; 
h4(a, 1) > h4(x, k) for x a; k = 1, ..., 6; 
hi (c, 1) > hi (x , k) for i = 5,6; x  c; k = 1, ... , 6. 
  
Then the game G does not admit a Nash equilibrium. 
 
Proof. Suppose, in negation that game G in this example possesses Nash 
equilibrium (x1, x2, x3, x4, x5, x6). Then x4= a, x5 = x6 = c. Since x3  a, it remains to 
consider two cases: x3 = b and x3 = c. 

Let x3 = b. Since x2  c, there will be no four players choosing c, implying that 
player 1 should choose x1 = a. Then the best response of player 2 is a. The strategy 
profile (a, a, b, a, c, c) is, however, not a Nash equilibrium as player 3 would rather 
choose c given the choices of the other five players. 

Let x3 = c. Then player 1 will choose x1 = c. Then the best response of player 2 
is b. The strategy profile (c, b, c, a, c, c) is, however, not a Nash equilibrium as 
player 3 would rather choose b given the choices of other five players. Thus, there 
is no Nash equilibrium in this game.      

 
It is easy to see the constraints on the payoff functions in Example 3.1 do not 

violate PE, AN, OI and it is straightforward to define the payoff functions for all 
players so that all those conditions are satisfied. We would like to stress here that 
although each of the players 4, 5, and 6 has a strictly dominant strategy (alternative 
a for player 4 and alternative c for players 5 and 6), their presence is necessary to 
satisfy assumption OI which would be violated if these players are eliminated from 
the game. Indeed, let players 4, 5, and 6 be removed and introduce the payoff 
function ),(

~
kxh 1 of player 1 in a way which takes into account their removal. Then 

we have ),(
~

),(
~

111  kahkah  and ),(
~

),(
~

211  kchkch for all positive numbers k, 
yielding ),(

~
),(

~
22 11 ahch  and ),(

~
),(

~
11 11 chah   so that OI is violated. 

It is interesting to note that the preferences of each individual i in this 
example are single-peaked for any given group of individuals who choose the same 
strategy as i. That is, for every group of players S containing i, the function ),( Sui 
is single-peaked5 over the set of alternatives X. Thus adding the single-peakedness 
condition (which is common in local public good economies where the 

                                                           
5  Formally, the single-peakedness in our context is defined as follows: Let an ordering  on the set of 

alternatives X be given. The preferences of player Ni  are singled-peaked with respect to  if for S  N 
with ,Si   there exists an alternative xi

S satisfying the following property: for any pair of alternatives 
x, y  X with either x  y  xi

S or x  y  xi
S it follows that ui(x, S)  ui(y, S)  ui(xi

S, S). Then the 
preferences of every player Ni  are singled-peaked if there exists an order ing * on X such that the 
preferences of every player Ni  are singled-peaked with respect to * 
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individuals’ preferences are often assumed to be single-peaked with respect to the 
quantities of public goods produced in a given jurisdiction to assumptions PE, 
AN, and OI still does not guarantee the existence of a Nash equilibrium of a no 
spillover game. 
 
4. Main Result 
 
This example in the previous section shows that even under assumptions listed in 
the previous section, a Nash equilibrium still might fail to exist. The situation is 
quite different in the negative externality (NE) case, where payoff of any given player 
declines when a larger number of players choose that player’s strategy.6 Indeed, 
Milchtaich (1996), Konishi et al. (1997a), and Quint and Shubik (1994) show 
that in the models with NE, the anonymity assumption AN alone guarantees the 
existence of a Nash equilibrium in no spillover games. Konishi et al.(1997a) show 
that, moreover, under the same conditions, there exists even a strong Nash 
equilibrium. 

Example 3.1 shows that if NE is replaced by PE, we cannot expect to have a 
Nash equilibrium even when assumption OI is imposed. Thus, we need to 
introduce an even stronger condition than OI on the regularity of a payoff 
function. Order preservation implies that if player i prefers alternative x to 
alternative y when players in Nx choose x and players in Ny choose y, then she 
would still prefer x over y if Nx and Ny are both expanded by an additional player j. 
Similarly, she would still prefer x over y if a common player k withdraws from both 
Nx and Ny. 

 
Assumption Order Preservation (OP). For any i, j  N, for any S, T  N such that  
i  S  T and j  S  T, for any two alternatives x, y  X, ui(x, S)  ui(y, T) if and only 
if ui(x, S  {j})  ui(y, T  {j}). 
 

Assumption OP is stronger than OI.7 In fact, OP, together with AN implies 
that, for any integers l, m, r, if player i prefers alternative x chosen by l players over 
alternative y chosen by m players, then she would still prefer x chosen by l + r 
players over y chosen by m + r players. 

Now we are in position to state our results on existence of a Nash 
equilibrium under PE when the set of alternatives consists of more than two 
elements. First, we consider the case where the set of alternatives X is finite. 

                                                           
6 Formally, the condition of negative externality (NE) is defined as follows: For any two players i, j  N, for 

any subset of players S  N with i  S and j  S and alternative x  X we have ui(x, S)  ui(x, S  {j}). 
7 Indeed, OI is equivalent to the following condition: For any i, j  N, for any S  N with i  S and j  S 

for any two alternatives x, y  X, ui(x, S)  ui(y, S), if and only if ui(x, S  {j})  ui(y, S  {j}). Thus, by 
setting S = T in OP, it is easy to verify that OP is stronger than OI. 
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Proposition 4.1. Suppose that X is finite and the payoff function of each player satisfies PE, 
AN, and OP. Then a no spillover game G admits a Nash equilibrium.8 
 

To prove this proposition, we make use of Lemma 4.2, the proof of which is 
presented in Section 6. Lemma 4.2 allows to eliminate, for each player i, the set of 
‘irrelevant’ alternatives that would never be chosen by i in equilibrium, and to focus 
on the set of ‘relevant’ alternatives, X i, that could be potential choices for i’s 
equilibrium strategies. Moreover, Lemma 4.2 provides us with a quasi-linear utility 
representation theorem of each player i’s payoff function over the ‘relevant’ set X i. 
This utility representation plays the central role in the proof of Proposition 4.1. 

 
Lemma 4.2. Let the set of alternatives X be finite and assume that PE, AN, and OP hold. 
Then for every i  N there exists a nonempty set X i  X such that  
 
(i) for any x, y  X i, hi(x, 1)  hi(y, n), 
(ii) for any x  X \ X i, there exists y  X i such that hi(y, 1)  hi( x, n). 
 
Moreover, there is a utility representation vi: X i   such that one of the following two 
statements is true: 
 
(iii) for any x  X i, for any integer 1  k  n, v i(x) = hi (x, k), 
(iv) for any x, y  X i, for any integers k, m such that 1  k, m  n, v i(x) + k  vi(y) + m, 
 if and only if hi(x, k)  hi(y, m). 
 

Condition (i) states that for each player i no alternative in X i chosen by i 
alone would be preferred over any other alternative in X i when chosen by all 
players. Condition (ii) implies that for each alternative x, which is not in X i, there 
exists an alternative y in X i such that player i would weakly prefer y chosen alone 
over x when chosen by all other players. Conditions (iii) and (iv) provide the utility 
representation result. 
 
Proof of Proposition 4.1. We shall prove this proposition assuming the validity of 
Lemma 4.2. Let i  N. Let X i be the set which is defined in Lemma 4.2. Let L and 
M be the sets of players whose payoff functions satisfy the conditions given by 
representation (iii) and (iv), respectively, of Lemma 4.2. Since the utility function v i 
is defined over the set X i, it follows that the sets L and M represent a partition of N, 
i.e., L  M = , and L  M = N. Assign each player i  L to her best alternative (arg 
max x  X, vi(x)). Note that if these players are assigned to their best alternatives, they 

                                                           
8  Note that we do not impose single-peakedness of individuals’ preferences, which is frequently used in 

order to prove the existence of an equilibrium in local public good economies and models of multiparty 
electoral spatial competition. 
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would have no incentive to move to any other alternative regardless of all other 
players’ choices. Let the resulting partition of players in L over X be (Lx)x  X, where 
Lx  {i  L|arg max y  Xi, vi(y) = x for all x  X}. (In the case where a player has more 
than one best alternative, we arbitrarily assign her to one of her best alternatives).  

Now let us assign players in M to alternatives in X. We shall call Q = (Mx)x  X a 
legitimate partition of players in M over X if for any x  X and any i  M, i  Mx 

implies x  Xi. That is, each player i is assigned only to one of her ‘relevant’ 
alternatives. Let Q be a collection of all legitimate partitions of M. Let 
Q* = (Mx*)x  X  Q be the legitimate partition of M that solves the following 
maximization problem:9 
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Since both the set of players N and the set of alternatives X are finite, Q* is well 
defined. Let x* be the strategy profile in which each alternative x  X is chosen 
only by the players who belong to the union of two sets, Mx* and Lx, i.e., P(x*) = 
((Mx*  Lx)x  X). We shall show that the strategy profile x* is a Nash equilibrium of 
game G. Otherwise, there exists a player j in M who would benefit from switching 
from one of her ‘relevant’ alternatives to another . (Note that no player i  M has 
an incentive to move to any alternative outside of X i. That is, there is j  M and 
two alternatives a, b  X j such that j  M* and vj(a) + |M*| + |La| < vj (b)+ |Mb* | + 
|Lb| + 1. Thus, we have the inequality 
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where Ma = Ma*\ {j}, Mb = Mb*  {j}, and Mx= Mx* for all x  X \{a, b}. Thus, the 
legitimate partition of M, Q  = (Mx )x  X  Q generates a higher value of the objective 
function than partition Q*, a contradiction. Thus, x* is a Nash equilibrium of the 
game G.      

 
Although, in contrast to Rosenthal (1973), our game is not symmetric, the 

                                                           
9  Note that the function in the bracket is not the sum of the payoffs of the players who choose strategy x. 

In fact, given our payoff representation in Lemma 4.2, the function provided here turns out to be a 
modification of the Monderer and Shapley (1996) exact potential function of the game G. 

Q 
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method of the proof of Proposition 4.1 is similar to the one used by Rosenthal 
who introduced the class of ‘potential games’ studied in Monderer and Shapley 
(1996). It is also important to note that our technique could be used to prove the 
existence of a Nash equilibrium in the games with a more general class of players’ 
preferences under restrictions on players’ preferences profiles (see Section 5). 

We would also like to point out that the finiteness of set X, imposed in 
Proposition 4.1, is not essential. We can easily extend our result to the case with 
an infinite set of alternatives without requiring continuity of payoff functions. 

 
Proposition 4.3. Suppose that for each player i  N there exists an alternative ai  X, such 
that hi(ai, 1)  hi(x, 1) for any x  X. Then, under PE, AN, and OP, the no spillover game 
G admits a Nash equilibrium. 
 

Proof. In order to show the existence of a Nash equilibrium of the game G 
with the infinite set of alternatives X we shall select a finite subset X

~
 of the set of 

alternatives X such that the Nash equilibrium of the game G
~

= (N, X
~

, U), the 
existence of which is guaranteed by Proposition 4.1, also constitutes a Nash 
equilibrium of the game G = ( N, X, U). 

Indeed, for each player i let ai be the i’s top choice when chosen unilaterally, 
i.e., a i = arg max x  X hi(x, 1). Let X

~
= {(ai)iN}. By Proposition 4.1, the game G

~
= 

(N, X
~

, U) admits a Nash equilibrium, denoted by ),...,,( nxxx 21x . Thus, PE 
implies that U i(x)  hi(ai, 1) for every player i. If x is not a Nash equilibrium of the 
game G = ( N, X, U), there exists a player i and an alternative x  X

~
 such that 

U i(x)  hi(x, 1). Thus, hi(x, 1) > hi(ai, 1), a contradiction to the choice of ai.      
 
Example 3.1 above demonstrates that the assertion of Propositions 4.1 and 

4.3 might not hold if OP is relaxed. We shall show that if AN is dropped, a Nash 
equilibrium might fail to exist even when the conditions PE and OP are satisfied:10 
 
EXAMPLE 4.4. Let N = {1, 2, 3, 4, 5, 6}, and X = {a, b, c}. For each player i = 1, 2, 3 
there exist functions v i: X   and W i: N \ {i}  , which determ ines the ‘value’ 
of player j  i for player i, such that the payoff function u i(x, S) is given by 
  

u i(x, S) = vi(x) + 
 

.)(
\

 iSj

i jW  

 
The functions v i() and W i() assume the values 

 
v 1(a) = 6, v 1(b) = 2 2

1 , v 1(c) = 0; 

                                                           
10 Note that in all examples of this section the players’ preferences are single-peaked. 
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W 1(2) = W 1(4) = 1, W 1(3) = W 1(5) = W 1(6) = 3; 
v 2(a) = 0, v 2(b) = 2, v 2(c) = -8; 
W 2(1) = 3, W 2(j) = 1 for j = 3, 4, 5, 6; 
v 3(a) = –8, v 3(b) = 1, v 3(c) = 0; 
W 3(2) = 3, W 3(j) = 1 for j = 1, 4, 5, 6. 

 
The payoff functions of other three players satisfy the following inequalities: 

  
u4(a, {4}) > u4(x, N) for x = b, c; 
ui(c, {i}) > ui (x, N) for i = 5, 6; x = a, b. 

  
Then the game G does not admit a Nash equilibrium. 
 

Proof. The verification of conditions PE and OP is straightforward. It is also easy to 
check that the following inequalities are satisfied: 
 

u1(c, {1, 3, 5, 6}) > u1(a, {1, 2, 4}) > u1(a, {1, 4}) > u1(b, {1, 2, 3})  
 > u1(c, {1, 5, 6}) > u1(b, {1, 3}) > u1(b, {1, 2}) ; 
 u2(b, {1, 2, 3})  > u2(b, {1, 2}) > u2(a, {1, 2, 4}) > u2(b, {2, 3})  
  > u2(b, {2}) > u2(a, {2, 4}) > u2(c, N) ; 
 u3(b, {1, 2, 3})  > u3(b, {2, 3}) > u3(c, {1, 3, 5, 6}) > u3(c, {3, 5, 6})  
  = u3(b, {1, 3}) > u3(b, {3}) > u6 (a, N). 

 
It is easy to see that this example has the same structure as Example 3.1. 

Thus, one can use the arguments used there in order to show the nonexistence of 
a Nash equilibrium.      
 

To demonstrate that PE cannot be dropped either, we construct the game 
with two players which satisfies AN, OP (and, trivially, single-peakedness) but 
does not admit a Nash equilibrium. In this game the preferences of the first player 
exhibit increasing returns to scale whereas the preferences of the second exhibit 
decreasing returns to scale (thus, violating PE). 
  
EXAMPLE 4.5 – Matching pennies. Let N = {1, 2}, and X = {a, b}. Let players’ payoff 
functions satisfy the following inequalities: h1(a, 2) = h1(b, 2) > h1(a, 1) = h1(b, 1) and 
h2(a, 1) = h2(b, 1) > h2(a, 2) = h2(b, 2). Then the game G does not admit a Nash 
equilibrium. 
 
Proof. The verification of conditions AN and OP is straightforward. If both players 
choose the same alternative, player 2 would be better off by switching to a 
different alternative as she would rather stay alone. If the players choose different 
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alternatives, player 1 would be better off by switching to the alternative chosen by 
player 2. Thus, this game does not admit a Nash equilibrium.      
 

The next question which arises naturally is whether, similarly to Greenberg 
and Weber (1986, 1993), the existence of strong Nash equilibrium is guaranteed 
under the same assumptions which yield the existence of a Nash equilibrium. 
Weber and Zamir (1985) show that in the second-best local public good 
economy studied in Guesnerie and Oddou (1981) a strong Nash equilibrium may 
fail to exist.11 The Weber and Zamir example, however, violates OP. The game in 
Example 4.6 below which does not admit a strong Nash equilibrium,12 
demonstrates that even PE, AN, OP, and single-peakedness are not, in general, 
sufficient to yield the existence of a group structure which is stable under group 
deviations. 
  
EXAMPLE 4.6. Let N = {1, 2, 3, 4, 5, 6, 7} and X = {a, b, c}. For every alternative x  X 
and every integer k, 1  k  6, the value of player i’s payoff function is represented 
by hi(x, k) = vi(x) + k, where 
 

v1(a) = –1 2
1 , v1(b) = 0, v1(c) = –3 10

7 ; 
v2(a) = –3 10

7 , v2(b) = 2
1 , v2(c) = –2; 

v3(a)= –2, v3(b) = –1 10
7 , v3(c) = –1 2

1 ; 
vi(a)= 0, vi(b) = vi(c) = –8 for i = 4, 5; 
vi(a) = vi(b) = –8, vi(c) = 0 for i = 6, 7. 

 
Then the game G does not admit a strong Nash equilibrium. 

 
Proof. It is trivial to check that the payoff functions are single-peaked and satisfy 
PE, AN, OP. 

Note that at any Nash equilibrium players 4 and 5 would choose alternative 
a, whereas players 6 and 7 would choose alternative b. Consider the reduced game 
G
~

 obtained by ‘fixing’ the choices of players 4 and 5 at a, players 6 and 7 at c and 
accordingly adjusting the payoff functions of players 1, 2, and 3 in game G. 
Formally, the game G

~
 is given by the set of players N

~
= {1, 2, 3}, the set of 

alternatives X = {a, b, c} and the players’ payoff functions determined by the 
parameters: 

 
                                                           
11  It is easy to verify that the Weber and Zamir example admits a Nash equilibrium. Konishi et al. (1995) 

demonstrate, however, that the existence of a pure strategy Nash equilibrium is not, in general, 
guaranteed in the Guesnerie and Oddou economy with more than three agents. 

12  Konishi et al. (1997) show that if PE is satisfied, then the set of coalition-proof and strong Nash 
equilibria of the no spillover game coincide. This result implies that the game in Example 4.6 does not 
admit a coalition-proof Nash equilibrium either. 
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The payoff functions of the game G

~
 satisfy PE, AN, and OP, but violate 

single-peakedness. Thus, four additional players were added to construct the 
game G which would satisfy the single-peakedness assumption as well. It is easy to 
see that a strategy profile (x1, x2, x3, a, a, b, b) constitutes a strong Nash 
equilibrium of the game G if and only if the triple (x1, x2, x3) constitutes a strong 
Nash equilibrium of the game G

~
. It remains, therefore, to show that G

~
 does not 

admit a strong Nash equilibrium. Indeed, the game G
~

 admits three Nash 
equilibria, x = (a, b, a), y = (a, c, c) and z = (b, b, c). However,  
 
at x, players 2 and 3 would be better off by jointly switching to c,  
at y, players 1 and 2 would be better off by jointly switching to b,  
at z, players 1 and 3 would be better off by jointly switching to a. 
 

Thus, the game G
~

 does not admit a strong Nash equilibrium.      
 
5. Extension 
 
The primary focus of this paper is to identify a domain of preferences such that 
any game where the preferences of each player drawn from this domain possesses 
a Nash equilibrium. However, we can use our technique to prove the existence of 
a Nash equilibrium in a wider class of games which allow for restrictions on 
preferences profiles rather than on domain of individual preferences.13 Indeed, the 
method of the proof applied in Proposition 4.1 can be used to obtain the 
existence of a Nash equilibrium in a class of games where the payoff function of 
each player i is given by 
 

|),|,()(),( SxxvSxu ii   
 
where S is the set of players (including i) who choose the strategy x and the 
function  () represents the value of the externality effect which is common for all 
players.14 Consider, for example, an environment with network externalities and 
consider the set S of all those customers who choose alternative x. Then for every 

                                                           
13  We thank the associate editor and the referee for the suggestion to add the discussion on possible 

extensions of our main result. 
14  The only modification required to accommodate this class of preferences is to replace the number k in 

the proof of Proposition 4.1 by the value of the common function (x, k). It is useful to observe that the 
set Lx in the proof would be empty for every strategy x  X. 
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player i  S, the function  (x, |S|) represents the (common) gain of i generated 
from the fact that the alternative x has been chosen by all members of S.15 It is 
important to point out that while the externality effect could depend both on the 
choice of alternative (x) and the size of the group that chooses it, (|S|), the effect 
must be identical for all members of S. This requirement is, obviously, much 
stronger than the assumption AN. However, since the function  (x, ) does not 
have to be linear and may, for example, exhibit decreasing returns to scale with 
respect to the number of individuals who choose x, the assumption OP does not 
necessarily hold. 

We complete this section by showing that ‘commonality’ of the externality 
effect is crucial to obtain the existence of a Nash equilibrium. The next example 
shows that if the externality effect is not common for all players, then even in the 
case where the payoff functions are of a special separable functional form, 
satisfying the no-spillover condition and assumptions PE and AN, a Nash 
equilibrium may fail to exist. 
  
EXAMPLE 5.1. Let N = {1, 2, 3, 4, 5, 6} and X = {a, b, c}. Let external effect be 
independent of the choice of alternative and the preferences of each player i  N 
be given by 
 

|),(|)(),( SxvSxu iii   
 

where 
 
v1(a) = ,3

21  v1(b) = ,2
1  v1(c) = 0; 

1(1) = 1(2) = 0, 1(3) = 1, 1(4) = 1(5) = 1(6) = 3; 
v2(a) = ,2

1  v2(b) = = ,3
21  v2(c) = –3; 

2(1) = 0, 2(2) = 1, 2(3) = 2(4) = 2(5) = 2(6) = 3; 
v3(a) = -4; v3(b) = ,3

12  v3(c) = 0; 
3(1) = 0, 3(2) = 2, 3(3) = 3, 3(4) = 3(5) = 3(6) = ,2

13  
v4(a) = 1, v4(b) = v4(c) = 0; 
3(k) = 0, for all k = 1, ..., 6; 
vi(a) = vi(b) = 0, vi(c) = 1; 
 i(k) = 0, for i = 5, 6; for all k = 1, ..., 6. 
 

Then this game does not admit a Nash equilibrium. 
 

The structure of payoff functions is exactly the same as in Example 3.1 and it 

                                                           
15  See Konishi et al. (1995) for a discussion on interpretation of this preferences’ specification in the context 

of economies with club or local public goods. 
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is easy to see, therefore, that the assumptions PE, AN, and even OI hold; all 
preferences are single-peaked, whereas the set of Nash equilibria is empty. Note 
that in this example the externality effect  i(|S|) is even independent of an 
alternative chosen by players in S. This highlights the importance of common 
externality effect for the existence of a Nash equilibrium. 
 
Appendix 
 
Proof of Lemma 4.2. For each player i  N denote by 
 

} allfor ),(),(|{ XynyhnxhXxX iii 0  

 
the set of best alternatives for i  N. Since X is finite, every iX 0 . For each i denote 
 

iiiii XXyyhnxhXxX 001  } allfor ),(),(|{  
 

By the construction, the sets X i satisfy the first two assertions of Lemma 4.2. 
To prove the last two assertions of Lemma 4.2, we shall make use of the 

Konishi and Fishburn (1996) utility representation theorem:16 
 

Proposition A.1. Suppose that OP is satisfied and the following two conditions hold: 
 
(1) for any x  X i, for any integer 1  k  n – 1, we have hi(x, k) < hi(x, k + 1),  
(2) for any x, y  X i, there exists an integer 1  nyx  n such that hi(y, nyx) > hi(x,1) 
  
Then, for every i  N, there exists a function vi: X i  , such that for any pair of integers  
1  m, k  n, and any pair of alternatives x, y  X i, the inequality vi(x) + m  vi(y) + k 
holds if and only if hi(x, m)  hi(y, k). 
 

To apply this result to Lemma 4.2, we need the following. 
 
Lemma A.2. Under PE, AN, and OP, one of the following statements is true: 
 
() for any x  X i, and any integer k, 1  k  n – 1, hi(x, k) < hi(x, k + 1),  
() for any x  X i, for any two integers k, m with 1  k, m  n, hi(x, k) = hi(x, m). 
 
Proof. Take any i  N. Let first X i consist of a single element, x. By PE and OP, if 
h i(x, 1) < h i(x, n) then () holds, and if hi(x, 1) = h i(x, n) then () holds. 

Suppose now that |X i|  2. If for any x, y  X i, hi(x, 1) = h i(y, 1), then, by OP, 

                                                           
16 We provide here a slightly modified version of their result. 
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the equality hi(x, k) = hi(y, k) holds for any integer k, 1  k  n – 1. Hence, all 
alternatives in X i are essentially equivalent, and the argument is the same as in the 
previous case. Suppose, therefore, that there exist two alternatives x, y  X i such 
that h i(x, 1) = h i(y, 1). We shall show that only () can occur. First, consider 
alternative y. By (i) in Lemma 4.2, hi(x, 1)  h i(y, n) Thus, hi(y, 1) < hi(y, n). 
Condition OP implies that h i(y, k) < h i(y, k + 1) for any integer 1  k  n – 1. 

Consider now alternative x. Again, by OP, there exists an integer nyx such that 
2  nyx  n, hi( y, nyx )  hi(x, 1), and hi(x, 1) > hi(y, nyx – 1). By OP, hi(x, 2) > hi(y, nyx). 
Thus, hi(x, 2) > hi(x, 1). By OP again, we conclude that hi(x, k) < hi(x, k + 1) for any 
integer 1  k  n – 1. 

Finally, let z  X i\ {x, y}. There are three cases: hi(z, 1) = hi(y, 1), hi(z, 1) > 
hi(y, 1), and hi(z, 1) < hi(y, 1). The case where hi(z, 1) = hi(y, 1) is trivial. The case 
hi(z, 1) > hi(y, 1) can be treated in the same manner as the proof of the inequality 
hi(x, k) < hi(x, k + 1) for any integer 1  k  n – 1. In the case where hi(z, 1) < hi(y, 1) 
we have, by assertion (i) in Lemma 4.2, hi(y, 1)  hi(z, n). Thus, hi(z, 1) < hi(z, n) 
which, by OP, yields hi(z, k) < hi(z, k + 1) for any integer k, 1  k  n – 1.      

 
To complete the proof of Lemma 4.2, it remains to observe that, by 

Proposition A.1, () and () in Lemma A.2 yield assertions (iii) and (iv) of Lemma 
4.2, respectively.      
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This paper develops a coherent theory of international cooperation relying on the twin 
assumptions of individual and collective rationality. Using a linear version of the N-
player prisoner’s dilemma game, I provide a formal proof of Olson’s conjecture that only 
a ‘small’ number of countries can sustain full cooperation by means of a self-enforcing 
agreement. Moreover, I find that this number is not fixed but depends on the nature of 
the cooperation problem; for some problems, three countries will be ‘too many’, while for 
others even 200 countries will be a ‘small’ number. In addition, I find that the 
international system is only able to sustain global cooperation – that is, cooperation involving 
200 or so countries – by a self-enforcing treaty when the gains to cooperation are ‘small’. 
Finally, I find that the ability of the international system to sustain cooperation does not 
hinge on whether the compliance norm of customary international law has been internalized 
by states or whether compliance must instead be enforced by the use of treaty-based sanctions. 
The constraint on international cooperation is free-rider deterrence, not compliance 
enforcement. 

 
 
 
1. Introduction 
 
The theory of international cooperation developed in this paper assumes that 
cooperative arrangements between countries must be both individually and 
collectively rational: individually rational because the choice of whether to be a 
party to a treaty is voluntary; collectively rational because diplomats meet face to 

                                                           
 I am grateful to Geir Asheim, Olivier Compte, Jeroen Hinloopen, and Marco Mariotti for helpful comments at 

conference and workshop presentations and to three anonymous referees and the editor of this journal for helping 
an economist learn how to write a political science paper 



 

78 
·················· 

A Theory of Full International Cooperation 

Coalitions and Networks Chap 4 

face and so can exploit fully the potential joint gains from cooperation in a treaty. 
Individual rationality is a standard assumption in the literature. Collective 
rationality is a more novel assumption, but it is compelling nonetheless. In this 
paper I show that the combination of these assumptions has profound 
implications for the theory of international cooperation. 

Two pillars of the received theory are (1) that cooperation can be sustained as 
an equilibrium of a noncooperative repeated game by strategies of reciprocity 
(Axelrod, 1984; Axelrod and Keohane, 1985; Keohane, 1986); and (2) that 
cooperation can only be supported by a ‘small’ number of countries (Olson, 1965; 
Keohane, 1986). These features of the theory should be compatible but it is not 
obvious that they are. Indeed, the ‘folk theorems’ invoked to explain (1) clash with 
(2); they show that, for small enough discount rates, cooperation can be sustained 
as an equilibrium for any number of players. Olson supports the second pillar of the 
theory by a convincing, intuitive argument that appeals to the principle of reciprocity, 
but he does not offer a formal proof of the claim and nor, to my knowledge, has 
anyone else. So the two pillars remain unreconciled. However, the folk theorems rely 
only on the assumption of individual rationality; they do not require that 
agreements also be collectively rational. I show in this paper that the combination 
of these assumptions makes features (1) and (2) of the received theory compatible. 

In particular, I provide a formal proof of Olson’s (1965) conjecture that full 
cooperation can be sustained by means of a self-enforcing agreement only if the 
number of players is ‘small’.1 More than that, I show that whether any given 
number of countries is ‘small’ depends on the problem at hand. This means that 
full cooperation can sometimes be sustained by a great many countries and 
sometimes not even by a few. In showing this, I solve a puzzle in the literature: why 
some treaties can be sustained by nearly all the countries in the world when others 
cannot even be sustained by a handful of countries (see Keohane and Ostrom, 
1994; Snidal, 1994; Young and Osherenko, 1993). Finally, I show what this 
means for world welfare. I find that there is an inverse relationship between the 
maximum number of countries that can sustain full cooperation by means of a 
self-enforcing agreement and the aggregate gains to cooperation. The inter- 
national system, hampered as it is by the principle of sovereignty, can only sustain 
full cooperation among all the world’s 200 or so countries when the total gains to 
cooperation are ‘small’ – that is, when a global agreement is not really needed. I 
demonstrate these points by analyzing a linear version of the symmetric prisoner’s 
dilemma game, which captures the essentials of the cooperation problem and yet 
requires amazingly little mathematics. However, I emphasize that the basic 
insights of the paper can be shown to hold more generally. 

                                                           
1  Of course, one can always limit cooperation in a repeated game by assuming that discount rates are high 

enough. I show that cooperation is limited, even for arbitrarily small discount rates. 
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What difference does the assumption of collective rationality make to the 
theory? Full cooperation can only be sustained by an international treaty if no 
country can gain by not being a party to it, and no party can gain by not 
implementing it. That is, free-riding must be deterred and compliance must be 
enforced. An agreement must therefore specify a strategy – a plan detailing what 
the parties should do – and this strategy, if obeyed, must succeed in deterring free-
riding and enforcing compliance. Moreover, it must be in the interests of the 
parties actually to behave as the strategy demands. That is, the threat to 
reciprocate, to harm a country that has deviated from the strategy, must be 
credible. Essentially, the assumptions of individual and collective rationality define 
what we mean by a ‘credible’ strategy. 

Individual rationality implies that, if every other country plays the equilibrium 
strategy, each can do no better than to play this strategy; and that, if a country 
did deviate from this strategy, then this country would want to revert to the 
equilibrium strategy and so would each of the others want to impose the 
punishment prescribed by the strategy, given that all other countries obeyed the 
strategy. That is, when push comes to shove, free-riding and noncompliance are 
punished; and it is precisely because it is known that this behavior will be 
punished that no country deviates in equilibrium. 

Collective rationality, as the term is used in this paper, implies that an 
equilibrium agreement cannot be vulnerable to renegotiation. This means, first, 
that there cannot exist an alternative, feasible agreement that all countries prefer 
to the equilibrium agreement; and, second, that should a country deviate from 
the equilibrium, not only would this deviant want to revert to the equilibrium 
strategy, and not only would every other country behave in the manner prescribed 
by this strategy, given that all others did so, but all of the countries called upon to 
punish the defection would actually want to carry out the punishment and would 
not be tempted to renegotiate the agreement – to choose an alternative, feasible 
punishment or overlook the defection and not punish the defector at all. The 
agreements I consider are thus efficient in the sense that they sustain full 
cooperation by the threat of imposing efficient punishments. 

Agreements seeking to sustain full cooperation are especially vulnerable to 
free-riding. This is because the greater is the extent of cooperation, the greater are 
the incentives to deviate – a point made by Downs et al. (1996). Hence, for a 
given number of countries, N, an agreement seeking to sustain full cooperation 
must impose a larger punishment to deter free-riding than an agreement seeking 
to sustain less cooperation. This by itself will make cooperation harder to sustain, 
since any punishment that is actually imposed harms the countries called upon to 
enforce the agreement as well as those on the receiving end. However, we know 
from the folk theorems of repeated games that for small enough discount rates 
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even full cooperation can be sustained by a self-enforcing agreement.2 I show in 
this paper that full cooperation cannot always be sustained by a self-enforcing 
agreement even when discount rates are arbitrarily small. Hence, it is the 
requirement that the punishments be renegotiation-proof; that is the crucial 
refinement and it is this that gives this paper its distinctive results. 

In an infinitely repeated game, strategies capable of deterring a unilateral 
defection are credible (assuming that countries are sufficiently patient), if by 
‘credible’ we mean that the strategies are individually rational. This is what the folk 
theorems tell us. But such strategies will not be credible (even for arbitrarily small 
discount rates) if by ‘credible’ we mean that they are collectively rational, provided 
N is large enough. The reason is that, the larger is N, the greater will be the harm 
suffered by the (N – 1) ‘other’ countries when they impose the punishment needed 
to deter a unilateral deviation. If N is large enough, it will not be in the collective 
interests of these countries actually to impose this punishment, should a deviation 
occur. An agreement which asks its signatories to play this ‘incredible’ strategy 
would be vulnerable to renegotiation; it would therefore not be self-enforcing. 

As just indicated, my analysis is cast in a repeated game setting, and yet 
Chayes and Chayes (1995) have recently challenged the applicability of the theory 
of repeated games to problems of international cooperation. They claim that 
cooperation is sustained by the international compliance norm and not, as 
suggested by the theory of repeated games, treaty-based sanctions. The authority 
to impose sanctions, they note, ‘is rarely granted by treaty, rarely used when 
granted, and likely to be ineffective when used’ (Chayes and Chayes, 1995: 32–3). 
Downs et al. (1996; hereafter DRB) disagree that treaty-based sanctions are not 
needed. They argue that  

 
both the high rate of compliance and relative absence of enforcement threats are due 
not so much to the irrelevance of enforcement as to the fact that states are avoiding 
deep cooperation – and the benefits it holds whenever a prisoner’s dilemma situation 
exists – because they are unwilling or unable to pay the costs of enforcement.  
(DRB, 1996: 387) 
 
It is hard to take sides in this debate, because the Chayes’s consider the 

compliance problem in isolation from free-riding, while DRB conflate these two 
problems.3 Compliance and free-riding are different problems. But they are 

                                                           
2  This may not be obvious from reading Downs et al. (1996), but note that in their example they assume a 

discount rate of 5 percent. As the discount rate is lowered, the weight of future punishments increases 
against the immediate gain to a defection. If the discount rate is low enough the folk theorems tell us that 
even full cooperation can be sustained as an equilibrium to a noncooperative game. With higher discount 
rates, cooperation will thus be harder to sustain than shown in this paper. 

3  Specifically, though DRB’s paper is concerned only with compliance, their analysis of the incentives to 
defect can be interpreted as applying either to noncompliance or to non-participation. A defection is just 
a defection in their analysis, just as it is in my own repeated game model. 
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related problems and should be analyzed jointly. Doing so, however, poses an 
analytical problem: the theory of repeated games does not distinguish between 
‘defection’ as a failure to comply with an agreement and ‘defection’ as a failure to 
participate in an agreement. The distinction is important, however, because while 
countries might be compelled, by means of the compliance norm of international 
law, to comply with the agreements they sign up to, there does not exist an 
international norm that requires that states be signatories to a cooperative 
agreement. Indeed, the essence of sovereignty is that states are free to participate 
in treaties or not as they please. 

In the second half of this paper I recast the problem of international 
cooperation as a stage game in which signatories are assumed to choose their 
actions jointly so as to maximize their collective payoff (as required by collective 
rationality), in which nonsignatories are assumed to choose their actions 
independently so as to maximize their individual payoffs (as required by individual 
rationality), and in which all countries are free to be signatories or nonsignatories 
(as also required by individual rationality). As noted earlier, the Chayes’s and DRB 
agree that countries comply with the agreements they sign up to; what they 
disagree on is whether this means that treaty-based sanctions are not needed and 
whether anything like deep cooperation can be sustained by the international 
system. I therefore adopt the tactic of assuming that all countries have 
internalized the compliance norm of customary international law in order to see 
whether this assumption matters.4 I show that DRB are right that the 
international system may fail miserably at sustaining deep cooperation, even 
assuming that the Chayes’s are right that the norms of international behavior 
suffice to ensure that countries comply fully with their international obligations. 
Like the earlier result, I also find that only a ‘small’ number of countries can 
sustain the full cooperative outcome, and that there is an inverse relationship 
between the maximum number of countries that can sustain full cooperation and 
the total gains to cooperation. 

Because of their different formulations, the repeated and stage game models 
sustain cooperation by means of different strategies. To sustain full cooperation 
as an equilibrium of a repeated prisoner’s dilemma, collective rationality requires 
that, if a party to an agreement plays Defect, the other parties can do no better 
collectively than to respond by playing Defect; and that, if this defector 
subsequently plays Cooperate in a punishment phase, to make amends for its 
earlier transgression, all the other parties to the agreement still can do no better 
collectively than to continue to play Defect – that is, to punish the original 

                                                           
4  To assume that states have internalized the compliance norm is to assume that states will comply with an 

agreement they have signed up to, whether or not is in their interests to do so. This should be interpreted 
only as shorthand for the assumption that the compliance norm is sustained outside of the model under 
consideration. Kandori (1992) shows how norms can be sustained by community enforcement. 
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defection (it is this that makes the agreement ‘renegotiation-proof’). To sustain 
full cooperation as an equilibrium of the stage game, collective rationality requires 
only that the first of these conditions be obeyed (the second cannot figure in the 
stage game model, because this game is essentially ‘one-shot’ and so there cannot 
exist a ‘punishment phase’): that, if one country plays Defect, all the other 
countries can do no better collectively than to play Defect. Though different in the 
details, both strategies have the same basic requirement: that the countries 
responsible for punishing a unilateral defection must not be able to do better, 
either individually or collectively, by not carrying out the punishment specified in 
the treaty. Put differently, both approaches require that cooperation be enforced 
by credible punishment strategies. 

Moreover, for a certain and important class of cooperation problem – one 
where the cost of participating in a treaty is independent of the number of 
countries that participate – I show that these conditions are identical. In other 
words, the compliance norm does not buy any additional cooperation.5 The 
reason is intuitive. Any punishment to deter noncompliance must ‘fit the crime.’ 
So the larger the potential compliance failure is, the larger must be the threatened 
punishment if non-compliance is to be deterred. The greatest harm that any one 
signatory can inflict on the others is to do what it would do if it withdrew from 
the treaty entirely. So if a treaty can credibly threaten to impose a punishment 
that deters signatories from withdrawing unilaterally, it can easily threaten to 
impose a punishment that deters signatories from failing to comply with the 
agreement unilaterally. Once free-riding has been deterred, compliance 
enforcement comes free of charge. 

This result needs to be modified slightly if the cost to each country of playing 
Cooperate is decreasing in the number of countries that play Cooperate – if there 
are increasing returns to cooperation. For, in comparison with the case discussed 
earlier, if any country plays Defect, the payoff to the others of playing Defect 
increases (punishing a defection becomes more attractive), whereas if a country 
plays Cooperate in a punishment phase, the payoff to the others of continuing to 
play Defect decreases (punishing a defector becomes less attractive). Increasing 
returns thus makes cooperation a little easier to sustain in the stage game model 
than in the repeated game model. But the reason for this is not that the 

                                                           
5  This should not come as a surprise. In the model presented here, noncompliance implies that a signatory 

will play Defect when the agreement requires that it play Cooperate. So a signatory that fails to comply 
with the agreement will be indistinguishable from a country that free-rides on the agreement. However, it 
can be shown that if action sets are continuous and noncompliance can therefore entail only a slight 
deviation – a slight increase in pollution relative to the level prescribed by the agreement, for example – 
then the compliance norm will still deliver no additional cooperation. The reason is that if the agreement 
can deter a unilateral withdrawal, it can easily deter a lesser deviation. To deter a lesser deviation requires 
a smaller punishment, and smaller punishments harm the countries that are called upon to carry them 
out less than larger punishments. If a larger punishment is credible, therefore, so will be a smaller 
punishment. 



 

83 
·················· 
Coalitions and Networks 

Coalitions and Networks Chap 4 

assumption of full compliance buys any additional cooperation. The reason is 
that the stage game lacks a temporal dimension and so cannot specify explicitly 
an appropriate strategy of reciprocity. 

The analysis developed in the paper is abstract. Many important features of 
real world cooperation problems like climate change mitigation and ozone layer 
protection do not figure in the model – to take two obvious examples, I assume 
that countries are symmetric and do not interact in other spheres so that issue 
linkage and reputation play no role here.6 Moreover, the focus of my analysis is 
narrow. My interest is in determining the conditions that must hold for full 
cooperation to be sustained by the anarchic international system. I have little to 
say in this paper about whether something short of full cooperation can be 
sustained. But for all of these limitations, the theory is relevant to the real world, 
as the following example illustrates. 

The Montreal Protocol sustains something very close to full cooperation. 
Nearly every country is a party to this agreement, and in implementing it the most 
harmful ozone-depleting substances are being phased out around the world. At a 
recent conference of the parties to the Montreal Protocol, delegates suggested 
(not for the first time) that this agreement should serve as a model for the climate 
change negotiations, which were soon to be convened in Kyoto. The analysis 
developed in this paper is useful for knowing whether their ambition could be met 
– whether the success at Montreal could be replicated in Kyoto. The theory tells us 
that it could be, but only if the underlying payoffs are favorable to international 
cooperation. Of course, these payoffs are givens, and so it may not be possible for 
the Kyoto negotiatiors to match the success of the Montreal Protocol.7 To sustain 
full cooperation requires more than negotiation acumen, more than leadership, 
more than an active epistemic community, more even than an assurance that 
countries will obey the compliance norm. It depends also on whether the payoffs 
are of a magnitude that make the threat to punish deviations from full 
cooperation credible. This is the central message of this paper. 

Before proceeding to the substance of the paper, I should perhaps comment 
on why I specialize by analyzing cooperation as an international problem. Certainly, 
the theory does have relevance to other problems. But the rules of the game of 
cooperation vary in different situations, and one must take care before 
extrapolating.8 Where cooperation among firms is legal, it can be codified in a 

                                                           
6  I discuss the implication of symmetry and issue linkage in the concluding section of the paper. 
7  As it happens, the agreement negotiated in Kyoto bears a number of similarities to the Montreal 

Protocol. Crucially, however, the Kyoto Protocol does not contain a free-rider deterrence mechanism, 
and – consistent with the insights of this paper – nor does it contain a non-compliance deterrence 
mechanism. The Montreal Protocol is different. It deters free- riding by means of trade sanctions 
between parties and nonparties. Trade sanctions have also been used to punish noncompliance with this 
agreement. See the concluding section of this paper. 

8  See the Special Issue of the Journal of Theoretical Politics 6(4), 1994. 
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contract, which can then be enforced by the courts having jurisdiction over the 
parties. Cooperative arrangements arrived at in this setting need not be self-
enforcing. Where cooperation among firms is illegal, it may no longer be possible 
for firms to negotiate openly, and in this context the notion of collective 
rationality is less compelling. Finally, local, self-organized collective action 
problems of the type analyzed by Ostrom (1990) take place in settings where 
there is, at the very least, a potential for central intervention.9 Context matters to 
the analysis of cooperation, and though the theory developed here will have 
implications for different settings, I apply it in this paper only to inter-state 
relations (and indeed only to a subset of these). 
 
2. Individual Rationality in the One-Shot, N-Player Prisoners’ Dilemma 
 
The underlying game is assumed to be an N-player prisoners’ dilemma, where 
N  2, where countries must choose between playing Cooperate and Defect, and 
where the payoffs to each of the symmetric players of making these choices (D 
and C, respectively) are linear functions of the total number of countries that 
play Cooperate, z: 

D(z) = bz, C(z) = – c + dz (1) 

In (1), b, c and d are parameters, and the payoffs have been normalized such 
that D(0) = 0. This linear formulation is obviously special, but it will allow us to 
obtain very strong results using very little mathematics. 

The prisoner’s dilemma has three important features, and the parameters in 
(1) must be restricted to ensure that these are satisfied by the model. 

The first feature of the prisoner’s dilemma is that play Defect is a dominant 
strategy in the one-shot game. This means that every player must get a higher 
payoff when playing Defect than when playing Cooperate, irrespective of the 
number of other countries that play Defect (Cooperate). Formally, I limit my 
attention to problems that satisfy: 

bz > – c + d(z + 1) for all z, 0  z   N – 1 (2) 

The second feature of the prisoner’s dilemma is that country i’s payoff is 
increasing in the number of other countries that play Cooperate, irrespective of 
whether i plays Defect or Cooperate. This implies b, d > 0. Furthermore, upon 
setting z = 0 we see that (2) requires 0 > – c + d, and so, given that d > 0, we must 
have c > d. 

                                                           
9  For example, Ostrom (1990) begins her study by discussing the inshore fishery at Alanya, where the 

cooperative which developed rules for managing the community resource had previously been given 
jurisdiction over such matters by national legislation. 
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The third feature of the prisoner’s dilemma is that the Nash equilibrium of 
the one-shot game is inefficient; all N countries would prefer an alternative 
feasible outcome where at least some countries play Cooperate to the Nash 
equilibrium in which no country plays Cooperate. I shall strengthen this 
assumption slightly and assume that the aggregate payoff is strictly increasing in z 
(this will ensure that the aggregate payoff is maximized when all countries play 
Cooperate; that is, when z = N). A little calculus shows that this requires 

 
– c + 2dz > b(2z – N) for all z, 0  z  N (3) 
 
If the gain to any country i of one more of the other countries playing 

Cooperate is the same, irrespective of whether i plays Cooperate or Defect, then  
b = d. This situation is illustrated in Figure 1 (see also Schelling, 1978). If, however, 
the gain to any country i of one more of the other countries playing Cooperate is 
greater if i plays Cooperate also, then d > b. In this case, cooperation would 
exhibit a kind of increasing returns. I allow for both cases and so assume d  b. 
To sum up, in addition to (1), (2), and (3), the model also assumes: 
 

c > d  b > 0  (4) 
 

With this formulation, the equilibrium of the one-shot, N-player prisoner’s 
dilemma game is unique: all countries play Defect in equilibrium. This equilibrium 
is inefficient: every country strictly prefers the outcome in which all countries play 
Cooperate. The latter outcome, called the full cooperative outcome, maximizes 
the aggregate welfare of all countries. The problem of international cooperation, 
 

 
Figure 1. The N  2 (Symmetric) Prisoner’s Dilemma Game (b = d) 
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at least as defined here, is to sustain the latter outcome as an equilibrium of a 
repeated game by means of a strategy of reciprocity. 

Notice that I have defined the international cooperation problem as one 
where no country can be excluded from enjoying the benefits associated with 
cooperation by others. The problem of sustaining international cooperation is 
thus defined here as a problem of providing an international public good. 
Protection of the ozone layer and climate change mitigation are examples of 
global public goods. Other problems of interest are not suited to the model 
constructed here – international trade agreements being only one example. 
 
3. Individual Rationality in the Infinitely Repeated, N-Player Prisoner’s 

Dilemma 
 
Suppose that the one-shot game is repeated infinitely often and that, against this 
background, the N players negotiate an agreement in which they all pledge to play 
the famous Grim strategy; that is, they all agree to play Cooperate in period 0 and 
to play Cooperate in every subsequent period provided no player ever played 
Defect in the past but that, should Defect ever be played by any player, every 
player must thereafter play Defect forever. 

Grim has two attractive features. The first is that play Grim is a Nash 
equilibrium: given that the other players play Grim, any player j can do no better 
than to play Grim. To see that this is so in the present model, suppose player j 
deviates in period t. It will then get a payoff of D(N – 1) = b(N – 1) at time t. By 
(2) we know that D(N – 1) > C (N). So j gains initially from the defection. 
However, j will lose in the long run if the threatened punishment really is carried 
out. To know whether j can gain on balance from defecting, we need only 
compare the per-period payoff in the cooperative and punishment phases, 
assuming that the rate of discount is negligibly small. In the punishment phase, j 
gets an average payoff of D(0) = 0. In the cooperative phase, j gets a per-payoff 
of C (N) = – c + dN. Inequality (3) tells us that the latter payoff exceeds the 
former (since (3) must hold for z = N/2). So no player can gain by deviating 
unilaterally from Grim in a cooperative phase. 

The Nash equilibrium is a rather weak requirement. For it is reasonable to 
ask: if a country did deviate, would every country really play Grim? Suppose that 
every other country plays Grim in a punishment phase. Will country i want to play 
Grim also? If i plays Grim, it will get a per-period payoff of D(0) = 0. If i deviates, 
it will get a per-period payoff of C(1) = – c + d. By (2), the former payoff exceeds 
the latter. So the threat to implement the Grim punishment is individually 
rational. Furthermore, this is true for any N. 

It is of course true that any feasible, individually rational outcome of the one-
shot game can be sustained as a subgame perfect equilibrium of the infinitely 
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repeated game provided the players are sufficiently patient (see, for example, 
Fudenberg and Maskin, 1986). For example, the strategy Always Play Defect 
sustains the equilibrium of the one-shot game as a subgame perfect equilibrium of 
the repeated prisoner’s dilemma. But given that, in the context of international 
negotiations, the players are able to meet, to deliberate openly on their 
predicament, to negotiate, it would be collectively irrational for them to choose to 
sustain a pareto-inefficient outcome from the set of all outcomes that can be 
supported as subgame perfect equilibria. So while the one-shot game cannot 
explain how countries could ever cooperate, the infinitely repeated game cannot 
explain why countries do not always cooperate. Theories built on either edifice will 
thus lack any cutting power; they will not be able to make sharp predictions. 

It might seem from this discussion that the assumption of collective 
rationality favors cooperation.10 I show later, however, that this is not so. More 
than that, I show that this assumption gives the cutting power that we desire in a 
theory. 
 
4. Collective Rationality in the Infinitely Repeated, N-Player Prisoner’s 

Dilemma 
 
Though Grim is subgame perfect, it seems incredible because it is grossly 
unforgiving. Indeed, it is precisely for this reason that the famous Tit-for-Tat 
strategy appeals more to our intuition. But Tit-for-Tat is not subgame perfect; it is 
not an individually rational strategy. If a party deviates and then reverts to Tit-for-
Tat, and if all other players play Tit-for-Tat, then the one-off defection results in 
an ‘unending echo of alternating defections’ (Axelrod, 1984: 176). In other words, 
the players could do better by deviating from Tit-for-Tat after the one-off 
deviation has occurred. 

Contrary to intuition, Grim can can claim to be superior to Tit-for-Tat. But 
there is a problem with Grim that individual rationality fails to reveal. As our 
intuition suggests, Grim is too unforgiving. Though countries do not have an 
incentive to deviate from Grim unilaterally, they do have an incentive to deviate en 
masse. Grim is not a collectively rational strategy. 

To see this, consider the N = 2 game and suppose that one of these 
countries, country j, deviates from Grim. Then each player will get an average per-
period payoff in the punishment phase of 0. Though neither player can do better 
by deviating in the punishment phase, both players would do better collectively by 
renegotiating their agreement and restarting a cooperative phase, for they would 
then each get an average payoff of – c + 2d, and by (3) we know that – c + 2d > 0. 

                                                           
10  Indeed, were I to drop the assumption of individual rationality, collective rationality would sustain only 

the full cooperative outcome. 
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Moreover, consistency demands that the theory allow them to renegotiate. The 
folk theorems are intended to explain how cooperation might emerge as an 
equilibrium, but they only allow players to begin a cooperative phase once 
(usually, in some period labelled 0). This is arbitrary. The theory should also allow 
cooperation to restart following a period of defection. Put differently, the theory 
should acknowledge that the players cannot make a credible commitment not to 
renegotiate. A self-enforcing treaty must not only be subgame perfect but also 
immune to renegotiation.11 

A strategy that satisfies these requirements is a close cousin of Tit-for-Tat, 
Getting-Even.12 This requires that country i play Cooperate unless i has played 
Defect less often than any of the other players in the past. The main difference 
between Tit-for-Tat and Getting-Even is that the latter strategy imposes a 
punishment that is more proportionate to the harm caused by the deviation. In a 
two-player game, if one player deviates for 20 periods and then reverts to 
cooperation, Tit-for-Tat demands that the other player revert to cooperation 
immediately after the first player has done so. Getting-Even, by contrast, requires 
the other player not to revert to cooperation for 20 periods. 

To show that Getting-Even is both individually and collectively rational, 
consider again the N-player game. Suppose j deviates at time t and then reverts to 
Getting-Even in period t + 1. j then gets a payoff of b(N – 1) in period t, a payoff of 
– c + d in the punishment period, and a per-period payoff of – c + dN from period 
t + 2 onwards. Had j not deviated, it would have gotten a payoff of – c + dN every 
period from time t onwards. Since we are taking discount rates to be vanishingly 
small, deviating is individually irrational provided j would get a larger total payoff 
in periods t + 1 and t + 2 by playing Cooperate than by playing Defect. If j does 
not defect, it will get 2(– c + dN) in these periods. If j does defect and then reverts 
to Getting-Even, it will get b(N – 1) – c + d in these periods. Play Getting-Even is 
thus individually rational if 2(– c + dN) > b(N – 1) – c + d or – c + 2dN – bN > d – b. 
Setting z = N – 1, (3) implies – c + 2dN – bN > 2(d – b). So, provided d  b, (3) 
implies that Getting-Even is an equilibrium strategy. Setting z = N, (3) implies  
– c + 2dN – bN > 0. So Getting-Even is also an equilibrium strategy for d < b. 

However, Getting-Even is only subgame perfect provided d  b. To see this, 

                                                           
11  It might be argued that it should also not be possible for any coalition of countries, taking the actions of 

all others as given, to agree to deviate from the agreement; that it should not be possible for any 
subcoalition to agree to deviate from this alternative agreement; and so on. In other words, it might be 
argued that treaties should be coalition-proof Nash equilibria (see Bernheim et al., 1987). However, 
application of this concept to the infinitely repeated prisoner’s dilemma poses certain technical problems, 
as noted by Bernheim et al. (1987). 

12  The concept of a renegotiation-proof equilibrium used here is due to Farrell and Maskin (1989). Van 
Damme (1989) derives the strategy which supports full cooperation as a renegotiation-proof equilibrium 
of the two-player prisoner’s dilemma. See also Myerson (1991), who gave this strategy the name, 
‘Getting-Even.’ My contribution here is to extend the use of this concept to the N > 2 case and to apply 
it to international cooperation problems. 
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suppose j deviates at time t and then reverts to Getting-Even. In period t + 1, j 
therefore plays Cooperate, while all other players play Defect. Any player i, i  j, 
gets a payoff of b in period t + 1 and a payoff of – c + dN in every subsequent 
period if all players play Getting-Even from period t + 1 onwards. If i deviates in 
period t + 1 and then reverts to Getting-Even in period t + 2, however, it gets a 
payoff of – c + 2d in period t + 1 and a payoff of b(N – 1) in period t + 2; thereafter, 
i gets – c + dN every period. Deviating is therefore irrational for i provided b – c + 
dN  – c + 2d + b(N – 1) or d  b. This last requirement holds by (4). 

To sum up so far: like Grim, Getting-Even is individually rational. I now show 
that, unlike Grim, Getting-Even is also collectively rational. 

Getting-Even will be collectively rational if all countries have no incentive to 
renegotiate the agreement. If every country other than j plays Getting-Even in a 
punishment phase, after j has reverted to Getting-Even, then they will each get a 
payoff of b per period. If they deviate en masse, however, then they will each get 
– c + dN per period. It will thus not be in their collective interests to deviate if  

 
(b + c)/d  N. (5) 

 
Since d  b by assumption, (5) implies that (d + c)/d  N, and this in turn 

implies that all the countries called upon to punish j for cheating cannot do better 
collectively than to play Defect in the punishment phase, even if j plays Defect in 
this phase also. Agreements that satisfy (5) are not vulnerable to renegotiation. 
The threats needed to sustain full cooperation in these agreements are credible. 

To sum up: I have shown that Getting-Even can sustain full cooperation by 
means of a self-enforcing agreement if (5) holds. I have not shown that there does 
not exist an alternative strategy that can do better than Getting-Even (that is, a 
strategy that can sustain full cooperation using a weaker punishment, and so 
allow full cooperation to be sustained for a larger N). However, in the Appendix I 
show that Getting-Even cannot be bettered, as long as we hold on to the 
assumptions of individual and collective rationality. Result (5) is robust. 

Inequality (5) tells us that the full coooperative outcome can only be 
sustained as an equilibrium of the repeated game if N is not ‘too large’. Notice 
that, since (2) must hold for z = 1, (b + c)/d < 2. So we know that the full 
cooperative outcome of the generic 2  2 prisoner’s dilemma game can be 
sustained as an equilibrium of the repeated game. This is not a new result (see van 
Damme, 1989; Myerson, 1991), but (5) shows just how special the two-player 
game is. It may not be possible for even three countries to sustain the full 
cooperative outcome by means of a self-enforcing agreement. 

Importantly, (5) tells us that the maximimal value of N that can sustain the 
full cooperative outcome as an equilibrium is not fixed but depends on the 
parameter values. Consider some examples. Suppose b = d = 3 and c = 4. Then (2) 
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and (3) hold for N  2, but at most two countries can sustain the full cooperative 
outcome as an equilibrium of the repeated game. Suppose instead that b = 2, d = 3, 
and c = 10. Then (2) and (3) hold for N = 6 and N = 7, but (5) says that at most 
four countries can sustain full cooperation by means of a self-enforcing agreement. 
Finally, suppose b = d = 1, and c = 149. Then (2) and (3) hold for N  150 while 
full cooperation can be sustained as an equilibrium only so long as N  150. 
Keohane (1984) has argued that, for international relations problems, the number 
of players is ‘small,’ even in the case of global negotiations (in 1984, when Keohane 
made this argument, there were about 150 countries in the world; today there are 
almost 200). But the theory developed here shows that whether the international 
system is ‘small’ depends on the nature of the cooperation problem. 

More than this, the theory implies that the number of countries in the world 
is ‘small’ only with regard to issues for which the total gains to cooperation are 
‘small.’ In other words, when cooperation is needed most, the international system 
is least capable of sustaining cooperation by a self-enforcing agreement. To see 
this, notice that the gains to cooperation are N[C(N) – D(0)] = N(– c + dN). The 
gains to cooperation are thus decreasing in c and increasing in d. But from 
inequality (4) we know that the maximal value of N that can sustain full 
cooperation as an equilibrium is increasing in c and decreasing in d. So the 
international system can only sustain full cooperation among all countries when 
the gains to cooperation are ‘small.’ 

Does this result speak to any real world problems? I have shown elsewhere 
(Barrett, 1999) that the aggregate gains to cooperation are small in the case of 
stratospheric ozone depletion. This is not because the world would not benefit 
from a ban on ozone-depleting substances. To the contrary, the reason is that the 
benefit of a ban is so large relative to the cost, that every industrial country would 
want to ban these chemicals unilaterally, even if no other country did so. The 
challenge to the Montreal Protocol was to make it attractive for poorer countries 
also to ban these substances, and for the ban by signatories to be made effective 
by ensuring that production would not relocate to nonsignatory countries.13 

 
5. Compliance Enforcement and Free-Rider Deterrence 
 
The theory outlined here teaches that cooperation can be sustained by a self-
enforcing treaty which incorporates a strategy of reciprocity. But Chayes and 
Chayes (1991: 313) observe that ‘not only are formal enforcement mechanisms 
seldom used to secure compliance with treaties, but they are rarely even embodied 
in the treaty text’. Now, the fact that such enforcement mechanisms are seldom 

                                                           
13  The former problem requires the use of ‘carrots’ or side payments. For an analysis of how carrots can aid 

cooperation, see Barrett (1998). The latter problem is sometimes called ‘trade leakage,’ and is discussed in 
Barrett (1997). 
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used is entirely consistent with the theory developed here. In equilibrium, no party 
would deviate from the treaty because the threat to carry out the punishment is 
credible. Where the theory and practice of international coooperation seem to 
clash is in the observation that compliance enforcement mechanisms are rarely 
expressed in black and white. The reason may be that the theory is wrong and 
such mechanisms are not needed, as the Chayes’s argue; or it may be that, as 
Downs et al. (1996) maintain, the theory is right and the fact that such 
mechanisms are not incorporated in treaties implies that agreements typically do 
not improve much on the noncooperative outcome. 

To illuminate this debate, I distinguish between free-rider deterrence and 
compliance enforcement by representing international cooperation as a stage 
game: in Stage 1, countries choose whether to be signatories or nonsignatories to 
an international agreement; in Stage 2, signatories choose jointly whether to play 
Cooperate or Defect; and in Stage 3, nonsignatories choose independently 
whether to play Cooperate or Defect. I assume that the compliance norm has 
been fully internalized, so that all signatories comply with the obligations they 
negotiate in Stage 3. As noted in the Introduction, this assumption is merely a 
tactic. I use it to see whether internalization of the compliance norm matters. 

As usual, the equilibrium is found by solving the stage game backwards. 
Assuming that all actions are publicly observable, the strategies of each player will 
generally be contingent on the history of the game. However, the stage game 
version of the prisoners’ dilemma is special in that the history of the game is 
irrelevant to nonsignatories; for them, play Defect is a dominant strategy. If 
signatories were to choose whether to play Cooperate or Defect independently, 
then they too would play Defect. However, signatories to a treaty do not choose 
their actions independently. They negotiate their choice of actions and it would be 
collectively irrational for them to put their signatures on a treaty that did not 
maximize their joint payoff. 

Let k denote the number of signatories, and let signatories be identified by 
the subscript s and nonsignatories by the subscript n. Then, for the two-player 
game, if k = 1 the sole signatory will play Defect and get a payoff  s = 0 (if this 
country played Cooperate instead it would get a payoff of – c + d, and by (2),  
– c + d < 0), while if k = 2 both signatories will play Cooperate (since – c + 2d > (b –
c + d)/2 by (3)) and get a payoff  s = – c + 2d each. Nonsignatories can do no 
better than to play Defect, whatever signatories do, and so they get a payoff 
 n = 0 if k = 0 or k = 1.  

These payoffs can be worked out by each country before the Stage 1 game is 
played. So in Stage 1, each country will know the consequence of choosing to be a 
signatory or nonsignatory, taking as given the choice of the other country to be a 
signatory or nonsignatory. Assuming that a country will accede to a treaty if, in 
doing so, it is not made worse off, there is a unique equilibrium. It is that both 
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countries are signatories and that both play Cooperate. The institution of the 
treaty coupled with the compliance norm thus transforms the dilemma game into 
one in which full cooperation is sustained as an equilibrium. 

But full cooperation will not always be sustained as an equilibrium of the 
transformed game. Suppose the payoff functions are given by D = 3z and  
C = – 4 + 3z. Then we obtain the above result for N = 2. Not so if N = 5. For the 
transformed game, nonsignatories will play Defect in equilibrium. If there is only 
one signatory, it too will play Defect (if this country plays Defect it gets S = 0; if it 
plays Cooperate it gets S = – 1). However, if there are two or more signatories, 
they will each get a higher payoff if they both play Cooperate (for example, if 
k = 2, each signatory gets S = 0 if they both play Defect and S = 2 if they both 
play Cooperate). And so on. It can be shown that, in equilibrium, k* = 2 
signatories play Cooperate and N – k* = 3 nonsignatories play Defect. The full 
cooperative outcome is not sustained as an equilibrium of this game, even though 
the compliance norm is assumed to have been fully internalized. 

To generalize even further, suppose the payoff functions for the N-player 
dilemma game are given by equations 1. Then signatories will play Cooperate 
provided the payoff they each get by playing Cooperate exceeds the payoff they 
each get by playing Defect, or k > c/d; otherwise, signatories can do no better 
collectively than to play Defect. Because play Cooperate is not an equilibrium of 
the one-shot prisoner’s dilemma game, we know that c/d > 1 and so k*  2. As in 
the repeated game model, cooperation can always be sustained as an equilibrium 
for the special two-player case. 

Since, by assumption, full cooperation requires that all players play Cooperate, 
it must be true that N > c/d. Let k0 be the smallest integer greater than c/d. Then 
we know that k*  k0. But when k = k0, no nonsignatory would wish to accede to 
the treaty. To see this, notice that, if k = k0, a nonsignatory gains by acceding to 
the treaty if (d – b) k0 > c – d. But, by (2), (d – b)z < c – d for all z, 0  z  N – 1. This 
is a contradiction. Once there are k0 signatories, it would be irrational for another 
country to accede to the treaty. Hence, the equilibrium number of signatories 
must be k* = k0 (assuming that the solution is ‘interior’). Figure 2(a) illustrates the 
solution for k* < N and Figure 2(b) for the case where k* = N. 
Full cooperation can only be sustained as an equilibrium of this transformed game 
if signatories can do no better collectively than to play Defect when k = N – 1 and to 
play Cooperate only when k = N. The latter requirement holds by (3). The former 
holds provided 0  – c + d(N – 1) or  
 

(d + c)/d  N. (6) 
 

Notice that (6) can be interpreted as saying that an agreement to play 
Cooperate would only come into force (that is, would only be legally binding on 
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Figure 2a. The N  2 (Symmetric) 
Transformed Prisoner’s Dilemma Game, 
k* < N 

Figure 2b. The N  2 (Symmetric) 
Transformed Prisoner’s Dilemma Game,  
k* = N 

 
the countries that had ratified it) if all N countries have ratified it. Hence, k* can 
be interpreted as the minimum participation level prescribed by international 
treaties. Of course, the case where k* = N is special. And it is a feature of most 
treaties that the actual number of parties usually exceeds the number prescribed 
by the minimum participation clause. This suggests that in the majority of treaties 
the minimum participation clause may serve as a coordination device rather than 
as a mechanism for deterring free-riding.14 

Upon comparing (5) and (6) one finds that, if b = d, then the maximum 
number of countries that can sustain the full cooperative outcome as a self- 
enforcing agreement will be the same for both models. If, however, d > b – if there 
are increasing returns to cooperation – then a smaller number of countries can 
sustain the full cooperative outcome as an equilibrium in the repeated game 
model as compared to the stage game model. However, as noted in the 
introduction, this does not mean that the assumption of full compliance buys any 
additional cooperation. The stage game model is essentially one-shot; it does not 
allow for reactions, and so it cannot describe fully an appropriate strategy of 
reciprocity. 

The main reason for using the stage game model is to show that the vital 
qualitative insight of the repeated game model holds here as well. Recall that the 
total gain to cooperation, N(– c + dN), is decreasing in c and increasing in d. By 
contrast, k* is increasing in c and decreasing in d (ignoring the integer problem). 
This means that, for N given, k* will tend to be ‘large’ (‘small’) when the total gain 
to cooperation is ‘small’ (‘large’). The international system is able to sustain less 
cooperation the greater is the potential gain to cooperation – that is, the greater is 
the need for cooperation (see also Barrett, 1994). 
                                                           
14 See Barrett (1997), where the minimum participation clause actually emerges as an equilibrium. 
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Notice that, in equilibrium, nonsignatories get a higher payoff than 
signatories. Nonsignatories (of which there are N – k*) free-ride. The underlying 
game of whether to play Cooperate or Defect is a prisoner’s dilemma game, but 
the transformed game of whether to be a signatory or nonsignatory to the treaty is 
a chicken game. Each country would prefer to free-ride, but if too few countries 
are parties to the treaty, it is in the interests of nonsignatories to accede. Though 
the players are symmetric by assumption, in equilibrium they behave differently. 
Some are signatories and play Cooperate; some are nonsignatories and play Defect. 
The model cannot identify which countries will be signatories and which 
nonsignatories (though the identities of these countries can be determined if 
countries make their stage 1 choices in sequence; the first N – k* countries to 
choose will all choose not to be signatories and the last k* to choose will all choose 
to be signatories), but as the countries are symmetric this does not matter.15 

The essential lesson of the stage game is that, despite the assumption of full 
compliance, a self-enforcing treaty may only be capable of sustaining k* < N 
signatories. Free-riding may be a problem for international cooperation, even if 
compliance is not. At the very least, sticks are needed to deter free-riding, though 
the constraints on individual and collective behavior may be such that the full 
cooperative outcome cannot be sustained by international treaty. Large sticks may 
be needed to deter free-riding but large sticks may not be credible. 

Though I am unable to settle the dispute about compliance, the theory 
developed here does broaden the debate. It suggests that, even if the Chayes’s are 
right that compliance is not a problem, they may be wrong that sanctions are not 
needed to sustain cooperation or that the international system sustains anything 
like full cooperation. It suggests too that Downs et al. may be right that full 
cooperation typically has not been sustained, but that they may be wrong in 
implying that the reason for this is weak enforcement. Free-rider deterrence may 
be the greater problem. 

What constrains cooperation in the stage game, as in the repeated game, is 
the assumption that signatories negotiate a collectively rational agreement. If we 
drop this requirement, then the assumption that the compliance norm has been 
internalized will ensure that full cooperation can always be sustained as an 
equilibrium. For if signatories could be sure of complying with any agreement, 
then to sustain full cooperation as an equilibrium would only require an 
agreement which says that each country will play Cooperate provided all others 
do, but that, should any other country play Defect instead, then all the other 
countries will punish this defection. In general, however, such an agreement will 
not be collectively rational. Should one country play Defect, it will not generally be 
collectively rational for the remaining N – 1 countries to punish the deviation. 

                                                           
15 This will not be true when countries are strongly asymmetric; see Barrett (1998). 
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6. Conclusions 
 
The central idea behind the theory presented here is that the institutions that 
sustain international cooperation must be both individually and collectively 
rational: individually rational because the international system is anarchic; 
collectively rational because countries cooperate explicitly and can renegotiate 
their treaties at any time. When combined, these requirements give the theory of 
international cooperation great cutting power. The theory predicts that the full 
cooperative outcome of the N-player, prisoner’s dilemma can only be sustained by 
a self-enforcing treaty when N is ‘small.’ For global problems (that is, problems 
for which N is ‘large’), the theory predicts that full cooperation can only be 
sustained by a self-enforcing treaty when the gains to cooperation are ‘small.’ 

These are powerful if depressing predictions. They are not, however, context-
free. In an environment richer than the one analysed here, it is possible that more 
cooperation could be sustained by a self-enforcing treaty. For example, I have 
shown elsewhere (Barrett, 1997) how linking the provision of a global public good 
to international trade allows the space of punishment strategies to be expanded. 
The credible threat of trade sanctions may be able to sustain cooperation where 
the threat to withdraw provision of a public good cannot. In fact, it is by the 
threat of imposing trade sanctions that free-riding has been deterred in the 
Montreal Protocol. Moreover, the threat of trade sanctions has also helped to 
enforce compliance with the agreement. (That sanctions for non-compliance 
should be linked to sanctions for non-participation is, of course, a conclusion of this 
paper.) I have also shown how side payments can help to increase participation in 
an agreement when countries are strongly asymmetric (Barrett, 1998).16 But even 
where the strategy space can be expanded in these ways, the twin requirements of 
individual and collective rationality may prevent countries from sustaining full 
cooperation. Certainly, there should be no presumption that the international 
system, attached as it is to the principle of sovereignty, is always capable of 
sustaining full cooperation. That conclusion, however unwelcome, does seem robust. 
 
Appendix 
 
Getting-Even, as defined in this paper, assumes that, were j to deviate, then all the 
N – 1 other countries must play Defect in a punishment phase. In doing so, these 
countries harm themselves as well as j, and this is what makes sustaining full 
cooperation more difficult as N increases. So the question arises: can an alternative 
strategy – one that harms the N – 1 other countries less – sustain full cooperation? 

                                                           
16  Of course, one feature of asymmetry is that the failure to cooperate matters less, and so the aggregate 

gains to cooperation are smaller for a given N compared with the symmetric case. This was perhaps first 
shown by Olson (1965). A formal demonstration can be found in Barrett (1998). 
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This will not be possible for N = 2, because obviously j must be punished for 
deviating and when N = 2 there is only one other country that can do so. 
However, it is not obvious that, when N > 2, all the other N – 1 countries must 
play Defect in a punishment phase. Let us then suppose that m of the N – 1 other 
countries play Defect in the punishment phase (so that N – m – 1 of the N – 1 
other countries play Cooperate in the punishment phase). Call this the m-Getting-
Even strategy. 

Full cooperation can be sustained as an equilibrium if two conditions are 
satisfied. First, we require that j cannot do better than to play m-Getting-Even 
given that every other country does so; that is, we require 
 

max (b(N – m – 1) – c + d(N – m))  – c + dN (A.1) 
 
By (2), b(N – m – 1) > – c + d(N – m). So (A.1) implies 
 

b(N – m – 1)  – c + dN (A.2) 
 
We also require that each of the N – 1  other players cannot do better than to play 
m-Getting-Even in a punishment phase. That is, we require 
 

b(N – m)  – c + dN (A.3) 
 
for the m countries that play Defect in the punishment phase and 
 

– c + d(N – m)  – c + dN (A.4) 
 
for the N – m – 1 other countries that play Cooperate in the punishment phase. 
But (A.4) reduces to – dm  0, implying that we must have m = 0. Of course, if m = 0 
– if none of the N – 1 other countries plays Defect in a punishment phase – then j 
will not be punished. So the m-Getting-Even strategy cannot sustain full 
cooperation as an equilibrium, except for the special case where m = N – 1  (for in 
this case, (A.4) drops out and (A.3) reduces to (5)), provided we require that all 
the N – 1  countries do not want to renegotiate the agreement. 

Now, it might be argued that this requirement is overly strong. Suppose we 
allow transfers between the N – 1 countries called upon to punish j. Then 
renegotiation will be prevented if the N – 1 other countries receive on average at 
least as large a payoff when implementing the strategy as when reverting to full 
cooperation. However, collective rationality will in this case require that the N – 1 
other countries choose m so as to maximize their aggregate payoff in the 
punishment phase. That is, instead of (A.3) and (A.4) we require 
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maxm {mb(N – m) + (N – m – 1)[– c + d(N – m)]}  (N – 1) (– c + dN) (A.5) 
 

Solving the left-hand side of (A.5), the first-order condition requires 

b(N – 2m) + c – d[2(N – m) – 1] = 0 (A.6) 

The second-order conditions for a maximum require 2(d – b) < 0. However, by 
assumption, d  b. Hence, the solution to the maximization problem must lie at a 
corner; (A.5) will require either m = 0 or m = N – 1. 

Of course, (A.2) must hold, and this implies 

m  [b(N – 1) – (– c + dN)]/b (A.7) 

By (2), the numerator on the right-hand side of (A.7) is positive. So the solution 
must require m > 0. m = N – 1 will be the solution to the left-hand side of (A.5) if 
the aggregate payoff of the N – 1 other countries is at least as high when m = N – 1  
as when m = 0. Upon substituting, we require 

b  – c + dN (A.8) 

But this is the same as (5). Hence, there does not exist an alternative individually 
and collectively rational strategy that can improve on Getting-Even. 
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We propose a simple mechanism to determine how the surplus generated by cooperation 
is to be shared in zero-monotonic environments with transferable utility. The mechanism 
consists of a bidding stage followed by a proposal stage. We show that the subgame 
perfect equilibrium outcomes of this mechanism coincide with the vector of the Shapley 
value payoffs. We extend our results to implement the weighted Shapley values. Finally, 
we generalize our mechanism to handle arbitrary transferable utility environments. 
The modified mechanism generates an efficient coalition structure, and implements the 
Shapley values of the super-additive cover of the environment. 

 
 
 
1. Introduction 
 
The Shapley value has long been a central solution concept in cooperative game 
theory. It was introduced in Shapley (1953) and was seen as a reasonable way of 
distributing the gains of cooperation among the players in the game. It is the most 
studied and widely used single-valued solution concept in cooperative game theory. 
It has generated various axiomatizations that demonstrate its fairness and 
consistency properties (see, for instance, Myerson (1980), and Hart and Mas-Colell 
(1989), and has been used to impute costs and benefits as in cases of airport 
runways, phone networks, and political situations.1 

                                                           
 We wish to thank Sergiu Hart for several helpful suggestions and conversations, and Ezra Einy, Gerard Hamiache 

and Roberto Serrano as well as participants in seminars at several universities for helpful comments. Pérez-Castrillo 
acknowledges financial support from the DGES PB 97-0181 and SGR 96-75. Part of this research was conducted 
while Wettstein was visiting the Universitat Autònoma de Barcelona, with a grant from the Generalitat de 
Catalunya, and both authors were visiting the University of Copenhagen, whose financial support is acknowledged. 
1  For a nice introduction to the Shapley value and, in particular, its applications, see, for example Roth (1988). 
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A natural question concerning the Shapley value is whether the agents can 
reach it through non-cooperative behavior. In other words, is it possible to find a 
non-cooperative framework that gives rise to the Shapley value as the result of 
equilibrium behavior? This is part of the Nash program, which tries to provide a 
non-cooperative foundation for cooperative solution concepts. Several papers 
have addressed this question in different ways. We will comment on them later in 
this introduction. 

In this paper, we provide a simple non-cooperative game whose outcome 
always coincides with the Shapley value for zero-monotonic games in 
characteristic form. We call this game the ‘bidding mechanism’. The basic idea of the 
bidding mechanism is quite simple. We let one of the players make a proposal to 
each of the other players, a proposal that will either be accepted by all the other 
players (in which case the proposal becomes final) or rejected. In the latter case, 
the proposer is now on his own and the rest of the players play the same game 
again. If the proposal is accepted, the proposer can form the grand coalition of all 
the players and collect the value generated in exchange for the proposed payments 
to the rest of the players. 

The question of how the proposer is determined is, of course, central to the 
design of the bidding mechanism. Indeed, in some games, being the proposer 
could prove to be beneficial, while in other games it is preferable not to be the 
proposer. Hence, before the proposal stage is reached, the players will bid to 
become the proposer, where bids can be positive or negative.2 The player with the 
highest ‘net bid’ (the difference between the sum of the bids he makes to the 
others minus the sum of the bids the others make to him) becomes the proposer 
and, before proceeding to the proposal stage, pays the bids to the other players. 
We will show that in the subgame perfect equilibria (SPE) of the bidding 
mechanism a proposer is determined who will make a proposal that will be 
accepted by the others. For the proposer, the difference between the value of the 
grand coalition and the payments and bids paid is her Shapley value. For each of 
the other players as well, the sum of the bid received plus the accepted proposal is 
his Shapley value.3 

Several features of our game make it attractive and different from previous 
non-cooperative approaches to the Shapley value. First, the players obtain the 
Shapley value in every equilibrium outcome of the game; that is, the 
implementation is not in expected terms. Also, the game does not imply any a 
priori randomization that imposes some order on the moves of the players. By 
                                                           
2  Crawford (1979) also made use of a bidding stage in a procedure to generate Pareto-efficient egalitarian-

equivalent allocations. The discrete time non-cooperative coalitional bargaining game proposed by Evans 
(1997) to implement the core in subgame perfect equilibria also introduced simple bidding by the players 
for the right to make an offer. 

3  The equilibrium strategies are unique if the game is strictly zero-monotonic. Otherwise, there might be 
other equilibria in addition to this one, but they still yield the Shapley value. 
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adjusting his bids, every player can determine whether he or someone else will be 
the proposer. Second, the rules of the game are very natural and do not rely on 
‘random’ meetings or probabilities that are close to the actual definition of the 
Shapley value. Hence, the implementation is less ‘obvious’, and provides further 
support for the use of the Shapley value. Third, the game is finite. Moreover, at 
equilibrium, it ends in one stage if the game is strictly zero-monotonic (a stage 
includes three periods of play: bidding, proposing, and accepting or rejecting). 
Fourth, the strategies played by the players at equilibrium are simple and intuitive. 
Furthermore, even though the Shapley value plays no role in specifying the rules of 
the game, the equilibrium strategies are intimately related to the Shapley value itself.  

Implementing the Shapley value is not straightforward. For example, 
Thomson (1988) focused on the problems created by strategic behavior and 
showed that an agent can obtain a better outcome by unilaterally misrepresenting 
his utility function. Several authors have attempted to realize the Shapley value 
and overcome such problems. 

Gul (1989 and 1999) analyzed a transferable utility economy where random 
meetings between two agents occur. At each meeting, a randomly chosen party 
makes an offer to his partner. Acceptance of the offer means that the proposer 
buys the partner’s resources. If the offer is rejected, the meeting dissolves and 
both agents stay in the market. For strictly convex games, as the time interval 
between meetings becomes arbitrarily small, the expected payoff of each player at 
an efficient stationary subgame perfect Nash equilibrium (SSPE) converges to his 
Shapley value. If strict convexity is replaced by strict superadditivity the 
convergence result holds for those efficient SSPE that entail immediate agreement 
(Gul, 1989 and Hart and Levy, 1999).  

Evans (1996) showed that a simplified version of Gul’s result follows from 
the following characterization of the Shapley value. Consider a cooperative game 
and an associated feasible payoff vector. Assume that players are randomly split 
into two groups and a representative player is chosen also at random from each 
group. These two players bargain with each other over how to split the total 
resources available to all of the players. Following the bargaining process each of 
the two players has to pay out of his share to the members of his group according 
to the pre-specified payoff vector. This procedure yields an expected payoff to any 
player that depends on the initial payoff vector, the random partition mechanism 
and the solution concept applied to two-person bargaining problems. The initial 
payoff vector is called consistent if it equals the expected payoff vector. If all 
partitions are equally likely and the bargaining solution splits the surplus equally, 
the Shapley payoff vector is the unique consistent payoff vector. 

Hart and Mas-Colell (1996) proposed a different natural bargaining procedure 
that supports the Shapley value (as well as the Nash bargaining solution for pure 
bargaining problems). In their paper, the proposers are also chosen at random 
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but the meetings are multilateral. Agreement requires unanimity. Disagreement 
puts the proposer in jeopardy, since there is a given probability that he may be 
removed from the game after a rejection. As the probability of removal becomes 
small, the SSPE of the procedure yield the Shapley value.4 When the probability of 
removal is one, Hart and Mas-Colell (1996) as well as Mas-Colell (1988) showed 
that the expected payoff of any player coincides with his Shapley value. Their 
mechanism is then the same as our mechanism with the bidding stage replaced by 
a random determination of the proposer. Krishna and Serrano (1995) showed 
further that for removal probabilities close to one there is a unique SPE of the 
game proposed by Hart and Mas-Colell (1996) that yields the Shapley value 
payoff vector in expectation.  

In a different spirit, Hart and Moore (1996) proposed a game in which 
agents are lined up and each agent makes an offer to the following agent, where 
the offer is a contract that may specify what offer this agent has to make to the 
agent after him. This game implements the Shapley value in SPE. Winter (1994) 
and Dasgupta and Chiu (1996) proposed demand commitment games in which 
each player can either make a demand to the following player or form a coalition 
satisfying the demands of some of the players preceding him. For strictly convex 
games, these mechanisms implement the Shapley value in SPE.5 In these three 
works, the implementation is in expected terms since in the first stage of the game 
the order of the players (or the identity of the first player in Winter, 1994) is 
randomly chosen, each possible choice having the same probability. 

A solution concept closely related to the Shapley value is the weighted 
Shapley value (Shapley, 1953). We also show that a very natural and simple 
modification of the bidding mechanism implements the weighted Shapley values.6 

Finally, we generalize the bidding mechanism to deal with all transferable 
utility environments. In the generalized bidding mechanism, the proposer makes a 
proposal to each of the other players and, simultaneously, chooses the coalition 
she wants to form. If all the agents accept the proposal and the coalition, the 
coalition is formed, and the rest of the players proceed to play the same game 
among themselves (after having received the proposed payment by the proposer). 
In the case of rejection, the proposer is on her own and the remaining players play 
the same game again. In any SPE of this mechanism, the proposer makes a 
proposal that is accepted. The payoff of the proposer is the difference between 
the value of the coalition she formed and the payments and bids she made. The 
payoff to any player in the coalition is the sum of the bid and the proposal 
                                                           
4  They also show that for NTU games, the limit of the SSPE (as the probability of removal becomes small) 

is the consistent value, a solution concept that was introduced by Maschler and Owen (1989, 1992). 
5  Winter (1994) also required either subgame consistency or strategic equilibria. Dasgupta and Chiu 

(1996) also developed an implementation for general games in characteristic form if there is an (external) 
planner who is able to impose a system of transfers and taxes. 

6  Hart and Mas-Colell (1989) also extended their results to weighted Shapley values. 
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accepted. The payoff to players outside the coalition is the sum of the bid, the 
proposal accepted, and their payment in the continuation game. Hence, the SPE 
of this mechanism determine a coalition structure and a sharing of the surplus 
generated under this particular structure. We show that at the SPE of the 
generalized bidding mechanism the players form an efficient coalition structure. 
Moreover, the final payments of the players coincide with the Shapley values of 
the super-additive cover of the game.7 

The paper is organized as follows. Section 2 presents the basic cooperative 
definitions and Section 3 introduces the bidding mechanism and shows that it 
implements the Shapley value for zero-monotonic games. In Section 4 we extend 
our results by implementing the set of weighted Shapley values. In Section 5 we 
define the generalized bidding mechanism and show that it implements the 
Shapley value of the super-additive cover of the game. The paper concludes with a 
brief summary and discussion of further research. 

 
2. The Cooperative Model 
 
Consider a cooperative game in characteristic form (N, v), where N = {1,…, n} is the set 
of players and v: 2N  R is a characteristic function satisfying v() = 0 where  is 
the empty set. For a coalition S  N, v(S) represents the total payoff that the 
partners in S can jointly obtain if this coalition is formed. We say that the 
cooperative game (N, v) is zero-monotonic if v(S) + v({i})  v(S  {i}) for any subset 
S  N with i  S. In a zero-monotonic game there are no negative externalities 
when a single player joins a coalition. In sections 2 to 4 of this paper, we restrict 
our analysis to zero-monotonic games. 

We denote by  (N)  Rn the Shapley value of the cooperative game (N, v) 
which is defined by: 8 
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where | S | denotes the cardinality of the subset S. The Shapley value can be 
interpreted as the expected marginal contribution made by a player to the value of 
a coalition, where the distributions of coalitions is such that any ordering of the 
players is equally likely. Also, Shapley (1953) characterized the value as the only 
function that satisfies symmetry, efficiency, a null player axiom, and additivity. 

Given the cooperative game (N, v) and a subset S  N, we define the game 

                                                           
7  If the game is super-additive, the grand coalition is an efficient structure and the Shapley value of the 

super-additive cover coincides with the Shapley value. Therefore, the final SPE outcome of the 
generalized bidding mechanism is the same as the final SPE outcome of the bidding mechanism. 

8  We use (N) instead of (N, v) for notational simplicity. 
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(S, vS) by assigning the value vS(T)  v(T) to every T  S. We write (S, v) instead of 
(S, vS) for notational convenience. Similarly, (S)  R |S| denotes the Shapley value 
of the game (S, v). 

 
3. The Bidding Mechanism 
 
In this section, we design a non-cooperative game, which we call the bidding 
mechanism. The equilibrium outcomes of this mechanism always coincide with the 
Shapley value of the cooperative game (N, v) and thus this mechanism 
implements the Shapley value in subgame perfect equilibria. We propose a way to 
split the surplus of the cooperation that is based upon the idea that only one of 
the players will make a proposal to each of the other players. We invoke a notion 
of consistency in order to determine the outcome of the game if the proposal is 
rejected. Following a rejection the players other than the proposer play the same 
game again. Proceeding in this way, the payoff of an agent is sensitive not only to 
whether or not he is the proposer, but also to the precise identity of the proposer. 
Hence, in order to provide each player with the same strategic possibilities, each 
player can, by his bid, directly influence the choice of the proposer. An intriguing 
feature of the mechanism is that the Shapley value is not the outcome of just one 
decision, but rather emerges as the cumulative outcome of both the proposal and 
the bid. 

The mechanism is defined recursively. If there is only one player, then he just 
obtains the value of his stand-alone coalition. It is also useful to describe the 
bidding mechanism with only two players. It is a three-stage game. First, each 
player makes a bid to the other. The proposer is then chosen as the player making 
the highest bid. If the bids are equal the proposer is chosen randomly. The 
proposer pays the promised bid to her partner. In the second stage, the proposer 
makes an offer to the other player for him to join her. In the final stage, the player 
who is not the proposer either accepts or rejects the offer. If he accepts, the grand 
coalition is formed and the proposer collects the value generated by it while 
paying the offer to the other player. If the proposal is rejected each player is left on 
his own, and hence each obtains the value of the stand-alone coalition (minus or 
plus the bid paid previously). Once we know the rules of a two-player bidding 
mechanism, we can define the mechanism for three players, and so on. Assuming 
that we know the rules of the bidding mechanism when played by at most n  1 
players, we now define the game for n players. 

First, each of the players makes a bid to each of the other players. To 
determine the identity of the proposer, we define the ‘net bid’ of a player as the 
difference between the sum of the bids he makes to the others minus the sum of 
the bids the others make to him. The net bid of a player tries to measure the 
difference between the incentives of this player to become the proposer (what he 
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bids) and what the others are ready to pay him for each of them to become the 
proposer (what the others bid to him). The player with the highest net bid is 
chosen to be the proposer. If several players make the highest net bid, the 
proposer is chosen randomly among them. Once ‘named’ a proposer, she 
proceeds to pay the bids to the other players. Second, the proposer makes an 
offer to each of the other players to join her. Finally, each of the other players 
sequentially either accepts or rejects the offer.9 The offer is accepted, and all the 
players join in the grand coalition, only if all of them accept the offer. In this case, 
the proposer obtains the value of the coalition, paying to the others the promised 
offers. If the offer is rejected, the proposer is on her own, obtaining the value of 
her stand-alone coalition (minus the bids she has already paid).

10 The rest of the 
players keep their bids and play the same game with n  1 players. 

It is important to notice that the element of randomness in the 
determination of the proposer is inconsequential to our proofs. Our results still 
hold if ties in net bids are broken deterministically as would be the case if the 
highest indexed player were chosen as the proposer. Randomness is introduced 
only in order to prevent biased treatment of the participating players. We will 
return to this issue in the conclusion, when we will discuss possible extensions of 
our mechanism. 

We now describe the bidding mechanism more formally. Suppose first that 
there is only one player {i}. Then, this player obtains the value of the stand-alone 
coalition (i.e., v(i)). 

Suppose now that we know the rules of the bidding mechanism when played 
by at most n  1 players. The bidding game for a set of players N = {1,..., n} 
proceeds as follows:  

 
t = 1: Each player i  N makes bids bi

j in R for every j  i. Hence, at this stage, a 
strategy for player i is a vector (bi

j)ji in R n – 1. 
 
For each i  N, we let    ij

j
iij

i
j

i bbB . Let  = argmaxi(B i) where, in 
the case of a non-unique maximizer,  is randomly chosen among the maximizing 
indices. Once she has been chosen, player  pays bi to every player i  . 

 
t = 2: Player  makes an offer yj in R to every player j  . Therefore, at this stage 

                                                           
9  Note that the actual sequence of players is inconsequential. The fact that players respond in sequence 

rather than simultaneously is crucial for ruling out ‘bad’ equilibria. In bad equilibria, there are several 
players rejecting the proposal since whenever there is at least one rejection, a rejection by any other player 
is optimal (the proposal will be rejected independently of his decision).  

10  Our results hold for any specification of the outside value for the proposer as long as she obtains a 
payment less or equal to the value of her stand-alone coalition. See Section 7 in Hart and Mas-Colell  
(1996) for an interpretation of a situation in which the proposer would obtain zero if the offer is rejected, 
and for further discussion on this extension. 
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a strategy for player i is a vector (yi
j)ji in R n – 1 that he will follow if he is chosen to 

be the proposer. 
t = 3: The players other than , sequentially, either accept or reject the offer. If a 
rejection is encountered, we say the offer is rejected. Otherwise, we say the offer is 
accepted. 

 
If the offer is rejected, all players other than  proceed to play the bidding 

mechanism where the set of players is N\{} and player  obtains the value of her 
stand-alone coalition. On the other hand, if the offer is accepted, each player 
i   receives yi and player  obtains the value of the grand coalition minus the 
payments . 


i iy   

Given that the characteristic function is v(.), the final payment for player  in 
case of rejection is   

 i ibv )( . Final payments for the other players will be the 
sum of the bid bi received and the outcome of the mechanism where the players 
are N\{}. In case of acceptance of the proposal, final payment to any player i other 
than  is given by yi + bi, whereas player  obtains .)(    





i ii i byNv  

In order to analyze the outcome of the bidding mechanism, the following 
well-known characterization of the Shapley value will be useful. The Shapley value 
of a player i is the average of the marginal contribution of this player to the grand 
coalition and his Shapley values in the games where a player different from i has 
been removed. Or, more formally, 

  .}){\(}){\()()( 



ij

ii jN
n

iNvNv
n

N  11
 

This equation has been previously used by Maschler and Owen (1989) and 
Hart and Mas-Colell (1989). Furthermore, note that it provides a convenient 
recursive definition of the Shapley value. Defining i({i}) = v(i) for every i, the 
previous equation characterizes the Shapley value for every game (N, v). 

 
Theorem 1. The bidding mechanism implements the Shapley value of the zero-monotonic 
game (N, v) in SPE. 
 
Proof. The proof proceeds by induction on the number of players n. The theorem 
holds for k = 1, since for a one-player game, the value of his stand-alone coalition 
is the Shapley value. 

We now assume that the theorem holds for k = n  1 and show that it also 
holds for k = n. We take N = {1,..., n}. We first prove that the Shapley value payoff 
is indeed an equilibrium outcome. We explicitly construct an SPE that yields the 
Shapley value as an SPE outcome. Consider the following strategies: 
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At t = 1, each player i, i  N, announces }){\()( iNNb jj
i
j   , for every j  i. 

At t = 2, player i, i  N, if he is the proposer, offers }){\( iNy j
i
j   to every j  i. 

At t = 3, player i, i  N, if player j  i is the proposer, accepts any offer greater 
than or equal to i(N\{j}) and rejects any offer strictly smaller than i(N\{j}). 

 
It is clear that these strategies yield the Shapley value for any player who is 

not the proposer, since xi = bi + yi = i(N), for i  . Moreover, given that 
following the strategies the grand coalition is formed, the proposer also obtains 
her Shapley value. 

We now show that all net bids Bi are equal to zero. Following the above 
mentioned strategies, 

    .}){\()(}){\()( 



ij

ii
ij

jj
ij

j
i

ij

i
j

i jNNiNNbbB   

By the balanced contributions property (see Myerson, 1980) 

}){\()(}){\()( jNNiNN iijj    

and hence Bi = 0.  
To check that the previous strategies constitute an SPE note, first, that the 

strategies at t = 2 and t = 3 are best responses as long as  )()( ivNv
}){\(}){\( iNviNij j    . Indeed, in the case of rejection, a proposer i obtains 

v(i) and the players j  i play the bidding mechanism where N \ {i} is the set of 
players; by the induction argument, the outcome of this game is the Shapley value 
vector (j(N \ {i}))ji. Consider now the strategies at t = 1. If player i increases his 
total bid  ij

i
jb , he will be chosen as the proposer with certainty, but his payoff 

will decrease. If he decreases his total bid another player will propose, and player 
i’s payoff would still equal his Shapley value. Finally, any change in his bids that 
leaves the total bid constant will influence the identity of the proposer but will not 
alter player i’s payoff. 

We now show that any SPE yields the Shapley value. We proceed by a series of 
claims: 

 
Claim (a). In any SPE, at t = 3, all players other than the proposer  accept the offer if 
yI > i(N \ {}) for every player i  . Moreover, if yi < i(N\{}) for at least some 
i  , then the offer is rejected. 

 
Note that in the case of rejection, by the induction argument the payoff to a 

player i   is i(N \ {}). We denote the last player that has to decide whether to 
accept or reject the offer, at t = 3, by . If the game reaches player , i.e., there has 
been no previous rejection, his optimal strategy involves accepting any offer higher 



 

108 
·················· 
Bidding for the Surplus 

Coalitions and Networks Chap 5 

than (N\{}) and rejecting any offer lower than (N\{}). The second to last 
player (denoted by   1) anticipates the reaction of player . Hence, if 
y   >   (N\{}) and y > (N\{}), and the game reaches player   1, he 
will accept the offer. If y   <   (N\{}) and y > (N\{}), he will reject the 
offer. If y < (N\{}), player   1 is indifferent to accepting or rejecting any 
offer y  , since he knows that player  is bound to reject the offer should the 
game reach him. In any case, the offer is rejected. We can go backwards using the 
same argument to prove claim (a). 
 
Claim (b). If v(N) > v(N\{}) + v(), the only SPE of the game that starts at t = 2 is the 
following: At t = 2, player  offers yi = i(N\{}) to all i  ; at t = 3, every player i   
accepts any offer yi  i(N\{}) and rejects the offer otherwise.  
 

If v(N) = v(N\{}) + v() there exist SPE in addition to the previous one. Any 
set of strategies where, at t = 2, the proposer offers yj  j(N\{}) to a particular 
player j   and, at t = 3, the player j rejects any offer yj  j(N\{}), also 
constitutes an SPE.

In all the SPE of this subgame, the final payoffs to players  and i   are 

  
 j jbNvNv }){\()( and i(N\{}) + bi , respectively. 

It is easy to see that the proposed strategies constitute an SPE. Suppose now 
that v(N) > v(N\{}) + v(). In that case, rejection of the offers made by player  
cannot be part of an SPE. In such a case, player  receives v(). She can improve 
her payoff by offering i(N\{}) + /(n  1) to every i  , with  < v(N) 
  v(N\{})  v() and  > 0 so that her offers are accepted (by (a)). Therefore, an 
SPE requires acceptance of the proposal. This implies yi  i(N\{}) for all i  . 
However, an offer such that yj > j(N\{}) for some j   cannot be part of an 
SPE, since  could still offer i(N\{}) + /(n  1) to every i  , with  < 
yj  j(N\{}) and  > 0. These offers are accepted and ‘s payoff increases. 
Hence, yi = i(N\{}) for all i   at any SPE. Finally, acceptance of the proposals 
implies that, at t = 3, every agent i   accepts an offer if yi  i(N\{}). 

If v(N) = v(N\{}) + v(), then the proposer has to offer at least 

  j j N }){\(  = v(N\{}) for the offer to be accepted by every other player. By 
the same argument as in the previous case, every equilibrium in which the offer is 
accepted necessarily involves a proposal of exactly j(N\{}) for every j  . Given 
that the proposer obtains v() in case of rejection, any offer that leads to a 
rejection would be an SPE as well. 

Notice that following the first strategies, the offer is accepted and the grand 
coalition is formed, while the second strategies imply that the proposer is left on 
her own. Given that the last strategies are SPE only when v(N) = v(N\{}) + v(), 
it is easy to check that the final payoffs are those stated in the claim. 
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Claim (c). In any SPE, B i = B j for all i and j and hence B i = 0 for all i in N. 
 
Denote  = {i  NB i = Maxj (B j)}. If  = N the claim is satisfied since 

0Ni
iB . Otherwise, we can show that any player i in  can change his bids so 

as to decrease the sum of payments in case he wins. Furthermore, these changes 
can be made without altering the set . Hence, he maintains the same probability 
of winning, and obtains a higher expected payoff. Take some player j  . Let 
player i   change his strategy by announcing: b’i

k = bi
k + for all k   and k  i; 

b’i
j = bi

j  ; and b’i
l = bi

l for all l and l  j. The new net bids are: B ’i = B i  ; 
B ’k= B k   for all k   and k  i; B’j = Bj + || and B’l = Bl for all l   and l  j. 
If  is small enough, so that Bj + ||Bi  (remember that Bj Bi), then B’l < 
B i = B k for all l   (including j) and for all k  . Therefore,  does not 
change.However,    ih

i
hih

i
h bb  . 

 
Claim (d). In any SPE, each player’s payoff is the same regardless of who is chosen as 
the proposer. 

 
We already know that all the bids Bi are the same. If player i would strictly 

prefer to be the proposer, he could improve his payoff by slightly increasing one of 
his bids bi

j. Similarly, if player i would strictly prefer that some other player j were 
the proposer, he could improve his payoff by decreasing bi

j. The fact that player i 
does not do so in equilibrium means that he is indifferent to the proposer’s 
identity. 
 
Claim (e). In any SPE, the final payment received by each of the players coincides with 
his Shapley value. 
 

Note first that, if player i is the proposer, his final payoff is given by: 

  ij
i
j

i
i biNvNvx }){\()( . On the other hand, if player j  i is the proposer, 

the final payoff of player i is given by: j
ii

j
i bjNx  }){\( . Therefore, the sum of 

payoffs to player i over all possible choices of the proposer is given by:  

  







 

 ij

j
ii

ij

i
j

j

j
i bjNbiNvNvx }){\(}){\()(   

),(}){\(}){\()(}){\(}{\()( NnjNiNvNvBjNiNvNv i
ij

i
i

ij
i   


 

Moreover, since player i is indifferent to all possible choices of the proposer, 
we have x j

i = x k
i for all j, k. Therefore x j

i = i(N) for all j in N.       
 
The theorem, in addition to showing that the mechanism indeed realizes the 

Shapley value, provides us with the explicit form of the equilibrium strategies. The 
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ease by which these strategies can be computed adds further credibility to our 
results and helps in the actual implementation of the mechanism. At equilibrium, 
the bid of player i to player j is }){\()( iNN jj   . The balanced contributions 
property (see Myerson, 1980) implies that the bid can also be expressed as 

}){\()( jNN ii   , which is the contribution of player j to the Shapley value of 
player i. In particular, the bids are symmetric: player i bids for j just as much as 
player j bids for i. Furthermore, the determination of the offers is also simple. If 
player i is the proposer, he offers j(N\{i}) to any other player j. The offer reflects 
the outside options of the players other than the proposer. Due to the recursive 
nature of our mechanism, these options are given by their Shapley value in the 
game without the proposer. Finally, notice that if the game is strictly zero-
monotonic11 not only is the equilibrium outcome unique, but the equilibrium 
strategies are unique as well. This eliminates problems of coordination among the 
players. 

As we pointed out in the informal description of the mechanism, Theorem 1 
holds if proposer  obtains a payment u() lower than v() in case her offer is 
rejected. This is a more reasonable assumption in those circumstances in which 
the technology is not replicable. In such a case v(S) represents the payoff to the 
partners in S only if they have access to the technology. If u(i) < v(i) for every i in 
N, then the equilibrium strategies are unique even if the game is zero-monotonic 
and not strictly zero-monotonic.

A further advantage of the mechanism is that it is finite in contrast to the 
infinite horizon mechanisms that implement the Shapley value in stationary SPE. 
Moreover, at the proposed equilibrium strategies, only the first stage of the game 
is played, with the proposal made by the chosen proposer accepted by the other 
players. 

We can modify our mechanism by replacing the bidding stage with a random 
selection of the proposer. Once the proposer is determined, the game proceeds 
similarly to our mechanism with the only difference being that in case of rejection 
the new proposer is randomly selected from the remaining players. This modified 
mechanism coincides with the Mas-Colell (1988) and Hart and Mas-Colell (1996) 
(with removal probability equal to one) construction. In this mechanism, 
however, the equilibrium payoffs yield the Shapley value in expected terms only.  

 
4. Implementation of the Weighted Shapley Values 
 
The weighted Shapley value emerges out of considering non-symmetric divisions 
of the surplus. It is defined in Shapley (1953) by stipulating an exogenously given 
system of weights w  Rn

++. Each unanimity game is assigned a value by having 
                                                           
11  We say that a game is strictly zero-monotonic if v(S) + v({i}) < v(S  {i}) for any subsets S  N with i  S 

and S  . 
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agent i receive the share  Nj
ji ww /  of the unit. The w-weighted Shapley value of a 

game is defined as the linear extension of this operator to the game. We denote by 
wi(N) the w-weighted Shapley value of player i in the cooperative game (N, v). 

A convenient way to express the weighted Shapley value is through the 
weighted potential function Pw(N) defined in Hart and Mas-Colell (1989).12 The 
w-weighted potential Pw(N) is the unique function from the set of games into R 
that satisfies Pw() = 0 and  Ni w

ii NvNPDw )()( , where DiPw(N) = Pw(N)  
Pw(N\{i}). This function satisfies: wiDiPw(N) = wi(N). Furthermore, 

.}){\()()( 







 

 


Nj
w

j

Nj

jw jNPwNv
w

NP
1  

The weighted Shapley value, as the Shapley value, can be calculated using a 
recursive procedure. The role played by this formula in the proof of Theorem 2 is 
similar to the role played by the recursive formula characterizing the Shapley value 
in the proof of Theorem 1:  

 
Lemma 1. The weighted Shapley value of player i satisfies the equality:  
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Proof. The weighted Shapley value of player i satisfies:  
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We will now indicate how to modify our original bidding mechanism in order to 

                                                           
12  Again, we omit the constant v and write for short wi(N) or Pw(N) instead of wi(N, v) or Pw(N, v). 
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obtain as an equilibrium outcome any weighted Shapley value. The only difference is 
in the construction of the weighted net bids Bw

i. The determination of net bids 
incorporates the vector of weights w  Rn

++ by having .   ij
j

i
j

ij
i
j

ii
w bwbwB  

Other than that change, the weighted bidding mechanism proceeds like the bidding 
mechanism. Intuitively we weigh each bid differently, according to the exogenously 
given weight of the person making the bid. 

Theorem 2. The weighted bidding mechanism implements the weighted Shapley value of the 
zero-monotonic game (N, v) in SPE. 

The proof of Theorem 2 is similar to the proof of Theorem 1. 
Finally, note that we can implement the weighted Shapley value in expected 

terms by using a simpler mechanism (similar to the Mas-Colell (1988) and Hart 
and Mas-Colell (1996), construction for the Shapley value). Given a system of 
weights w  Rn

++, we replace the bidding stage by a random choice of the 
proposer, where the probability of player i to be chosen as the proposer equals 

 Nj
ji ww / (rather than 1/n).  

 
5. General Transferable Utility Games and the Formation of Coalitions  
 
The only requirement we have imposed so far on the cooperative environment is 
that of zero-monotonicity. Zero-monotonic environments might still violate super-
additivity. Therefore the (weighted) bidding mechanism implements the (weighted) 
Shapley value even in some non super-additive settings. This result however is not 
entirely satisfactory since the outcome while coinciding with the Shapley value 
might not be ‘really’ efficient. The sum of payments would indeed equal v(N), yet 
v(N) might not be the maximal payoff the players could obtain. Note that in non 
super-additive environments it might be possible for the players to obtain a sum 
of payments that exceeds v(N) by splitting up into two or more coalitions.  

One way to resolve this difficulty might be to consider the super-additive 
cover of the environment. If we apply our mechanism to the super-additive cover 
of the environment rather than to the original environment, the equilibria 
outcomes would coincide with the Shapley value of the super-additive cover. A 
possible disadvantage of this approach is that a player (the proposer) is able to 
collect rents from a coalition of which she is not an active member. In other 
words, a player can act as a ‘principal’ for a coalition formed by other players.13 

One way to avoid the use of ‘principals’ is to modify our mechanism. The new 
generalized bidding mechanism would generate a coalition structure in which 
proposers would receive (when there is no rejection) just the value of the coalition 

                                                           
13  See Pérez-Castrillo (1994) and Pérez-Castrillo and Wettstein (2000) for the use of principals to realize 

cooperative outcomes. 
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to which they belong. In this mechanism the players would not only share the 
surplus but would also form coalitions in a sequential way. We show that at any 
SPE, the coalitions formed will constitute an efficient coalition structure and the 
final payments of the players will coincide with the Shapley value of the super-
additive cover of the environment. 

Before proceeding with the formal description of the generalized bidding 
mechanism we introduce the following notation. The super-additive (SA) cover of a 
cooperative game in characteristic form (N, v), is denoted by (N, V). The value 
V(S), for S  N, is defined by: }.ofpartitionais|)({Max)( SSvSV S     

We denote the Shapley value of player i in the SA cover of (N, v) by i(N), 
and similarly for the values i(S) of subsets S of N.  

We know that:  

  .}){\(}){\()()( 



ij
ii jN

n
iNVNV

n
N

11
 

A partition  such that   S SvNV )()( is called an efficient partition for N. 
The generalized bidding mechanism (GBM) is similar to the bidding 

mechanism. The only difference is that in the GBM, the proposer, in addition to 
offering a vector of payments to all the other players, also chooses a coalition she 
wants to form and be a member of. Hence, an offer by the proposer consists of a 
payments vector and a coalition. The offer is accepted if all the other players 
agree. In case of acceptance the coalition is formed, the proposer collects the 
value of that coalition and the players outside the coalition proceed to play the 
same game again among themselves. In the case of rejection all the players other 
than the proposer play the same game again. 

Formally, if there is only one player {i}, she obtains the value of the stand-
alone coalition. Given the rules of the game when played by at most n  1 players, 
the game for N = {1,..., n} players proceeds as follows:  

 
t = 1: Each player i  N makes bids bi

j in R for every j  i. 
 
Player  is chosen as in the bidding mechanism. She pays bi to every player 

i  . 
 

t = 2: Player  chooses a coalition S with   S and makes an offer yi in R to 
every player i  . 
t = 3: The players other than , sequentially, either accept or reject the offer. If an 
agent rejects it, then the offer is rejected. Otherwise, the offer is accepted.  

 
If the offer is accepted, each player i   receives yi and player  receives the 

value of the coalition S minus the payments  


i iy . After this, players in N\S 
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proceed to play the GBM again among themselves. (Therefore, final payment to a 
player i  S\{} is yi + bi, player  receives ,)(    





 i ii i bySv  and the final 

payment for a player i  N\S will be the sum of the bid bi, the offer yi, and the 
outcome of the GBM where the players are N\S.) On the other hand, if the offer 
is rejected, all players other than  proceed to play the GBM where the set of 
players is N\{} and player  receives the value of her stand-alone coalition. 

 
Theorem 3. The generalized bidding mechanism implements the Shapley value of the SA 
cover of the game (N, v). 
 
Proof. The arguments, in part, are very similar to those used in Theorem 1, thus we 
emphasize just the new features of this proof and otherwise rely on the reasoning 
employed in Theorem 1.  

It is easy to see that the theorem holds for k = 1. We assume that it holds for 
k = n  1 and then consider the following strategies: 
 

At t = 1, each player i, i  N, announces bi
j = j(N)  j(N\{i}), for every j  i. 

At t = 2, player i, i  N, if she is the proposer, chooses a coalition Si such that 
Si  ArgmaxSN {v(S) + V(N\S)  i in S} and offers }){\( iNy j

i
j   to every 

j  Si\{i} and )\(}){\( ijj
i
j SNiNy   to every j  Si.  

At t = 3, player i, i  N, if player j  i is the proposer and i  Sj, accepts any 
offer greater than or equal to i(N\{j}) and rejects it otherwise. If player j  i is the 
proposer and i  Sj, player i accepts any offer greater than or equal to 
i(N\{j})  i(N\ Sj) and rejects it otherwise.  

 
Following these strategies, the proposer selects a coalition S that is part of 

an efficient partition.14 Also, the induction argument ensures that, in the game 
that follows among the players in N\S, player i  S will obtain i(N\ S). It is 
then easy to see that the previous strategies yield i(N) to any player i. 

To prove that the previous strategies constitute an SPE, note, first, that the 
strategy at t = 3 is a best response for any player different from the proposer by 
the same argument we used in Theorem 1. At t = 2, given the rejection criteria 
used by the other players, if player i is the proposer, she chooses a subset Si that 
maximizes: 

v(Si)  



}{\

}){\(  
iSj

j
i

iN    



iSj

ijj SNiN )\(}){\(  = v(Si) + V(N\Si)  V(N\{i}). 

Therefore, the proposed strategy is optimal. Finally, an argument similar to 
                                                           
14  It can be easily shown that V(N) = MaxSN {v(S) + V(N\S)   in S}, for any player  in N, hence when 

the proposer chooses the best possible coalition to be a member of, she is choosing a coalition that forms 
part of an efficient partition. 
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the one in the proof of Theorem 1 demonstrates the optimality of the strategies at 
t = 1. 

To show that any SPE yields the Shapley value, we proceed by a series of 
claims. We state the claims without proof, since they are similar to those in 
Theorem 1. To simplify notation, we denote the ‘effective offer’ to player i   in 
stage 2, when player  is the proposer by zi, and define it as zi = yi if i  S\{} 
and zi = yi + i(N\S) if i  S. By the induction argument, the effective offer is 
the total payment (without taking into account the bid already received) that a 
player will receive (at equilibrium) if the offer is accepted. 
 
Claim (a). In any SPE, at t = 3, any player j   accepts the offer if zj is strictly greater 
than i(N\{}) for every player i  . Moreover, if zi < i(N\{}) for at least some 
i  , then the offer is rejected. 

 
Claim (b). If the coalition {} is not part of any efficient partition, then in any SPE of 
the game that starts at t = 2,  will choose a coalition S that is part of an efficient 
partition. Furthermore, player  will announce offers such that zi = i(N \ {}) for any 
player i  . Finally, at t = 3, every player i   accepts any offer such that zi  
i(N \ {}). 
 

If the coalition {} is part of any efficient partition, there exist other equilibria 
in addition to the previous ones. Any set of strategies where, at t = 2, the proposer 
makes offers such that zj  j(N \ {}) to a particular player j   and, at t = 3, 
the player j rejects any effective offer less than or equal to j(N \ {}), also 
constitute an SPE.

In all the SPE of this subgame, the payoffs (taking into account the 
continuation of the game after S has been formed) to players  and i   are 
V(N)  V(N \ {})  


j jb  and i(N \ {}) + bi , respectively. 

(Notice that following both types of strategies an efficient partition is 
formed.) 

 
Claim (c). In any SPE, B i = 0 for all i in N. 
 
Claim (d). In any SPE, each player’s payoff is the same regardless of who is chosen as 
the proposer. 
 
Claim (e). In any SPE, the final payment received by each of the players coincides with 
his Shapley value in the SA cover.      

 
Theorem 3 shows that when facing environments where forming the grand 

coalition might not be efficient, it is possible to employ a generalized version of 
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our original bidding mechanism that allows both that an efficient partition can be 
formed and that the surplus can be shared in a ‘reasonable’ way. If the game is 
super-additive, the generalized version yields the same outcome as the bidding 
mechanism. It is however important to notice that, if the game is not super-
additive but the grand coalition is efficient, this coalition is formed under both 
mechanisms although the sharing of the surplus will be different. The reason is 
that the Shapley value of the super-additive cover usually does not coincide with 
the Shapley value of the game if the game is not super-additive. 

Our GBM provides support for the use of the Shapley value of the SA cover as 
the generalization of the Shapley value for games in which it is efficient to form 
coalition structures which are different from the grand coalition. The GBM 
implements the Shapley value of the SA cover by simultaneously providing a 
bidding and coalition formation game. To the best of our knowledge, this is the first 
paper that supports this solution concept. Aumann and Dréze (1974) study 
games with a (given) coalition structure and define a value that assigns to each 
player his Shapley value in the coalition he belongs to. Under this concept, the 
payoff to any player does not depend upon his contribution to coalitions other 
than his coalition. The Shapley value of the super-additive cover takes into 
account not only the contribution of a player to the coalition he belongs to in an 
efficient structure, but also his potential contribution to any other coalition.15 

 
6. Conclusion 

 
The object of this paper was to construct a simple non-cooperative mechanism to 
realize a sharing of the surplus in a cooperative environment. The mechanism we 
use basically consists of two distinct stages of play: a bidding stage, at the end of 
which a winner is determined, followed by a proposal stage where the winner 
offers a sharing of the surplus. In the case where the proposal is rejected, the same 
game is played again by the players except for the proposer. We show that the 
payoff outcome of the subgame perfect equilibria of this game always coincides 
with the Shapley value of the game. Moreover, the strategies played by the players 
at equilibrium are simple and natural. We also showed that a natural 
modification of the mechanism implements the weighted Shapley value. Finally, 
we have introduced a simple generalization of the bidding mechanism that 
handles situations where the grand coalition might not be efficient. By playing the 
game, the players form, at equilibrium, an efficient coalition structure and share 
the surplus according to the Shapley value of the super-additive cover of the 
environment. 

                                                           
15  Owen (1977) and Hart and Kurz (1983) also propose a coalition structure value to every game and every 

coalition structure. However, in their approach, the coalition structure serves only as a bargaining tool to 
increase the payoff of the members of the coalitions. At the end, all the players join the grand coalition. 
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These mechanisms provide strong support for applying the Shapley value to 
situations where cooperation is needed to obtain an efficient outcome. It might 
be also used for a variety of cost allocation, revenue sharing, or partnership 
dissolution problems. 

The general approach taken in this paper may yield ways to provide non-
cooperative foundations for other cooperative solution concepts for transferable 
utility games or for cost-sharing methods. However, the extension of our 
approach to non-transferable utility games is problematic. There exist several 
extensions of the Shapley value to non-transferable utility games proposed by 
Harsanyi (1963), Shapley (1969), and Maschler and Owen (1989, 1992). Dagan 
and Serrano (1998) have shown that randomness is a necessary component in a 
mechanism designed to implement any of these extensions. Since the element of 
randomness in our mechanism (i.e., the tie-breaking rule) is inconsequential to 
proving our results, it seems that the approach taken in this paper would fail to 
implement the existing extensions of the Shapley value.  
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The paper examines the formation of free trade agreements (FTAs) as a network 
formation game. We consider an n-country model in which (possibly asymmetric) 
countries trade differentiated industrial commodities. We show that if all countries are 
symmetric, the complete FTA network is pairwise stable and it is the unique stable 
network if industrial commodities are not highly substitutable. We also compare FTAs 
and customs unions (CUs) as to which of these two regimes facilitates global trade 
liberalization, noticing that unlike CUs, each signatory of an FTA can have another 
FTA without consent of other member countries.  

 
 
 
1. Introduction 
 
The network of preferential trade agreements (PTAs) covers most countries in a 
complex way. The tendency towards ‘regionalism,’ a movement to form regional 
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trade agreements, has been steadily growing especially since 1980s (Bhagwati, 
1993). Since the Treaty of Rome established the European Economic Community 
(EEC) in 1957, the European Union (EU) has been growing with the accession of 
new members. The North American Free Trade Agreement (NAFTA) has started 
negotiations with Latin American countries to form the Free Trade Area of the 
Americas. Japan has recently signed free trade agreements (FTAs) with Singapore 
and Mexico. The website of the World Trade Organization (WTO) on regionalism 
provides us with an excellent introduction to this topic. 

 
The vast majority of WTO members are party to one or more regional trade 
agreements. The surge in RTAs has continued unabated since the early 1990s. Some 
250 RTAs have been notified to the GATT/WTO up to December 2002, of which 
130 were notified after January 1995. Over 170 RTAs are currently in force; an 
additional 70 are estimated to be operational although not yet notified. By the end of 
2005, if RTAs reportedly planned or already under negotiation are concluded, the 
total number of RTAs in force might well approach 300. 
(http://www.wto.org/english/tratop/_e/region_e/region_e.htm, August 23, 2005) 
One of the most frequently asked questions is whether these regional groups help or 
hinder the WTO’s multilateral trading system. A committee is keeping an eye on 
developments. 
(http://www.wto.org/english/thewto_e/whatis_e/tif_e/bey1_e.htm, August 23, 2005) 
 
Whether PTAs serve as ‘building blocks’ or ‘stumbling blocks’ is a central 

question in this topic (Bhagwati, 1993). Of course, multilateral trade 
liberalization efforts and PTA formation interact with each other.1 However, 
putting this feature aside for a while, another important question remains. Will 
successive PTA formation alone effectively achieve global free trade, or will the 
process stop prematurely so that the world is divided into several, mutually 
exclusive trading blocs? If PTA formation continues until the complete FTA 
network is achieved, we may conclude that PTAs are ‘building blocks.’ But 
otherwise, PTAs can be ‘stumbling blocks.’2 

Ohyama (1972) and Kemp and Wan (1976) demonstrate a positive result for 
this ‘dynamic’ path problem. The so-called Kemp-Wan theorem states that 
member countries can appropriately adjust external tariffs and make internal 
transfers so that a newly formed customs union (CU) is Pareto-improving, no only 

                                                           
1  Levy (1997), Krishna (1998), and Ornelas (2005c) show in their political economy models that PTA 

formation can hinder multilateral trade liberalization. Freund (2000b) demonstrates that countries have 
more incentive to form PTAs as multilateral trade negotiations lower tariffs imposed by every country. See 
also Bagwell and Staiger (1997a,b), Bond et al. (2001), and Ethier (1998). 

2  Bhagwati and Panagariya (1996) raise this ‘PTA time-path’ question. The complete FTA network may 
still be different from global free trade attained through multilateral trade negotiations, as Freund (2000a) 
demonstrates in a model where firms incur distribution network costs, for example. The complete FTA 
network may be more complex and inefficient (‘spaghetti bowl’ phenomenon) than global free trade 
attained through multilateral trade negotiations, as Bhagwati and Panagariya (1996) claim. 
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to members themselves but also to all countries in the world.3 Successive 
application of this Kemp-Wan process implies that the CU expansion continues 
until all countries in the world are covered.4 Although the theorem looks 
promising, it should be taken as an existence theorem (of a Pareto-improving CU 
expansion). In reality, it is extraordinarily difficult to adjust external tariffs such 
that each nonmember country’s welfare is not reduced by the CU formation. 
Indeed, as Viner (1950) taught us, adverse trade-diversion effects often prevent 
PTAs from being Pareto improving.5 It is far from obvious that in reality, countries 
always have incentives to form PTAs so that we will eventually observe the 
complete free trade network (global free trade). Indeed, Yi (1996) shows that even 
if countries are symmetric, the world would be divided into two CUs of 
asymmetric size when the number of countries is a realistic number. 

CUs are not the only form of PTA. A PTA can take a form of FTA, such as the 
NAFTA, in which member countries choose their individual external tariffs without 
consent of other member countries unlike in the case of CU where all member 
countries adopt the same external tariff schedule. An important consequence of 
this difference, which seems to be overlooked more or less in the literature, is that 
under an FTA, each member country (or a subset of member countries) can sign 
another FTA with outside countries without consent of other member countries. 
Whereas in the case of CUs, such as the EU, all member countries should be 
involved when an outside country forms a PTA with a member country of a CU. 
Thus, FTAs are more flexible than CUs: A hub-and-spoke system, for example, will 
not appear if only CUs are allowed as PTAs.6 In practice, CUs and FTAs co-exist in 
a complex manner. The hub-and-spoke system is prevalent in the world. Mexico, 
which is a member of the NAFTA, has FTAs with the EU, Japan, and others. The 
traditional approach by coalition formation games such as Yi (1996, 2000) is not 
rich enough to capture this feature of the world PTA configuration. Coalition 
formation games cannot properly address the issues of the web of FTAs, nor can 
they analyze the situation where CUs and FTAs co-exist. 

The network formation game developed by Jackson and Wolinsky (1996) 
provides an appropriate framework to analyze such complex formation of PTAs. 
The network formation game is suitable for the analysis of FTAs. We can predict 
whether or not an arbitrary FTA configuration is stable. As we show in Section 4, 
the situation in which CUs and FTAs co-exist can also be analyzed within the same 

                                                           
3  See Panagariya and Krishna (2002) for an FTA version of the Kemp-Wan theorem. 
4  Baldwin (1995) demonstrates that as a regional trading bloc expands, outside countries have more 

incentive to join the bloc. 
5  Krugman (1991) claims that if a ‘natural’ trading bloc, within which a large share of trade takes place even 

in the absence of a PTA, is formed, the gains from trade creation are likely to outweigh the losses from 
trade diversion. 

6  Kowalczyk and Wonnacott (1992) discuss the hub-and-spoke system in the argument about NAFTA. 
Mukunoki and Tachi (2006) investigate dynamic formation of bilateral FTAs in a three-country model. 
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framework. In this paper, given any FTA configuration in the world, we examine 
whether or not a pair of countries has an incentive to sign an FTA, and whether or 
not a country has an incentive to cut an existing FTA. A network that is immune to 
such deviations is called (pairwise) stable network (Jackson and Wolinsky, 1996). 
Then we ask if the complete FTA network is stable, and if it is, we further ask if it is 
unique. If the complete FTA network is a unique stable network, the world is likely 
to attain global free trade, building many bilateral FTAs.7 If the complete FTA 
network is not stable, on the other hand, FTA formation would stop prematurely. 
Investigating countries’ incentives to sign FTAs and deriving conditions under 
which the complete FTA network is stable, we hope to gain an insight into how far 
the worldwide movement toward FTAs continues.8 

First, we analyze each country’s incentive to sign or abandon an FTA. As 
Krugman (1991) and Grossman and Helpman (1995) suggest, the asymmetry of 
countries is an important factor when we assess countries’ incentives for FTAs. 
Viner (1950), on the other hand, suggests that substitutability of commodities 
traded internationally is also an important factor. The model of this paper is 
general enough to allow us to observe how these factors affect a country’s 
decision to sign an FTA. We consider the model in which the world consists of n 
countries that trade a numeraire good and a continuum of non-numeraire, 
differentiated, industrial commodities. Consumers in all countries share a 
common quasi-linear utility function, in which substitutability of industrial 
commodities is parameterized. Countries may be different in the market size 
(population size) and the size of the industrial good industry (measure of firms). 
Each of the differentiated industrial commodities is produced by one firm that 
belongs to one of n countries. An FTA between countries i and j simply means 
that countries i and j simultaneously eliminate tariffs on industrial commodities 
imported from each other. 

Furusawa and Konishi (2004) show that when consumers have quasi-linear 
utility functions and all countries share the same constant-returns-to-scale 

                                                           
7  To derive a definite prediction regarding the time-path to global free trade, we may need to build a 

dynamic network formation model with farsightedness. Mukunoki and Tachi (2006) show in a dynamic, 
symmetric, three-country model that under certain parameter values, only one bilateral FTA is signed in 
equilibrium so that global free trade is not attained. As Kennan and Riezman (1990) suggest, countries in 
a bilateral FTA may in some cases prefer the current situation to global free trade. Then, each member 
country may not sign a new bilateral FTA with an outside country since it would induce an FTA between 
spoke countries, effectively attaining global free trade, in the future. However, extending Mukunoki and 
Tachi’s (2006) analysis to the case of many countries is not an easy task. 

8  Driven by the same motivation, Freund (2000c) builds a model such that each country calls out the 
number of countries with which it wants to have FTAs, and shows that global free trade is effectively 
attained as a unique Nash equilibrium. However, she seems to assume implicitly that a bilateral FTA 
between two countries is made effective as long as one of the countries benefits from an agreement, even if 
the other strictly prefers not to sign the agreement. This ‘open membership’ rule (see also Yi, 1996) does 
not seem to be appealing for discussions of FTAs. If FTAs require consent from both sides, then we will 
run into the multiplicity problem of Nash equilibria (see footnote 16). 
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production technology for each commodity they commonly produce, social 
welfare of a country can be represented by the sum of consumers’ gross utilities 
and trade surplus of non-numeraire goods. An FTA with another country is likely 
to raise the gross utility, although the second-best effect may sometimes outweigh 
the benefits from tariff reduction.9 On the other hand, the impact on the 
(industrial) trade surplus is generally ambiguous, and is often crucial in 
determining whether or not an FTA is welfare improving. 

The effect on a country’s trade surplus of signing an FTA with another 
country can be further decomposed into two: one on the trade surplus between 
these two countries (the direct surplus effect) and the other on the trade surplus 
with third countries (the third country effect). The latter effect is always positive, 
since the country’s exports to third countries are not affected by the FTA, whereas 
its imports from them decrease because their commodities become relatively more 
expensive after the FTA. Thus, the third country effect always serves to encourage 
countries to sign FTAs at the costs of third countries: all other countries including 
existing FTA partners are hurt by these new FTAs. In contrast, the sign of the direct 
surplus effect depends on the two countries’ characteristics such as the market 
and industry size, and the characteristics of their current partners. Let us consider, 
for example, an FTA between a highly-industrialized small country and a less-
industrialized large country. The FTA increases trade flows from the former to the 
latter disproportionately, dramatically increasing the trade surplus of the small 
highly-industrialized country and decreasing that of the large less-industrialized 
country. The direct surplus effect for the large less-industrialized country is likely 
to be negative, and it may outweigh the third country effect. Consequently, the 
large less-industrialized country is likely to oppose to sign the FTA.10 If two 
countries are similar in their characteristics, however, the direct surplus effects 
would be small, and the countries are likely to benefit from signing an FTA due to 
the third country effect. 

The main results of this paper are as follows. When all countries are 
symmetric in the market size and the industry size, we show that the complete FTA 
network, the network in which any pair of countries has an FTA, is pairwise stable 
(Proposition 1). If commodities are highly substitutable among themselves, 
however, there may also be other pairwise stable networks. It is because the 

                                                           
9  If tariffs have been imposed on a large portion of commodities, it may not be welfare improving to get rid 

of tariffs for a small portion of commodities since it enlarges distortions between these commodities and 
the ones with high tariffs. 

10 It is interesting to note that countries in our model have a view that Krugman (1991) calls GATT-think: 
‘(1) Exports are good, (2) Imports are bad, (3) and other things being equal, an equal increase in imports 
and exports is good.’ Our model gives an economic reasoning to this ‘enlightened mercantilism’ (see 
Furusawa and Konishi, 2004, for details). Bagwell and Staiger (1999a) argue that GATT’s principle of 
reciprocity, which appears to reflect the ‘enlightened mercantilism,’ indeed has a sound economic role of 
enhancing efficiency. 
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difference in the number of FTA partners can create a large differential in the 
impacts on the direct surplus, even though all countries are symmetric in the 
market size and industry size. We show that if predetermined external tariff rates 
are small or if commodities are not highly substitutable among themselves, the 
complete FTA network is a unique pairwise stable network (Proposition 2). If 
countries are asymmetric, on the other hand, the complete FTA network may not 
be attained. In a special case where all industrial commodities are independent 
from one another, a pair of countries signs an FTA if and only if their 
industrialization levels are close to each other (Proposition 3).11 This proposition 
implies for example that developed countries and less developed countries 
respectively form mutually exclusive trading blocs. We also compare FTAs and 
CUs as to which of these two regimes facilitate global trade liberalization. We find 
that if all countries are symmetric, and if industrial commodities are not highly 
substitutable among themselves, a pair of countries has less incentive to form a 
new FTA if either of them is a member of a CU as opposed to an FTA (Proposition 
4). If countries are asymmetric, on the other hand, the CU formation averages out 
member countries’ industrialization levels, which may help further PTA formation. 
We illustrate this possibility in the case of mutually independent industrial 
commodities. 

An independent work by Goyal and Joshi (2006) also investigates the FTA 
formation as a network formation game, and obtains the result that the complete 
FTA network is pairwise stable (the counterpart of our Proposition 1). Our model 
is richer in some important aspects, enabling us to obtain further insights on 
incentives to sign FTAs. In particular, their model assumes that firms produce a 
homogeneous good, whereas ours has an industry with differentiated 
commodities whose substitutability is parameterized. As briefly discussed above, 
substitutability among differentiated commodities plays an important role in 
determining the global FTA configuration. In addition, our model is more suitable 
for the analysis of asymmetric countries than theirs. The main part of their 
analysis assumes that all countries are symmetric with respect to the (Cournot-
oligopolistic) market size and the number of domestic firms, whereas ours are 
more flexible so that we obtain such a result as Proposition 3 in the case of 
asymmetric countries. We also discuss the difference between FTAs and CUs as to 
which of them facilitates global trade liberalization in a higher degree. 

 
 
 

                                                           
11 Furusawa and Konishi (2005) show that Propositions 1 and 2 in this paper can be generalized to the case 

of asymmetric countries if transfers between FTA signatories are allowed. With transfers, a pair of 
countries signs an FTA even if their industrialization levels are quite different (see the Concluding 
Remarks for more details). 



 

125 
·················· 
Coalitions and Networks 

Coalitions and Networks Chap 6 

2. The Model 
 
2.1 Overview 
Let N = {1, 2, …, n } be the set of n countries (n ≥ 3), each of which is populated 
by a continuum of identical consumers who consume a numeraire good and a 
continuum of horizontally differentiated commodities that are indexed by 
 [0,1]. A differentiated commodity can be considered as a variety of an 
industrial good. Each industrial commodity  is produced by one firm, also 
indexed by the same , which engages in price competition with other firms in 
individual segmented countries. We assume that there is no entry of firms into this 
industry. Each firm is owned equally by all domestic consumers who receive equal 
shares of all firms’ profits. The numeraire good is produced competitively, on the 
other hand. Each consumer is endowed with l units of labor, which is used for 
production of the industrial and numeraire goods. Each unit of labor produces 
one unit of the numeraire good, so that the wage rate equals 1. We also assume 
that industrial commodities are produced with a constant-returns-to-scale 
technology, and normalize the unit labor requirement to be equal to 0 for each 
industrial commodity, without loss of generality. Alternatively, we can interpret 
the model such that each consumer is endowed with l units of the numeraire 
good, which can be transformed by a linear technology into industrial 
commodities. 

In country i  N, measure  
i of consumers and measure s i of firms that 

produce industrial commodities are located. Thus, country i produces s i industrial 
commodities, which are consumed in every country in the world. Since the 
markets are segmented, firms can perfectly price discriminate among different 
countries. We normalize the size of total population so that   n

k
k

1 1  as well as 

  n
k

ks1 1 . The ratio  i  s i/ 
i measures country i’s industrialization level. The 

higher the ratio, the higher the country’s industrialization level. This ratio plays an 
important role later in our analysis. Country i imposes a specific tariff at a rate of 

i
jt  on the imports of the industrial commodities that are produced in country j. 

Under the Most-Favored-Nation (MFN) principle, country i must impose the same 
tariff rate against all other countries unless they are FTA partners of country i. We 
assume that there is no commodity tax, so that ,0i

it  and that the countries do 
not impose tariffs on the numeraire good, which may be traded internationally to 
balance trade. Tariff revenue is redistributed equally to domestic consumers. 

 
2.1 Consumer demands 
A representative consumer’s utility is given by the following quasi-linear utility 
function: 
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where q: [0,1]  + is an integrable consumption function, and q0 denotes the 
consumption level of the numeraire good.12 The second last term represents the 
substitutability among differentiated commodities, which may become clearer if 
we notice 

1

0
 dq )( 2=   1

0

1

0
 ddqq )()( . The higher the parameter , the higher 

the substitutability between industrial commodities. The industrial commodities 
are independent from one another if  = 0, while they are perfect substitutes if 
 = 1. Letting y denote the consumer’s income, the budget constraint can be 
written as 

,)()(~
0

1

0
qdqpy   

 (2) 

where :~p  [0,1]  + denotes the consumer price function. The first order 
condition for the consumer’s maximization problem gives us the inverse demand 
function for each good : 
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Integrating over [0,1], we obtain 
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 Substituting this equation back into the first order 
condition, we have 
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2.3 Equilibrium in country i 
Letting p i() and iP

~
denote the producer price for commodity  sold in country i, 

                                                           
12  This utility function is a continuous-goods version of the ones of Shubik (1984) and Yi (1996, 2000) who 

analyze the case where there are only finitely many differentiated commodities. Our setup of continuous 
commodities is based on the model developed by Ottaviano et al. (2002). This specification is more 
suitable, for example, than perfectly competitive models for the analysis of FTA formation among 
asymmetric countries with a differentiated good, in which substitutability among differentiated 
commodities plays an important role. Interestingly, price competition and quantity competition yield the 
same equilibrium outcomes in this setup of continuous commodities since a firm’s choice of either price 
or production quantity has only a negligible impact on the demands for other firms’ products. Therefore, 
the following analysis would not be affected by the choice of strategic variables, which is another appealing 
feature of the model. 
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and the average consumer price in country i, respectively, a representative 
consumer’s demands in country i for commodity  produced in country k can be 
written as 

.)
~

()()( ][ ii
k

ii Ptpq 
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  (3) 

The firm  in country k chooses n
i

ip 1)}({   to maximize its profits  
.)()()(   n

i
iii qp1  The first order condition for this maximization gives us 
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for any i. Notice that p i() does not vary with . Prices charged by firms depend 
only on the importing country’s tariff policies. We henceforth suppress the 
argument . 

It follows from (4) that country i’s average consumer price is 
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Where   n
k

i
k

ki tst 1 .  Thus, country i’s average consumer price iP
~

 is given by 
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Substituting (5) into (4) yields the equilibrium producer price i
kp that each firm in 

country k charges for the market of country i, as a function of country i’s tariff 
vector ),...,( i

n
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Then it follows from (3) that a representative consumer’s demand in country i for 
a commodity produced in country k, denoted by ,i

kq is 
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Notice that )()()( ii
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k qp tt  1  for any tariff vector ti. 
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2.4 Social welfare 
Under the world tariff vector t = (t¹, ..., tn), each firm in country i earns the profits: 
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Country i’s per capita tariff revenue is 
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 (8) 

A representative consumer’s income in country i is the sum of labor income, 
redistributed tariff revenue, and the profit shares of the firms in country i: 
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where )()( ii
k

i qq t if  is produced in country k. 
Substituting these equilibrium demands, (6) and (10), into (1), we obtain a 

representative consumer’s utility in country i as a function of the world tariff 
vector, which can be considered as country i’s per capita social welfare: 
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with t–i=(t1, ..., ti – 1, ti + 1, ..., tn). The functions V i(ti), M i(ti), and X i(t –i) represent a 
consumer’s gross utility, import payments, and the export value of industrial 
commodities, respectively.13 Country i’s social welfare consists of a consumer’s 
gross utility V i(ti) and the per-capita industrial trade surplus X i(t –i) – M i(ti).14 
Country i’s tariffs affect social welfare through the effects on V i(ti) and M i(ti). 
Other countries’ tariffs affect country i’s social welfare through the effect on X i(t –i). 

Now, we examine the effects of tariff changes on the three components of 
social welfare: V i(ti), X i(t –i), and M i(ti). We notice from (12)-(14) that an increase 
in a tariff rate affects these components only through the changes in the 
consumption of industrial commodities. We see from (6) that the consumption of 
an industrial commodity depends on the tariff rate imposed on that commodity 
and the average tariff rate, i.e., ),(~)( iii

k
ii

k ttqq kt . Thus, we can write, for example, 
)).,(~),...,,(~(

~
)( ii

n
i
n

iiiiii ttqttqVtV 11  An increase in i
jt does not only affect i

jq directly, 
but also affects i

kq indirectly, for all k = 1,2,…,n. These changes in consumption 
affect V i(ti) and M i(ti), in turn. As for the effect on V i(ti), for example, we have 
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An increase in another country’s tariff rate on country i’s commodity affects the 
export profits X i(t –i) in a similar fashion. We can easily obtain the following 
lemma that shows the effects of raising a tariff rate on the three components of 
social welfare. The proof is straightforward and hence omitted. 

 
Lemma 1. The first order effects of raising i

jt  on V i and M i and the effect of raising j
it on 

X i are: 
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13 The gross utility V i(ti) = U((qk

i (ti)){kN}, l ) includes the utility derived from the consumption of l units of 
the numeraire good. However, since l is a constant that does not necessarily represents the actual 
consumption level of the numeraire good, V i(ti) should be regarded as the function that represents the 
gross utility derived from the consumption of the industrial commodities. 

14 This decomposition of social welfare, developed by Furusawa and Konishi (2004), may appear to suggest 
that a rise in industrial trade surplus unambiguously enhances social welfare. It should be emphasized, 
however, that the decomposition would not support such mercantilism, since an increase in imports, for 
example, is not necessarily bad as it raises consumers’ gross utilities as well as it lowers trade surplus. 



 

130 
·················· 

Free Trade Networks 

Coalitions and Networks Chap 6 

It may appear that an increase in a tariff rate of country i, say i
jt , necessarily 

decreases the domestic consumer’s gross utility V i. Each consumer in country i 
reduces the consumption of country j’s commodities as a consequence, which is 
detrimental. However, each agent consumes other commodities more than 
before, which tends to increase the consumer’s gross utility. The latter indirect 
effect may outweigh the former so that an increase in a tariff rate may increase the 
domestic consumer’s gross utility, if the industrial commodities are highly 
substitutable among themselves. Similarly, an increase in a tariff rate may not 
always decrease the import payments. If the industrial commodities are highly 
substitutable, the resulting decrease in i

jq may be outweighed by increases in i
kq

for k ≠ i, j. However, it is easy to see from Lemma 1 that an increase in another 
country’s tariff unambiguously decreases the domestic profits obtained from the 
export to that country. 

 
3. Free Trade Agreements 

 
3.1 Incentives to sign an FTA 
We examine incentives for country i to sign an FTA with country j. If countries i 
and j sign an FTA, they eliminate all tariffs imposed on commodities imported 
from each other, while keeping all other tariffs at their original levels. Letting t and 
t denote the world tariff vectors before and after the FTA, respectively, t is 
different from t only in the respect that 0 '' j

i
i
j tt . Country i has an incentive to 

sign an FTA with country j if and only if W i(t) ≥ W i(t), which can be written as 

 V i(ti) + [X i(t –i) –  M i(ti)]  0, (15) 

where  represents a change in the respective function values caused by an FTA 
between countries i and j such that V i(ti)  V i(ti ) – V i(ti), for example. As we 
will see shortly, a tariff reduction is likely to increase a consumer’s gross utility, 
unless the industrial commodities are highly substitutable from one another. Since 
the FTA increases country i’s export profits and is also likely to increase the import 
payments, on the other hand, the FTA has an ambiguous impact on country i’s 
industrial trade surplus. Under the MFN principle, each country i imposes the same 
external tariff rate, denoted by t 

i, on all commodities imported from countries 
that have no FTAs with country i. We define Ci = {k  N | tk

i = 0} as the set of 
countries that produce commodities on which country i does not impose tariffs. 
(Notice that Ci includes country i itself since ti

i = 0.) 
First, we investigate the sign of V i(ti). The next lemma shows that an FTA 

increases a consumer’s gross utility of a country that has liberalized trade with the 
majority of countries, i.e., the majority of commodities are exempt from tariffs. 
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Lemma 2. A bilateral FTA with country j increases a consumer’s gross utility for country i, 
i.e.,  V i(ti) > 0, if sCi + (s 

j/2)  ½. 
 
Remark 1. The condition reflects the second best effect: In an economy with distortions, 
the partial removal of tax distortions may reduce efficiency. When a tariff on a 
commodity is eliminated, distortions between this commodity and untaxed 
commodities shrink, whereas distortions with taxed commodities expand. Thus, if there 
are more untaxed commodities than taxed commodities, the second best theory tells us 
that a bilateral FTA between i and j is likely to raise a consumer’s gross utility. The 
condition s Ci + (s 

j/2)  ½ matches exactly to this observation. 
 
Next, we turn to investigating the effect of an FTA between countries i and j 

on the industrial trade surplus. Let M i
k and X i

k be country i’s (per capita) import 
payments to country k and country i’s (per capita) export profits from country k, 
respectively: 
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Then, we can rewrite country i’s industrial trade surplus as 
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An FTA between i and j only involves changes in t 
i and t 

j so that it does not affect 
)( ki

kX t for any k ≠ i, j. Consequently, a change in country i’s industrial trade 
surplus can be written as 

[X i(t –i) – M i(ti)]= 
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,
effect surplus Direct
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The third country effect, represented by the last terms, is always positive since the 
reduction of j

it  makes commodities imported from country j relatively less 
expensive, and hence country i’s imports from third countries decrease, i.e., 

.)( 0 ii
jM t  The reduction of FTA signatories’ imports from all other countries 

hurts those outsiders, but provides countries i and j with incentives to sign an 
FTA. 

Having shown that the third country effect is positive, let us now investigate 
the direct surplus effect, which can be rewritten as follows from (16) and (17): 
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where   
i = s 

i/  
i as defined above. The higher   

i  and the lower  
 j, the larger an 

increase in country i’s industrial trade surplus. Thus, the direct surplus effect is 
unbalanced in favor of the relatively more industrialized country.15 The more 
industrialized country derives a large benefit from the opening of the partner’s 
relatively large market. In addition, opening its own market to the partner’s firms 
does not significantly increase import payments since the resulting penetration by 
the partner’s firms is relatively small. Another important factor that affects the 
incentives to form an FTA is the difference in the original tariff rates. If t i < t j, for 
example, then it is likely that ).()( jj

i
ii

j qq tt   Country i’s export to country j 
increases more than its import from country j, and hence the FTA between i and j 
tends to be more beneficial to country i.                   

 
3.2 Stable free trade networks 
An FTA that involves more than two countries can be considered as a collection of 
bilateral FTAs between member countries, so in the graph theory an arbitrary 
network of FTAs can be described as a graph. An FTA between countries i and j 
can be considered as a link, which is an unordered pair of two countries. An FTA 
graph is an undirected graph, (N,), consisting of the set of countries N and a 
(free trade) network  that is a collection of links. The set of country i’s FTA 
partners in network  is Ci() = {i}  {k  N : (i, k)  }, which includes i, as we 
have already described. We continue to write Ci without confusion, as long as 
network  is fixed. 

If external tariff rates are exogenously determined as in this paper, or if they 
are determined uniquely for each free trade network  (such as in the case where 
all countries set their individual optimal tariffs given a prevailing network ), then 
country i’s payoff (social welfare) can be written uniquely by ui(). The set of 
countries N and their payoff functions define a network formation game. 

Network formation games are first studied by Jackson and Wolinsky (1996). 
A pairwise stable network is a network * such that (i) for any i  N and for any 
(i, j)  *, ui(*) ≥ ui(*\(i, j)), i.e., no country has an incentive to cut a link with 
another, and (ii) for any (i, j)  * with i ≠ j, if ui(*) < ui(*  (i, j)) then 
uj(*) > uj(*  (i, j)), i.e., for any unlinked pair of countries, at least one of them 
has no incentive to form a link with the other.16 

                                                           
15 Indeed, if one country’s direct surplus effect is positive, the partner’s direct surplus effect must be negative 

since the sum of two countries’ direct surplus effects is always zero, i.e., X 
i
j(t 

j) = M 
j
i(t 

j) for any i, j  N 
with i ≠ j. 

16 Readers may be tempted to formulate a strategic form game such that each player (country) announces the 
names of players with whom she wants to be linked, and a link is formed if and only if both sides of the 
link announce each other’s names. In such a game, however, there would be too many Nash equilibria, 
always including the one without any link. It is because a player has no incentive to announce the name of 
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We are particularly interested in the situation where global free trade is 
effectively attained. A complete graph is the graph (N, comp) that contains all possible 
links, i.e., for any i, j  N with i ≠ j, (i, j)  comp. We call comp a complete network. 
The global free trade is a complete graph in the free trade network formation game. 

 
3.3 Symmetric countries 
We say that countries i and j are symmetric if s i = s j and  i =  j. This subsection 
considers the case in which the world consists of n symmetric countries so that 
s i =  i = 1/n for any i  N. In this case, country i’s direct surplus effect can be 
simplified as 
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The current network structure affects the impact of the FTA between i and j 
on country i’s industrial trade surplus through its effects on commodity demands. 
Especially important is the size of Ci and Cj. 

Let us say that countries i and j are completely symmetric if they are symmetric 
and |Ci | = |Cj|. If the original tariffs are the same between completely symmetric 
countries i and j, i.e., t i = t j = t, then ji tt  and )()( ii

j
jj

i qq tt  , and hence we have 
)()( ii

j
jj

i qq tt   and )].()([ ii
j

ii
j MX tt    Thus, the direct surplus effect 

disappears if countries i and j are completely symmetric and their original tariffs 
are the same. An increase in country i’s export to country j and an increase in 
country i’s import from county j are completely canceled out. On the other hand, 
the third country effect is nonnegative. Thus, we have )]()([ iiii MX tt   ≥ 0 if 
countries i and j are completely symmetric. 

Completely symmetric countries always have incentives to sign an FTA as long 
as the condition in Lemma 2 is satisfied. One important case is that all pairs but 
(i, j) have already formed free trade links. Since most tariffs are already eliminated, 
an FTA between i and j reduces distortions, and hence enhances a consumer’s 
gross utility in these countries (V i > 0). Thus, the two countries can improve 
social welfare by signing an FTA, which leads to our first proposition.17 

 

                                                                                                                                        
the player who does not announce her name. See Dutta and Mutuswami (1997) for the coalition-proof 
Nash equilibrium, a refinement of the Nash equilibrium in such games 

17 Bagwell and Staiger (1999a) argue that reciprocal trade liberalization between two countries is beneficial to 
both countries since it leaves each country’s terms of trade unchanged so that it eliminates negative terms-
of-trade externalities. An FTA between two completely symmetric countries fits their argument in that it 
leaves the bilateral (industrial commodity) terms of trade unaffected. In addition, each country’s bilateral 
terms of trade against a third country improves as qk

i (ti) and hence pk
i (ti) declines for k ≠ i, j. 
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Proposition 1. Suppose that there are n symmetric countries in the world, and that their 
external tariff rates are the same if they are imposed. Then, global free trade (the complete 
network comp is a stable network. 
 
Proof. The second condition for pairwise stability is vacuously satisfied since there 
is no unlinked pair of countries under the complete free trade network. Therefore, 
we need only show that a representative country i has no incentive to cut a link with 
country j. Or equivalently, country i has an incentive to sign an FTA with country j 
under the network comp\(i, j). Now, we know from the above observation that 
country i’s industrial trade surplus does not decrease by signing the FTA since 
countries i and j are completely symmetric. Moreover, since sCi = 1 –(1/n) and 
s j = 1/n, we have sCi + (s 

j/2) = 1 – (½n) > ½ for all n ≥ 3 under comp\(i, j). Then, it 
follows from Lemma 2 that a consumer’s gross utility in country i strictly 
increases. Therefore, we have ui(comp) > ui(comp\(i, j)), implying that comp is a 
stable network.      

 
Remark 2. Note that this proposition holds even in the case where each country 
optimally adjusts its tariff rate to a change in the free trade network. If a country cuts a 
link with another under comp, these countries would impose the same optimal tariff rate 
by symmetry. Thus, the assumptions of Proposition 1 are satisfied even if tariff rates are 
endogenously determined at their optimal levels. 

 
Bagwell and Staiger (2005) show that any Pareto efficient tariff vector is 

unstable since a pair of countries can benefit from reciprocal reduction of their 
tariffs against each other while retaining those against other countries. This 
bilateral opportunism problem arises since the mutual tariff reduction that is 
discriminatory against third countries will improve their terms of trade against 
third countries. Their striking proposition also holds in our imperfectly 
competitive world. The bilateral tariff reduction from a Pareto efficient tariff 
vector can be tailored so as to nullify the direct surplus effect. Since the third 
country effect is always positive, however, this tariff reduction will unambiguously 
improve the industrial trade surplus, so any Pareto efficient tariff vector is 
vulnerable to the bilateral opportunism. Due to the imperfectness of competition, 
free trade tariff vector in our model (the origin of the tariff space) lies above the 
set of Pareto efficient tariff vectors. Therefore, bilateral tariff reduction from free 
trade, i.e., mutual provision of import subsidies, definitely benefits both countries, 
implying that free trade is not pairwise stable if a pair of countries can choose 
discriminatory subsidies when they sign an FTA. Although we restrict the feasible 
set of tariff vectors to the non-negative orthant following the convention of the 
literature, allowing countries to choose subsidies can be an interesting extension 
of our analysis of FTA network formation game. 
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Now, it is natural to ask if the complete graph is a unique stable network. 
Unfortunately, it is not the case in general even if countries are symmetric. If 

)( jj
iq t is significantly smaller than )( ii

jq t  and hence )( jj
iq t is significantly smaller 

than ),( ii
jq t  the direct surplus effect for country i is negative and it may 

outweigh the third country effect. This situation arises when country j has many 
FTAs with other countries, while country i has a small number of FTAs. 

 
Lemma 3. Consider the case where the world consists of n symmetric countries that would set 
a common tariff rate of t. Country i’s incentive to sign an FTA with country j increases with 
|Ci| and decreases with |Cj|, and hence it is smallest if country i does not belong to any FTA 
while country j has FTAs with all countries but i. 

 
Consider the situation where country i’s incentive to have an FTA with 

country j is smallest as described in Lemma 3. If  is large and close to unity, 
consumer demands for a commodity are sensitive to prices for other commodities. 
In the absence of an FTA, therefore, isolated country i does not import much of 
industrial commodities, and most of industrial commodities consumed are 
domestically produced. However, once country i signs an FTA with country j, much 
of (about a half of) the consumption of domestic commodities is substituted by 
those produced in country j so that country i experiences a dramatic increase in its 
import payments. In contrast, country j has already opened its market to all but 
country i before the FTA. Therefore, the FTA with country i does not increase its 
imports much even if  is large. Therefore, the direct surplus effect of country i is 
negative and large in magnitude, which outweighs the third country effect and the 
effect on V i(t i). Although it is hoped that (preferential) trade liberalization 
continues under the GATT Article XXIV, it is quite possible that the process of FTA 
formation stops prematurely even if all countries are symmetric. 

Now, we seek the condition under which every pair of countries has incentive 
to form an FTA regardless of the current FTA network. In such a case, the 
complete network (global free trade) becomes a unique stable network. The next 
proposition states that the complete FTA network is a unique stable network if 
tariffs are small or if the industrial commodities are not highly substitutable from 
one another. 

 
Proposition 2. Suppose that the world consists of n symmetric countries that would set a 
common external tariff rate of t. Any pair of countries without an FTA have incentives to 
form a free trade link under any network Γ, and thus the complete FTA network compis a 
unique stable network if and only if either 

(i)  A(,n)  –4n + 4(5n – 8)– (11n – 23 + n
4

)² ≤ 0, or 
(ii)  t ≤  (, n)  ),(

))((
nA

n


 218   when A n) >0 
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is satisfied. Condition (i) is satisfied if  is smaller than or equal to the smaller root of 
A(,n) =0, which we call (n)  (0,1). The critical tariff rate  (, n)  in condition (ii) is 
decreasing in . 

 
Figure 1 depicts the threshold for the uniqueness of the stable network. The 

condition in Proposition 2 is satisfied if (, t) lies to the left of the graph of  (, n). 
If this condition is violated, there exists a pairwise stable network, in addition to 
the complete FTA network, such that one country is isolated while all other 
countries have FTAs with one another. If n = 15 and  = .98, for example, the 
condition in Proposition 2 is violated for t = .04. In such a situation, all but 
country 1, say, have FTAs with one another. This network is stable since the 
isolated country 1 does not have an incentive to have a bilateral FTA with any 
other country. 

 

 
Figure 1. The region where the global free trade is a unique stable network 

 
This proposition suggests that FTA formation and multilateral trade 

negotiation under the auspices of the WTO are complementary. As tariff rates 
decline through multilateral negotiations, it becomes more likely that unlinked 
pairs of countries have FTAs, leading to the complete network of FTAs. 

Moreover, under the condition where Proposition 2 applies, the world free 
trade network will eventually reach the complete network such that global free 
trade is effectively attained if countries myopically make decisions as to whether or 
not they sign FTAs with other countries. For dynamic network formation games, 
Watts (2001) defines a stable state as the network in which any randomly selected 
pair of myopic players have no incentive to severe the link if they are currently 
linked and to form a link if they are not linked. The complete FTA network is the 
unique stable state if the condition of Proposition 2 is satisfied. This result can 
also be extended to the case of farsighted countries with an arbitrary discount 

0

t  

 (n) 1

t =  (, n)
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rate. Applying Theorem 3 of Dutta et al. (2005), we can conclude that if the 
condition of Proposition 2 is satisfied, there is a Markov perfect equilibrium in 
which the complete FTA network is eventually reached from any FTA network. 

 
3.4 Asymmetric countries 
Let us turn to a more realistic case in which countries are asymmetric. As we infer 
from the preceding analysis, countries are less likely to have FTAs and the 
complete FTA network is less likely to be pairwise stable in an asymmetric world. 
Of course, a pair of countries with similar size of the market and industry still 
signs a bilateral FTA. Moreover, we show in this subsection that countries with 
similar industrialization levels, but not necessarily similar in the absolute size of 
the market and industry, tend to sign a bilateral FTA. To this end, we assume here 
that  = 0. Although this simplification is restrictive, it highlights how the 
asymmetry of countries affects the FTA network formation. 

In this special case of no substitution among industrial commodities, we can 
easily calculate social welfare of each country. Since commodity demands are 
independent of one another when = 0, the main part of a consumer’s gross 
utility can be written as a simple sum of utilities derived from the consumption of 
all individual commodities. Let p(t) and q(t) denote the equilibrium producer price 
and quantity of the industrial commodity that is faced with the tariff rate t, and 
let v(t) denote a consumer’s utility derived from the consumption of that 
commodity. Then, we can write 
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Figure 2. Equilibrium in a commodity market 
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impact on country i’s welfare is 

)]()([

)()()(

)]()()()([)]()()()([)]()([)(

jjiiij
j

iijjjiiij
j

iijjj
i

ji
iji

tttt

tttttt

tqtpqpstqtpqpstvvsW










 










2223
8

4

2

4

2

8

2

00000








t

 

The first observations we derive from (18) are rather obvious. Excluding prohibitive 
tariffs from consideration, we find that the higher is t j the higher is W i(t). 
Country i benefits more from the FTA with country j as country j’s original tariff 
rate is high. As for country i’s own tariff, we should distinguish between two cases, 
whether or not t i is smaller than the optimal tariff 1/3. If t i ≤ 1/3, the lower is t i, 
the higher is W i(t). If t i > 1/3, on the other hand, the opposite is true. If t i is 
higher than the optimal tariff for some reason, country i has an incentive to 
unilaterally cut its tariff at least to the optimal level. This incentive becomes greater as 
t i increases. Indeed, as (18) indicates, W i(t) is unambiguously positive if t i > 2/3. 
Henceforth, we restrict our attention to the case where t i ≤ 1/3 for any i N, as 
no country has an incentive to select a higher tariff rate than its optimal level. 

How do the countries’ industrialization levels affect country i’s incentive to 
sign the FTA? It follows from (18) that country i has an incentive to sign the FTA 
with country j if and only if 
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Country i benefits from the FTA with country j if country j’s industrialization 
level, relative to its own, is not so large. FTAs are reciprocal concessions: Each 
signatory gives up exercising its market power in import good markets in exchange 
for obtaining better access to export good markets in its partner countries. Thus, 
it is intuitive that the FTA is more beneficial if the resulting increase in its export to 
the partner is large (i.e., s i and μ j are large) and the resulting increase in its import 
from the partner is small (i.e., s j and μ i are small). Changes in country i’s export 
and import depend, in general, on the FTA configuration of countries j and i, 
respectively. In the current case of  = 0, however, they hinge on the bilateral 
trade relationship between i and j. Gains from the FTA are the simple sum of 
individual gains across the varieties. If s s i, μ i, s j, and μ j are all doubled (so that  
 j/ i is unchanged), for example, the gains from the FTA are also doubled as (19) 
indicates, leaving the sign of W i(t) as it was. 

In order for the FTA between countries i and j to be signed by both countries, 
the counterpart of (19) for country j must also be satisfied. Assuming t i = t j  t for 
clarity, we find that the FTA is signed if and only if 
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 (20) 

As t increases from 0 to 1/3, this range of  j/ i expands from [1/2, 2] to 
[3/10, 10/3]. The higher is t, the greater is the benefit of the FTA; hence even 
asymmetric countries sign an FTA. We record the finding for the case of t i = t j in 
the following proposition. 

Proposition 3. Suppose that = 0 and that countries would impose the common tariff rate 
t as their external tariffs. Countries i and j form a link if their industrialization levels are 
similar such that (20) is satisfied. The stable network is a generically unique collection of all 
links, each of which connects such a pair of countries. 

If countries’ industrialization levels are not too different, then they have 
incentives to form an FTA. Countries with similar industrialization levels tend to form 
a link since (i) each country wants to sign an FTA with a country whose 
industrialization level is not so large compared with its own and (ii) an FTA is put 
into force only if it is signed by both parties. Suppose that there are two groups of 
countries: one is a group of developed countries with similar and high industrialization 
levels, and the other is a group of less developed countries with similar and low 
industrialization levels. Suppose also that every country selects its external tariff at its 
optimal level 1/3 for concreteness. Then, if the industrialization level of each 
developed country is far greater (more than 10/3 times) than the one of any less 
developed country, the FTA formation process leads to a stable network in which all 
countries within each group are linked with each other, while there is no link across 
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the two groups. The FTA formation process may end with two (stumbling) trading 
blocs if industrialization levels of two groups are very different from each other. 

 
4. Free Trade Agreements vs. Customs Unions 

 
This section investigates the difference in member countries’ incentives to sign a 
new FTA emphasizing the fact that a CU requires that all members be involved 
when a member country wants to have a free trade link with an outside country. 
The main goal of the paper is to assess how far the process of PTAs continues and 
whether or not global free trade is effectively attained as a complete world-wide 
web of PTAs. The analysis in this section possibly tells us which form of PTAs, CU 
or FTA, should be encouraged for facilitating more PTAs in the world. In order to 
focus on the issue, we assume that external tariff rates are the same in both cases. 

We compare country i’s incentives to have a new free trade link with country 
j  Ci between two cases: the case where Ci forms a CU and the case where Ci is a 
regional FTA such that every pair of countries in Ci has a bilateral FTA. We begin 
with investigating the impact on a consumer’s gross utility V i. As Section 3.1 
shows, the impact on V i is ambiguous in both cases. However, these effects are 
exactly the same between the two cases, since V i only depends on t i and changes 
in t i are the same between the two cases. Thus, the difference in changes of the 
industrial trade surplus between these two cases will determine whether or not 
country i’s incentive to have an FTA with country j is higher in the case where Ci is 
a CU rather than a regional FTA. Here, we decompose the third country effect into 
the member country and nonmember country effects: 
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where country k is a representative partner of i, i.e., k  Ci \{i}, and country h is a 
representative outsider of i, i.e., h  Ci  {j}. 

Table 1 depicts the signs of the effects, and compares these two cases item 
by item. Similarly to the impacts on V i, the effects of an FTA with country j on

)( ii
j

i
j MM t are the same between the two cases, since country i’s imports from 

country j are solely determined by t i. This effect is positive since country i lowers 
its tariff rate for commodities imported from country j. In contrast, the effects on 

)( ji
j

i
j XX t are different especially when |Ci| is large. It is because country j 

eliminates tariffs against all countries in Ci in the case of CU while it eliminates 
tariffs only for commodities imported from country i in the case of FTA. Since 
industrial commodities are substitutable from one another, it is obvious that an 
increase i

jX  is smaller in the case of CU. Consequently, the direct surplus effect is 
smaller in the case of CU than in the case of FTA. 
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Table 1. FTA vs. CU ( > 0) 
 

 FTA  CU 

V i ? = ? 

M i
j + = + 

X i
j + > + 

M i
k – = – 

X i
k 0 > – 

M i
h – = – 

X i
h 0 = 0 

 
Next, we investigate the effects on country i’s industrial trade surplus with a 

member country k  Ci\{i}. As before, the effects on )( ii
k

i
k MM t are the same in 

both cases. However, the effects on )( ki
k

i
k XX t are different again. In the case of 

FTA, t k is unaffected and hence i
kX  does not change. In the case of CU, on the 

other hand, country k also eliminates tariffs against country j, and country i’s 
export to country k is reduced due to the substitution effect. Country i’s industrial 
trade surplus with a member country k is again lower in the case of CU. Finally, it 
is easy to see that the third country effects with nonmembers are the same in both 
cases. Import payments to country h decrease by the same amount due to the 
tariff reduction for commodities imported from country j, and country i’s exports 
to country h stay the same in both cases since t h is not affected. 

We have shown that the impacts of a new FTA on a consumer’s gross utility are 
the same between the two cases, but the changes in the industrial trade surplus is 
unambiguously smaller in the case of CU. We record this result as a lemma. 

 
Lemma 4. Country i has less incentive to have a free trade link with country j  Ci when Ci 
forms a CU rather than a regional FTA, unless the industrial commodities are independent 
of one another, i.e., =0, in which case the incentives are the same.  

 
Whether or not country i’s incentive to have a free trade link with country j is 

lower when Cj forms a CU rather than a regional FTA is generally ambiguous, 
however. The difference between these two cases in our terminology is that 
country i adds only one link with country j in the case of a regional FTA, whereas 
in the case of a CU country i adds |Cj| links simultaneously with all individual 
countries in Cj. The latter case is effectively equivalent to the case where country i 
has an FTA with an integrated economy that consists of all countries in Cj. 
Whether country i prefers having a free trade link with country j alone or with the 
whole Cj depends on the relative characteristics of j and Cj. 
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However, we can make a strong statement in the case of symmetric countries 
with a low substitution parameter . Proposition 2 indicates that if all countries are 
symmetric and if  is not very high, country i has an incentive to have an FTA with 
any country in any FTA configuration, in particular with country j alone or with all 
countries comprising Cj. Therefore, country i wants to have a free trade link with 
country j regardless of whether Cj forms a CU or an FTA. Combining this observation 
together with Lemma 4, we find that two countries are less likely to form a link if 
either of them is a member of a CU. Indeed, the complete FTA network is the unique 
stable network if all PTAs take a form of FTA (Proposition 2), whereas several CUs 
of asymmetric size may co-exist in a stable network if all FTAs take a form of CU.18 
 
Proposition 4. Suppose that countries are symmetric, imposing the same external tariff rate 
and that the condition in Proposition 2 is satisfied. Then, a pair of countries is less likely to 
have a free trade link if either of them is a member of a CU rather than a regional FTA. 

 
If countries are not symmetric, CUs can facilitate global trade liberalization 

more than FTAs. Consider again the case of asymmetric countries with = 0 in 
which every country would select its external tariff rate at its optimal level 1/3. We 
order n asymmetric countries according to their industrialization levels such that 
 1 ≥  2 ≥ … ≥  n. Proposition 3 implies that if  1 / n > 10/3, countries 1 and n 
will not sign an FTA, and the process of bilateral FTA formation will never reach 
global free trade. However, if all PTAs take a form of CU, the process of CU 
formation may reach global free trade. Let us consider a CU by C(k)  {1,2, ...,k}, 
the set of k countries with highest industrialization levels. The industrialization 
level of the entire C(k), i.e.,  C(k)  hC(k) s h/ hC(k)  h, is the ‘average’ 
industrialization level of all individual members of C(k), so that  1 ≥  C(k) ≥  k. 
Now, it follows from Proposition 3 that C(k) and k + 1 sign an FTA, or in other 
words, CU by C(k) expands to include k + 1, if  C(k) /  k + 1 ≤ 10/3. Notice that this 
inequality can hold even if  1/ k + 1 > 10/3. The CU formation averages out 
member countries’ industrialization levels, and hence encourages a less 
industrialized country to join the group. In particular, if  C(k)/ k + 1 ≤ 10/3 for any 
k = 1, …, n – 1, CUs serve as ‘building blocks’ and the process of CU formation 
will reach global free trade.19 

 
 
 

                                                           
18  Employing a coalition bargaining game, Yi (1996) shows that in equilibrium, two CUs of different size 

are formed when the world consists of a reasonable number of symmetric countries. We can conduct the 
same exercise in our model and obtain qualitatively the same result. 

19 We should note that history of CU expansion may matter. It is possible for the CU expansion to stop 
prematurely if two unions, one by developed countries and the other by less developed countries, are 
formed, and the difference in the industrialization levels of these two unions is quite large. 
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5. Concluding Remarks 
 
We have introduced a general analytical framework that is suitable for the 
investigation of PTAs and shown how countries’ incentives vary with the country 
size, industrialization level, substitutability among industrial commodities, etc. We 
have found that if all countries are symmetric, the complete FTA network is pairwise 
stable and it is the unique stable network if industrial commodities are not highly 
substitutable from one another or if predetermined external tariff rates that 
countries would choose are small. We have also compared FTAs and CUs as to 
which of these two regimes facilitates PTA formation. We have shown that in the 
symmetric country case where industrial commodities are not highly substitutable, 
countries are likely to have less incentive to have a new free trade link if one of the 
countries is a member of a CU rather than an FTA. If countries are asymmetric, 
however, CU formation averages out member countries’ industrialization levels, 
which may help further CU formation. 

The present paper introduces a model that fits the analysis of FTAs and 
derives some useful results that are summarized above. However, it is naturally far 
from a complete analysis of FTAs. We examine elsewhere (Furusawa and Konishi, 
2005) FTA network formation when transfers between signatories are allowed. 
With transfers, a pair of countries signs an FTA if and only if the FTA enhances the 
joint social welfare. Since the third country effects are always positive and the sum 
of the direct surplus effects is zero regardless of the heterogeneity between the 
countries, they are quite likely to sign the FTA. Indeed, Propositions 1 and 2 in 
this paper can be generalized to the case of asymmetric countries. Although we 
obtain stronger results when transfers between FTA signatories are allowed, 
feasible amounts of transfer are usually limited in practice. Thus, both of this 
paper and the companion paper provide useful insights of the problem. As for a 
further extension in this direction, it may be interesting to consider more 
generalized forms of transfers such as subsidizing other links in a more general 
environment (see Bloch and Jackson, 2004). 

Another obvious extension is to relax the assumption on the selection of 
external tariffs. We have assumed throughout the paper that external tariff rates are 
exogenously fixed, since it is necessary to simplify the model for analyzing various 
forms of complicated FTA networks. If we assume instead that countries always set 
optimal tariffs given their FTA link structures, then they have incentives to lower their 
external tariffs as they form more free trade links, which Bagwell and Staiger 
(1999b) call the tariff complementarity effect. Indeed, Richardson (1993), Bagwell 
and Staiger (1999b), Yi (2000), and Ornelas (2005a) demonstrate in their 
respective models that if FTA signatories optimally adjust their individual external 
tariffs, an FTA induces the signatories to cut their tariffs so deeply that their imports 
from nonmember countries increase, i.e., the nonmember country effect, which is 
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part of the third country effect, is negative. It can be shown that the same result 
obtains in our model if we allow FTA signatories to optimally adjust their external 
tariff. Yi (2000) and Ornelas (2005c) further show that global free trade may not be 
realized due to the free rider problem caused by this tariff complementarity effect. A 
similar result is expected to obtain in our extended model, i.e., there may be an 
asymmetric incomplete stable FTA network such as only one country is isolated 
from the rest of the countries. Nevertheless, as Remark 2 indicates, the complete 
FTA network continues to be stable even if the external tariffs are optimally adjusted. 

Moreover, Proposition 2 suggests that the complete FTA network may survive 
as a unique stable network as countries symmetrically expand their FTA network, 
lowering their external tariffs symmetrically in the process. Let us imagine a dynamic 
FTA formation such that in each step, all countries have the same number of FTA 
links. As the FTA formation proceeds, their external tariffs decline and eventually 
enter the region where the complete FTA network is a unique stable network when 
external tariffs are fixed (see Proposition 2). Consider a pair of countries that form 
a new FTA link in this phase of the FTA formation. Due to the symmetry, the 
direct surplus effect is nil. The third country effect may be negative as the 
nonmember country effect is negative as we have seen above. But in the phase 
where they have already formed several FTAs, the member country effect, which is 
positive as a decrease in the external tariff further reduces the import from 
member countries, is likely to outweigh the nonmember country effect so that the 
entire third country effect is positive. Indeed, our extensive numerical analysis, 
which is available upon request, indicates that every pair of completely symmetric 
countries has incentive to sign an FTA so that if all countries symmetrically expand 
their FTA networks, the FTA formation continues until the complete FTA network 
is reached even though the external tariffs are optimally adjusted in each step. 

Introducing governments’ political motivation to the model, such as Ornelas 
(2005a,b,c), is also an interesting extension. In practice, it is often the developed 
countries that are reluctant to have FTAs with less developed countries. In many 
cases, it is because they want to protect politically sensitive (import-competing) 
industries such as agriculture. We can broadly interpret our results to claim that 
developed countries are reluctant to have the FTAs since the political costs of 
opening such sensitive market is large and hence the direct surplus effect 
(including the political costs) is negative and large in magnitude. In order to 
address this issue more properly, however, we should explicitly reformulate the 
problem in the political economy framework. 

We can also enrich the model by adding more industries with possibly 
different degrees of substitution within each sector. Extending the model to a 
dynamic setting with far-sighted governments is important, but is more 
challenging unless the number of countries is restricted to three or four. 
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Appendix  
 

Proof of Lemma 2. It follows from (6) that 
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By substituting this result and (6) into V i/∂tj
i in Lemma 1, we obtain 
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Let t() denote the bilateral tariff reform schedule between countries i and j. 
This schedule satisfies tj

i() = (1 – )t i and ti
j()=(1 – )t j for  [0,1], and hence 

tj
i(0) = t i and tj

i(1) = 0, for example. All other tariff rates are kept unchanged, i.e., 
tk

i() = t i and tk
j() = t j for any k ≠ i, j. Notice thatt i also changes in the course of 

tariff reform such that t i() = k  Ci  {j} s kt i + s j(1 – )t i = (1 – s Ci – s k) t i, and 
similarly for t j(). By substitutingt i() and tj

i() for t i and tj
i, respectively, and 

using dtj
i/d= –t i, we obtain 
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By integrating over , the welfare change of country i due to the FTA with j 
becomes 
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(21) 

The sufficient condition immediately follows.      
 
Proof of Lemma 3. Recall the proof Lemma 2. The definition of the bilateral tariff 
reform schedule between countries i and j, denoted by t( ), where tj

i( ) = (1 – )t 
and t i() = (1 – s Ci – s j)t = [1 – (|Ci|/n) – (/ n)] t, and similarly for j, while t k( ) = t k 
for any k ≠ i, j, and any [0,1]. Then, it follows from (6) that 
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Now, we can rewrite a change in country i’s industrial trade surplus. 
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The value of this formula decreases with |Cj| since n(2 – ) –  > 0. Whereas it 
increases with |Ci| since 
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As for the impact on a consumer’s gross utility, recall again the proof of Lemma 2. 
Let s k = 1/n for all k = 1, ..., n. Then, we find that 
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also increases with |Ci|.      
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Proof of Proposition 2. Substituting |Ci| = 1 and |Cj| = n - 1 into the formulae obtained 
in the proof of Lemma 3, we have 
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where A(, n)  –4n + 4(5n – 8) – [11n – 23 + (4/n)]². It is now obvious that 
ui ≥ 0 if and only if either (i) A(, n) ≤ 0 or (ii) t ≤ (, n)  8(1 – )(n – 2)/ 
A(, n)  when A(, n) > 0 is satisfied. 

Next , we show that (, n)is decreasing in (0,1) for any n ≥ 3. We have 
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Since 2(1 – ) A(, n) > 0 and n – 2 > 0, what remains to be shown is that 
the expression in the square brackets is positive. Now, 11n – 23 + (4/n) > 0 for any 
n ≥ 3 and (– 2) takes its minimum of –1 at = 1, so that we have 
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which is positive for n ≥ 3.      
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A model of group decision-making is studied, in which one of two alternatives must be 
chosen. While agents differ over alternatives, everybody prefers agreement to 
disagreement. Our model is distinguished by three features: private information 
regarding valuations, differing intensities in preferences, and the option to declare 
neutrality to avoid disagreement. There is always an equilibrium in which the majority 
is more aggressive in pushing its alternative, thus enforcing their will via both numbers 
and voice. However, under general conditions an aggressive minority equilibrium 
inevitably makes an appearance, provided that the group is large enough. Such 
equilibria invariably display a ‘tyranny of the minority’: the increased aggression of the 
minority always outweighs their smaller number, leading to the minority outcome 
being implemented with larger probability than the majority alternative. We fully 
characterize the asymptotic behavior of this model as group size becomes large, and 
show that all equilibria must converge to one of three possible limit outcomes. 

 
 
 
1. Introduction 
 
Group decision-making is the process by which a collective of individuals attempt 
to reach a required level of consensus on a given issue. One can crudely divide this 
process into two important components: the deliberation among members of the 
group and the aggregation of individual opinions into a single group decision. 
Traditionally, the literature on political economy has focused on the second 
component by modelling group decision-making as voting games. More recently, 
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several authors have examined group deliberation by studying its role in 
aggregating private information.1 

In this paper we emphasize another important aspect of group deliberation: 
the role it plays in allowing group members to bargain over the final decision 
while avoiding disagreement. 

For many group decisions, disagreement, or failure to reach a consensus, is 
costly for all members. There are numerous instances of such environments. A 
government may need to formulate a long-run response to terrorism: individuals 
may disagree – often vehemently – over the nature of an appropriate response, but 
everyone might agree that complete inaction is the worst of the options. Jury 
members in the process of deliberation may disagree on whether or not the 
defendent is guilty; however, in most cases they all prefer to reach an agreement 
than to drag the deliberations on endlessly. An investigative committee looking 
into the causes of a riot, or a political assassination, or a corruption scandal, may 
be under significant pressure to formulate some explanation, rather than simply 
say they don’t know. Or citizens may need to agree on a constitution under the 
threat of civil war if such agreement cannot be reached. 

When facing a threat of disagreement, groups usually try to avoid reaching 
this outcome by allowing its members, either formally or informally, to declare 
‘neutrality’; effectively, to suggest that they do not care strongly about either 
alternative and will support any outcome that may be more forcefully espoused by 
others with more intense preferences. For instance, think of an academic 
department that meets to make an offer to one of several candidates. Different 
faculty members may disagree over the ranking of the candidates. To be sure, 
some faculty members will feel more strongly about the choices than others. 
However, no member wants to see the slot taken away by the Dean because the 
department could not agree on an offer. Because faculty members may be 
uncertain as to the rankings and intensities of their colleagues, those faculty 
members who do not feel strongly about the issue will be less vocal and willing to 
‘go with the flow’, while those who feel strongly about their favorite candidate will 
argue aggressively in her favor. 

Likewise, in the jury example mentioned above, members may disagree over 
whether or not the defendent is guilty. Moreover, some jury members would have 
stronger feelings about the matter than others. However, in most cases, all would 
want to reach some unanimous decision rather than end up with a hung jury.2 
Consequently, those jurors who feel strongly towards conviction or acquital would 
                                                           
1 See Gerardi and Yariv (2003), Austen-Smith and Federsen (2002) and Coughlan (2000) 
2  A case in point is the recent trial of Lee Malvo, the younger of the two men accused in the D.C. sniper 

case. According to the interviews conducted with some of the jury members who sat on that trial, the jury 
was split between conviction and acquital. Even though conviction could mean the death penalty for the 
accused, some of the jurors who opposed conviction remarked that they felt it was more important to 
reach a unanimous decision then end up with a hung jury (New York Times, Dec. 24, 2003). 
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be more vocal during deliberation, while those who feel less strongly on the issue 
might not oppose either side in order to facilitate an agreement. 

A threat of disagreement has profound implications for group decision-
making. Above all, preference intensities play a critical role: the decisions of 
individuals within the group are based not only on their ordinal ranking of the 
available alternatives, but also on how strongly they feel towards each one. With 
cardinal preferences central to our discourse, it is possible to address several 
important questions left unanswered in the literature. Do individuals, who favor an 
outcome which is less likely to be favored by the majority, fight more aggressively for 
their cause than individuals who hold the majority view? Can such aggression be 
strong enough so that the minority alternative is indeed implemented with greater 
probability than the outcome favored by the majority? Do higher levels of required 
consensus better protect the implementation of such minority outcomes? What is 
the likelihood that group deliberation will end in disagreement? To answer these 
and other related questions, we propose a simple and tractable model of group 
decision-making in the shadow of disagreement. We proceed as follows. 

A group of n agents must make a joint choice from a set of two alternatives, 
A or B. Each agent must either announce an alternative – A or B – or she can 
declare ‘neutrality’, in that she agrees to be counted, in principle, for either side. 
Once this is accomplished, we tally declarations for each alternative, including the 
number of neutral announcements. If, for an alternative, the resulting total is no less 
than some exogenously given supermajority, we shall call that alternative eligible. 

Because neutral announcements are allowed for and counted on both sides, 
all sorts of combinations are possible: exactly one alternative may be eligible, or 
neither, or both. If exactly one alternative is eligible, that alternative is implemented. 
If neither is eligible – which will happen if there is a fierce battle to protect one’s 
favorite alternative – then no alternative is picked: the outcome is disagreement. If 
both are eligible – as will typically be the case when there are a large number of 
neutrals – each alternative is equally likely to be implemented. 

Our objective is to capture the basic strategic considerations common to 
several situations in which disagreement is costly. In this sense the model is sparse 
but inclusive: disagreement (or the threat of it) is at center stage, there is 
preference heterogeneity – in the ordinal sense of course, but in a cardinal sense as 
well, and there is the possibility of avoiding disagreement by means of 
capitulation. We therefore believe that by analyzing the equilibria of this model, 
we can gain important insights into a wide variety of situations. 

Several specific features of the model deserve comment. First, while the 
language of a voting model is often used, we do not necessarily have voting in 
mind. The exogenously given supermajority may or may not amount to full 
consensus or unanimity, and in any case is to be interpreted as some preassigned 
degree of consensus or social norm that the group needs to achieve. For instance, 
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in many informal situations, it may be considered socially undesirable to choose 
an option objected to by at least one person. 

Second, relative to existing literature the option to remain neutral is a novel 
feature of our model. At the same time, it is a natural ingredient in the examples 
discussed above. We only add here that the neutrality option may be interpreted 
in several ways. One formal institution that is related is approval voting: members 
of the group submit an ‘approval’ or ‘disapproval’ for each alternative. A voter who 
approves both alternatives is effectively declaring neutrality. Or consider group 
debate that effectively proceeds like a war of attrition: members who drop out are 
in essence declaring neutrality. In addition, we have already discussed several 
examples in which neutrality is an informal yet central feature of the decision-
making process. One could also imagine several quasi-formal mechanisms that help 
individuals to avoid disagreement by allowing their vote to be counted in a way that 
ensures a win to one of the alternatives. For example, one could delegate his 
ballot to an impartial arbitrator, who appreciates the anxiety of all concerned to 
avoid disagreement, and is therefore interested in implementing some outcome. In 
short, one could interpret the neutrality declaration as the reduced form of some 
unspecified procedure, which is used to help avoid unnecessary disagreements. 

Third, in the model eligibility is a ‘zero-one’ characteristic: either an 
alternative is eligible or it is not. Any outcome that passes the test of garnering the 
support (either actively by declaring the alternative, or passively by declaring 
neutrality) of the required supermajority, is deemed socially fit – or eligible – to be 
implemented. There is no sense in which one alternative is ‘more eligible’ than 
another. Hence, if both alternatives are eligible, then both are on equal footing in 
terms of the social approval received. We therefore assume that the group 
implements each of the alternatives with equal probability. 

To be sure, the particular tie-breaking rule used by a group may vary across 
different situations. In some situations, the group may vote again and again until 
only one outcome becomes eligible. In other situations, group members may 
bargain over which outcome to implement. There may also situations in which the 
group would simply choose the eligible outcome with the most votes. Or an 
arbitrator or committee chair may break ties. The advantage of our approach is 
that it greatly simplifies the analysis and allows us to provide a full 
characterization of the equilibria. Section 7.1 and 7.2 discusses some of the 
implications of assuming an alternative tie-breaking rule. 

Finally, we are interested in the ‘intensity’ of preferences for one alternative 
over the other, and how this enters into the decision to be neutral, or to fight for 
one’s favorite outcome. Specifically, we permit each person’s valuations to be 
independent (and private) draws from a distribution, and allow quite generally for 
varying cardinal degrees of preference. A corollary of this formulation is that others 
are not quite sure of how strongly a particular individual might feel about an 
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outcome and therefore about how that individual might behave. This is one way 
in which uncertainty enters the model. 

Uncertainty plays an additional role, in that no one is sure how many people 
favor one given alternative over the other. We do suppose, however, that there is a 
common prior – represented by an independent probability p – that an individual 
will (ordinally) favor one alternative (call it A) over the other (call it B). Without 
loss of generality take p ≤ ½ If, in fact, p < ½ one might say that it is commonly 
known that people of ‘type A’ are in a minority, or more precisely in a stochastic 
minority. We shall see that these two types of uncertainty are very important for 
the results we obtain. 

We provide a full characterization of this model and study a number of 
extensions and variations. Our main results highlight the important implications 
of a threat of disagreement. 

Cardinal preferences play a key role. In any equilibrium, each individual employs a 
cutoff rule: there will exist some critical relative intensity of preference (for one 
alternative over the other) such that the individual will announce her favorite 
outcome if intensities exceed this threshold, and neutrality otherwise. If a rule 
exhibits a lower cutoff, then an individual using that rule may be viewed as being 
more ‘aggressive’: she announces her own favorite outcome more easily, and risks 
disagreement with greater probability. 

Equilibria in which an individual of the majority type uses a lower cutoff (and 
is therefore more aggressive) than her minority counterpart may be viewed as 
favoring the majority: we call them majority equilibria. Likewise, equilibria in which 
the minority type employs a lower cutoff will be called minority equilibria. 

Using an obvious parallel from the Battle of the Sexes, there are always ‘corner’ 
equilibria in which one side is ‘infinitely’ aggressive – i.e., uses the lowest cutoff – 
while the other side is cowed into declaring full neutrality. But the resemblance 
ends there. In the model we study, a simple and weak robustness criterion reveals 
such equilibria to be particularly fragile. Section 4.2.2 introduces the refinement 
and shows how it removes corner equilibria in which one side invariably gives up. 

Majority equilibria always exist. There always exists an equilibrium in which the 
majority uses a more aggressive cutoff than the minority (Proposition 1). This is 
an interesting manifestation of the ‘tyranny of the majority’.3 Not only are the 
majority greater in number (or at least stochastically so), they are also more vocal 
in expressing their opinion. In response – and fearing disagreement – the minority 
are more cowed towards neutrality. So in majority equilibrium, group outcomes 
are doubly shifted towards the majority view, once through numbers, and once 
through greater voice. 

                                                           
3  It is possible that our use of this term constitutes a slight abuse of terminology, given that the phrase is 

typically invoked in the context of simple majority rule. We deal with supermajorities, so the term 
‘tyranny’ (of either majority or minority) here is used in the sense of more strident use of voice. 
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Minority equilibria exist for large group sizes. Proposition 2 establishes the 
following result: if the required supermajority  is not unanimity (i.e.,  < 1), and 
if the size of the stochastic minority p exceeds 1 – , then for all sufficiently large 
population sizes, a minority equilibrium must exist. 

How large is large? To be sure, the answer must depend on the specifics of 
the model, but our computations suggest that in reasonable cases, population 
sizes of 8–10 (certainly less than the size of a jury!) are enough for existence. We 
interpret this to mean that our existence result not only applies to large 
populations, but also to committees, juries, academic departments, cabinets and 
other groups which are numbered in the tens rather than in the hundreds. 

From one point of view this result seems intuitive, yet from others it is 
remarkable. Intuitively, as population size increases, the two types of uncertainty 
that we described – uncertainty about type and uncertainty regarding valuation 
intensity – tend to diminish under the strength of the Law of Large Numbers. This 
would do no good if p < 1 – , for then the minority would neither be able to win, 
nor would it be able to block the majority. [Indeed, Proposition 3 in Section 5.2 
shows that if p < 1 – , then for large population sizes a minority equilibrium 
cannot exist.] But if p exceeds 1 – , the minority acquires the ‘credibility’ to block 
the wishes of the majority, or at least does so when the population is large 
enough. 

The existence of minority equilibria is not monotone in the consensus level. For two 
reasons, however, the above notion of ‘credible blocking’ does not form a 
complete explanation. First, a credible block is not tantamount to a credible win. 
Indeed, it is easy to see that as  goes up, the minority find it easier to block but 
also harder to win. So the previous result must not be viewed as an assertion that 
the minority is ‘better protected’ by an increase in . Indeed, as an example in 
Section 5.1 makes clear, this is not true. [Nevertheless, insofar as existence is 
concerned, the fact that p > 1 –  > 0 guarantees existence of minority equilibrium 
for large population sizes.] 

Second – and this extends further the line of argument in the previous 
paragraph – the case of unanimity ( = 0) is special. Proposition 4 shows that 
there are conditions (on the distribution of valuations) under which a minority 
equilibrium never exists, no matter how large the population size is. So blocking 
credibility alone does not translate into the existence of a minority equilibrium in 
the unanimity case. In short, any ‘intuitive explanation’ for Proposition 2 must 
also account for these observations. 

The minority win more often in a minority equilibrium. Recall that in a majority 
equilibrium, the majority will have a greater chance of implementing its preferred 
outcome on two counts: greater voice, and greater number. Obviously, this 
synergy is reversed for the minority equilibrium: there, the minority have greater 
voice, yet they have smaller numbers. One might expect the net effect of these two 
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forces to result in some ambiguity. The intriguing content of Proposition 5 is that 
in a minority equilibrium, the minority must always implement its favorite action 
with greater probability than the majority. Whenever a minority equilibrium exists, 
voice more than compensates for number. 

Even in large groups, both sides may put up a fight. All equilibrium sequences must 
have limit points that are one of these three. Two of the outcomes may be viewed 
as ‘limit minority equilibria’. One of them exhibits a zero cutoff for the minority, 
and the other exhibits a positive minority cutoff which is nevertheless lower than 
the majority cutoff. The third outcome is a ‘limit majority equilibrium’ in which 
the cutoff used by the majority is zero. The striking feature of these outcomes is 
that under some conditions, neither side gives up even if the opposition uses a 
zero cutoff! In particular, we establish the necessary and sufficient conditions for 
the existence of these interior cutoffs and describe exactly what they are. 

Even as group size grows large, agreement is reached with uniformly positive probability. 
Given that both sides may put up a fight in relatively large groups, one might 
expect that for sufficiently high supermajority requirements disagreement will be 
endemic. However, for all non-unanimity rules, the probability of disagreement 
not only stays away from one, but actually converges to zero along any 
equilibrium sequences which converges to a limit outcome in which one side uses 
a zero cutoff. For those equilibria that converge to the remaining minority 
outcome, we show that the probability of disagreement is bounded away from 
one even as the population size goes to infinity. 

Our results show that a ‘shadow of disagreement’ may effectively induce 
groups to make decisions that take into account their members’ preference 
intensities. In particular, individuals who support an outcome that is less likely 
(ex-ante) to be favored by the majority, may still be able to implement that outcome 
if they feel sufficiently strongly about it. However, our paper also suggests that in 
group decision-making the outcomes tend to be invariably biased in one direction 
or another. In majority equilibrium this is obvious. But it is also true of minority 
equilibrium. This lends some support to a commonly-held view that group 
decision-making tends to have some degree of extremism built into the process.4 

 
2. Related Literature 

 
One central result in our paper is that minorities may fight more aggressively and 
win. Of course, the well-known Pareto-Olson thesis (see Pareto, 1927; and Olson, 
1965) suggests that minorities might put up a stronger fight when voting is costly. 

                                                           
4  The phenomenon of ‘group polarization’ has been extensively studied in the social psychology literature, 

most notably in Myers and Lamm (1976) and Lamm and Myers (1978). A more recent experimental study 
of this phenomenon is Cason and Mui (1997). In the political science and law literature, the potential 
impact of group polarization on court decisions has been studied by Sunstein (2000, 2002, 2003). 
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This intuition is confirmed in some complete-information models with private 
voting costs (see Araki and Börgers, 1996; and Haan and Kooreman, 2003), 
though in other variants with incomplete information (e.g., Palfrey and Rosenthal, 
1983; Ledyard, 1984; Campbell, 1999; Krasa and Polborn, 2004; and Goeree and 
Grosser, 2005), the majority still wins at least as frequently as the minority even 
when the minority fights harder, assuming that preference intensities do not differ 
across groups.5 

Our model also features a ‘cost of voting’: it is the expected loss caused by 
disagreement. But this cost is a public bad, and it cannot be shifted from one voter 
to another. (In addition, the magnitude of this cost is determined endogenously 
in equilibrium.) 

An important feature of our model is that individuals base their decision on 
how strongly they prefer one alternative to another. This feature is shared with 
several papers that investigate different mechanisms in which intensity of preferences 
determine individual voting behavior. Vote-trading mechanisms, in which voters 
can trade their votes with one another, have been analyzed in Buchanan and 
Tullock (1962) and have more recently been revisited by Philipson and Snyder 
(1996) and Piketty (1999). Cumulative voting mechanisms in which each voter 
may allocate a fixed number of votes among a set of candidates has been analyzed 
as early as in Dodgson (1984) and more recently revisited by Gerber et. al (1998), 
Jackson and Sonnenschein (2007) and Hortala-Vallve (2004). In a related vein, 
Casella (2005) introduces a system of storable votes, in which voters can choose 
to store votes in order to use them in situations that they feel more strongly about. 

These papers take a normative approach to group decision making in an 
attempt to design optimal procedures. Our approach is different. We take a 
positive approach and focus on existing institutions that rely on supermajority 
rules. We argue that a threat of disagreement may push individuals to base their 
decisions not only on their ordinal preferences, but also on their preference 
intensities. At the same time, we do not claim that the decision protocol we 
analyze – a supermajority rule coupled with a neutrality option and a threat of 
disagreement – necessarily leads to an efficient outcome (though mechanism 
design in our context would certainly be an interesting research project). 

In particular, our analysis highlights the importance of consensus and the fear 
of gridlock as a mechanism through which intensities of preferences are translated 
into the decision making process. In this context, Ponsati and Sákovicz (1996) is 
also related to the present paper. Indeed, their model is more ambitious in that 
they explicitly attempt to study the dynamics of capitulation in an ambient 
environment similar to that studied here. This leads to a variant on the war of 

                                                           
5  Certainly, if minorites are sufficiently more zealous in the espousal of their favorite issue, they may fight 

more aggressively and win more often, as Campbell (1999) also shows. 
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attrition, and their goal is to describe equilibria as differential equations for 
capitulation times, at which individuals cease to push their favorite alternative. 

 
3. The Model 

 
3.1 The group choice problem 
A group of n agents must make a joint choice from a set of two alternatives, which 
we denote by A and B. The rules of choice are described as follows: 
 
(1) Each agent must either name an alternative – A or B – or she can declare 

‘neutrality’, in that she agrees to be counted, in principle, for either side. 
(2) If the total number of votes for an alternative plus the number of neutral 

votes is no less than some exogenously given supermajority m (> n/2), then 
we shall call that alternative eligible. 

(3) If no alternative is eligible, no alternative is chosen: a state D (for 
‘disagreement’) is the outcome. 

(4)  If a single alternative is eligible, then that alternative is chosen. 
(5)  If both alternatives are eligible, A or B are chosen with equal probability. 

 
Recall that our tie-breaking rule follows from our view of eligibility as a ‘zero-

one’ characteristic: either an alternative is eligible or it is not, so that there is no 
sense in which one alternative is ‘more eligible’ than another. The point is simply 
this: if no alternative is blocked, it matters little whether one alternative gets more 
votes than another – the preassigned degree of consensus (or at least the lack of 
opposition) has been achieved for both alternatives. This is not to suggest, however, 
that other tie-breaking rules are not worth exploring. An obvious contender is one in 
which the option with the most votes wins in case both pass the supermajority 
requirement. We discuss the implication of using this alternative tie-breaking rule 
in Section 7.2. 

 
3.2 Valuations 
Normalizing the value of disagreement to zero, each individual will have 
valuations (vA, vB) over A and B. These valuations are random variables, and we 
assume they are private information. Use the notation (v, v ), where v is the 
valuation of the favorite outcome (max{vA, vB}), and v  is the valuation of the 
remaining outcome (min{ vA, vB}). An individual will be said to be of type A if 
v = v(A), and of type B if v = vB. [The case vA = vB is unimportant as we will rule out 
mass points below.] 

Our first restriction is 
[A.1] Each individual prefers either outcome to disagreement. That is, 

(v, v ) >> 0 with probability one. 
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In Section 7.5 we remark on the consequences of dropping the assumption 
that disagreement is worse than either alternative. 

In what follows we shall impose perfect symmetry across the two types except 
for the probability of being one type or the other, which we permit to depart from 
½ [The whole idea, after all, is to study majorities and minorities.] 

[A.2] A person is type A with (iid) probability p  (0, ½], and is type B 
otherwise. Regardless of specific type, however, (v, v ) are chosen independently 
and identically across agents. 

 
3.3 The Game 
First, each player is (privately) informed of her valuation (vA, vB). Conditional on 
this information she decides to announce either A or B, or simply remain neutral 
and agree to be counted in any direction that facilitates agreement. Because an 
announcement of the less-favored alternative alone is weakly dominated by a 
neutral stance, we presume that each player either decides to announce her own 
type, or to be neutral.6 The rules in Section 2.1 then determine expected payoffs. 

 
4. Equilibrium 

 
4.1 Cutoffs 
We reiterate, for clarity in what follows, that when we say a player ‘announces an 
outcome’, we mean that only that alternative is named by the player; she has 
forsaken neutrality. 

Consider a player of a particular type, with valuations (v, v ). Define q  n – m. 
Notice that our player only has an effect on the outcome of the game – that is, she 
is pivotal – in the event that there are exactly q other players announcing her 
favorite outcome. For suppose there are more than q such announcements, say 
for A. Then B cannot be eligible, and whether or not A is eligible, our player’s 
announcement cannot change this fact. So our player has no effect on the 
outcome. Likewise, if there are strictly less than q announcements of A, then B is 
eligible whether or not A is, and our player’s vote (A or neutral) cannot change the 
status of the latter. 

Now look at the pivotal events more closely. One case is when there are 
precisely q announcements in favor of A, and q + 1 or more announcements 
favoring B. In this case, by staying neutral our agent ensures that B is the only 
eligible outcome and is therefore chosen. By announcing A she guarantees that 
neither outcome is eligible, so disagreement ensues. In short, by switching her 
announcement from neutral to A, our agent creates a personal loss of v .  

                                                           
6  For a similar reason we need not include the possibility of abstention. Abstention (as opposed to 

neutrality) simply increases the probability of disagreement, which all players dislike by assumption. 
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In the second case, there are q announcements or less in favor of B. In this 
case, by going neutral our agent ensures that A and B are both eligible, so the 
outcome is an equiprobable choice of either A or B. On the other hand, by 
announcing A, our agent guarantees that A is the only eligible outcome. Therefore 
by switching in this instance from neutral to announcing A, our agent creates a 
personal gain of v – (v + v  )/2. 

To summarize, let P + denote the probability of the former pivotal event (q 
compatriots announcing A, q + 1 or more announcing B) and P – the probability of 
the latter pivotal event (q compatriots announcing A, q or less announcing B). It 
must be emphasized that these probabilities are not exogenous. They depend on 
several factors, but most critically on the strategies followed by the other agents in 
the group. Very soon we shall look at this dependence more closely, but notice 
that even at this preliminary stage we can see that our agent must follow a cutoff 
rule. For announcing A is weakly preferred to neutrality if and only if 

P –[v – (v + v)/2] ≥ P +v.  

Define v
vvvu 
 2/)(  Note that (by [A.1]) u is a well-defined random variable. 

Then the condition above reduces to 

P –u ≥ P +, (1) 

which immediately shows that our agent will follow a cutoff rule using the variable u. 
Notice that we include the extreme rules of always announcing neutrality (or 

always announcing one’s favorite action) in the family of cutoff rules. [Simply 
think of u as a nonnegative extended real.] If a cutoff rule does not conform to 
one of these two extremes, we shall say that it is interior. 

By [A.2], the variable u has the same distribution no matter which type we 
are referring to. We assume 

[A.3] u is distributed according to the atomless cdf F, with strictly positive 
density f on (0, ). 

  
4.2 Symmetric equilibrium 
In this paper, we study symmetric equilibria: those in which individuals of the 
same type employ identical cutoffs. 

 
4.2.1 Symmetric cutoffs 
Assume, then, that all A-types use the cutoff uA and all B-types use the cutoff uB. 
We can now construct the probability that a randomly chosen individual will 
announce A: she must be of type A, which happens with probability p, and she 
must want to announce A, which happens with probability 1 – F(uA). Therefore 
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the overall probability of announcing A, which we denote by A, is given by 

A  p[1 – F(uA)].  

Similarly, the probability that a randomly chosen individual will announce B is 
given by 

B  (1 – p)[1 – F(uB)].  

With this notation in hand, we can rewrite the cutoff rule (1) more explicitly. First, 
add P – to both sides to get 

P –(1 + u) ≥ P + + P –. 

Assuming that we are studying this inequality for a person of type A, the right-
hand side is the probability that exactly q individuals announce A, while the term 
P – on the left-hand side is the joint probability that exactly q individuals announce 
A and no more than q individuals announce B. With this in mind, we see that the 
cutoff uA must solve the equation 
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Likewise, the cutoff uB solves 
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(3) 

We will sometimes refer to these cutoffs as ‘equilibrium responses’, to 
emphasize the fact that uA embodies not just a ‘best response’ by an individual 
but is also an ‘equilibrium condition’ among individuals of the same type, given 
the cutoff used by the other type. The term ‘equilibrium response’ captures the 
hybrid nature of the group response. 

 
4.2.2 A refinement for equilibrium responses 
At this stage, an issue arises which we would do well to deal with immediately. It 
is that a symmetric cutoff of  is always an equilibrium response for any type to 
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any cutoff employed by the other type, provided that q > 0. This is easy enough to 
check: if no member in group A is prepared to declare A in any circumstance, then 
no individual in that group will find it in her interest to do so either. This is 
because (with q > 0) no such individual is ever pivotal. 

Hence the ‘full neutrality cutoff ’ u =  is always an equilibrium response. But 
it is an unsatisfactory equilibrium response for the following reason. Fix a 
particular person, say of type A. Perturb the strategy of her compatriots from full 
neutrality to one in which they do announce A for a tiny range of very high u-
values. Below, we demonstrate that this will make our person announce A for all 
but a bounded range of u-values, where the bound on this range is independent of the 
perturbation to the compatriots. 

Before we show this, let us distill a formal requirement from the discussion 
above. Focus on the A-types with domain variable u. To handle infinite cutoffs, 
define the variable w  u/(1 + u); obviously, the cutoffs with respect to u translate 
directly into cutoffs with respect to w. In particular, full neutrality is just a cutoff 
of 1 in w-space. Now suppose that a (symmetric) cutoff w* is an equilibrium 
response to some cutoff used by the other type. We will say that such a cutoff is 
fragile if there exists  > 0 such that if w is the cutoff used instead of w*, an 
individual member of the group will prefer to use a cutoff that is at least -far 
from w*, no matter how close w is to w*. 

Observe that this criterion is much weaker than ‘tatonnement style’ 
refinements which would examine whether a response close to the putative 
equilibrium would lead to a sequence of ‘myopic’ best responses away from the 
original response. Our criterion raises a red flag only when there is a discontinuous 
jump from the original actions following an arbitrarily small perturbation – this is 
the significance of the requirement that  is uniform in the perturbation. If our 
criterion is violated, the equilibrium response under scrutiny fails – in a strong 
sense – to be robust: the tiniest mistakes by others will drive an individual ‘far 
away’ from the prescribed action. 

It turns out that this criterion eliminates – and only eliminates – those 
equilibrium responses exhibiting full neutrality. 

 
Observation 1. An equilibrium response is fragile if and only if it is infinite (in u-space, 
equivalently equal to 1 in w-space).  
 

Half this observation is obvious. Look at (2), which determines the cutoff uA 

for a member of type A, as a function of B (which is determined by the cutoff of 
the other type and so is fixed for the discussion) and of A (which is determined by 
the cutoff employed by the A-compatriots). If the equilibrium response in 
question is finite, then A > 0, and uA is uniquely defined and moves continuously 
in A, so that the question of fragility does not arise. 
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Indeed, in all the cases in which A > 0, (2) reduces to the simpler form 
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where we are denoting our individual’s cutoff by u′A as a reminder that we have not 
imposed the symmetry condition yet. Notice that this value of uA is uniformly 
bounded, say, by some number M <  no matter what values A and B assume, 
even if A approaches zero. This is the source of the fragility of full-neutrality: 
when A= 0, so that all compatriots employ an infinite cutoff, then uA =  is a 
solution, but this cutoff jumps to no more than M as soon as there is any 
perturbation to a positive value of a. 

Intuitively, consider an individual of type A, and entertain a small perturbation 
in the fully neutral strategy of her compatriots: they now use a very large cutoff, 
but not an infinite one. Now, in the event that our agent is pivotal, it must be that 
her group is very large with high probability, because her compatriots are only 
participating to a tiny extent, and yet there are q participants in the pivotal case. 
This means that group A is likely to win (conditional on the pivotal event), and our 
individual will want to declare A for all but a uniformly bounded range of her u-values. 

Note that in the special case of unanimity (q = 0), full neutrality is never an 
equilibrium response, so no refinements need to be invoked. 

Finally, it should be noted that weak dominance is not enough to rule out full 
neutrality. To see this consider the profile in which both groups use a cutoff of zero 
and so are always voting their type. In this case, when a voter of type A is pivotal, he 
knows for sure that there are more than q declarations of B. Therefore, this voter has a 
strict incentive to claim neutrality. Note however, that the above profile is the only 
profile against which neutrality is a strict equilibrium response for every type. 

 
4.2.3 Equilibrium conditions 
In summary, then, the arguments of the previous section permit us to rewrite the 
equilibrium conditions (2) and (3) as follows: 
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where m = n – q,   B/1 – A, and   A/1 – B. 
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We dispose immediately of a simple subcase: the situation in which there is 
simple majority and n is odd, so that q precisely equals (n – 1)/2. The following 
result applies: 

 
Observation 2. If q = (n – 1)/2, there is a unique equilibrium which involves uA = uB = 0.  

 
To see why this must be true, consult (5) and (6). Notice that when q = (n – 1)/2, 

it must be that m – 1 = n – q – 1 = q. So an equilibrium response must equal zero 
no matter what the size of the other group’s cutoff. In words, there is no cost to 
announcing one’s favorite outcome in this case. Recall that the only conceivable 
cost to doing so is that disagreement might result, but in the pivotal case of 
concern to any player, there are q compatriots announcing the favorite outcome, 
which means there are no more than n – 1 – q = q opposing announcements. So 
disagreement is not a possibility. 

In the remainder of the paper, then, we concentrate on the case in which a 
genuine supermajority is called for: 

[A.4] q < (n – 1)/2. 
The following observations describe the structure of response functions in 

this situation. [A.1]–[A.4] hold throughout. 
 

Observation 3. A symmetric response ui is uniquely defined for each uj, and declines 
continuously as uj increases, beginning at some positive finite value when uj = 0, and falling 
to zero as uj  . 
 
Observation 4. Consider the point at which type A’s response crosses the 45° line, or more 
formally, the value u at which ),( uu = 1. Then type B’s equilibrium response cutoff to u

is lower than ,u strictly so if p < ½.  
 
While the detailed computations that support these observations are 

relegated to the Appendix, a few points are to be noted. First, complete neutrality 
is not an equilibrium response (it is fragile) even when members of the other 
group are always announcing their favorite alternative. The argument for this is 
closely related to the remarks made in Section 4.2.2 and we shall not repeat them 
here. On the other hand, ‘full aggression’ – u = 0 – is also never an equilibrium 
response except in the limiting case as the other side tends to complete neutrality. 
These properties guarantee that every equilibrium (barring those excluded in 
Section 4.2.2) employs interior cutoffs. 

Observation 4 requires some elaboration. It states that at the point where the 
equilibrium response of Group A leaves both sides equally aggressive (so that uA = uB =u), 
group B’s equilibrium response leads to greater aggression. The majority takes 
greater comfort from its greater number, and therefore are more secure about 
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being aggressive. There is less scope for disagreement. However, note the 
emphasized qualification above. As we shall see later, it will turn out to be 
important. 

Figure 1 provides a graphical representation. Each response function satisfies 
observation 3, and in addition observation 4 tells us that the response function 
for A lies above that for B at the 45° line. We have therefore established the 
following proposition. 
 

 
Figure1. Existence of a Majority Equilibrium 

 
Proposition 1. An equilibrium exists in which members of the stochastic majority – group B 
– behave more aggressively than their minority counterparts: uB < uA. 

 
Proposition 1 captures an interesting aspect of the ‘tyranny of the majority’. 

Not only are the majority greater in number (at least stochastically so in this 
case), they are also more vocal in expressing their opinion. So group outcomes are 
doubly shifted – in this particular equilibrium – towards the majority view, once 
through numbers, and once through greater voice.7 We will call such an 
equilibrium a majority equilibrium. 

 
5. Minority Equilibria 

 
5.1 Existence 
Figure 1, which we used in establishing Proposition 1, is drawn from actual 
computation. We set n = 4, p = 0.4, q = 1/4, and chose F to be gamma with 

                                                           
7  Notice that this model has no voting costs so that free-riding is not an issue. Such free-riding is at the 

heart of the famous Olson paradox (see Olson, 1965), in which small groups may be more effective than 
their larger counterparts. 
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parameters (3,4). Under this specification, there is, indeed, a unique equilibrium 
and (by Proposition 1) it must be the majority equilibrium. 

Further experimentation with these parameters leads to an interesting 
outcome. When n is increased (along with q, to keep the ratio q/n constant), the 
response curves appear to ‘bend back’ and intersect yet again, this time above the 
45° line (see Figure 2). A minority equilibrium (in which uA < uB, so that the minority 
are more aggressive) makes its appearance. For this example, it does so when 
there are 12 players. 
 

 
Figure 2. Minority Equilibrium 

 
The bending-back of response curves to generate a minority equilibrium 

appeared endemic enough in the computations, that we decided to probe further. 
To do this, we study large populations in which the ratio of q to n is held fixed at 
  (0, ½). More precisely, we look at sequences {n, q} growing unboundedly large 
so that q is one of the (at most) two integers closest to n. We obtain the 
following analytical confirmation of the simulations: 

 
Proposition 2. Assume that 0 <  < p ≤ ½. Consider any sequence {n, q} such that  
n   and q is one of the (at most) two integers closest to n. Then there exists a finite N 
such that for all n ≥ N, a minority equilibrium must exist.  
 

Several comments are in order. First, if there is a minority equilibrium, there 
must be at least two of them, because of the end point restrictions implied by 
Observations 3 and 4. Some of these equilibria will suffer from stability concerns 
similar to those discussed in Section 4.2.2. But there will always be other minority 
equilibria that are ‘robust’ in this sense.8 

                                                           
8  Once again, this follows from the end-point restrictions. 
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Second, it might be felt that the threshold N described in Proposition 2 may 
be too large for ‘reasonable’ group sizes. Our simulations reveal that this is not 
true. For instance, within the exponential class of valuation distributions, the 
threshold at which a minority equilibrium appears is typically around N = 10 or 
thereabouts, which is by no means a large number. 

Third, the qualification that  > 0 is important. The unanimity case, with 
q = 0 is delicate. We return to this issue in Section 7. The case p ≤ , which we also 
treat in next subsection, is of interest as well. 

Finally, as an aside, note that Proposition 2 covers the symmetric case p = ½, 
in which case the content of the proposition is that an asymmetric equilibrium 
exists (for large n). To be sure, the proposition is far stronger than this assertion, 
which would only imply (by continuity) that a minority equilibrium exists (with 
large n) if p is sufficiently close to ½. 

 
5.2 Discussion of the existence result 
We can provide some intuition as to why minority existence is guaranteed for large 
n but not so for small n. Observe that when n is ‘small’, there are two sorts of 
uncertainties that plague any player. She does not know how many people there 
are of her type, and she is uncertain about the realized distribution of valuations. 
Both these uncertainties are troublesome in that they may precipitate costly 
disagreement. The possibility of disagreement is lowered by more and more 
people adopting a neutral stance, though after a point it will be lowered 
sufficiently so that it pays individuals to step in and announce their favorite 
outcome. For a member of the stochastic majority, this point will be reached 
earlier, and so a majority equilibrium will always exist. 

On the other hand, when n is large, these uncertainties go away or at any rate 
are reduced. Now the expectation that the minority will be aggressive can be 
credibly self-fulfilling, because the expectation of an aggressive strategy can be 
more readily transformed into the expectation of a winning outcome. This 
intuition suggests that when the proportion of the minority is smaller than the 
superminority ratio, then minority equilibria do not exist for large n. This is 
confirmed in the following proposition. 

 
Proposition 3. Assume that 0 < p <  < ½. Consider any sequence {n, q} such that n   
and q is one of the (at most) two integers closest to n. Then there exists a finite N such that 
for all n ≥ N, a minority equilibrium does not exist. 

 
Taken together, Propositions 2 and 3 may suggest a monotonic relation 

between the supermajority requirement and the ‘power’ of the minority. Common 
intuition suggests that a higher supermajority requirement facilitates the 
emergence of a minority equilibrium. Indeed, the comparative politics literature 
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compares different political systems and motivates what has been termed 
‘consensus systems’ (Lijphart, 1999) by the desire to protect minorities from the 
tyrany of the majority. 

However, this is generally false in our model. To see why, consider an 
individual of type A and her best response condition. As q decreases, A’s cutoff 
increases (holding B’s cutoff fixed), i.e., the group fights less aggressively. This 
follows from the fact that as q decreases, the probability that the B-types might 
block A increases. Because the above effect of lowering q applies to both groups, 
it is not clear which group benefits from this change. 

To demonstrate the ambiguous effect of lowering q consider the following 
example: let n = 1000 (in light of Proposition 5 we intentionally pick a large n), 
p = 0.4 and consider the distribution function .)(

)ln( eu
uF


 11  For q = 300 there 

exists a minority equilibrium uA ≃ 1.35 and uB ≃ 80. However, for q = 10 there exists 
no minority equilibrium. 

The above example seems to suggest that for some distribution functions a 
minority equilibrium may not exist when the supermajority requirement is at 
unanimity. Indeed, this is true. 

 
Proposition 4. Suppose that the distribution of u, F(u), satisfies the condition 
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for all x > 0. Then in the case where m = n – i.e., unanimity – a minority equilibrium 
cannot exist for any n.  

 
Note that cdf from the above example, ,)(

)ln( eu
uF


 11  satisfies the 

sufficient condition (7). Moreover, while conceivably not necessary, some 
condition is needed to rule out minority equilibria in the unanimity case: there do 
exist cdf’s for which minority equilibria exist for all large n.9 

Finally, compare and contrast our findings with the asymmetric equilibria in 
the Battle of the Sexes (BoS). Recall that analogues of those equilibria exist in this 
model as well, but they have already been eliminated by the refinement introduced in 
Section 4.2.2. One might suspect that the equilibria of our model converge (as n 
grows large) to the equilibria of the BoS game. In this sense, the equilibria could 
be perceived as purification of the BoS equilibria. However, Proposition 4 
establishes that this is not the case. Indeed, in some cases, minority equilibria do 
not exist for any n. Hence, uncertainty plays a crucial role in our model. This 
conclusion will be further strengthened when we study limit outcomes in Section 6. 

                                                           
9  One example of such a cdf is the exponential distribution F(u) = 1 – e–u. 
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5.3 Minorities win in minority equilibrium 
In this section we address the distinction between an equilibrium in which one 
group behaves more aggressively, and one in which that group wins more often. For 
instance, in the majority equilibrium the majority fights harder and wins more 
often than the minority does. [It cannot be otherwise, the majority are ahead both 
in numbers and aggression.] But there is no reason to believe that the same is true 
of the minority equilibrium. The minority may be more aggressive, but the numbers 
are not on their side. 

However, a remarkable property of this model is that a minority equilibrium 
must involve the minority winning with greater probability than the majority. Provided that 
a minority equilibrium exists, aggression must compensate for numbers. 

 
Proposition 5. In a minority equilibrium, the minority outcome is implemented with 
greater probability than the majority outcome.  

 
This framework therefore indicates quite clearly how group behavior in a 

given situation may be swayed both by majority and minority concerns. When the 
latter occurs, it turns out that we have some kind of ‘tyranny of the minority’: they 
are so vocal that they actually swing outcomes (in expectation) to their side. 

The proof of this proposition is so simple that we provide it in the main text, 
in the hope that it will serve as its own intuition. 

 
Proof. Recall 5 and 6 and note that uA < uB in a minority equilibrium. It follows 
right away that ,)()( kmq
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   so that  < . 
Expanding this inequality, we conclude that B(1 – B) < A(1 – A). Because 
A < ½, this can only happen in two ways: either B >1 – A, or B < A. The former 
case is impossible, because A and B describe mutually exclusive events, so the 
latter case must obtain. But this implies the truth of the proposition.       
 
6. Limit Equilibria 

 
In Section 5.1 we established the existence of a minority equilibrium. Existence 
was guaranteed for large n and for all supermajority rules except for unanimity. As 
we’ve already remarked, there must be at least two such equilibria, while in 
addition we know that there is at least one majority equilibrium. This raises the 
question of what the set of equilibria look like as the group size grows without 
bound. 

The purpose of this section is to prove that despite the possibly large 
multiplicity of equilibria for finite group size, there are exactly three limit 
outcomes. Two of these outcomes are ‘limit minority equilibria’. Of the two, one 
exhibits a zero cutoff for the minority, and the other exhibits a positive minority 
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cutoff which is nevertheless lower than the majority cutoff. The third outcome is a 
‘limit majority equilibrium’ in which the cutoff used by the majority is zero. 

Moreover, the two corner equilibria (in which one side always fights for its 
favorite) possess a special structure: the other side does not necessarily yield fully. That 
is, the rival side may use an interior cutoff even in the limit, and we will 
characterize this cutoff exactly. 

We will also study disagreement probabilities along any sequence of 
equilibria. 

 
6.1 A characterization of limit outcomes 
We now study the various limit points of equilibrium cutoff sequences. We will 
denote a generic limit point by (uA*, uB*). 

 
Proposition 6. Assume that  > 0. 
[1] Suppose that (u*A, u*B) >> 0. Then both limits must be finite, and solve 

p[1 – F(u*A)]= (1 – p)[1 – F(u*B)] = .  (8) 

[2] Suppose that u*A = 0. Then u*B <  if and only if p < (1 – )/, and in that case u*B is 
given by the condition 
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[3]  Likewise, suppose that uB* = 0. Then u*A <  if and only if 1 – p < (1 – )/, and in 
that case uA* is given by the condition 
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[4] Moreover, if p > , each of the three configurations described above are limits for some 
sequence of equilibria. 
 
Proposition 6 is best understood by looking at Figure 3, which is drawn for 

the ‘semi-corner case’ in which  < p < 1 – p < /(1 – ). This figure depicts the loci 
B/(1 – A)= /(1 – ) and A/(1 – B)= /(1 – ), suitably truncated to respect the 
constraints that A ≤ p and B ≤ 1 – p. We claim that limit equilibrium cutoffs must 
simultaneously lie on both these truncated loci. To see this, suppose that some 
cutoff sequence {A

n, B
n} lies below the locus B/(1 – A) = /(1 – ) (along some 

subsequence, but retain the original index n). Then the equilibrium condition (5) 
coupled with the strong law of large numbers, assures us that uA

n  0, or that  
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A
n  p, which pulls the system back on to the locus. If, on the other hand, the 

cutoff sequence {A
n, B

n} lies above the locus B /(1 – A)=  /(1 – ), we have a 
contradiction as follows. First, by using (5) again, we may conclude that A

n  0. 
Next, recall that B

n ≤ 1 – p <  /(1 – ) (by assumption), but this and the previous 
sentence contradict the presumption that B

n /(1 – A
n) >  /(1 – ) for all n. 

Of course, the same sort of argument applies to both loci, so we may 
conclude that equilibrium cutoffs must converge to one of three intersections 
displayed in Figure 3.10 

The last part of the proposition asserts that when minority equilibria exist for 
large n, each of the three cases indeed represent ‘bonafide’ limit points, in that 
each case is an attractor for some sequence of equilibria. For the majority corner, 
this is obvious, as majority equilibria always exist and no sequence of majority 
equilibria can ever converge to a minority outcome. That the other two limits are 
also non-vacuous follow from the proof of existence of minority equilibria (the 
reader is invited to study the formal arguments in Section 9). 
 

 
Figure 3. Limit equilibrium cutoffs 
 
6.2 Disagreement 
One important implication of Proposition 6 is that even when there is little 
uncertainty regarding the size of each faction, both sides may still put up a fight. 
In particular, when 1 – p < 

1  all limit equilibria consist of ‘fighting’ on both 
sides. This raises the question of whether disagreement is bound to occur in large 
populations. 

 
 

                                                           
10  It is also possible to construct versions of this diagram for the other cases, such as 1 – p > /(1 – ) but 

p < /(1 – ) 
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Proposition 7. Assume  > 0. 
 
[1]  Suppose that  < p < 

1 and let u*B be the limit cutoff value that solves (9). Then in 
the limit semi-corner equilibrium (0, u*B) both sides agree with certainty. 

[2]  Assume 1 – p < 
1  and let u*A be the limit cutoff value that solves (10). Then in the 

limit semi-corner equilibrium (u*A, 0) both sides agree with certainty. 
[3] Consider any sequence of equilibria (uA

n, uB
n)  (u*A, u*B) where u*A and u*B solve (8). 

Then the probability of disagreement along that sequence is bounded away from one. 
 
The proofs of [1] and [2] follow immediately by looking at Figure 3. At the 

semi-corner minority equilibrium the proportion of A votes is simply p, which is 
strictly greater than . The proportion of B votes is 1 – p[(1 – )/], which is 
strictly smaller than . It follows that in the limit A is the unique eligible alternative, 
and hence that A will be implemented with certainty. Analogous arguments show 
that in the semi-corner majority equilibrium, B is the unique eligible alternative. 

The proof of [3] is more involved. Recall that in this case the proportion of A 
and B votes converges to the superminority requirement . One may be tempted 
to conclude that the probability of disagreement in this case must converge to ¼. 
A closer examination reveals that this may not be the case. Indeed, what is 
important in determining the probability of disagreement is not the mere 
convergence of A and B to , but their rate of convergence. So far, the 
equilibrium conditions do not allow us to pin down the probability of disagreement 
in this case. Still, we establish that this probability is bounded away from one. 

The intuition for this result is the following. Suppose that the probability of 
disagreement is high. Then the probability that each group is blocking the supermajority 
of its rival is also high. In particular, this means that group cutoffs are not wandering off 
to infinity. On the other hand, we can see that if group A, for example, is blocking group 
B, then the latter will be discouraged from making a B announcement. Doing so 
will most likely lead to disagreement, while casting a neutral vote ensures an 
agreement on A. This argument makes for high cutoffs, a contradiction to the 
bounded group cutoffs that were asserted earlier in this paragraph. 

In part, the formalization of the above intuition is easy, but the simultaneous 
movements in population size and cutoffs necessitate a subtle argument. In 
particular, the last implication – that cutoffs become large with population size – 
rests on arguments regarding rates of change as a function of population. The 
reader is referred to the formal proof for details. 

What allows individuals to agree, even when there are great many of them, is 
the option to remain neutral. This can be seen if we analyze a restricted version of 
our model in which individuals have only two options: A or B. We carry out this 
analysis in Section 7.3. There, we show that Proposition 7 ceases to hold. 

Finally, note that the case of unanimity is not covered here. This question 
remains open. 
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7. Extensions 
 

7.1 Biased choice when both alternatives are eligible 
Our model emphasizes majorities and minorities, but it can be used to study other 
issues. Consider the following example involving ‘bias’. Suppose that an interested 
arbitrator or chair gets to implement the outcome in case both options are 
eligible.11 To focus directly on the issue at hand, assume that the model is symmetric 
in every respect (inclusive of p = ½ though this is not logically needed for what 
follows) except for the bias, which we denote by  > ½ in favor of alternative B. 

It stands to reason that the presence of such a bias will spur A types on to 
greater aggression in pushing their alternative, while it might make the B types 
more complacent. This much is fairly obvious:12 the question is whether such 
behavioral changes might nullify or even outweigh the bias. 

The case of a strong bias, in which  ≃ 1, is easiest to consider, because it 
has an unambiguous prediction: 

 
Observation 5. Along any sequence of equilibria (as  1), it must be the case that 
B  0, and A  p = ½. 

 
While a formal proof is postponed to Section 9, the intuition is simple. The B 

types know that as long as B is eligible, it is very likely to win. But pushing just B 
serves no additional purpose except to create a possible gridlock, which is 
damaging. Hence type B’s equilibrium response must converge to ‘full neutrality’ 
as  1. For the A types, then, full aggression becomes an equilibrium response: 
they know that the eligibility of both alternatives is the same as an almost-sure 
defeat, and there is little likelihood of disagreement (given the timidity of the Bs). 

The implication of these results is that the probability of A winning must 
converge to precisely the probability that the A types number more than q in the 
population. For A wins only when the A types block B, and triumph as the only 
eligible alternative. Otherwise it loses. If q < n/2 (so that we are dealing with 
supermajority rules), this probability must exceed ½. In contrast, when there is no 
bias, the model is completely symmetric and the probability that A wins must be 
no more than half, ex-ante.13 

We have therefore shown that arbitration biases against an alternative may increase 
the winning probability of that alternative, and indeed will increase it when the arbitration 
bias is infinitely high. 
                                                           
11  We owe this subsection to the comments of a referee. 
12 Formally, with multiple equilibria we would have to analyze changes in the equilibrium correspondence, 

but the reasonable conjecture in the main text can be easily made precise. 
13  The qualification ‘no more than half’ stems from the possibility of disagreement. However, remember that 

there may be multiple equilibria, so our statement in the text may be viewed as the outcome of symmetric 
randomization over all equilibria. 
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7.2 More on tie-breaking 
The discussion in the previous section may be viewed more generally as an 
instance of various tie-breaking scenarios when both alternatives are eligible. For 
example, one might simply have a majority vote or some other ‘runoff’ in this case. 
The parameter  in Section 7.1 may be viewed as the reduced-form probability of 
win for type B in the runoff following eligibility of both alternatives. This makes 
little difference to the formalities of the model. One would simply redefine the 
variable u, depending on the value of  (the proof of Observation 5 in Section 9 
does just this). 

An interesting special case arises when  is given by a simple majority runoff. 
In this case, by Observation 2,  must equal 1 – p, a bias towards the majority. 
This be an additional source of minority aggression, as suggested by the analysis 
of the previous section. 

Other tie-breaking procedures are harder to handle within our framework. 
For instance, suppose that the outcome with the more votes is chosen in the event 
that both outcomes are eligible. [The existing votes are recounted, so this is 
different from a runoff.] This leads to a more complicated setup; we indicate 
some of the steps. 

Begin by deriving the necessary and sufficient condition for an individual of 
some type, say A, to weakly prefer an announcement of his favorite outcome – A 
in this case – to neutrality. To simplify the exposition we introduce the following 
notation. Define  to be the joint probability that not counting our individual’s 
vote, both A and B are eligible and both have the same number of declarations. 
Similarly, we define  to be the joint probability that not the A type’s vote, both A 
and B are eligible, both have strictly less than q declarations, but B has exactly one 
declaration more than A. We also use the notation P+ defined in Section 4.1. 

Given the above tie-breaking rule, an A type weakly prefers to declare A than 
to declare neutrality if, and only if 







 







  

22

vv
vvP

vv
v 

 

Simplifying this inequality we obtain the following cutoff rule: declare A if, and 
only if 

( +  ′)u ≥ P +. 

It follows that as in our original model, individuals base their decisions on how 
strongly they favor their preferred outcome to the alternative one. A similar 
inequality is obtained for the B types. 

The complexity involved in analyzing our model under this alternative tie-
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breaking rule follows from the above inequality. Recall that in our original 
formulation the cutoff rule was expressed as the lower tail of a binomial distribution. 
Unfortunately, the new formulation does not accommodate such an expression. 

Despite the added complexity, we are able to replicate some of our original 
results. First, it can be shown that all symmetric equilibria are interior (this is 
stated and proved as Observation 8 in Section 9). In contrast to the corresponding 
result in the paper (Observation 1), this result does not rely on any refinement. 
Second, a majority equilibrium always exists. This follows from arguments similar 
to those made in Proposition 1. 

Establishing the existence of a minority equilibrium proved to be a 
formidable task. However, it is easy enough to generate numerical examples that 
exhibit the same features as those described in Proposition 2.14 

 
7.3 No neutrality 
In our opinion, when faced with impending disagreement, the option of a neutral 
stance is very natural. This is why we adopted this specification in our basic model. 
[As discussed already, neutrality is not to be literally interpreted as a formal 
announcement.] Nevertheless, it would be useful to see if the insights of the 
exercise are broadly preserved if announcements are restricted to be either A or B. 

We can quickly sketch such a model. An individual is now pivotal under two 
circumstances. In the first event, the number of people announcing her favorite 
outcome is exactly q, which we assume to be less than (n – 1)/2.15 By announcing 
her favorite, then, disagreement is the outcome, while an announcement of the 
other alternative would lead to that alternative being implemented. The loss, then, 
from voting one’s favorite in this event is precisely v (recall that the disagreement 
payoff is normalized to zero). In the second event, the number of people 
announcing the alternative is exactly q. By announcing her favorite, she guarantees 
its implementation, while the other announcement would lead to disagreement. 
So the gain from voting one’s favorite in this event is v. Consequently, an 
individual will announce her favorite if  

Pr(exactly q others vote for alternative)v ≥ Pr(exactly q others vote for favorite)v. 

Define w  v/v . Then equilibrium cutoffs wA and wB are given by the 
conditions  

wA Pr (|B| = q)≥ Pr (|A| = q)  (11) 

and 
                                                           
14  For example, a minority equilibrium exists for F(u)=1 – e–3u, p = 0.4, n = 19 and q = 3. 
15  The case q = (n – 1)/2 is exactly the same as in Observation 2 for the main model. No matter what the 

valuations are, each individual will announce her favorite outcome. 
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wB Pr (|A| = q)≥ Pr (|B| = q)  (12) 

where |A| and |B| stand for the number of A- and B-announcements out of n – 1 
individuals, and where equality must hold in each of the conditions provided the 
corresponding cutoff strictly exceeds 1, which is the lower bound for these variables. 

In this variation of the model, it is obvious that at least one group must be 
‘fully aggressive’ (i.e., its cutoff must equal one).16 Moreover, as long as we are in 
the case q < (n – 1)/2, both groups cannot simultaneously be ‘fully aggressive’: one of 
the cutoffs must strictly exceed unity. 

So, in contrast to our model, in which all (robust) equilibria are fully interior, 
the equilibria here are at ‘corners’ (full aggression on one side, full acquiescence 
on the other) or ‘semi-corners’ (full aggression on one side, interior cutoffs on the 
other). The semi-corner equilibria are always robust in the sense of Section 4.2.2, 
and we focus on these in what follows.17 

In particular, to examine possible minority equilibria, set wA = 1. Then use the 
equality version of (12) to assert that  
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in any such equilibrium, where H is the (assumed atomless) cdf of w, distributed 
on its full support [1, ). 

It is easy to use (13) to deduce 
 

Observation 6. 
[1]  A semi-corner minority equilibrium exists if (n, q) are sufficiently large. 
[2]  In any minority equilibrium, the minority outcome is implemented with greater 

probability than the majority outcome.  
 
So the broad contours of our model can be replicated in this special case. 

This is reassuring, because it reassures us of the robustness of the results. At the 
same time this variation allows us to highlight the main implication of allowing 
voters to remain neutral: absent neutrality voters may be locked into situations in 
which they are almost certain to disagree. This is formalized in the next result. 

 
Observation 7. Assume 0 <  < p < ½. Consider any sequence {n, q} such that n   and 
q is one of the two integers closest to n. Then there exists a sequence of semi-corner minority 
equilibria for which the probability of disagreement coverges to one.  

                                                           
16  Simply examine (11) and (12) and note that both right-hand sides cannot strictly exceed one. 
17  In contrast to our setup, the ‘full corner’ equilibria may or may not be robust. We omit the details of this 

discussion. 
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The above result demonstrates the importance of being neutral: neutrality 
allows the players to avoid disagreement. Recall that Proposition 7 establishes 
that with neutrality, the probability of disagreement at every interior equilibrium is 
bounded away from one. Once the option of neutrality is taken away, the 
probability that players reach a disagreement (at any interior equilibrium) must go 
to one along some sequence of minority equilibria. 

 
7.4 Known group size 
Our model as developed has the potential drawback that the instance of a known 
group size is not a special case. More generally, individuals may have substantial 
information regarding the ordinal stance of others (though still remaining unsure 
of their cardinal preferences).18 

One way to accommodate this concern is to amend the model to posit a 
probability distribution  (nA) over the number nA of A-types in the population. 
[The current specification of cardinal intensities may be retained.] This has the 
virtue of nesting our current model as well as known group size as special cases.19 
In addition, the basic structure of our model is easily recreated in this more 
general setting. For instance, if   exhibits full support, a similar robustness 
argument applies to eliminate the ‘coordination-failure’ corner equilibria, and 
downward-sloping ‘reaction functions’, as in Figure 1, may be constructed just as 
before. The concept of a stochastic minority can also be easily extended. However, 
there are interesting conceptual issues involved in changing group size: in particular, 
we will need to specify carefully how   alters in the process. 

While a full analysis of this model is ‘beyond the scope of the current paper’, 
we provide some intuition by studying the extreme case in which group size is known; 
i.e., (nA)=1 precisely at some integer nA < n/2. We retain all our other assumptions. 

Of course,   no longer has full support, so the arguments in Section 4.2.2 do 
not apply to this case. To see why, consider the case when all B types are voting 
for B, whereas only extreme A-types are voting for A. When an A-type knows 
exactly how many B-types there are, he realizes that he can only create a 
disagreement by voting for A. Therefore, when group sizes are known, the two 
corner equilibria are robust (in the sense of Section 4.2.2). This suggests that the 
corner equilibria are unnatural in the following sense: when faced with some 
uncertainty about group sizes, some individuals may still put up a fight. 

A further observation relates to the importance of group size in the 
emergence of minority equilibria. Potentially, the existence of minority equilibria in 
our original model may be due to two types of uncertainties that are relaxed in 
large groups. First, as the number of individuals in the group increases, voters 

                                                           
18  In our current model, such ‘substantial information’ is only possible if p is close to either 0 or 1. 
19  In the current model,  (nA) = (n/(nA))p nA (1 – p n – nA  for some p �(0, ½). 
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have a more accurate estimate of the proportion of their types in the group. 
Second, as the population increases, each individual has a better picture of the 
distribution of intensities among his compatriots. 

What if group sizes are known? Then it can easily be shown that the 
equilibrium cutoff for one type depend only on the equilbrium cutoff of the other 
type. More precisely, an equilibrium (uA, uB) satisfies the following equations, 
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where nA < nB are the number of individuals of type A and B respectively. 
It is straightforward to construct examples in which there does not exist a 

minority equilibrium for small nA and nB. For instance, take ,)(
)ln( eu

uF


 11  
nA = 2, nB = 3 and q = 1. For these values there exists a unique interior majority 
equilibrium, uA  250 and uB. 0.22. However, using arguments similar to those 
employed in Propositions 2 and 4, one can show that for large n a minority 
equilibrium exists and the probability of disagreement is bounded away from one. 
By simple stochastic dominance arguments, it can be shown that in any minority 
equilbrium the minority wins more often. 

We conclude that certainty regarding the numbers of A and B types is not 
sufficient to generate a minority equilibrium; even when the numbers of A and B 
types are known, we still need n to be sufficiently large for the minority to prevail. 
 
7.5 Types who prefer disagreement to the rival alternative 
Suppose there exist types who rank disagreement above their second best 
alternative. Clearly, voting for the preferred alternative is weakly dominant for 
these types. Hence, in any interior equilibrium these individuals would vote their 
type. In this sense, incorporating these voters into our model is equivalent to 
adding aggregate noise. We believe that if the proportion of such types is 
sufficiently low, all of our results continue to hold. 

 
8. Summary 

 
We study a model of group decision-making in which one of two alternatives must 
be chosen. While group members differ in their valuations of the alternatives, 
everybody prefers some alternative to disagreement. 

We uncover a variant on the ‘tyranny of the majority’: there is always an 
equilibrium in which the majority is more aggressive in pushing its alternative, thus 
enforcing their will via both numbers and voice. However, under very general 
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conditions an aggressive minority equilibrium inevitably makes an appearance, 
provided that the group is large enough. This equilibrium displays a ‘tyranny of 
the minority’: it is always true that the increased aggression of the minority more 
than compensates for smaller number, leading to the minority outcome being 
implemented with larger probability than the majority alternative. 

These equilibria are not to be confused with ‘corner’ outcomes in which a 
simple failure of coordination allows any one group to be fully aggressive and 
another to be completely timid, without regard to group size. Indeed, one 
innovation of this paper is to show how such equilibria are entirely non-robust when 
confronted with varying intensities of valuations, and some amount of uncertainty 
regarding such valuations. In fact, as we emphasize in the paper, minority 
equilibria don’t always exist: they don’t exist, in general, for low population sizes 
and in the unanimity case they may not exist for any population size. 

We also fully characterize limit outcomes as population size goes to infinity. 
We show that there are exactly three limit outcomes to which all equilibria must 
converge. Two of these outcomes are ‘limit minority equilibria’. Of the two, one 
exhibits a zero cutoff for the minority, and the other exhibits a positive minority 
cutoff which is nevertheless lower than the majority cutoff. The third outcome is a 
‘limit majority equilibrium’ in which the cutoff used by the majority is zero. The 
two corner equilibria which display full aggression on one side do not, in general, 
force complete timidity on the rival side. We provide a complete characterization 
by providing necessary and sufficient conditions for the interiority of such cutoffs 
and describing exactly their values. 

Finally, we address the question of disagreement as group size grows large. 
We show that the probability of disagreement must converge to zero along all 
equilibrium sequences that converge to the semi-corners identified above. For 
those equilibria that converge to the remaining interior minority outcome, we 
show that the probability of disagreement is bounded away from one as the 
population size goes to infinity. The option to remain neutral is crucial in 
obtaining this result. Observation 7 in Section 7 considers an extension in which 
the neutrality option is removed, and proves that there is always a sequence of 
equilibria (in group size) along which the probability of disagreement must 
converge to one. 

While we focus on the positive aspects of supermajority rules, our analysis 
suggests an approach from the viewpoint of mechanism design. Under 
supermajority rules, the fear of possible disagreement induces agents to base their 
actions on their cardinal preferences, rather than just on their ordinal ranking as in 
simple majority. Individuals who care a lot about the final outcome will indeed 
risk disagreement. Thus supermajority rules in the shadow of disagreement plays a 
possible role in eliciting intensities. However, there are caveats. First, disagreement 
is costly. It remains to be seen whether groups would obtain a net benefit by 
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committing to the use of this costly option. Second, as our analysis shows, what 
determines agent behavior are relative, not absolute preference intensities over the 
different outcomes (see also Hortala-Vallve, 2004). This is an important (and 
complicated) enough question that deserves to be addressed in a separate paper. 

 
9. Proofs 

 
Proof of Observation 3. For concreteness, set i = A and j = B. Fix any uB  [0,). 
Recall that  
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so that  is continuous in uA, with   1 – F(uB) as uA 0, and   (1 – p)[1 –
F(uB)] as uA  . Consequently, recalling (5) and noting that q < (n – 1)/2, we see 
that (uA, uB) converges to a number strictly less than one as uA 0, while it 
becomes unboundedly large as uA  . By continuity, then, there exists some uA 

such that (uA, uB)=1, establishing the existence of a cutoff. 
To show uniqueness, it suffices to verify that  is strictly increasing in uA. 

Because the expression   kmkq

k k
m 
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0
11 )(   must be decreasing in , it will suffice 

to show that  itself is declining in uA, which is a matter of simple inspection. 
To show that the response uA strictly decreases in uB, it will therefore be 

enough to establish that  is also increasing in uB. Just as in the previous 
paragraph, we do this by showing that  is decreasing in uB, which again is a 
matter of elementary inspection. 

Finally, we observe that uA  0 as uB  . Note that along such a sequence, 
  0regardless of the behavior of uA. Consequently,   kmkq
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converges to 1 as uB  . To maintain the equality (5), therefore, it must be the 
case that uA  0. 

Of course, all these arguments hold if we switch A and B.       
  

Proof of Observation 4. Let u be defined as in the statement of this Observation. 
Define )]([ uFpA  1  and )]()[( uFpB  11 . Then 
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where )./( AB   1  Now recall that  in (6) is defined by
B

A

  1 , so that if we 

consider the corresponding value  defined by setting uA = uB = ,u  we see that  

  if and only if ).()( BBAA   11  
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But A ½ (because p ½), so that the second inequality above holds if and only 
if ,BA   and this last condition follows simply from the fact that p ½. 

So we have established that  ≤ .  It follows that  
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and using this information in (14), we must conclude that  
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Recalling that  is increasing in its first argument (see proof of Observation 
3), it follows from (15) that type B’s equilibrium response to u is no bigger than .u  

Finally, observe that all these arguments apply with strict inequality when  
p ½.      

  
Proof of Proposition 1. For each uB  0, define  (uB) by composing equilibrium 
responses:  (uB) is B’s equilibrium response to A’s equilibrium response to uB. By 
Observation 3, we see that A’s equilibrium response is a positive, finite value when 
uB = 0, and therefore so is B’s response to this response. Consequently,  (0)>0. 
On the other hand, A’s equilibrium response is precisely u  when uB = ,u  and by 
Observation 4 we must conclude that .)( uu   Because  is continuous (Observation 
3 again), there is u*B  (0, )u  such that (u*B) = u*B. Let u*A be type A’s equilibrium 
response to u*B*. Then it is obvious that (u*A, u*B) is an equilibrium. Because 
u*B < ,u  we see from Observation 3 that u*A > .u  We have therefore found a 
majority equilibrium.       

  
Proposition 2 and some subsequent arguments rely on the following lemma. 
 

Lemma 1. Consider any sequence {n, q} such that n   and q is one of the two integers 
closest to n. For any uA satisfying 

,)]([  AuFp 1  (16) 

there exists a finite N such that for all n ≥ N, A
n
B

n
B uuu ˆ where

n
Bu solves (5) with 

,AA uu  and n
Bû solves (6) with .AA uu   

 
Proof. Consider any sequence {n, q} as described in the statement of the lemma. 
Because p > , there exists a range of positive cutoff values satisfying inequality 
(16). Consider any such value .Au and denote )]([ AA uFp  1 . There exists a 
finite n* such that for all n ≥ n*, 
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1


n
q

A _  

Note that there is also an associated sequence {m } defined by mn  n – q.20 
We break the proof up into several steps. 
Step 1. We claim that there exists an integer M such that for each m ≥ M there 

is m
Bu <  that solves the following equation:  

A

km
m

q

k

k
m uk

m










 



 1

1
1

1
1

0

)()(   (17) 

where  

A

m
B

m 




1

 

and  

)]()[( m
B

m
B uFp  11 . 

We prove this claim. Note that for all n ≥ n*, 1 – p ≥ p > q/(n – 1), so that  

11

11








m

q
m

np ))(( _ 



1

 

for all n ≥ n*. Consequently, by the Strong Law of Large Numbers (SLLN), 

01
1

1

0








 



 km

q

k

k

k
m

)(   

as m and q grow to infinity. It follows that there exists M such that for all m ≥ M 
(and associated q),  

.)(
A

km
q

k

k

uk
m










 





1

1
1

1
1

0

  (18) 

For such m, provisionally consider .0m
Bu Then  

)]([ AA

m
B

uFp
p





 11

1

1 


, 

and using this in (16), we conclude that  

                                                           
20  While correct notation would demand that we denote this sequence by mn, we shall use the index m for 

ease in writing. 
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Combining this information with (18), we see that if ,0m
Bu then  
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  (19) 

Next, observe that if m
Bu is chosen very large, then m

B  and consequently m are 
both close to zero, so that km

m
kq

k mk
m 

 







 1
0

1
1

)(   is close to unity. It follows that 
for such ,m

Bu  
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m
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k
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1

1
1

1
1

0

  (20) 

Combining (19) and (20) and noting that the LHS of (17) is continuous in ,m
Bu it 

follows that for all m ≥ M there exists 0 < m
Bu <  such that the claim is true. 

Step 2. One implication of (17) in Step 1 is the following assertion: as 
(m, q)  ,  

m  /(1 – )  (0, 1), and in particular m
Bu  is bounded. (21) 

To see why, note that ).,( 101
1  Au  Using (17) and SLLN, it must be that 

m  /(1 – )  (0, 1) as (m, q)  . Recalling the definition of m it follows 
right away that m

Bu  must be bounded. 
Step 3. Next, we claim there exists an integer M* such that 

For all m ≥ M*, .A
m
B uu    (22) 

To establish this claim, note first, using (16), that  

,)]([
1

1
1

1

1

11
1



















m
q

p
p

m
q

m
q

m
q

A n
q

uFp  

where the last inequality follows from the assumption that p  ],,( 2
10 so that 

.11 
p

p  A simple rearrangement of this inequality shows that 

111

11







m
q

uFp
uFp

A

A

)]([
)]()[( _ 



1

. (23) 

Now suppose, contrary to the claim, that A
m
B uu   along some subsequence of m. 

Then on that subsequence, 
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  (24) 

Combining (23) and (24), we may conclude that along the subsequence of m for 
which ,A

m
B uu    

,inf






1mm

 

which contradicts (21) of Step 2. 
To prepare for the next step, let m

Bû  denote the equilibrium response of the B-
types to .AA uu   That is,  

,)(
ˆ
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m
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k

k
mm

B
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1
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1

1   (25) 

where  

m
B

A
m




 ˆ


1
 

and  

)].ˆ()[(ˆ m
B

m
B uFp  11  

Step 4. There is an integer M** such that for all m ≥ M**, .ˆ m
B

m
B uu  To prove 

this claim, suppose on the contrary that m
B

m
B uu ˆ  along some subsequence of m. 

[All references that follow are to this subsequence.] Then  

.
)]()[(

)]([
)]ˆ()[(

)]([
ˆ m

B

A
m
B

A
m
B

A
m
B

A
m uFp

uFp
uFp

uFp





















1111

1

111

1

1
 (26) 

Recall from (21), Step 2, that .






 11 A

m
B  Therefore m

B  ,B  where 
).( AB  

   11  Recall from (16) that A >, so that B <  and in particular  

B < A . Because p ≤ 1/2, so is A , and these last assertions permit us to 
conclude that A (1 – A ) > B  (1 – B ), or equivalently, that  

.
A

B

B

A










 11
 

Using this information in 26) and recalling that m
B  ,B  we may conclude that  
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A

B

B
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 1mm

 

where the last equality is from (21). It follows from (25) that m
Bû  . But this 

contradicts our supposition that m
B

m
B uu ˆ  (that along a subsequence) because the 

latter is bounded; see (21) of Step 2.      
  

Proof of Proposition 2. Consider any sequence {n, q} as described in the statement of 
the proposition. Choose some cutoff Au  that satisfies (16). By Lemma 1, there is 
an integer N such that for all n ≥ N, n

Bû > n
Bu > .Au Define, for each n ≥ N and each 

uA  (0, ]Au ,  n(uA) as the difference between B’s equilibrium response to uA and 
the value of uB to which uA is an equilibrium response. By Lemma 1 and 
Observation 3,  n is well-defined and continuous on this interval. Using 
Observation 3 yet again, it is easy to see that (for each n) )( A

n u < 0 for small 
values of uA, while the statement of Lemma 1 assures us that )( A

n u >0. Therefore 
for each n, there is n

Au~  ),( Au0  such that )~( n
A

n u  = 0. If we define n
Bu~ to be the 

equilibrium response to ,~n
Au it is trivial to see that )~,~( n

B
n
A uu  constitutes an equilibrium. 

Finally, note that  

n
Au~ < Au < n

Bu < n
Bû < n

Bu~ ,  

where the second and third inequalities are a consequence of Lemma 1, and 
the last inequality comes from the fact that the equilibrium response function 
is decreasing (Observation 2). This means that )~,~( n

B
n
A uu  is a minority 

equilibrium.      
 
Proof of Proposition 3. Suppose on the contrary that a minority equilibrium ),( n

B
n
A uu

exists along some subsequence of n (all references that follow are to this 
subsequence). Then limn   ),( n

B
n
A uu  is either (,), (0,) or a pair of strictly 

positive but finite numbers (u*A, u*B). To prove that our supposition is wrong, we 
show that none of these limits can apply. 

Assume ),( n
B

n
A uu  (,). Then 0n

A  and .0n
B  This implies that  n0 

and  n0. But this implies, by equations (5) and (6) and using SLLN, that 
),( n

B
n
A uu  (0,0), a contradiction. 

Assume ),( n
B

n
A uu  (0,). Then pn

A   and ,0n
B  so that  np <  < 

1m
q . But using (6) and SLLN, this implies that ,0n

Bu  a contradiction. 
Assume ),( n

B
n
A uu  (u*A,u*B), where both u*A and u*B are strictly positive and 

finite. Using SLLN and equations (5) and (6), it follows that  n and  n must both 
converge to 1m

q . This means that n
A *A and n

B *B such that 
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This equality holds only if *A = *B, or if *A =1 – *B. Suppose the former is true. 
Then  n* where 














11 A

B* _ 
1m

q
 

But the above inequality implies, by (5) and SLLN, that ,0n
Au  a contradiction. 

Suppose next that *A =1 – *B. But 1 – *B > p >*A, a contradiction.      
  

Proof of Proposition 4. Under unanimity, (5) and (6) reduce to 

11
1

1 


n

Au
)(   (27) 

and 

11
1

1 


n

Bu
)(   (28) 

For any given n and k = A, B, define yk  (1+ uk)1/(n – 1). Then yk ≥ 1, and (27) and 
(28) may be rewritten as  

Ay
1

1   (29) 

and  

.
By

1
1   (30) 

Recalling that B/(1 – A) and  = A/(1 – B), we may use (29) and (30) to 
solve explicitly for A and B. Doing so and writing out k for k = A, B, we see that  

,)]([
1

1
1





BA

B
AA yy

y
uFp  (31) 

while  

.)]()[(
1

1
11





BA

A
BB yy

y
uFp  (32) 

By multiplying both sides of (31) by 1 – F(uB) and both sides of (32) by 1 – F(uA) 
and using the fact that p < 1 – p, we may conclude that 

* 
* 

* 
* 

* 
* 
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[1 – F(uB)][(1 + uB)1/(n – 1) – 1] < [1 – F(uA)][(1 + uA)1/(n – 1) – 1] (33) 

We will now prove that uA > uB. Given (33), it will suffice to prove that  

[1 – F(x)][(1+ x)1/(n – 1) – 1] 

is nondecreasing in x. This, in turn, is implied by the stronger observation that  

dx
d

[1 – F(x)][(1+ x)1/(n – 1) – 1] ≥ 0  

for every x > 0, or equivalently, that  

,
)(

)(
)(

)(
11

1

1

1












x

x
xF

xf
 (34) 

where ].,( 101
1  n  

To this end, we demonstrate that for all x > 0 and   (0, 1],  

.
)ln()()(

)(
xxx

x





 

11

1

11

1 1




 (35) 

To establish (35), note that for fixed x > 0, h()  (1 + x) is differentiable and 
convex in x. By a standard property of differententiable convex functions, h(1) –
 h(2) ≤ h(1) (1 – 2) for all 1 and 2. Applying this inequality to the case 1 =  
and 2 = 0, we may conclude that  

h() – h(0) = (1 + x) –1 ≤ h() = (1 + x) ln(1 + x),  

and a quick rearrangement of this inequality produces (35). 
To complete the proof, combine (7) and (35) to obtain (34).      
 

Proof of Proposition 6. Recall the conditions describing equilibrium cutoffs: 
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For each integer n (with associated m and q) and every u ≥ 0, define a 
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function h(u, n) by the condition that  

.)),((),(
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Note that h is well-defined for each (u, n). With this in hand, we may rewrite 
the equilibrium conditions more succintly as  

nn
A

n
n
A

n
B nuh 






),(

1
 (36) 

and 

nn
B

n
n
B

n
A nuh 






),(

1
 (37) 

where we are now starting to index all endogenous variables by n in order to 
prepare for sequences of equilibria. Solving these two equations for n

A and ,n
B  we 

see that  

nn

nn
n
A

n
A uFp








1

1
1

)()]([  (38) 

and  

nn

nn
n
B

n
B uFp








1

1
11

)()]()[( . (39) 

We now study various limits of equilibrium cutoff sequences. We will denote 
the limits in all cases by (u*A, u*A). The following lemma summarizes simple 
properties of h and will be used throughout. 

 
Lemma 2.  
[1] For every n, h is strictly increasing in u, with h(0, n) = 0 and h(u, n) 1 as n  . 
[2] If un converges to u with 0 < u < , then limn  h(un,n) = /(1 – ). 
[3] If un converges to 0 then lim supn h(un,n) ≤ /(1 – ). 
[4] If un, then lim infn h(un,n) ≥/(1 – ).  

 
The proof of this lemma follows from routine computations and the use of 

the law of large numbers, and is omitted. 
Now we prove part [1] of the proposition. First, we claim that u*A and u*B are 

finite. For suppose, say, that u*A =  (the argument in the other case is identical). 
It follows from (38) that either  n has a limit point at 1, or that  n has a zero 
limit point. The latter possibility is ruled out by Lemma 2, because u*B > 0 by 
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assumption. It follows that lim supnn = 1, but then Lemma 2 assures us that 
u*B =  as well. 

The first of the two conclusions in the preceding sentence implies that 
lim supn

n
B = 1 (use (37)), but the second conclusion implies that limn

n
B = 0 

(use (39)). These two implications contradict each other. 
So 0 << (u*A, u*B) << , but we know then from Lemma 2 that (n, n)  (,) 

as n  . Simple computation using (38) and (39) then yields (8). It should be 
noted that this limit (which is unique in the class of strictly positive limits) has  
u*A < u*B; that is, it is a ‘limit’ minority equilibrium. 

Next, we prove part [2]; the proof of part [3] is completely analogous. 
Suppose, then, that u*A = 0. We first prove the sufficiency of the restriction on p. 
To this end, assume that u*B =. Consider some subsequence in which n and  n 
converge (to some * and *). Then (38) implies that 

p



**
*)(*




1

1
 (40) 

while at the same time, (39) implies that 

,
**
*)(*

0
1

1







 (41) 

(41) implies either that  * = 0 or that  *= 1. But the latter cannot happen, for 
then (40) cannot be satisfied (note that the LHS of (40) is well-defined even when 
 * = 1, because  * < 1 by Lemma 2). So it must be that * = 0. But then (40) 
implies that p = *. Lemma 2 tells us that * ≥ /(1 – ), so that p ≥ /(1 – ). 

Conversely, suppose that u*B < . Again, consider some subsequence in which 
 n and  n converge to some  * and *. Therefore (38) implies that  

p



**
*)(*




1

1
 (42) 

while (39) implies that  

)(
**
*)(* p




1
1

1


 [1 – F(u*B )] (43) 

We can eliminate  * from this system. We also note that by Lemma 2,  * must 
equal /(1 – ). Using these observations along with some routine computation, 
we obtain precisely (9). 

We also know that F(u*B) < 1. Using this information in (9), we may conclude 
that p < /(1 – ). 
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Finally, we establish part [4]. Assume, to the contrary, there exists no 
sequence of equilibria whose limit is given by the first configuration. By parts [2] 
and [3] of the proposition, the limit of any sequence of minority equilibria has 
either u*A = 0 or u*A > u*B. To reach a contradiction, pick any uA > 0 satisfying (16). 
By Lemma 1, there exists an integer N such that for all n ≥ N, there exists a 
minority equilibrium (uA

n,uB
n) with uA

n > uA. From Proposition 1 it follows that for 
any p < (1/2) and for any n, there does not exist a pair of numbers (u, u) that solve 
the equilibrium conditions (5) and (6). We therefore conclude that for all n ≥ N, 
there exists a minority equilibrium (uA

n, uB
n) with 0 < uA < uA

n < uB
n, in contradiction 

to our initial assumption. 
Suppose next that there exists no sequence of equilibria whose limit is given 

by the second configuration. Then by parts [1] and [3] of the proposition, the 
limit of any minority equilibrium must satisfy that u*A ≥  > 0. Let   (0, ). By 
Lemma 1, there exists a finite N > 0 such that for all n ≥ N there exists a minority 
equilibrium (uA

n, uB
n) with uA

n < . But this means that the limit of any such 
sequence cannot satisfy that u*A ≥ , a contradiction. 

Finally, assume there exists no sequence of equilibria whose limit is given by 
the third configuration. This implies, by [1] and [2], that the limit of any sequence 
of equilibrium cutoffs has u*A < u*B. But this contradicts Proposition 1, which 
states that for every n there exists an equilibrium with uA

n > uB
n.     

 
Proof of Proposition 7. The proofs of [1] and [2] are given in the discussion 
following the statement of the proposition in the text. We now proceed to prove 
[3]. Assume that q < 2

1n  (When q = 2
1n  the probability of disagreement is zero). Note 

that the probability of disagreement is equal to Pr(|A| > q,|B| > q), where |·| stands 
for cardinality. Because  

Pr(|A| > q, |B| > q) ≤ min{Pr(|A| > q), Pr(|B| > q)},  

it suffices to show that Pr(A > q) and Pr(B > q) cannot both converge to one along 
some subsequence of n. 

Suppose, on the contrary, that Pr(A > q) and Pr(B > q) do converge to one 
along some subsequence of n (retain notation). The proof proceeds in two steps. 
In the first step we show that for large n both A and B are strictly above . 
Moreover, if either A or B converges to , then it converges at a rate slower than

n
1 . In the second step we show that this implies that the equilibrium cutoffs, uA 

and uB, must be growing to infinity, in contradiction to step 1. 
Step 1. 
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We prove 
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1

; similar arguments hold for B. 

Assume to the contrary that there exists a subsequence for which 
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 where – ≤ c < . 
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Let Xn denote the number of A announcements (i.e., |A|). By the Berry-Esséen 
Theorem (see, for example, Feller, 1986, Chapter XVI.5, Theorem 1), for some 
 < (–c), there exists an N such that for n > N 

11
11
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n  

and this contradicts our premise that limnPr(|A| > q) = 1. 
Recalling that  = B/(1 – A) and  = A/(1 – B), it follows from step 1 that 
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Step 2. If 
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11 m
n , then uA   and 

uB  . 
As in step 1 we provide a proof for uA and similar arguments follow for uB. 
Let Yn be the sum of successes from a binomial distribution with probability 

of success  and with m – 1 draws. Then 
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)(  Pr(Yn ≤ q) ≤ Pr(|Yn – (m – 1)| ≥ (m – 1) – q) 
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where the last inequality is by Chebyshev’s inequality and the limit follows from 
the premise. Therefore, by (5) it must be that uA  . This implies that A  0, in 
contradiction to step 1.       
 
Proof of Observation 5. In place of the variable u, define a variable ua for the A types 
by  

,
v

vvua




  

and a corresponding variable ub for the B types by  

.)(
v

vvub




 1  

Nothing changes in our description of the equilibrium conditions (5) and (6), 
except that a Z-type defines her threshold uZ using the variable uz. Notice that the 
cdfs of ua and ub are now different, but that 



 

193 
·················· 
Coalitions and Networks 

Coalitions and Networks Chap 7 











2

a
aa u
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b
bb u

FuF . (44) 

Now, suppose that along some sequence  converging to 1, B does not converge 
to zero. Then, because B = (1 – p)[1 – F b(uB)], F b(uB) fails to converge to 1, which 
means (using (44)) that uB must converge to zero. Using (6), we must conclude that 

B

A






1

 

converges to 0. But this must imply in turn that A converges to 0, or that F a(uA) 
converges to 1. Using (44) again, we must conclude that uA  , so by (5),  

A

B






1

 

converges to 1. With A converging to 0 and B bounded above by 1 – p = 1/2, this 
is an impossibility. 

So we have shown that B converges to zero. Because A is bounded above by 
p = 1/2, this means that  

A

B






1

 

converges to zero as well. An inspection of (5) now shows that uA must converge 
to 0. Using (44), it follows that F a(uA) also converges to 0, which proves that 
A = p[1 – F a(uA)] converges to p = 1/2.       

  
Proof of Observation 6. To prove part [1], define   1/(n – 1 – 2q), and rewrite (12) as 

(1 + wB
 )[1 – H(wB)]= 1/(1 – p). (45) 

Notice that when wB = 1, the LHS of (45) equals 2, while the RHS is strictly smaller 
than 2 (because p = 1/2). 

Now suppose that there is some w such that the LHS of (45), evaluated at 
wB = w, is strictly less than 1/(1 – p). In this case, consider some intersection x = wB 
of the function (1 + x)[1 – H(x)] with the value 1/(1 – p), along with the value 
wA = 1. It can be verified that such an intersection constitutes a semi-corner 
minority equilibrium. 

It remains to show that the condition in the first line in the previous 
paragraph is satisfied for all (n, q) large enough. To this end, fix some w such that 
1 – H(w) < ½(1 – p). Now take (n, q) to infinity and notice that   0. Therefore 
w converges to 1. It follows that for large (n, q),  
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(1 + w)[1 – H(w)] < 1/(1 – p),  

and we are done. 
Note that part [2] is trivially true for corner minority equilibria. To prove part 

[2] for semi-corners, note that the probability that the minority outcome is 
implemented is given by 
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Similarly, 
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Thus, Pr(|A| ≥ m) > Pr(|B| ≥ m) if and only if (1 – p)(1 – H(wB)) < p + (1 – p)H(wB), 
which may be rewritten as  

)(
)( BwH

p



1

12

1
 (46) 

Now (45) tells us that  

))((
)( 

B
B wp

wH



11

1
1  

where wB > 1. Hence, (1 – p)(1 +wB
) > 2(1 – p), which implies (46).       

 
Proof of Observation 7. Let w*B be the solution to the following equation: 

p + (1 – p)H(w*B) = (1 – p)[1 – H(w*B)] 

Notice that w*B is well-defined and greater than 1, as long as p = ½. We now 
proceed in two steps. 

Step 1. There exists a sequence of semi-corner minority equilibria that 
converges to (1, w*B). To see this, note that when wB = wB* the RHS of (13) is 
smaller than the LHS. For any  > 0, set wB = wB* + . Because 111
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B

B
wHp
wHpp  

there exists N() <  such that for all n ≥ N(), the LHS of (13) is strictly greater 
than its RHS. It follows that for all n ≥ N(), there exists an equilibrium (1, w n

B) 
where w n

B  (w*B, w*B +). 
Step 2. By Step 1, as n  , the probabilities with which a random voter 

votes for A or for B (along the above sequence of semi-corner minority equilibria) 
both converge to 1/2. In particular, there exists an N above which these 
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probabilities are bounded below by >  and above by 1 – . The probability of 
disagreement is equal to 1 – Pr(|A| ≥ m) – Pr(|B| ≥ m). We now show that Pr(|A| ≥ m) 
goes to zero as n  . By essentially the same argument, Pr(|B| ≥ i) also goes to 
zero as n  . 

Recall that 
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for some  > 0. By stochastic dominance, 
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By inequality (47) and the SLLN, the RHS of (48) goes to zero.       
 

Observation 8. Consider the model with a majority tie-breaking rule. All symmetric 
equilibria in this model are interior.  

 
Proof. We proceed in three steps. 

Step 1. No side can use an infinite cutoff in equilibrium. Suppose that side A does. 
Then note that no matter what rule side B follows,  +  >0. This is because the 
sum of probabilities  +  is greater than the probability that both sides have 
exactly zero votes, which in turn, is at least as high as the probability that all 
individuals but one are A types. Since the latter probability is positive we obtain 
the desired inequality. 

In order for an A-type to declare neutrality in equilibrium, his u value must 
satisfy ( + )u < P +. But this inequality cannot hold for an infinite u because we 
have just shown that  +  > 0, a contradiction. Hence, equilibrium cutoffs of 
both sides are bounded. 

Step 2. P +> 0. To prove this, fix some person, say of type A, and simply take 
the event in which exactly q compatriots are of type A (apart from the special 
individual) and the rest are of type B, and all value realizations are above the 
cutoffs. Because cutoffs are bounded, the probability of this event is strictly 
positive. But this event is contained within the one covered by P +. So P + > 0. 

Step 3. In any equilibrium, cutoffs are strictly positive. To see this, note by 
step 2 that P + > 0. Now take u very small; the inequality ( + )u ≥ P + cannot 
hold.      
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We introduce a model of network formation whose primitives consist of a feasible set of 
networks, player preferences, rules of network formation, and a dominance relation on 
feasible networks. Rules may range from noncooperative, where players may only act 
unilaterally, to cooperative, where coalitions of players may act in concert. The dominance 
relation over feasible networks incorporates player preferences, the rules of network 
formation, and the degree of farsightedness of players. A specification of the primitives 
induces an abstract game consisting of (i) a feasible set of networks, and (ii) a path 
dominance relation. Using this induced game we characterize sets of network outcomes 
that are likely to emerge and persist. Finally, we apply our approach and results to 
characterize the equilibrium of well known models and their rules of network 
formation, such as those of Jackson and Wolinsky (1996) and Jackson and van den 
Nouweland (2005). 

 
 
 
1. Introduction 

 
1.1 Overview of the questions, the model and the main results   
In many economic and social situations the totality of interactions between 

                                                           
 We are especially grateful to Michael Maschler and Salvador Barbera for stimulating discussions and for an 

example. We also wish to thank John Conlon, Anne van den Nouweland and participants at various 
conferences where this paper was presented for their interest and comments. Finally, we wish to thank two 
anonymous referees whose careful reading and thoughtful comments led to many improvements in the paper. 
This paper continues our earlier work presented at the CTN Workshop on Coalitions and Networks held at 
the University of Warwick in June of 2001. The current version of the paper was substantially completed 
while both authors were visiting CERMSEM at Paris 1 during the summers of 2005 and 2006. Both authors 
are grateful to CERMSEM and Paris 1 for support and hospitality. 
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individuals and coalitions can be modeled as a network. We address the 
following question: given preferences of individuals and rules governing network 
formation, what networks are likely to emerge and persist? To address this 
question we introduce a model of network formation whose primitives consist 
of a feasible set of networks, player preferences, the rules of network formation, 
and a dominance relation. The rules of network formation may range from 
noncooperative, where players may only act unilaterally, to fully cooperative, 
where coalitions consisting of multiple players may act in concert. The 
dominance relation may be either direct or indirect. Under direct dominance 
players are concerned with immediate consequences of their network formation 
strategies whereas under indirect dominance players are farsighted and consider 
the eventual consequences of their strategies. As we will discuss, our framework 
can accommodate a wide variety of social and economic situations.1 

A specification of the primitives induces an abstract game consisting of (i) 
a feasible set of networks and (ii) a path dominance relation defined on the 
feasible set of networks.2 Under the path dominance relation, a network G path 
dominates another network G  if there is a finite sequence of networks, 
beginning with G and ending with G  where each network along the sequence 
dominates its predecessor.3 Using this induced abstract game as our basic 
analytic tool we demonstrate that for any set of primitives the following results 
hold: 

 
1. The feasible set of networks contains a unique, finite, disjoint collection of 

nonempty subsets each constituting a strategic basin of attraction. Given 
preferences and the rules of governing network formation, these basins of 
attraction are the absorbing sets of the process of network formation 
modeled via the game. 

2. A stable set (in the sense of von Neumann Morgenstern) with respect to path 
dominance consists of one network from each basin of attraction. 

                                                           
1  Our framework is essentially that of Chwe (1994) but applied to networks. Using Chwe’s framework we 

are able to take into account both rules and preferences in the formation of networks. 
2  To our knowledge, there are no prior papers formulating the problem of network formation as an abstract 

game. Because our abstract game is induced from the Chwe primitives (preferences and effectiveness 
relations expressing the rules of network formation) our approach is very much in the spirit of Chwe 
(1994) and other papers such as Gillies (1959), Harsanyi (1974), Inarra, Kuipers, and Olaizola (2005), 
Kalai and Schmeidler (1977), Moulin and Peleg (1982), Rosenthal (1972), and Shenoy (1980). 

3  Stated formally, given feasible set of networks  and dominance relation >, network G    (weakly) path 
dominates network G   , written G  ≥p G, if G  = G or if there exists a finite sequence of networks 
{Gk}n

k = 0 in  with G = G0 and G  = Gn such that for k = 1, 2, …, n 

 Gk > Gk –1.  

The path dominance relation ≥p induced by the dominance relation > is sometimes referred to as the 
transitive closure of >. 
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3. The path dominance core, defined as a set of networks having the property 
that no network in the set is path dominated by any other feasible network, 
consists of one network from each basin of attraction containing a single 
network. Note that the path dominance core is contained in each stable set 
and is nonempty if and only if there is a basin of attraction containing a single 
network.4 As a corollary, we conclude that any network contained in the path 
dominance core is constrained Pareto efficient. Thus, by considering the 
network formation game with respect to path dominance – and thus by 
considering the long run – we identify networks that, given the rules of network 
formation, are both stable and Pareto-efficient with respect to the original 
dominance relation. 

4. From the results above it follows that if the dominance relation is transitive 
and irreflexive, then the path dominance core is nonempty. 
 
We also demonstrate specializations of our model to treat network 

formation games over linking networks as well as hedonic games and we discuss 
how our results apply to these examples. 

There are interesting connections between our notions of stability (basins 
of attraction, path dominance stable sets, and path dominance core) and some 
of the basic notions of stability and equilibrium found in the existing literature – 
such as, strong stability (Jackson and van den Nouweland, 2005), pairwise 
stability (Jackson and Wolinsky, 1996), consistency (Chwe, 1994), and Nash 
equilibrium. We show that in general (for all primitives) the path dominance 
core is contained in the set of strongly stable networks. We conclude from our 
general results therefore that, for all primitives, the existence of at least one 
basin of attraction containing a single network is sufficient for the existence of a 
strongly stable network. We also demonstrate that, depending on how we 
specialize the primitives of the model, the path dominance core is equal to the 
set of strongly stable networks, the set of pairwise stable networks, or the set of 
Nash networks. 

Of particular interest are the connections between the rules of network 
formation, the dominance relation inducing path dominance, and stability.5 We 
provide a unified and systematic analysis of these connections. For example, we 
show that: 

 
(a)  If path dominance is induced by a direct dominance relation (as opposed to 

an indirect dominance relation as in Chwe, 1994, for example), then the path 
dominance core is equal to the set of strongly stable networks. 

                                                           
4  Put differently, the path dominance core is empty if and only if all basins of attraction contain multiple 

networks. 
5  Although she treats a more specialized model, the questions addressed in Demange (2004) are related. 
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(b) If, in addition, the rules of network formation are the Jackson-Wolinsky rules, 
then the path dominance core is equal to the set of pairwise stable 
networks.6 

(c) If path dominance is induced by a direct dominance relation and if the rules 
of network formation only allow network changes brought about by 
individuals, then the path dominance core is equal to the set of Nash 
networks. 
 
We then conclude from (3) above, the existence of at least one basin of 

attraction containing a single network is, depending on how we specialize 
primitives, both necessary and sufficient for either (i) the existence of a strongly 
stable network, or (ii) a pairwise stable network, or (iii) a Nash network.7 

For path dominance induced by an indirect dominance relation as in Chwe 
(1994), we show that for all primitives – and in particular for all rules of network 
formation – each strategic basin of attraction has a nonempty intersection with 
the largest consistent set of networks (i.e., the Chwe set of networks, see Chwe, 
1994).8 This fact, together with (2) above, implies that there always exists a path 
dominance stable set contained in the largest consistent set. Thus, the path 
dominance core is contained in the largest consistent set. In light of our results on 
the path dominance core and stability (both strong and pairwise), we conclude 
that if path dominance is induced by an indirect dominance relation, then any 
network contained in the path dominance core is not only consistent but also 
strongly stable, as well as pairwise stable.9 

We remark that solution concepts defined using dominance relations have a 
distinguished history in the literature of game theory. First, consider the von-
Neuman-Morgenstern stable set. The vN-M stable set is defined with respect to a 
dominance relation on a set of outcomes and consists of those outcomes that are 
externally and internally stable with respect to the given dominance relation.10 
Similarly, Gilles (1959) defines the core based on a given dominance relation. 
These solution concepts, with a few exceptions, have typically been applied to 

                                                           
6  Under the Jackson-Wolinsky rules arc addition is bilateral (i.e., the two players that would be involved in 

the arc must agree to adding the arc), arc subtraction is unilateral (i.e., at least one player involved in the 
arc must agree to subtract or delete the arc), and network changes take place one arc at a time (i.e., in any 
one play of the game, only one arc can be added or subtracted). See section 3.2.1 for a formal definition. 

7  For Jackson-Wolinsky linking networks, Calvó-Armengol and Ilkilic (2005) provide necessary and 
sufficient conditions on the network link marginal payoffs such that the set of pairwise stable, pairwise 
Nash, and proper equilibrium networks coincide. 

8  Consistency with respect to indirect dominance and the notion of a largest consistent set were introduced 
by Chwe (1994) in an abstract game setting. We provide a detailed discussion of Chwe’s notion in Section 
5.3. 

9  Other papers on indirect dominance and consistency in games include Xue (1998), Diamantoudi and Xue 
(2003), and Mauleon and Vannetelbosch (2003). 

10  Richardson (1953) gives properties an irreflexive dominance relation must satisfy relative to a given set of 
outcomes in order to guarantee the existence of a vN-M stable set. 
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models of economies or cooperative games where the notion of dominance is 
based on what a coalition can achieve using only the resources owned by its 
members (cf., Aumann, 1964) or a given set of utility vectors for each possible 
coalition (cf., Scarf, 1967). Particularly notable exceptions are Schwartz (1974), 
Kalai et al. (1976), Kalai and Schmeidler (1977) and Shenoy (1980). Their 
motivations are in part similar to ours in that they take as given a set of possible 
choices of a society and a dominance relation and, based on these, describe a set 
of possible or likely social outcomes called, by Kalai and Schmeidler, the 
admissible set. While their examples treat direct dominance, their general results 
have wider applications. We return to a discussion of the admissible set in our 
concluding section. 

 
1.2 A further discussion of the model 
In addition to introducing abstract games of network formation, our modeling 
approach contributes to the literature by extending the class of primitives used in 
the analysis of network formation in three respects. These extensions, listed below, 
significantly broaden the set of potential applications. 
 
1.2.1. Directed networks with heterogenous arcs and multiple uses of arcs of the same type 
First, we focus on directed networks rather than on linking networks11 and 
distinguish between nodes and decision making players (i.e., the set of players and 
the set of nodes are not necessarily the same). Connections are represented by 
arcs and each arc possesses an orientation or direction: arc a connecting nodes i 
and i  must either go from node i to node i  or must go from node i  to node i.12 
For example, an individual may have links on his web page to the web pages of all 
Nobel Laureates in economics but it may be that no Nobel Laureate has a link to 
that individual’s web page. Connections between nodes (i.e., arcs), besides having 
an orientation, are allowed to be heterogeneous. To illustrate, if the nodes in a 
given network represent players, an arc a going from player i to player i  might 
represent a particular type and intensity of interaction (identified by the arc label 
a) initiated by player i towards player i . Player i might direct great affection 
toward player i  as represented by arc type a, but player i  may direct only 
lukewarm affection toward player i as represented by arc type a . 

Under our extended definition nodes are allowed to be connected by 
multiple, distinct arcs. Thus, we allow nodes to interact in multiple, distinct ways. 
For example, nodes i and i  might be connected by arcs a and a , with arc a 
running from node i to i  and arc a  running in the opposite direction (i.e., from 

                                                           
11  In particular, we focus on the notion of directed networks introduced in Page et al. (2005). 
12  We denote arc a going from node i to node i  via the ordered pair (a, (i, i )), where (i, i ) is also an 

ordered pair. Alternatively, if arc a goes from node i  to node i, we write (a, (i , i)). 
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node i  to node i).13 If node i represents a seller and node i  a buyer, then arc a 
might represent a contract offer by the seller to the buyer, while arc a  might 
represent a counter offer or the acceptance or rejection of the contract offer. 
Finally, loops are allowed and arcs are allowed to be used multiple times in a 
given network.14 For example, arc a might be used to connect nodes i and i  as 
well as nodes i  and i . Thus, under our definition nodes i and i  as well as nodes 
i  and i  are allowed to engage in the same type of interaction as represented by 
arc type a. 

Allowing each type of arc to be used multiple times makes it possible to 
distinguish coalitions by the type of interaction taking place between coalition 
members and to give a network representation of such coalitions. For example, if 
the nodes in a given network represent players, an ‘a-coalition’ could consist of all 
players i having an a-connection with at least one other player i . Such an a-
coalition would then have a network representation as the directed subnetwork 
consisting of pairs of nodes, i and i , connected by arc type a. 

Until now, most of the economic literature on networks has focused on 
linking networks (see Jackson, 2005 for an excellent survey). In an undirected (or 
linking) network, an arc (or link) is identified with a nonempty subset of nodes 
consisting of exactly two distinct nodes, for example, {i, i }, i ≠ i . Thus, in an 
undirected network, a link has no orientation and simply indicates a connection 
between two players. Moreover, links are typically not distinguished by type (or by 
label) – that is, links are homogeneous. By allowing arcs to possess direction and 
the same type of arc to be used multiple times and by allowing loops and nodes 
to be connected by multiple arcs, our definition makes possible the application of 
networks to a rich set of economic environments. For example, a job opportunity 
market model may embody the features introduced above; individuals may have 
different relationships with their superiors in an organization and other individuals 
both within and outside of the organization. This may well affect social 
interactions and job opportunities.  
 
1.2.2. The rules of network formation 
We explicitly model the rules of network formation and thus provide a systematic 
treatment of the relationship between rules and stability. The rules of network 
formation specify which players must be involved in adding, subtracting, or 
replacing an arc as well as how many and what types of arcs can be added, 
subtracted, or replaced in any one play of the game. 

In much of the literature, it is assumed (sometimes implicitly) that network 

                                                           
13  Under our extended definition, arc a  might also run in the same direction as arc a. However, our 

definition does not allow arc a to go from node i to node i  multiple times. 
14  A loop is an arc going from a given node to that same node. For example, given arc a and node i, the 

ordered pair (a,(i,i)) is a loop. 
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formation is governed by the Jackson-Wolinsky rules.15 Other rules are possible. 
For example, the addition of an arc might require that a simple majority of the 
players agree to the addition while the deletion of an arc might require that a two-
thirds majority agree to the deletion. Under our approach, such rules are allowed. 
We achieve this flexibility by representing the rules of network formation via a 
collection of coalitional effectiveness relations, {S}S, defined on the feasible set 
of networks. Given feasible networks G and G , if the relation G S G  holds, the 
players in coalition S can change network G to network G . In constructing our 
abstract game of network formation, we will equip the feasible set of networks 
with a dominance relation which incorporates – or represents – both the 
preferences of individuals and coalitions and the rules of network formation as 
represented via the coalitional effectiveness relations {S}S. Thus, the stability 
results we obtain using the path dominance relation will reflect both preferences 
and rules. 

 
1.2.3 The dominance relation defined on feasible networks 
While all of our main results (Section 4) hold for path dominance induced by any 
binary relation, we will focus primarily on path dominance induced by either 
direct dominance or indirect dominance (Sections 3.3.1 and 3.3.2). 

 
1.3 Examples 
To demonstrate the flexibility of our approach and the wide applicability of our 
results, we consider three examples. Our first example treats noncooperative 
network formation games and shows that any such network formation game 
possessing a potential function has basins of attraction each consisting of a single 
network – and thus shows that any noncooperative network formation game 
possessing a potential function has a nonempty path dominance core. Our 
second example demonstrates how our approach can be applied to Jackson-
Wolinsky linking networks and provides necessary and sufficient conditions for 
nonemptiness of the set of pairwise stable linking networks. Finally, our third 
example, proposed to us by Salvador Barbera and Michael Maschler in private 
correspondence, shows how our framework also encompasses hedonic games – 
games where players’ preferences are defined over the set of coalitions in which 
they may be members. The example illustrates how, through indirect dominance, 
outcomes in a game might move from one hedonic core point to another. From 
our prior results, this demonstrates that, even though the hedonic core, that is the 

                                                           
15  Jackson-van den Nouweland (2005) focus on linking networks and assume that link addition is bilateral 

while link subtraction is unilateral. But in their model, network changes are not required to take place one 
link at a time – multiple link changes can take place in any one play of the game. We shall refer to these 
rules as the Jackson-van den Nouweland rules. Calvó-Armengol and Ilkilic (2004) also consider linking 
networks under bilateral-unilateral rules and allow multiple link changes. 
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core with respect to direct dominance, is nonempty, the hedonic farsighted core, 
that is the core with respect to indirect dominance, is empty. (In related work 
Diamantoudi and Xue, 2003 also investigate hedonic games with indirect 
dominance, but with a different set of effectiveness relations than we consider here). 

 
2. Directed Networks 

 
2.1 The definition 
Let N be a finite set of nodes, with typical element denoted by i, and let A be a 
finite set of arcs types (or simply arcs), with typical element denoted by a. Arcs 
represent potential types of connections between nodes, and depending on the 
application, nodes can represent economic players or economic objects such as 
markets or firms. The following definition is from Page et al. (2005). 
 
Definition 1 – Directed Networks. Given node set N and arc set A, a directed network, 
G, is a nonempty subset of A × (N × N). The collection of all directed networks is 
denoted by P(A × (N × N)). 

 
A directed network G  P(A × (N × N)) specifies how the nodes in N are 

connected via the arcs in A. Note that in a directed network order matters. In 
particular, if (a, (i, i ))  G, this means that arc a goes from node i to node i . Also, 
note that loops are allowed – that is, we allow an arc to go from a given node back 
to that given node. For example, in a network model of journal citations loops 
could represent self-cites.16 Finally, an arc can be used multiple times in a given 
network and multiple arcs can go from one node to another. However, under our 
definition an arc a is not allowed to go from a node i to a node i  multiple times. 

The following notation is useful in describing changes in networks and the 
properties of networks. Given directed network G  P(A × (N × N)), let 
G  (a, (i, i )) denote the network obtained by adding arc a from node i to node i  
to network G, and let G\(a, (i, i )) denote the network obtained by subtracting (or 
deleting) arc a from node i to node i  from network G. Also, let 













}.)),(,(or)),(,(either somefor :{:)(
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Thus, G(a) is the set of node pairs connected by arc a in network G, and G(i) is the 
set of arcs going from node i or coming to node i in network G. 

                                                           
16  Other examples could be developed. For example, in a network model of information sharing, the fact 

that each player knows his own information would be represented by a loop. 
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Note that if for some arc a  A, G(a) is empty, then arc a is not used in 
network G. Moreover, if for some node i  N, G(i) is empty then node i is not 
used in network G, and node i is said to be isolated relative to network G. 

Suppose that the node set N is given by N = {i1, i2, …, i5}, while the arc set A is 
given by A = {a1, a2, …, a5, a6, a7}. Consider network G in Figure 1. 

Note that in network G nodes i1 and i2 are connected by two a1 arcs running 
in opposite directions and that nodes i1 and i3 are connected by two arcs, a1 and 
a3, running in the same directions from node i3 to node i1. Thus, G(a1) = 
{(i1, i2), (i2, i1), (i3, i1)} and G(a3) = {(i3, i1)}. Observe that (a6, (i4, i4))  G is a loop. 
Thus, G(a6) = {(i4, i4)}. Also, observe that arc a7 is not used in network G. Thus, 
G(a7) = . Finally, observe that G(i4) = {a4, a5, a6}, while G(i5) = . Thus, node i5 is 
isolated relative to G.17 

Throughout we shall take as the feasible set of networks some nonempty 
subset  of P(A × (N × N)). 

 

 

Figure 1: Network G 
 

2.2 Linking networks, directed graphs, and directed networks 
As before, let N denote a finite set of nodes. A linking network, say g, consists of a 
finite collection of subsets of the form {i, i }, i ≠ i . Thus, {i, i }  g means that 
nodes i and i  are linked in network g. For example, g might be given by 
g = {{i, i }, {i , i }} for i, i , and i  in N. Note that all connections or links are the 
same (i.e., connection types are homogeneous), direction does not matter, and 
loops are ruled out. Letting g N denote the collection of all subsets of N of size 2, 
the collection of all linking networks given N is given by P(g N) where P(g N) denotes 
the collection of all nonempty subsets of g N (e.g., see the definition in Jackson 
and Wolinsky, 1996).18 

                                                           
17  If the loop (a7, (i5, i5)) were part of network G in Figure 1, then node i5 would no longer be considered 

isolated under our definition. Moreover, we would have G(i5) = {a7}. 
18  In section 6.3, we show how our approach to network formation games, as well as some of our main 

results, can be applied to linking networks. 
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A directed graph, say E, consists of a finite collection of ordered pairs 
(i, i )  N × N. For example, E might be given by E = {(i, i ), (i , i )} for (i, i ) and 
(i , i ) in N × N. Stated more compactly, a directed graph E is simply a subset of 
N × N. Thus, in any directed graph connection types are again homogeneous but 
direction does matter and loops are allowed. 

Under our definition, a directed network G is a subset of A × (N × N), where 
as before A is a finite set of arcs. Thus, in a directed network, say G  
P(A × (N × N)), connection types are allowed to be heterogeneous (distinguished 
by arc labels), direction matters, and loops are allowed. 

Formally, linking networks are not a special cases of directed networks. 
However, any linking network can be given an alternative representation as a 
directed network. To see this, consider linking network g  P(g N) and suppose 
nodes i and i  are linked in network g (i.e., {i, i }  g). Next consider a directed 
network G  P(A × (N × N)) where the set of arc types A contains one arc, A = {1}, 
and say that nodes i and i  are directly linked in G if and only if there is an arc 
from i to i  and another arc from i  to i.19 We say that directed network G is an 
alternative representation of linking network g provided 

{i, i}  g if and only if i and i  are directly linked in G. 

With multiple arc types, directed networks allow us to differentiate links by types 
or intensity levels, and thus allow us to consider a richer collection of links between 
nodes. For example, suppose that A contains multiple arc types each specifying a 
type of connection or an intensity level of a connection. We say that i and i  are a-
linked in network G  P(A × (N × N))) provided both (a, (i, i)) and (a, (i, i)) are in 
G. Thus, various sorts of links between players can be modelled and analyzed. 

As we shall show in Section 6.2, in addition to the fact that linking networks 
can be given alternative representations as directed networks, the game theoretic 
approach to network formation we shall develop here can be applied directly to 
linking networks. 

 
3. Preferences, Rules, and Dominance Relations 

 
3.1 Preferences 
Let D denote the set of players (or economic decision making units) with typical 
element denoted by d, and let P(D) denote the collection of all coalitions (i.e., 
nonempty subsets of D) with typical element denoted by S. Note that, the set of 
players D and the set of nodes N are not necessarily the same set. 

                                                           
19  Thus, nodes i and i  are directly linked in G if and only if (1, (i, i )) and (1, (i , i)) are in G. Whereas, 

nodes i and i  are connected if and only if (1, (i, i )) or (1, (i , i)) is in G (i.e., mutual arcs raise a 
connection to the level of a link). 
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Given a feasible set of directed networks   P(A × (N × N)), we shall assume 
that each player’s preferences over networks in  are specified via an irreflexive 
binary relation d. Thus, player d  D prefers network G    to network G   if 
G  d G  and for all networks G  , G ⊁d G (irreflexivity). Coalition S   P(D) 
prefers network G  to network G, written G  S  G, if G  d G for all players d  S . 

In many applications, a player’s preferences are specified via a real-valued 
network payoff function, vd(). For each player d  D and each directed network 
G  , vd (G) is the payoff to player d in network G. Player d then prefers network 
G  to network G if vd (G ) > vd(G). Moreover, coalition S  P(D) prefers network G  
to network G if vd (G ) > vd(G) for all d  S . Note that the payoff vd (G) to player d 
depends on the entire network. Thus, the player may be affected by directed links 
between other players even when he himself has no direct or indirect connection 
with those players. Intuitively, ‘widespread’ network externalities are allowed. 

 
Remark 1. All of our results on basins of attraction, path dominance stable sets, and the 
path dominance core (Theorems 1–4 below) remain valid even if coalitional preferences 
{S }S  P(D) over networks are based on weak preference relations {d}d  D. If G  d G 
then player d either strictly prefers G  to G (denoted G  d G) or is indifferent between 
G  and G (denoted G d G). Given weak preferences {d}d  D, coalition S  P(D) 
prefers network G  to network G, written G  S G, if for all players d  S , G  d G and 
if for at least one player d  S , G  d  G. Note that if coalitional preferences {S }S  P(D) 
are defined in this way (i.e., using weak preferences {d }d  D, then they are irreflexive 
(i.e., G ⊁S G for all G   and S  P(D)). 

 
3.2 Rules 
The rules of network formation are specified via a collection of coalitional 
effectiveness relations {S}SP(D) defined on the feasible set of networks . Each 
effectiveness relation S represents what a coalition S can do. Thus, if G S G  
this means that under the rules of network formation coalition S  P(D) can change 
network G   to network G   by adding, subtracting, or replacing arcs in G. 

 
3.2.1 Examples of Network Formation Rules 
Jackson-Wolinsky Rules:     To illustrate, consider Figure 2 depicting two networks G1 
and G2 in which the nodes represent players. Thus, D = N = {i1, i2, i3}. 

Observe that 

G2 = G1  (a1, (i3, i1))     and     G1 = G2\(a1, (i3, i1)). 

Assume that 

(i)  adding an arc a from player i to player i  requires that both players i and i  
agree to add arc a (i.e., arc addition is bilateral); 
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 Network G1 Network G2 

Figure 2 
 

(ii)  subtracting an arc a from player i to player i  requires that player i or player i  
agree to subtract arc a (i.e., arc subtraction is unilateral); 

(iii)  for any pair of networks G and G  in , if G S G , then G ≠ G  and  
  
 either G  = G  (a, (i, i )) for some (a, (i, i )) A × (N × N) 

or 
G  = G∖(a, (i, i )) for some (a, (i, i ))  A × (N × N). 
 
For the case D = N (i.e., players = nodes), we shall refer to rules (i)–(iii) above 

as Jackson-Wolinsky rules. Note that rules (i) and (ii) imply that if G S G , then 
1 ≤ |S| ≤ 2. Referring to Figure 2, the effectiveness relations over networks G1 and 
G2 under Jackson-Wolinsky rules are given by 

.}{}{},{},{ 12121221 313131
GGGGGGGG iiiiii     

Jackson-van den Nouweland rules:     Consider networks G0 and G3 depicted in Figure 
3 and again suppose that nodes represent players. 

Observe that 

G3 = (G0∖(a1, (i2, i1)))  (a1, (i3, i1))  (a3, (i3, i1)) 
and 
G0 = (G3∖((a1, (i3, i1))  (a3, (i3, i1))))  (a1, (i2, i1)). 

Assume that 
 

(i)  adding an arc a from player i to player i  requires that both players i and i  
agree to add arc a (i.e., arc addition is bilateral); 

(ii)  subtracting an arc a from player i to player i  requires that player i or player i  
agree to subtract arc a (i.e., arc subtraction is unilateral); 
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 Network G0 Network G3 

 
Figure 3 
 

For the case D = N (i.e., players = nodes), we shall refer to rules (i)-(ii) above 
as Jackson-van den Nouweland rules. Thus, the Jackson-van den Nouweland rules 
are the Jackson-Wolinsky rules without the one-arc-at-a-time restriction. Note that if 
arc addition is bilateral and arc subtraction is unilateral (i.e., if rules (i) and (ii) 
hold), then G S G  implies that G  is obtainable from G via coalition S, that is, 

(i) (a, (i, i ))  G  and (a, (i, i ))  G  
  {i, i }  S;  

(ii) (a, (i, i ))  G  and (a, (i, i )) G  
  {i, i }  S ≠ . 

Referring to Figure 3, the effectiveness relations over networks G0 and G3 under 
Jackson-van den Nouweland rules are given by 

.},,{},{},{},,{ 12033030 3212131321
GGGGGGGG iiiiiiiiii       

Noncooperative Rules:     Again suppose that nodes represent players and assume that 
 

(i) adding an arc a from player i to player i  requires only that player i agree to 
add the arc (i.e., arc addition is unilateral and can be carried out only by the 
initiator, player i); 

(ii)  subtracting an arc a from player i to player i  requires only that player i agree 
to subtract the arc (i.e., arc subtraction is unilateral and can be carried out 
only by the initiator, player i); 

(iii) G S G  implies that |S| = 1 (i.e., only network changes brought about by 
individual players are allowed). 
 
We shall refer to rules (i)–(iii) as noncooperative. Note that a player i can 
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add or subtract an arc to player i  without regard to the preferences of player i . 
Thus in general under noncooperative rules, effectiveness relations display a type 
of symmetry, and in particular, if G  }{i G , then G   }{i G. 

Under noncooperative rules, the effectiveness relations over networks G1 and 
G2 in Figure 2 are given by 

.}{}{ 1221 33
GGGG ii   

Note that under noncooperative rules, networks G0 and G3 in Figure 3 are not 
related under the effectiveness relations {{i}}i  N. However, referring to the 
networks in Figures 2 and 3, under the noncooperative rules we have, for example, 
the following effectiveness relations 

G3 {i2} G2     G2 {i3} G0 
and 
G0 {i3} G2     G2 {i2} G3. 

(½,¾)-voting Rules:     All of the rules above require that arc addition and arc 
subtraction involve at least one player who is a party to the arc. Consider now arc 
addition and arc subtraction based on voting. If nodes represent players, then 
under certain voting rules, arcs can be imposed on players. To see this, consider 
the following rules for arc addition and arc subtraction. 

 
(i)  adding an arc a from player i to player i  requires a simple majority agree to 

add arc a; 
(ii)  subtracting an arc a from player i to player i  requires a ¾ majority agree to 

subtract arc a; 
(iii)  for any pair of networks G and G  in , if G S G , then G ≠ G  and 

either G  = G  (a, (i, i )) for some (a, (i, i ))  A × (N × N) 
or 
G  = G∖(a, (i, i )) for some (a, (i, i ))  A × (N × N) 

(i.e., networks changes take place one arc at a time). 
 
We shall refer to rules (i)–(iii) above as (½,¾)-voting rules. Thus, under rules 

(i)–(iii), if G S G , then G ≠ G  and either 

G  = G  (a, (i, i )) for some (a, (i, i )) A × (N × N) and 2
1||

||
D
S  

or 
G  = G∖(a, (i, i )) for some (a, (i, i )) A × (N × N) and 4

3||
||

D
S  



 

213 
·················· 
Coalitions and Networks 

Coalitions and Networks Chap 8 

Referring to Figure 2, the effectiveness relations over networks G1 and G2 under 
(½,¾)-voting rules are given by 

21112121 321323121
GGGGGGGG iiiiiiiii      },,{},{},{},{  

and 
.},,{ 12 321

GG iii    

Note that under (½,¾)-voting rules the move from network G1 to network G2 
may involve the imposition of arc a1 from player i3 to player i1 upon player i1 by 
players i2 and players i3. Also, note that under (½,¾)-voting rules in order to move 
from network G2 back to network G1 (i.e., in order to remove arc a1 from player i3 
to player i1) requires the agreement of all three players. 

 
Nonuniform Rules and the Network Representation of Network Formation Rules.     In all of 
the examples above, the rules for arc addition and arc subtraction are uniform 
across pairs of networks. In some applications, such uniformity is not present. 
One very concise way to write down such nonuniform network formation rules is 
to use a network representation. In particular, suppose we write 

(S,(G, G )) if and only if G S G .  

Thus, (S,(G, G )) if and only if under the rules coalition S  P(D) can change 
network G to network G . Letting the set of arcs be given by the collection of all 
coalitions P(D) and letting the set of nodes be given by the feasible set of networks , 
the rules of network formation can be represented by a network G  P(D) × (  × ). 
Then the set of all possible network formation rules is given by the set of all such 
networks. 

 
3.3 Dominance relations 
We will focus primarily on two types of dominance relations on the feasible set of 
networks   P(A × (N × N)), direct and indirect dominance. 

 
3.3.1 Direct Dominance 
Network G   directly dominates network G  , sometimes written G   G, if for 
some coalition S  P(D), 
 

G S G  
and 

.GG S
  

Thus, network G  directly dominates network G if some coalition S prefers G  to 
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G and if under the rules of network formation coalition S has the power to change 
G to G . 
 
3.3.2 Indirect dominance 
Network G   indirectly dominates network G  , written G   G, if there is a 
finite sequence of networks, 

G0, G1, …, Gh,  

with G = G0, G  = Gh, and Gk   for k = 0, 1, …, h, and a corresponding sequence 
of coalitions, 

S1, S2, …, Sh,  

such that for k = 1, 2, …, h 

,kSk GG
k

1  
and 
Gk – 1

kS G h . 

Note that if network G  indirectly dominates network G (i.e., if G   G), then 
what matters to the initially deviating coalition S1, as well as all the coalitions 
along the way, is that the ultimate network outcome G  = Gh be preferred. Thus, 
for example, the initially deviating coalition S1 will not be deterred from changing 
network G0 to network G1 even if network G1 is not preferred to network G = G0, as 
long as the ultimate network outcome G  = Gh is preferred to G0, that is, as long 
as G0

1S Gh.20 
 

3.3.3 Path dominance 
Each dominance relation > induces a path dominance relation on the set of 
networks. In particular, corresponding to dominance relation > on networks 
there is a corresponding path dominance relation ≥p on  specified as follows: 
network G    (weakly) path dominates network G   with respect to > (i.e., 
with respect to the underlying dominance relation >), written G  ≥p G, if G  = G or 
if there exists a finite sequence of networks h

kkG 0}{  in  with Gh = G  and G0 = G 
such that for k = 1, 2, …, h 

Gk > Gk – 1.  

We refer to such a finite sequence of networks as a finite domination path and we say 
                                                           
20  In order to capture the idea of farsightedness in strategic behavior, Chwe (1994) analyzes abstract games 

equipped with indirect dominance relations in great detail, introducing the equilibrium notions of 
consistency and largest consistent set. The basic idea of indirect dominance goes back to the work of 
Guilbaud (1949) and Harsanyi (1974). 
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network G  is >-reachable from network G if there exists a finite domination path 
from G to G . Thus, 

G  ≥p G if and only if 







GG

GG or , from recheableis
 (2) 

If network G is reachable from network G, that is, if there is a finite domination 
path from G back to G then we call this path a circuit. Finally, if network G is not 
reachable from any network in  and if no network in  is reachable from G, then 
network G is isolated (i.e., network G   is isolated if there does not exist a 
network G    with G  ≥p G or G ≥p G ). 

 
3.3.4 The directed graph of a dominance relation 
It is often useful to represent the dominance relation over networks using a 
directed graph. For example, Figure 4 depicts the graph of dominance relation > 
on the feasible set of networks  = {G0, G1, …, G7}. 

The arrow (or >-arc) from network G3 to network G4 in Figure 4 indicates that 
G4 dominates G3. Given primitives ( , { S }, {S }, >)S  P(D) and given that > is a 
direct dominance relation, the >-arc from network G3 to network G4 means that for 
some coalition S, G4 is preferred to G3 and more importantly, that coalition S has 
the power to change network G3 to network G4. Thus, G3 S G4 and G3 S G4. But 
notice also that there is a >-arc in the opposite direction, from network G4 to 
network G3. Thus, G3 also dominates G4, and thus for some other coalition S   
 

 
Figure 4: Directed Graph of Dominance Relation > 
 
 

G0 G1 G6

G2 G7

G4

G5 G3
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distinct from coalition S, that is, some coalition S  with S   S = , G4 S  G3 and 
G4 S  G3.21 

Note that network G3 is >-reachable from network G3 via two paths. Thus, 
the graph of dominance relation > depicted in Figure 4 contains two circuits. 
Defining the length of a domination path to be the number of >-arcs in the path, 
these two circuits are of length 4 and length 2. 

Because networks G2 and G5 in Figure 4 are on the same circuit, G5 is  
>-reachable from G2 and G2 is >-reachable from G5. Thus, G5 path dominates G2 
(i.e., G5 ≥p G2) and G2 path dominates G5 (i.e., G2 ≥p G5). The same cannot be said 
of networks G1 and G5 in Figure 4. In particular, while G5 ≥p G1, it is not true that 
G1 ≥p G5 because G1 is not >-reachable from G5. Finally, note that network G0 is 
isolated.  

 
4. Network Formation Games and Stability 

 
We can now present our main results. Using the abstract network formation game 
with respect to path dominance given by the pair 

( , ≥p)  (3) 

and induced by primitives 

( , { S },{ S }, >)S  P(D), (4) 

we introduce and characterize the notions of (i) strategic basins of attraction, (ii) 
path dominance stable sets, and (iii) the path dominance core. All of the results 
presented in this section hold for any path dominance relation induced by an 
irreflexive dominance relation constructed from coalitional preferences, { S }S  P(D) 
and coalitional effectiveness relations, { S }S  P(D).22 
 
4.1 Networks without descendants 
If G1 ≥p G0 and G0 ≥p G1, networks G1 and G0 are equivalent, written G1 p G0. If 
networks G1 and G0 are equivalent then either networks G1 and G0 coincide or G1 
and G0 are on the same circuit (see Figure 4 above for a picture of a circuit). If 
G1 ≥p G0 but G1 and G0 are not equivalent (i.e., not G1 p G0), then network G1 is a 
descendant of network G0 and we write 

G1 >p G0.  (5) 

                                                           
21 Note that if preferences over networks are weak as in Remark 1, then the statement, for some other 

coalition S  distinct from coalition S can be weakened to for some other coalition S  not equal to coalition S. 
With this weakening, the requirement that the intersection of S and S  be empty is no longer required. 

22  In fact, all the results in this section hold for any abstract game ( , ≥p) where G is a finite set of outcomes 
and ≥p is a path dominance relation induced by any binary relation on . 
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Referring to Figure 4, observe that network G5 is a descendant of network G1, that 
is, G5 >p G1. 

Network G   has no descendants in  if for any network G   

G ≥p G  implies that G p G .  

Thus, if G  has no descendants then G ≥p G  implies that G and G  coincide or lie 
on the same circuit.23 

In attempting to identify those networks which are likely to emerge and 
persist, networks without descendants are of particular interest. Here is our main 
result concerning networks without descendants. 
 
Theorem 1 – All path dominance network formation games have networks without 
descendants. Let ( , ≥p) be a network formation game. For every network G   there 
exists a network G    such that G  ≥p G and G  has no descendants. 

 
Proof. Let G0 be any network in . If G0 has no descendants then we are done. If 
not choose G1 such that G1 >p G0. If G1 has no descendants then we are done. If 
not, continue by choosing G2 >p G1. Proceeding iteratively, we can generate a 
sequence, G0, G1, G2, …. Now observe that in a finite number of iterations we 
must come to a network Gk  without descendants. Otherwise, we could generate 
an infinite sequence, {Gk}k such that for all k, 

Gk >p Gk – 1. 

However, because  is finite this sequence would contain at least one network, say 
Gk , which is repeated an infinite number of times. Thus, all the networks in the 
sequence lying between any two consecutive repetitions of Gk  would be on the 
same circuit, contradicting the fact that for all k, Gk is a descendant of Gk – 1 (i.e., 
Gk >p Gk – 1).     

 
By Theorem 1, in any network formation game ( , ≥p), corresponding to any 

network G   there is a network G  G without descendants which is >-reachable 
from G. Thus, in any network formation game the set of networks without 
descendants is nonempty. Referring to Figure 4, the set of networks without 
descendants is given by 

{G0, G2, G3, G4, G5, G7}.  

We shall denote by  the set of networks without descendants. 
 

                                                           
23  Note that any isolated network is by definition a network without descendants (e.g., network G0 in Figure 3). 
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4.2 Basins of attraction 
Stated loosely, a basin of attraction is a set of equivalent networks to which the 
strategic network formation process represented by the game might tend and 
from which there is no escape. Formally, we have the following definition. 
Definition 2 – Basin of Attraction. Let ( , ≥p) be a network formation game. A set of 
networks    is said to be a basin of attraction for ( , ≥p) if 
1. the networks contained in  are equivalent (i.e., for all G  and G in , G  p G) 

and for no set  having  as a strict subset is this true that all the networks in  
are equivalent,24 and 

2. no network in  has descendants (i.e., there does not exist a network G    such 
that G  >p  for some G  ). 
 
As the following characterization result shows, there is a very close 

connection between networks without descendants and basins of attraction. 
 

Theorem 2 – A characterization of basins of attraction. Let ( , ≥p) be a network 
formation game and let  be a subset of networks in . The following statements are 
equivalent: 

1.  is a basin of attraction for ( , ≥p). 
2. There exists a network without descendants, G  , such that  

 = {G   : G  p G} .  

Proof. (1) implies (2): Because the sets  and {G  : G p G}, G  , are 
equivalence classes,  ≠ {G   : G p G} implies that 

  {G  : G  p G } =  for all G  .  

Thus, if (2) fails, this implies that  contains a network with descendants. Thus,  
cannot be a basin of attraction for ( , ≥p), and thus, (1) implies (2).25 

(2) implies (1): Suppose now that 

 = {G  : G  p G} 

for some network G  . If  is not a basin of attraction, then for some network 
G  G, G  >p G  for some G  . But now G  >p G and G  p G imply that 
G  >p G, contradicting the fact that G  . Thus, (2) implies (1).      

                                                           
24  is a strict subset of  if  

    and ∖   . 

25 Note that if G   and G p G, then G  . 
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In light of Theorem 2, we conclude that in any network formation game  
( , ≥p),  contains a unique, finite, disjoint collection of basins of attraction, say  
{ 1, 2, …, m}, where for each k = 1, 2, …, m (m ≥ 1) 

k = G := {G  : G  p G} 

for some network G  . Note that for networks G  and G in  such that G  p G, 
G  = G (i.e. the basins of attraction G  and G coincide). Also, note that if 

network G   is isolated, then G   and 

G  := {G  : G  p G} = {G} 

is, by definition, a basin of attraction – but a very uninteresting one. 
 
EXAMPLE 1 – Basins of attraction. In Figure 4 above the set of networks without 
descendants is given by  

 = {G0, G2, G3, G4, G5, G7}. 

Even though there are six networks without descendants, because networks 
G2, G3, G4, and G5 are equivalent, there are only three basins of attraction:  

1 = {G0},     2 = {G2, G3, G4, G5},     and     3 = {G7}. 

Moreover, because G2, G3, G4, and G5 are equivalent,  

G2 = G3 = G4 = G5 = {G2, G3, G4, G5}.  

4.3 Stable sets with respect to path dominance 
The formal definition of a ≥p-stable set is as follows.26 

Definition 3 – Stable sets with respect to path dominance. Let ( , ≥p) be a network 
formation game. A subset  of networks in  is said to be a stable set for ( , ≥p) if 

(a) (internal ≥p-stability) whenever G0 and G1 are in , with G0  G1, then neither  
G1 ≥p G0 nor G0 ≥p G1 hold, and 

(b) (external ≥p-stability) for any G0   there exists G1   such that G1 ≥p G0. 
 

In other words, a nonempty subset of networks  is a stable set for ( , ≥p) if 
G0 and G1 are in , with G0 ≠ G1, then G1 is not reachable from G0, nor is G0 
reachable from G1, and if G0  , then there exists G1  reachable from G0. 

                                                           
26 By equipping the abstract network formation game with the path dominance relation rather than the 

original dominance relation, we entirely avoid the famous Lucas (1968) example of a game with no stable set. 
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We now have our main results on the existence, construction, and cardinality 
of stable sets.27 

 
Theorem 3 – Stable sets: Existence, construction, and cardinality. Let ( , ≥p) be a 
network formation game, and without loss of generality assume that ( , ≥p) has basins of 
attraction given by  

{ 1, 2, …, m},  

where basin of attraction k contains | k| many networks (i.e., | k| is the cardinality of k). 
Then the following statements are true: 
 
1.    is a stable set for ( , ≥p) if and only if  is constructed by choosing one 

network from each basin of attraction, that is, if and only if  is of the form  

 = {G1, G2, …, Gm},  

where Gk  k for k = 1, 2, …, m. 
2. ( , ≥p) possesses  

| 1|  | 2|  | m| := M  

many stable sets and each stable set, q, q = 1, 2, …, M, has cardinality  

| q| = |{ 1, 2, …, m}| = m.  

Proof. It suffices to prove (1). Given (1), the proof of (2) is straightforward. To 
begin, let 

 = {G1, G2, …, Gm},  

where Gk  k for k = 1, 2, …, m, and suppose that for Gk and Gk  in , Gk  ≥p Gk. 
Since Gk  k has no descendants, this would imply that Gk  p Gk. But this is a 
contradiction because Gk  k and Gk   k  and the basins of attraction k and  

k  are disjoint. Thus,  is internally ≥p-stable. Now suppose that network G is not 
contained in . By Theorem 1, there exists a network G   without descendants 
such that G  ≥p G. By Theorem 2, G  is contained in some basin of attraction k 
and therefore G  p Gk where Gk is the kth component of {G1, G2, …, Gm}. Thus, we 
have Gk ≥p G  ≥p G implying that Gk ≥p G, and thus  is externally ≥p-stable. 

Suppose now that    is a stable set for ( , ≥p). First note that each 
network G in  is a network without descendants. Otherwise there exists G  ∖  
such that G  >p G. But then because  is externally ≥p-stable, there exists G  , 
                                                           
27 These results can be viewed as applications of some classical results from graph theory to the theory of 

network formation games (e.g., see Berge 2001, Chapter 2). 
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G  ≠ G, such that G  ≥p G  implying that G  ≥p G and contradicting the internal 
≥p-stability of . Because each G   is without descendants, it follows from 
Theorem 2 that each G   is contained in some basin of attraction k. 
Moreover, because  is internally ≥p-stable and because all networks contained in 
any one basin of attraction are equivalent, no two distinct networks contained in 

 can be contained in the same basin of attraction. It only remains to show that 
for each basin of attraction, k, k = 1, 2, …, m, 

  k ≠ . 

Suppose not. Then for some k,   k  = . Because all networks in k  are 
without descendants, for no network G  k  is it true that there exists a network 
G   such that G  ≥p G. Thus, we have a contradiction of the external ≥p-stability 
of .      
 
EXAMPLE 2 – Basins of attraction and stable sets. Referring to Figure 4, it follows from 
Theorem 3 that because  

| 1|  | 2|  | 3| = 1  4  1 = 4,  

the network formation game ( , ≥p) has 4 stable sets, each with cardinality 3. By 
examining Figure 4 in light of Theorem 3, we see that the stable sets for ( , ≥p) are 
given by  

1 = {G0, G2, G7},  
2 = {G0, G3, G7},  
3 = {G0, G4, G7},  
4 = {G0, G5, G7}. 

 
4.4 The path dominance core 

 
Definition 4 – The path dominance core. Let ( , ≥p)  be a network formation game. A 
network G   is contained in the path dominance core    if and only if there 
does not exist a network G   , G   G, such that G  ≥p G. 

 
Our next results give necessary and sufficient conditions for the path 

dominance core of a network formation game to be nonempty, as well as a recipe 
for constructing the path dominance core. 

 
Theorem 4 – Path dominance core: Nonemptiness and construction. Let ( , ≥p) be a 
network formation game, and without loss of generality assume that ( , ≥p) has basins of 
attraction given by  
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{ 1, 2, …, m},  

where basin of attraction k contains | k| many networks. Then the following statements are 
true: 
 
1. ( , ≥p) has a nonempty path dominance core if and only if there exists a basin of 

attraction containing a single network, that is, if and only if for some basin of 
attraction k, | k| = 1. 

2. Let  

{ k1, k2, …, kn}  { 1, 2, …, m} 

 be the subset of basins of attraction containing all basins having cardinality 1. Then 
the path dominance core  of ( , ≥p) is given by  

 = {Gk1, G k2, …, G kn},  

where G ki  ki, for i = 1, 2, …, n. 
 

Proof. It suffices to show that a network G is contained in the path dominance core 
 if and only if G  k for some basin of attraction k, k = 1, 2, …, m, with  

| k| = 1. First note that if G is in the path dominance core, then G is a network 
without descendants. Thus, G  k for some basin of attraction k. If | k| > 1, 
then there exists another network G   k such that G p G. Thus, G  ≥p G 
contradicting the fact that G is in the path dominance core. Conversely, if G  k 
for some basin of attraction k with | k| = 1, then there does not exist a network 
G  ≠ G such that G  ≥p G.      

Remark 2. If coalitional preferences )(}{ DPSS  over networks are based on weak preference 
relations {d}d  D rather than on strong preference relations {d}d  D (see Remark 1 above), 
then the corresponding path dominance core – the weak path dominance core – is 
contained in the path dominance core based on strong preference relations. 

EXAMPLE 3 – Basins of attraction and the path dominance core. It follows from Theorem 
4 that the path dominance core of the network formation game ( , ≥p) with 
feasible set  

 = {G0, G1, …, G7}  

and path dominance relation ≥p induced by the dominance relation depicted in 
Figure 4 is  

 = {G0, G7}.  
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Figure 5 contains the graph of a different dominance relation on  = 
{G0, G1, …, G7}. 

Denoting the new dominance relation by , the network formation game  
( , _p) with respect to the path dominance relation  _p induced by the dominance 
relation  has 3 circuits and 2 basins of attraction, 

1 = {G2, G3, G4, G5}  and  2 = {G6, G7}.  

Because | 1| = 4 and | 2| = 2, by Theorem 4 the path dominance core of  
( ,   _p) is empty. By Theorem 3, ( , _p) has 8 stable sets each containing 2 
networks (i.e., each with cardinality 2). These stable sets are given by 
 

1 = {G2, G6},  
2 = {G3, G6},  
3 = {G4, G6},  
4 = {G5, G6},  
5 = {G2, G7},  
6 = {G3, G7},  
7 = {G4, G7},  
8 = {G5, G7} . 

 

 
Figure 5: Graph of a different dominance relation  
 
4.4.1 The path dominance core and constrained Pareto efficiency 
Given primitives ( , {S}, {S}, >)S  P(D), we say that a network G   is constrained 
Pareto efficient if and only if there does not exist another network G   such 
that (i) some coalition S can change network G to network G  (that is, G S G  
for some coalition S  P(D)) and (ii) G  is preferred by all players (that is, G d G  

G0 G1 G6

G7G2

G5 G3

G4
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for all players d  D). Letting  denote the set of all constrained Pareto efficient 
networks, it is easy to see that the path dominance core  of network formation 
game ( , ≥p) is a subset of , that is,   . 

Under the classical notion of Pareto efficiency, a network G is said to be 
Pareto efficient if and only if there does not exists another network G  such that  
G d G  for all players d  D, regardless of whether or not some coalition S can 
change network G to network G . Letting  denote the set of all classically 
Pareto efficient networks, it is easy to see that   . Note, however, that if 
under primitives ( , { S}, {S}, >)S  P(D), any network G can be changed to any 
other network G  via the actions of some coalition S, then the notions of 
constrained Pareto efficiency and classical Pareto efficiency are equivalent. Thus, if 
the collection of coalitional effectiveness relations {S}S  P(D) on  is complete, 
that is, if for any pair of networks G and G  in , G S G  for some coalition 
S  P(D), then  = , and we have    = . 

 
5. Other Stability Notions for Network Formation Games 

 
5.1 Strongly stable networks 
We begin with a formal definition of strong stability for abstract network 
formation games. 

Definition 5 – Strong stability. Given primitives ( ,{ S},{S},>)S  P(D) and network 
formation game ( , ≥p), network G   is said to be strongly stable in ( , ≥p) if for all 
G    and S  P(D), G S G  implies that G ⊀S G . 

Thus, a network is strongly stable if whenever a coalition has the power to 
change the network to another network, the coalition will be deterred from doing 
so because not all members of the coalition are made better off by such a 
change.28 If nodes represent players and arc addition is bilateral while arc 
subtraction is unilateral, then our definition of strong stability is essentially that of 
Jackson-van den Nouweland but for directed networks rather than linking 
networks. Note that under our definition of strong stability a network G   that 
cannot be changed to another network by any coalition is strongly stable. 

We now have our main result on the path dominance core and strong 
stability. Denote the set of strongly stable networks by . 

                                                           
28  Our definition of a strongly stable network differs slightly from the definition given in Jackson-van den 

Nouweland (2005). In particular, under their definition, a network is strongly stable if whenever a 
coalition has the power to change the network to another network, the coalition will be deterred from 
doing so because at least one member of the coalition is made worse off by the change. If coalitional 
preferences, {S}S  P(D) are based upon weak players preferences, {d}d  D, then our definition of strong 
stability is equivalent to that of Jackson-van den Nouweland (see Remark 1). As it stands, our definition is 
closely related to that given by Dutta and Mutuswami (1997). 
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Theorem 5 – The path dominance core and strong stability. Given primitives  
( , { S}, {S}, >)S  P(D) and network formation game ( , ≥p), where path dominance ≥p is 
induced by either a direct relation or an indirect dominance relation, the following 
statements are true. 

1.  If the path dominance core  of ( , ≥p) is nonempty, then  is nonempty and  
  . 

2. If the dominance relation > underlying ≥p is a direct dominance relation, then  = 
and  is nonempty if and only if there exists a basin of attraction containing a single 
network. 

 
Proof. Let   ,  ≠ , be the path dominance core of ( , ≥p) and let network G 
be contained in . Then there does not exist a network G  , G  ≠ G, such that 
G  ≥p G. If for some coalition S and some network G  , G S G  and G S G , 
then G  ≥p G trivially, a contradiction. Thus, for G contained in , G S G  for 
coalition S implies that G ⊀S G , and thus G   implies G  . 

2. To see that    if the dominance relation > underlying ≥p is a direct 
dominance relation, consider the following. If G  , then there exists a network 
G  ≠ G which path dominates G, that is, G  ≥p G. This implies that there exists a 
network G  such that G  ≥p G  > G. Because > is a direct dominance relation, for 
some coalition S we have G S G  and G 

S  G . Thus, G  . By part 1 of 
Theorem 4,  =  is nonempty if and only if there exists a basin of attraction 
containing a single network.      

 
Note that the set of strongly stable networks is contained in the set of 

constrained Pareto efficient networks. Thus,     . 
 

5.2 Pairwise stable networks 
The following definition is a formalization of Jackson-Wolinsky (1996) pairwise 
stability for abstract network formation games. 
 
Definition 6 – Pairwise stability. Given networks P(A × (N × N)) where nodes 
represent players (i.e., N = D) and given feasible networks   P(A × (N × N)) and 
primitives ( , { S}, {S}, >)S  P(D), network G   is said to be pairwise stable in 
network formation game ( , ≥p) if for all (a, (i, i ))  A × (N × N), 
 
1. G {i,i } G  (a, (i, i )) implies that G ⊀{i,i } G  (a, (i, i )); 
2. (a) G {i} G∖(a, (i, i )) implies that G ⊀ {i} G∖(a, (i, i )), and 

(b) G {i } G∖ (a, (i, i )) implies G ⊀{i }G\ (a, (i, i )). 
 
Thus, a network is pairwise stable if there is no incentive for any pair of 
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(b) G {i } G∖ (a, (i, i )) implies G ⊀{i }G\ (a, (i, i )). 
 
Thus, a network is pairwise stable if there is no incentive for any pair of 

players to add an arc to the existing network and there is no incentive for any 
player who is party to an arc in the existing network to dissolve or remove the arc. 
Note that under our definition of pairwise stability a network G   that cannot 
be changed to another network by any coalition, or can only be changed by 
coalitions of size greater than 2, is pairwise stable. 

Let  denote the set of pairwise stable networks. It follows from the 
definitions of strong stability and pairwise stability that   . Moreover, if 
the full set of Jackson-Wolinsky rules are in force, then  = . Jackson-van den 
Nouweland (2005) provide two examples of the potential for strong stability to 
refine pairwise stability (i.e., two examples where  is a strict subset of ). 
However, under Jackson-Wolinsky rules because network changes can occur only one 
arc at a time and because deviations by coalitions of more than two players are 
not possible such refinements are not possible driving  and  to equality.29 

We now have our main result on the path dominance core and pairwise 
stability.   

 
Theorem 6 – The path dominance core and pairwise stability. Given primitives  
( , {S}, {S}, >)SP(D) where nodes represent players (i.e., N = D) and given network 
formation game ( , ≥p), where path dominance ≥p is induced by either a direct relation or 
an indirect dominance relation, the following statements are true. 

 
1.  If the path dominance core  of ( , ≥p) is nonempty, then  is nonempty and  

  . 
2. If the dominance relation > underlying ≥p is a direct dominance relation and if the 

Jackson-Wolinsky rules hold, then  =  and  is nonempty if and only if there 
exists a basin of attraction containing a single network. 

 
Proof. The proof of part 1 follows from part 1 of Theorem 5 and the fact that  

                                                           
29 In particular, under Jackson-Wolinsky rules, if 

 GS G , 

 then there are only three possibilities: 

 (i) G  = G  (a, (i, i ))for some a  A and S = { i, i }; 
 (ii) G∖(a, (i, i ))for some a  A and S = {i}; or 
 (iii) G∖(a, (i, i )) for some a  A and S = {i }. 

 Thus, under Jackson-Wolinsky rules, if a network is not strongly stable, automatically it is not pairwise 
stable – and thus under Jackson-Wolinsky rules 

   . 
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the path dominance is induced by a direct dominance and if the Jackson-Wolinsky 
rules hold, then we have  =  = . By part 1 of Theorem 4,  =  =  is 
nonempty if and only if there exists a basin of attraction containing a single 
network.      

 
Theorem 6 can be viewed as an extension of a result due Jackson and Watts 

(2002) on the existence of pairwise stable linking networks for network formation 
games induced by Jackson-Wolinsky rules. In particular, Jackson and Watts 
(2002) show that for this particular class of Jackson-Wolinsky network formation 
games, if there does not exist a closed cycle of networks, then there exists a 
pairwise stable network. Our notion of a strategic basin of attraction containing 
multiple networks corresponds to their notion of a closed cycle of networks. Thus, 
stated in our terminology, Jackson and Watts show that for this class of network 
formation games, if there does not exist a basin of attraction containing multiple 
networks, then there exists a pairwise stable network. Following our approach, if 
we specialize to this class of Jackson-Wolinsky network formation games, then by 
part 2 of Theorem 6 the existence of at least one strategic basin containing a single 
network is both necessary and sufficient for the existence of a pairwise stable 
network. 
 
5.3 Consistent networks 
We begin with a formal definition of farsighted consistency (Chwe, 1994). 
 
Definition 7 – Consistent sets. Let ( , ≥p) be a network formation game where path 
dominance ≥p is induced by an indirect dominance relation . A subset  of directed 
networks in  is said to be consistent in ( , ≥p) if  

for all G0  ,  
G0 S1 G1 for some G1   and some coalition S1 implies that  
there exists G2    
with G2 = G1 or G2  G1 such that,  
G0 ⊀ S1 G2. 

In words, a subset of directed networks  is said to be consistent in ( , ≥p) if 
given any network G0   and any deviation to network G1  by coalition S1 (via 
adding, subtracting, or replacing arcs in accordance with effectiveness relations 
S), there exists further deviations leading to some network G2   where the 
initially deviating coalition S1 is not better off – and possibly worse off. A network 
G   is said to be consistent if G   where  is a consistent set in ( , ≥p). 

There can be many consistent sets in ( , ≥p). We shall denote by * the 
largest consistent set. Thus, if  is a consistent set, then   *. By Proposition 1 in 
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Chwe (1994) there exists uniquely a largest consistent set in ( , ≥p). Moreover, by 
the Corollary to Proposition 2 in Chwe (1994) this largest consistent set is nonempty 
and externally stable with respect to indirect dominance . This Theorem is 
essentially a network rendition of the Corollary to Proposition 2 in Chwe (1994).30 

We now have our main result on the relationship between basins of 
attraction, stable sets, the path dominance core, and the largest consistent set. 
Theorem 7– Basins of attraction, the path dominance core, and the largest consistent 
set. Given primitives ( , {S}, {S}, >)S  P(D)} and given network formation game ( ,≥p), 
where path dominance is induced by an indirect dominance relation , assume without 
loss of generality that ( , ≥p) has nonempty largest consistent set given by * and basins of 
attraction given by  

{ 1, 2, …, m}.  

Then the following statements are true: 
 

1. Each basin of attraction k, k = 1,2, …, m, has a nonempty intersection with the 
largest consistent set *, that is  

*  k  , for k = 1,2, …,m.  

2.  If ( , ≥p) has a nonempty path dominance core , then  

  *.  

Proof. In light of Theorem 4, (2) easily follows from (1). Thus, it suffices to prove 
(1). Suppose that for some basin of attraction k  

 
 *  k  = .  
 
Let G  be a network in k . Because * is externally stable with respect to the 

indirect dominance relation , G  * implies that there exists some network 
G*  * such that G*  G . Thus, G* ≥p G . Because the networks in k  are 
without descendants, it must be true that G  ≥p G*. But this implies that G* p G , 
and therefore that G*  k , a contradiction.      
 
Remark 3. Recently, Herings et al. (2006) introduced a notion of pairwise farsighted 
stability. If in our model coalitional preferences {S}SP(D) over networks are based on 
                                                           
30 Page and Kamat (2005) provide an alternative proof of the nonemptiness and external stability of the 

largest consistent set (with respect to indirect dominance). In particular, Page and Kamat modify the 
indirect dominance relation so as to make it transitive as well as irreflexive. They then show that the 
unique stable set with respect to path dominance induced by this new transitive indirect dominance 
relation is contained in the largest consistent set – and in this way show that the largest consistent set is 
nonempty and externally stable. 



 

229 
·················· 
Coalitions and Networks 

Coalitions and Networks Chap 8 

weak preferencerelations {d}dD (see Remark 1 above), if nodes represent players (i.e., 
N = D), and if the dominance relation underlying the path dominance relation is 
indirect, then under Jackson-Wolinsky rules the corresponding weak path dominance 
core is contained in the set of pairwise farsightedly stable networks. 
 
5.4 Nash networks 

 
Definition 8 – Nash networks. Given primitives ( , {S}, {S}, >)SP(D) and network 
formation game ( , ≥p), network G   is said to be a Nash network in ( , ≥p) if for 
all G    and S  P(D) such that |S| = 1, G S G  implies that G ⊀S G . 

 
Thus, a network is Nash if whenever an individual player has the power to 

change the network to another network, the player will have no incentive to do so. 
We shall denote by  the set of Nash networks. Note that our definition of a 
Nash network does not require that the network formation rules, as represented 
via the effectiveness relations {S}SP(D), be noncooperative (see subsection 3.2.1). 
Also, note that under our definition any network that cannot be changed to 
another network by a coalition of size 1 is a Nash network. Finally, note that the 
set of strongly stable networks  is contained in the set of Nash networks . 

We now have our main result on the path dominance core and Nash networks. 
 
Theorem 8 – The path dominance core and Nash networks. Given primitives  
( , {S}, {S}, >)SP(D)  and network formation game ( , ≥p), where path dominance ≥p is 
induced by either a direct dominance relation or an indirect dominance relation, the 
following statements are true. 

 
1. If the path dominance core   of ( , ≥p) is nonempty, then  is nonempty and   . 
2. If the dominance relation > underlying ≥p is a direct dominance relation and if the rules 

of network formation are such that GS G  implies that |S| = 1, then  =  and 
 is nonempty if and only if there exists a basin of attraction containing a single network. 

 
Proof. The proof of part 1 follows from part 1 of Theorem 5 and the fact that  
 . For the proof of part 2, note that if the rules of network formation are such 
that G S G  implies that |S| = 1, then  = . Thus, we have    = . If in 
addition the path dominance relation is induced by a direct dominance relation, 
then we have  =   , and we conclude that  =  = . Thus, if the 
path dominance is induced by a direct dominance and if the rules are such that 
G S G  implies that |S| = 1, then we have  =  = . By part 1 of Theorem 4, 

 =  =  is nonempty if and only if there exists a basin of attraction 
containing a single network.      
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We close this section by noting that if the dominance relation > underlying ≥p 
is a direct dominance relation and if the rules of network formation are such that 
G S G  implies that |S| = 1, then the set of Nash networks  is contained in the 
set of constrained Pareto efficient networks . Thus, for this case we have  

 =  =   . 
 

6. Examples 
 

In the abstract games, ( , ≥p), that we have considered, the set of outcomes  is a 
set of directed networks and we have focused on path dominance induced by 
either direct dominance or indirect dominance. However, our main results, 
Theorems 1-4, hold for any abstract game with a finite set of outcomes equipped 
with path dominance induced by any dominance relation. With this in mind, in 
this section we will demonstrate the flexibility of our approach and the wide 
applicability of our results by first considering network games with a potential 
function and then considering games where the set of outcomes is, in one case, a 
set of linking networks and, in another case, a set of coalition structures, and 
where the path dominance relation is induced by a dominance relation other than 
a direct or an indirect dominance relation (as defined in sections 3.3.1 and 3.3.2). 
In particular, in our first example, we consider noncooperative network formation 
games and show that any noncooperative network formation game possessing a 
potential function has basins of attraction each consisting of a single network and 
thus has a nonempty path dominance core. In our second example, we show how 
our approach can be applied to Jackson-Wolinsky linking networks and we 
provide necessary and sufficient conditions for nonemptiness of the set of pairwise 
stable linking networks. Finally, we show via an example proposed to us by 
Salvador Barbera and Michael Maschler (2006) how our approach can be used to 
analyze hedonic games, and in particular, we show how farsightedness can lead to 
instability (i.e., emptiness of the path dominance core) in hedonic games. 

 
6.1 Noncooperative network formation games possessing a potential function 
Suppose the primitives ( , {S}, {S}, >)SP(D) underlying the network formation 
game ( , ≥p) are such that: 
 
1. the set of nodes N and the set of players D are one and the same (i.e., N = D 

and   P(A × (D × D))); 
2. preferences {S}SP(D) over networks  are specified via player payoff functions 

vd(), that is, coalition S   P(D) prefers network G  to network G if 
vd(G ) > vd(G) for all d  S ;31 

                                                           
31  This is a frequently used way of defining payoffs to coalitions; see for example, Jackson (2005) and van 

den Nouweland (2005). 
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3. effectiveness relations {S}SP(D) over networks  are such that, 
 (i) adding an arc a from player i to player i  requires only that player i agree 

to add the arc (i.e., arc addition is unilateral and can be carried out only 
by the initiator, player i), 

 (ii) subtracting an arc a from player i to player i  requires only that player i 
agree to subtract the arc (i.e., arc subtraction is unilateral and can be 
carried out only by the initiator, player i), and 

 (iii) G S G  implies that |S| = 1 (i.e., only network changes brought about by 
individual players are allowed); 

4. the dominance relation > over  is given by a direct dominance relation , 
that is, G   G if and only if for some player d  D, vd (G ) > vd (G) and 
G d  G . 
 
We say that the noncooperative network formation game ( , ≥p) is a 

potential game if there exists a function 

P():   R  

such that for all G and G  with G d  G  for some player d ,  

vd (G ) > vd (G) if and only if P(G ) > P(G).  

It is easy to see that any noncooperative network formation game ( , ≥p) 
possessing a potential function has no circuits, and thus possesses strategic 
basins of attraction each consisting of a single network without descendants.32 
Thus, we can conclude from our Theorem 4 that any noncooperative network 
formation game possessing a potential function has a nonempty path dominance 
core. In addition, we know from our Theorem 8 that in this example the path 
dominance core  is equal to the set of Nash networks .33 
 
6.2 Jackson-Wolinsky linking networks 
Consider primitives ( , {S}, {S}, >)SP(D) with corresponding network formation 
game ( , ≥p) where  is given by a feasible set of linking networks, coalitional 
preferences {S}SP(D) are based on weak preferences (see Remarks 1 and 2 above), 
effectiveness relations {S}SP(D)  are specified via Jackson-Wolinsky rules, and the 
dominance relation > is direct. In particular, assume that the set of nodes N and 

                                                           
32  As has been shown by Monderer and Shapley (1996), potential games are closely related to congestion 

games introduced by Rosenthal (1973) – also see Holzman and Law-Yone (1997). 
33 Page and Wooders (2007b) introduce a club network formation game which is a variant of the 

noncooperative network formation game described above and show that this game possesses a potential 
function (see also Page and Wooders 2007a). Prior papers studying potential games in the context of 
linking networks include Slikker et al. (2000) and Slikker and van den Nouweland (2002). These papers 
have focused on providing the strategic underpinnings of the Myerson value (Myerson 1977). 
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the set of players D are equal, let gN denote the collection of all subsets of N of 
size 2, and let  be a nonempty subset of P(gN), where P(gN) denotes the collection 
of all nonempty subsets of gN (i.e., the set of all linking networks – see the 
definition in Jackson and Wolinsky, 1996). To simplify comparisons, we use the 
standard notation for linking networks and let g denote a typical linking network. 

Under Jackson-Wolinsky rules, if g S  g  then g ≠ g  and either (i) g  = 
g  {i, i } (a link is added between players i and i ) and S  = {i, i } or (ii) g  = 
g\{i, i } (the link between players i and i  is removed) and S  = {i} or S  = {i } or 
S  = {i, i }. Moreover, if coalitional preferences {S}SP(D) are based on weak 
preference relations {d}dD, then coalition S   P(D) prefers network g  to network 
g, written g  S  g, if for all players d  S , g  d g and if for at least one player 
d   S , g  d  g.34 Finally, if the dominance relation > is direct with underlying weak 
preferences, then g   g if and only if either (i) g {i, i } g  and g  {i, i } g where g  = g 
{i, i }or (ii) (a) g {i} g  and g  {i} g where g  = g\{i, i } or (b) g {i } g  and g  {i } g 
where g  = g\{i, i }. 

It follows from our Theorem 4 that any network formation game ( , ≥p) 
induced by Jackson-Wolinsky primitives (i.e., primitives as specified above) has a 
nonempty path dominance core if and only if there is at least one strategic basin 
of attraction containing a single network. Moreover, it follows from our Theorem 
6 that for any such network formation game the path dominance core is equal to 
the set of pairwise stable networks (as defined for linking networks in Jackson and 
Wolinsky, 1996). 

 
6.3 Hedonic games 
Consider a hedonic game where a move from one coalition structure to another 
can be initiated by any group of players defecting from the original structure, but 
in order for the change to prevail all players in coalitions augmented or created by 
the defecting players must prefer their new coalitions to their old coalitions – or 
must prefer their eventual coalitions to their old coalitions if players are 
farsighted. Call the path dominance core with respect to direct dominance, the 
hedonic direct core and the path dominance core with respect to indirect 
dominance the hedonic farsighted core. Note that the hedonic direct core is 
equivalent to the usual hedonic core. As the following example will show, the 
hedonic farsighted core may be empty even when the hedonic core is not. 

Consider the following hedonic game proposed to us by Barbera and 
Maschler (2006). Let the player set be given by D = {1, 2, 3, 4, 5, 6, 7, 8}. Player 
preferences over coalitions are as follows: 

 

                                                           
34 Recall from Remark 1 that if g  d g then player d either strictly prefers g  to g (denoted g  d g) or is 

indifferent between g  and g (denoted g  d
  g). 
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Table 1. Players’ preferences over coalitions 
 

player 1 (1, 2, 3, 4) (1, 2, 3) (1, 2) (1) … 

player 2 (1, 2, 3, 4) (1, 2, 3) (1, 2) (2) … 

player 3 (1, 2, 3, 4) (3, 4, 5, 6) (1, 2, 3) (3) (3, 6) 

player 4 (1, 2, 3, 4) (3, 4, 5, 6) (4, 5) (4) … 

player 5 (3, 4, 5, 6) (5, 6, 7, 8) (4, 5) (5) … 

player 6 (3, 4, 5, 6) (5, 6, 7, 8) (6, 7, 8) (6) (3, 6) 

player 7 (5, 6, 7, 8) (6, 7, 8) (7, 8) (7) … 

player 8 (5, 6, 7, 8) (6, 7, 8) (7, 8) (8) … 

 
Consider the row for player 1 in the table above. The interpretation is that 1 

prefers the coalition (1, 2, 3, 4) to the coalition (1, 2, 3), to the coalition (1, 2), 
and so on. Player 1’s preferences over the remaining coalitions are irrelevant to the 
following example so they are not specified. The same interpretation applies to the 
rows corresponding to other players. 

A partition of the player set is in the hedonic core if there does not exist a 
coalition that is preferred by all its members to their coalitions of membership in 
the original partition (i.e., a partition is in the hedonic core if it is not directly 
dominated by another partition). Consider the partition ((1, 2, 3, 4), (5, 6, 7, 8))  

. This is a core point for the hedonic game because the only coalition that is 
preferred by players 5 and 6 is (3, 4, 5, 6) but two members of this coalition, 3 and 
4, do not prefer it (i.e., ((1, 2), (3, 4, 5, 6), (7, 8)) does not directly dominate 
((1, 2, 3, 4), (5, 6, 7, 8))). If players 4 and 5 are farsighted, however, and domination 
is indirect, 4 and 5 can decide to form a coalition (4, 5) – thus bringing about the 
partition ((1, 2, 3), (4, 5), (6, 7, 8)). Now players 3,4,5, and 6 could all benefit 
from forming a coalition. This brings us to the partition ((1, 2), (3, 4, 5, 6), (7, 8)) a 
hedonic core point in which 4 and 5 are better off than in the original hedonic 
core point. Thus, ((1, 2), (3, 4, 5, 6), (7, 8)) indirectly dominates ((1, 2, 3, 4), (5, 6, 7, 8)). 
But the story is not finished. Starting from ((1, 2), (3, 4, 5, 6), (7, 8)), players 3 and 
6 can separate and form their own coalition. Using an argument similar to the 
one above, this move by 3 and 6 can then lead back to the original partition. 
Thus, ((1, 2, 3, 4), (5, 6, 7, 8)) indirectly dominates ((1, 2), (3, 4, 5, 6), (7, 8)). 

We see here that, even though the hedonic core is nonempty, the hedonic 
farsighted core is empty. Another point illustrated is that for path dominance, it is 
only necessary that a coalition perceive some path that would lead to a preferred 
situation; it is not required that a coalition perceive some preferred final (and 
presumably stable) outcome. The example also suggests for those special cases of 
hedonic games where the hedonic direct core (i.e., the hedonic core) is non-empty 
and not a singleton, then the path dominance core with respect to indirect 
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dominance (i.e., the hedonic farsighted core) is empty. (See Diamantoudi and 
Xue, 2003 for related work applying indirect dominance to hedonic games).35 

 
7. Conclusions 

 
From the viewpoint of the path dominance core with direct or indirect 
dominance, there are a number of potential questions to be addressed. For 
example, what is the relationship, if any, between basins of attraction and the 
path dominance core and partnered (or separating) collections of coalitions, as in 
for example Page and Wooders (1996), Reny and Wooders (1997) or Maschler 
and Peleg (1967) and Maschler et al. (1971)? Or what is relationship between 
basins of attraction and the path dominance core and the inner core, as in Qin 
(1993,1994)? 

To conclude, we return to the prior research introducing concepts similar to 
the abstract game defined in this paper and the union of basins of attractions; see 
Schwartz (1974), Kalai et al. (1976), Kalai and Schmeidler (1977) and Shenoy 
(1980).36 For specificity, we focus on Kalai and Schmeidler (1977). These authors 
take as given a set of feasible alternatives, denoted by S, a dominance relation, 
denoted by M and the transitive closure of M, denoted by .M̂  Their admissible set 
is the set A(S, M) := {x  S: y  S and xMy ˆ  imply yMx ˆ }.37 

Besides non-emptiness of the admissible set, they also shown that the 
admissible set is equal to the union of certain subsets – in our terminology, basins 
of attraction. While Kalai and Schmeidler apply their concept to cooperative 
games and games in normal (strategic) form, they do not consider networks, the 
focus of our research. Once our model of network formation is developed, then 
our abstract game is a particular case of the abstract game of these earlier 
authors. Our contribution differs in that we develop the network framework and 
characterize several equilibrium concepts from network theory in terms of their 
relationships to each other and to basins of attraction and the path dominance 
core. In addition, we characterize the set of von-Neumann-Morgenstern solutions 
and the path-dominance core (a case of the abstract core notion introduced in 
Gilles 1959) in terms of their relationships to basins of attraction. It may well be 
that the insightful examples developed by these authors will lead to new sorts of 

                                                           
35 In brief, the effectiveness relations in Diamantoudi and Xue differ from the effectiveness relations in our 

rendition of the Barbera-Maschler example. In particular, in Diamantoudi and Xue all defecting players 
must form a coalition in the new partition, whereas in the Barbera-Maschler example, defecting players 
can join already existing coalitions in forming the new partition. Moreover, in Diamantoudi and Xue only 
defecting players must prefer their new coalition in order for the change to take place, whereas in the 
Barbera-Maschler example, not only must defecting players prefer their new coalitions, but also all players 
in coalitions joined by the defecting players must prefer their new coalitions in order for the change to 
take place. 

36  We thank Sylvie Thoron for bringing this to our attention. 
37  Kalai and Schmeidler (1977) also cite Schwartz (1974) for the origins of this concept. 
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examples for networks, a question we are currently addressing. Also, Kalai and 
Schmeidler (1977) allow an infinite set of possibilities, which, in a network 
framework, introduces a host of new questions. We plan to address some of these 
in future research. 
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In contexts ranging from public goods provision to information collection, a player’s 
well-being depends on his or her own action as well as on the actions taken by his or her 
neighbours. We provide a framework to analyse such strategic interactions when 
neighbourhood structure, modelled in terms of an underlying network of connections, 
affects payoffs. In our framework, individuals are partially informed about the 
structure of the social network. The introduction of incomplete information allows us to 
provide general results characterizing how the network structure, an individual’s 
position within the network, the nature of games (strategic substitutes vs. complements 
and positive vs. negative externalities) and the level of information shape individual 
behaviour and payoffs. 

 
 
 
1. Introduction 

 
In a range of social and economic interactions – including public goods provision, 
job search, political alliances, trade, friendships and information collection – an 
agent’s well-being depends on his or her own actions as well as on the actions 
taken by his or her neighbours. For example, the decision of an agent of whether 
or not to buy a new product, or to attend a meeting, is often influenced by the 
choices of his or her friends and acquaintances (be they social or professional). 

                                                           
 We thank the editor and three anonymous referees for useful suggestions. We are also grateful to Willemien 

Kets and a number of seminar audiences for comments which significantly improved the quality and 
broadened the scope of the paper. Jackson gratefully acknowledges financial support from the Center for 
Advanced Studies in the Behavior Sciences, the Guggenheim Foundation and the NSF under grant SES-
0647867. Vega-Redondo gratefully acknowledges financial support from the Spanish Ministry of Education 
under grant SEJ2007-62656. 
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The empirical literature identifying the effects of agents’ neighbourhood patterns 
(i.e. their social network) on behaviour and outcomes has grown over the past 
several decades.1 The emerging empirical evidence motivates the theoretical study 
of network effects. We would like to understand how the pattern of social 
connections shapes the choices that individuals make and the payoffs they can 
hope to earn. We would also like to understand how changes in the network 
matter as this tells us how individuals would like to shapes the networks in which 
they are located. 

Attempts at the study of these basic questions have been thwarted by a 
fundamental theoretical problem: even the simplest games played on networks 
have multiple equilibria, which display a bewildering range of possible outcomes. 
The literature on global games illustrates how the introduction of (a small 
amount of) incomplete information can sometimes resolve the problem of 
multiplicity as well as provide interesting and novel economic intuitions.2 
Recently, this approach has faced the critique that the equilibrium selection 
achieved depends on the specifics of the incomplete information that is assumed, 
a point made convincingly by Weinstein and Yildiz (2007). However, in the 
context of network games there is a natural way to introduce incomplete 
information that eliminates this ambiguity, which is having uncertainty about the 
identity of players’ future neighbours and the number of neighbours that they will 
have. There are many decisions that are made at times where a player has a good 
forecast of the number of her connections (her degree) but has incomplete 
information about the degrees of others.3 

Indeed, in many circumstances individuals are aware of their proclivity to 
interact with others, but do not know who these partners are at the time of 
choosing actions. For instance, students who are planning a career of 
international diplomacy may anticipate how many individuals each of them will 
most likely interact with, but do not know who these individuals will be when 
deciding the number of foreign languages to study; or researchers choosing 
software based on compatibility may know the number of coauthors they expect 
to have in the future, but not necessarily who these people will be; or individuals 
deciding whether to get a medical vaccine may anticipate the volume of people 
they will interact with, but not specifically who these people will be. For these kind 
of environments, our model highlights the following two features: (i) agents have 
a good sense of the volume of agents each of them will interact with (their 
respective degree); and (ii) action choices are taken prior to the actual network of 
                                                           
1  The literature is much too vast to survey here; influential works include Katz and Lazarsfeld (1955), 

Coleman (1966), Granovetter (1994), Foster and Rosenzweig (1995), Glaeser et al. (1996), Topa (2001) 
and Conley and Udry (2010). 

2 Starting with the work of Carlsson and van Damme (1993), there is now an extensive literature on global 
games. For a survey of this work, see Morris and Shin (2003). 

3 For discussion of the knowledge of individuals about the network see, e.g. Kumbasar et al. (1994). 
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connections being realized (i.e. there is incomplete information regarding the 
identity of neighbours, neighbours’ neighbours, etc.). 

Motivated by these considerations we develop a model of games played on 
networks, in which players have private and incomplete information about the 
network. Their private knowledge about the network is interpreted as their type, 
and we study the Bayes – Nash equilibria of this game. We find that much of the 
equilibrium multiplicity that arises under complete information is no longer 
sustainable under incomplete information. Specifically, the key insight is that 
when players have limited information about the network they are unable to 
condition their behaviour on its fine details and this leads to a significant 
simplification and sharpening of equilibrium predictions. 

There are two other important aspects of our framework that we would like 
to stress here. One is that individuals are allowed to have beliefs about degrees of 
their neighbours that depend on their own degree. We capture correlations in the 
degrees of neighbours through a weakening of the notion of affiliation, which is a 
measure widely used in economics to capture joint correlations in types. As we 
explain below, many of the real world contexts studied by the network literature 
display degree correlations (positive or negative) that fall into one of the scenarios 
considered here. This is also true for much of the theoretical work concerned with 
alternative models of network formation. 

A second important feature of our approach is that we allow for alternative 
scenarios on how a player’s payoffs are affected by the actions of others. This is 
motivated by our desire to develop an understanding of how the payoffs interact 
with the network structure. We focus, therefore, on two canonical types of 
interaction: strategic complements and strategic substitutes.4 These two cases 
cover many of the game-theoretic applications studied by the economic 
literature. 

We now provide an overview of our main results. Our first result shows the 
existence of an equilibrium involving monotone (symmetric) strategies. In 
particular, in the case of strategic substitutes equilibrium actions are non-
increasing in players’ degrees, whereas under strategic complements equilibrium 
actions are non-decreasing in players’ degrees. We also provide conditions under 
which all (symmetric) equilibria are monotone. In turn, the monotonicity property 
of equilibrium actions implies that social connections create personal advantages 
irrespective of whether the game exhibits strategic complements or substitutes: in 
games with positive externalities well-connected players earn more than poorly 
                                                           
4  For instance, strategic complements arise whenever the benefit that an individual obtains from buying a 

product or undertaking a given behaviour is greater as more of his partners do the same. This might be 
due to direct effects of having similar or compatible products (such as in the case of computer operating 
systems), peer pressures (as in the case of drug use) and so forth. The strategic substitutes case 
encompasses many scenarios that allow for free riding or have a public good structure of play, such as 
costly experimentation or information collection. Formal definitions of these games are given in Section 3. 
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connected players.5 This provides a first illustration of the additional structure 
afforded by our assumption of incomplete information. Building upon it, our 
second objective is to understand how changes in the perceived social network 
affect equilibrium behaviour and welfare within the different payoff scenarios. We 
start by considering the effects induced by increased connectivity, as embodied by 
shifts in the degree distribution that suitably extend the standard notion of first 
order stochastic dominance (FOSD). This is proven to have unambiguous effects 
on equilibrium behaviour under strategic substitutes for binary-action games as 
well as for general games with strategic complements. For binary-action games, 
we also derive results that involve arbitrary changes in the degree distribution 
relative to the equilibrium actions. Finally, we explore the implications of 
endowing agents with deeper (but still local) information on the network. We find 
that this may lead to non-monotonic equilibrium behaviour. 

Our paper is a contribution to the growing literature that, in recent years, has 
undertaken the study of games played on networks (for an extensive overview of 
the networks literature, see Goyal (2007) and Jackson (2008)). For instance, 
decisions to undertake criminal activity (Ballester et al., 2006), public good 
provision (Bramoullé and Kranton, 2007), the purchase of a product (Galeotti, 
2008) and research collaboration among firms (Goyal and Moraga-Gonzalez, 
2001) have been studied for specific network structures under complete 
information.66 We would also like to mention Jackson and Yariv (2005), Galeotti 
and Vega-Redondo (2006) and Sundararajan (2006), who study games with 
incomplete network knowledge in specific contexts. The principal contribution of 
our paper is the development of a general framework for the study of games in 
such an incomplete information setup. We accommodate a large class of games 
with strategic complements and strategic substitutes, including practically all the 
applications mentioned above as special cases. Our approach also allows naturally 
for general patterns of correlations across the degrees of neighbours, and this is 
important as empirical work suggests that real world networks display such 
features. To the best of our knowledge, our paper is the first attempt to incorporate 
general patterns of degree correlations in the study of network games.7 

There is also a literature in computer science that examines games played on 
a network; see, e.g., the model of ‘graphical games’ as introduced by Kearns et al. 

                                                           
5  The idea that social connections create personal advantages is a fundamental premise of the influential 

work of Granovetter (1994) and is central to the notion of structural holes developed by Burt (1994). A 
number of recent empirical studies document the role of connections in providing personal advantages –
ranging from finding jobs, getting promotions and gaining competitive advantages in markets. 

6  In particular, regular networks (in which all players have the same degree) and core –periphery structures 
(the star network being a special case) have been extensively used in the literature. 

7  Jackson and Yariv (2007) follow up on the approach introduced in this paper and obtain complementary 
results. They examine the multiplicity of equilibria of games on networks with incomplete information, 
but with a binary action model and a different formulation of payoffs. See also Jackson and Yariv (2008) 
for a review of related results. 
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(2001), also analysed by Kakade et al. (2003), among others.8 The graphical-
games literature has focused on the complexity of, and algorithms for, computing 
equilibria in two-action complete information games played on networks. Here, 
we allow for more general games and examine different information structures. 
Importantly, our focus is on the structure of equilibria and its interaction with the 
underlying network, rather than with the computational complexity of equilibria. 

The rest of the paper is organized as follows. In Section 2, we discuss some 
simple examples that convey many of the insights to be gathered from the general 
analysis. Our theoretical framework of games played on networks is then introduced 
in Section 3. Section 4 presents results on the existence and monotonicity of 
equilibria. Section 5 takes up the study of the effects of network changes on 
equilibrium behaviour and payoffs. While the analysis in Sections 4 and 5 focuses 
on a setting in which players know their own degree and have some beliefs about 
the rest of the network, Section 6 takes up the issues that arise when players have 
deeper knowledge about the network. Section 7 concludes. All the proofs are 
gathered in the Appendix. 

 
2. Effects of Networks on Behaviour and Payoffs: Examples 
 
This section presents and analyses two simple games played on networks – 
reflecting strategic substitutes and strategic complements, respectively – to 
illustrate the main insights of the paper. 

We start with the setting studied by Bramoullé and Kranton (2007) – 
henceforth referred to as BK. It is a model of the local provision of information (or 
a local public good) and agents’ actions are strategic substitutes. We compare the 
equilibrium predictions under the assumption of complete information and 
incomplete information. 

Consider a society of n agents, each of them identified with a node in a social 
network. The links between agents reflect social interactions, and connected 
agents are said to be ‘neighbours’. It is posited that every individual must choose 
independently an action in X = {0, 1}, where action 1 may be interpreted as 
acquiring information, getting vaccinated, etc. and action 0 as not doing so. To 
define the payoffs, let yi  xi +

iNx where xi is the action chosen by agent i, Ni is the 
set of i’s neighbours and 

iNx  jNi xj is the aggregate action in Ni. The gross 
payoff to agent i is assumed equal to 1 if yi ≥ 1, and 0 otherwise. On the other 
hand, there is a cost c, where 0 < c < 1 for choosing action 1, while action 0 bears 
no cost. Gross payoffs minus costs define the (net) payoffs of the game.9 Therefore, 

                                                           
8  There are also models of equilibria in social interactions where players care about the play of certain other 

groups of players. See Glaeser and Scheinkman (2003) for an overview. 
9  The game is sometimes referred to as the best shot game. For a more detailed presentation of it, see 

Section 3. 
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an agent would prefer that someone in his or her neighbourhood take would, 
however, be willing to take the action 1 if nobody in the neighbourhood does. 

We start with the informational assumption made by BK: agents have 
complete information on the social network and thus the natural equilibrium 
concept is a Nash equilibrium. It is immediately observed that, as c < 1, yi ≥ 1 for 
every player i  N in any Nash equilibrium. Let us first examine the relation 
between network connections and actions. In general, such a complete 
information context allows for a very rich set of Nash equilibria of the induced 
games. To see this, consider the simple case of a star network and note that there 
exist two equilibria. 

In one equilibrium, the centre chooses 1 and the peripheral players choose 0, 
whereas in the second equilibrium the peripheral players choose 1 and the centre 
chooses 0. In the former equilibrium, the centre earns less than the peripheral 
players, whereas in the latter equilibrium it is the opposite. Figure 1 depicts these 
possibilities. Hence, even in the simplest networks there exist multiple equilibria 
and, most importantly, the relation between network connections, equilibrium 
actions and payoffs may exhibit very different patterns even when all agents of the 
same degree choose the same actions. 

Still remaining under the assumption of complete information, note that the 
effects of adding links to a network on equilibrium actions and aggregate payoffs 
depend very much on the details of the network and where the links are added (a 
point made by BK). To see this, consider a network with two stars, each of which 
contain five peripheral players. Fix a symmetric equilibrium in which the two 
centres choose action 1, while the peripheral players all choose 0. The aggregate 
payoff in this equilibrium is 12 − 2c. In the new network, the old action profile still 
constitutes an equilibrium. Consider adding a link between the centres of the two 
stars. In this case the old profile of actions is no longer in equilibrium. In fact, 
there is no equilibrium where both of the original centres choose 1. There is, 
however, an equilibrium in which the peripheral players of the stars choose 1 and 
 

 
Figure 1. Strategic substitutes with complete information 
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the centres choose 0. In this equilibrium there is a clear change in profile of 
actions, and the aggregate payoffs are given by 12 − 10c. There is another 
equilibrium where one of the two centres takes the action 1, and the other does 
not, and this leads to aggregate payoffs of 12 − 6c. It follows that in any of the 
equilibria associated with the addition of the link, aggregate payoffs are lower 
than in the starting equilibrium. Figure 2 illustrates these outcomes. Interestingly, 
if a link is added between the centre node of one star and a peripheral player on 
the other star, as in the bottom of Figure 2, the original equilibrium actions 
remain part of an equilibrium. 

Now let us relax the assumption of complete information on the social 
network and assume, instead, that players do not know the whole network but are 
informed only of their own degree. For example, agents’ learning may occur prior 
to the network being realized (say, taking agricultural classes in college prior to 
opening a winery) or agents may decide to get an immunization (for the flu, 
hepatitis, etc.) before knowing the individuals they will interact with over the 
course of the year. 

Moreover, assume that players’ beliefs about the rest of the network are 
summarized by a probability distribution over the degrees of their neighbours. For 
expositional simplicity, suppose also that these beliefs are independent across 
neighbours as well as of own degree. Under these conditions, a player’s (pure) 
strategy can be identified with a mapping  specifying the action  (k)  X chosen 
for each player of degree k. This game can be studied within the framework of 
 

 

Figure 2. The effects of adding links 

0

0

0
0

0

0 1

1 1 

1

1 
1 

0  

0 

0 
0 

0 

11 

0 0

0 

0 
0

0

0

0
0

0

1 1

0 0 

0

0 
0 

Connectiong hubs

Connectiong spoke with hubs



 

246 
·················· 

Network Games 

Coalitions and Networks Chap 9 

Bayesian games of incomplete information by identifying player types with their 
corresponding degrees. 

For concreteness, suppose that a link between any two of n agents is formed 
independently with probability p  (0, 1) (commonly referred to as an Erdös–Rényi 
network (Erdös and Rényi, 1960)). Asymptotically, beliefs about neighbours’ 
degrees then follow a binomial distribution. The probability that any randomly 
selected neighbour is of degree k is the probability the neighbour is connected to 
k − 1 additional agents of the remaining n − 2 agents, and is therefore given by: 

11 1
1

2
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If an agent of degree k chooses action 1 in equilibrium, it follows from degree 
independence (again, assuming for the sake of the example that n is infinitely 
large) that an agent of degree k − 1 faces a lower likelihood of an arbitrary 
neighbour choosing the action 1, and would be best responding with action 1 as 
well. In particular, any equilibrium is characterized by a threshold. 

Let t be the smallest integer for which 
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It is easy to check that an equilibrium  must satisfy  (k) = 1 for all k < t, 
 (k) = 0 for all k > t and  (t)  [0, 1]. In particular,  (k) is non-increasing. 

Observe that social connections create personal advantages: players with 
degree greater than t obtain higher expected payoffs as compared to the players of 
degree less than t. In general, the existence and uniqueness of such a symmetric 
threshold equilibrium follows from simple arguments for binary-action games, 
both for the present case of strategic substitutes and for the case of strategic 
complements.10 For general games, we establish a similar conclusion that every 
symmetric equilibrium strategy is monotone. 

We now look at how equilibrium play is affected by changes in the network. 
Consider, in particular, a change in the probability distribution over the degrees of 
players’ neighbours that reflects an unambiguous increase in connectivity, as given 
by the standard criterion of FOSD. Specifically, suppose we move from p to p  
where p  > p, so that Q(k; p ) FOSD Q(k; p). From equation (2), it follows that the 
(unique) threshold t  corresponding to p  must be higher than t . This has a two-
fold implication. First, contingent on any given type, the extent of information 
acquisition (or public good contribution) does not fall – it remains unchanged for 

                                                           
10  Naturally, if actions are strategic complements, playing action 1 is prescribed by the equilibrium strategy if 

the type is no lower than the corresponding threshold. On this issue, see our second example in this section. 
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agents with degrees lower than t or greater than t , and increases for all other 
agents. Second, the probability that any randomly selected neighbour of an agent 
makes a positive contribution falls – for consistency, it must be that 

.);();(  



  t
k

t
k pkQpkQ
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This example illustrates the existence of a unique non-increasing symmetric 
equilibrium, and the two effects of an increase in connectivity: generating a 
(unique) equilibrium with greater contribution, although reducing the probability 
that any random neighbour contributes. Our results generalize these insights to a 
wide array of games exhibiting strategic substitutability, allowing for more general 
action spaces, payoff structures and neighbour degree correlations. We next study 
a simple game where actions are strategic complements. Again, consider a context 
where X ={0, 1} is the action space, but now let the payoffs of any particular agent 
i be given by iN xcx

i
)(   Assuming that c >  > 0, these payoffs define a 

coordination game where, depending on the underlying network and the 
information conditions, there can generally be multiple equilibria. 

As before, we start our discussion with the case of complete information, i.e., 
with the assumption that the prevailing network is common knowledge. Clearly, 
the induced game always allows for an equilibrium where xi = 0 for all i. There are 
generally other equilibria and we illustrate this for a simple network with seven 
players, split into two complete components with three and four players, 
respectively. It is easy to see that there is an equilibrium in which all players in the 
larger component choose 1, whereas all players in the smaller component choose 
0. However, the reverse pattern, in which all players in the large component 
choose 0, whereas all players in the small component choose 1 is also an 
equilibrium. These are depicted in Figure 3. 

By contrast, if we make the assumption that each player is only informed of 
her own degree (and has independent beliefs on the degrees of neighbours), we 
find much more definite predictions with regard to equilibrium behaviour. Take, 
for example, the Erdös–Renyi model and the resulting binomial beliefs considered 
above. Note that independence of neighbour degrees implies that the probability 
a random neighbour chooses the action 1 cannot depend on one’s own degree. In 
particular, the expectation of the sum of actions 

iNx  of any agent i with |Ni| = k 
neighbours is increasing in k. The structure of payoffs then assures that if a degree 
k agent is choosing the action 1 in equilibrium, any agent of degree greater than k 
must be best responding with the action 1 as well, and so every equilibrium is 
determined by a threshold and is non-decreasing. Certainly, everyone choosing the 
action 0 is a symmetric (threshold) equilibrium. For sufficiently large p there exists 
t < N − 1, an integer, for which 
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Figure 3. Strategic complements with complete information 

 
Such a t corresponds to an equilibrium that satisfies  (k) = 0 for all k < t, 

 (t) [0, 1] and  (k) = 1 for all k > t. 
Furthermore, increasing connectedness, as before, by shifting p to p, where 

p > p, thereby inducing an FOSD shift in neighbours’ degree distribution, implies 
that, .);();(  
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tk pkQpkQ Hence, there exists an equilibrium threshold t  
corresponding to p and satisfying t  ≤ t. Intuitively, the shift to p increases 
perceived connectivity and therefore, ceteris paribus, the probability each random 
neighbour chooses the action 1. Therefore, the value of the action 1 increases, and 
if all agents use the threshold t, the best response of any particular agent would be 
to use a threshold lower than t . Continuing such a process iteratively, we generate 
t . Note also that t  ≤ t implies that the probability that a random neighbor chooses 
the action 1 in the t  equilibrium under p, given as ), ,);( 


1N

tk pkQ  is greater than 
the probability that a random neighbour chooses the action 1 in the original 
equilibrium (with threshold t) under p. 

Our results in Section 5 extend these observations to a general class of games 
with complements: allowing for a wide scope of action spaces, payoff structures 
and neighbour degree correlations. 

To summarize, under complete network information there is no systematic 
relation between social networks and individual behaviour and payoffs (even if we 
restrict attention to equilibrium in which players with the same degree choose the 
same action). By contrast, under incomplete network information, both in games 
of strategic substitutes as well as in games of strategic complements, we obtain a 
clear cut relation between networks and individual behaviour and payoffs. 
Moreover, our discussion clarifies how networks have systematically different 
effects in games with substitutes and in games with complements. 
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3. The Model 
 
This section presents our theoretical framework. We start by describing the 
modelling of a network game, comprised of the degree distribution and each 
agent’s actions and payoffs. We then discuss our equilibrium concept, symmetric 
Bayesian equilibrium. 
 
3.1. Networks and payoffs 
There is a finite set of agents, N = {1, 2, ..., n}. The connections between them are 
described by a network that is represented by a matrix g  {0, 1}n × n, with gij = 1 
implying that i ’s payoff is affected by j ’s behaviour. We follow the convention of 
setting gii = 0 for all i  N.  

Let Ni(g) = {j | gij = 1} represent the set of neighbours of i. The degree of player 
i, ki(g), is the number of i’s connections: 

ki(g) = |Ni (g)|. 

Each player i takes an action xi in X, where X is a compact subset of [0, 1]. 
Without loss of generality, we assume throughout that 0, 1  X. We consider both 
discrete and connected action sets X. The payoff of player i when the profile of 
actions is x = (x1, ..., xn) is given by: 

vki(g)(xi, xNi(g)) 

where xNi(g) is the vector of actions taken by the neighbours of i. Thus, the payoff of 
a player depends on her own action and the actions that her neighbours take. 

Note that the payoff function depends on the player’s degree ki but not on 
her identity i. Therefore, any two players i and j who have the same degree (ki = kj) 
have the same payoff function. We also assume that vk depends on the vector xNi(g) 
in an anonymous way, so that if x  is a permutation of x (both k-dimensional 
vectors) then vk(xi, x) = vk(xi, x ) for any xi. If X is not a discrete set then we assume 
that it is connected, in which case vk is taken to be continuous in all its arguments 
and concave in its own action. 

Finally, we turn to the relation between players’ strategies and their payoffs. 
We say that a payoff function exhibits strategic complements if it has increasing 
differences: for all k, xi > xi and x ≥ x : 

vk(xi, x) − vk(xi, x) ≥ vk(xi, x ) − vk(xi, x ). 

Analogously, we say that a payoff function exhibits strategic substitutes if it has 
decreasing differences: for all k, xi > xi and x ≥ x : 

vk(xi, x) − vk(xi, x) ≤ vk(xi, x ) − vk(xi, x ). 
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These notions are said to apply strictly if the payoff inequalities are strict 
whenever x  x . 

We also keep track of the effects of others’ strategies on a player’s payoffs. 
We say that a payoff function exhibits positive externalities if for each k, and for all 
x ≥ x , vk(xi, x) ≥ vk(xi, x ). Analogously, we say that a payoff function exhibits 
negative externalities if for each k, and for all x ≥ x, vk(xi, x) ≤ vk(xi, x). Correspondingly, 
the payoff function exhibits strict externalities (positive or negative) if the above 
payoff inequalities are strict whenever x  x . 

We now present some economic examples to illustrate the scope of our 
framework in terms of the payoff structures it allows for (that will be layered upon 
the social network configurations we describe below). 

 
EXAMPLE 1. Payoffs depend on the sum of actions. Player i’s payoff function when she 
chooses xi and her k neighbours choose the profile (x1, ..., xk) is: 

),(),...,,( i

k

j
jikik xcxxfxxxv 







 

1
1   (3) 

where f () is non-decreasing and c () is a ‘cost’ function associated with own 
effort. The parameter    determines the nature of the externality across 
players’ actions. This example exhibits (strict) strategic substitutes (complements) 
if, assuming differentiability,  f  is negative (positive). 

The case where f is concave,  = 1, and c () is increasing and linear 
corresponds to the case of information sharing as a local public good studied by 
Bramoullé and Kranton (2007), where actions are strategic substitutes. In 
contrast, if  = 1, but f is convex (with c  > f  > 0), we obtain a model with strategic 
complements, which nests a model studied by Goyal and Moraga-Gonzalez 
(2001) regarding collaboration among firms. In fact, the formulation in equation 
(3) is general enough to accommodate a good number of further examples in the 
literature such as human capital investment (Calvó-Armengol and Jackson, 2009), 
crime networks (Ballester et al., 2006), some coordination problems (Ellison, 
1993) and the onset of social unrest (Chwe, 2000). 

An interesting special case of Example 1 is the best shot game described in 
the opening example of Section 2. 

 
EXAMPLE 2 – ‘Best shot’ public goods games. The best shot game is a good metaphor 
for many situations in which there are significant spillovers between players’ 
actions. X = {0, 1} and the action 1 can be interpreted as acquiring information 
(or providing any local and discrete public good). We suppose that f (0) = 0, 
f (x) = 1 for all x ≥ 1, so that acquiring one piece of information suffices. Costs, on 
the other hand, satisfy 0 = c(0) < c (1) < 1 so that no individual finds it optimal to 
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dispense with the information but prefers one of her neighbours to gather it. This 
is a game of strategic substitutes and positive externalities.11 

In the above examples, a player’s payoffs depend on the sum of neighbours’ 
strategies and all of them satisfy the following general property. 
 
Property A. vk + 1(xi, (x, 0)) = vk(xi, x) for any (xi, x)  X k + 1 

 
Under Property A, adding a link to a neighbour who chooses action 0 is 

payoff equivalent to not having an additional neighbour. The above discussion 
clarifies that many economic examples studied so far satisfy Property A. There is 
however a prominent case where the payoffs violate Property A: this arises when 
payoffs depend on the average of the neighbours’ actions. Our framework allows 
for of such games as well, like Example 3 below. 

 
EXAMPLE 3 – Payoffs depend on the average of neighbours’ actions. Let X = {0, 1}. Player i’s 
payoff function when she chooses xi and her k neighbours choose the profile 
(x1, ..., xk) is: 
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1  (4) 

where f () is an increasing function. This is a game of strategic complements and 
positive externalities. 

 
3.2. Information 
We study an environment in which individuals are aware of their proclivity to 
interact with others, but do not know who these others will be when taking 
actions. For instance, a researcher choosing an operating system may know the 
number of coauthors they tend to work with at any given time, but not necessarily 
who these people will be during the upcoming year. These considerations 
motivate the informational assumptions in our model: individuals know the 
number of their contacts and have information on the distribution of connections 
in the population at large. 

Formally, let the degrees of the neighbours of a player i of degree ki be 
denoted by kN(i), which is a vector of dimension ki. The information a player i of 
degree ki has regarding the degrees of her neighbours is captured by a distribution 
P(kN(i) | ki). Throughout, we model players’ beliefs with a common prior and ex-

                                                           
11  For instance, consumers learn from relatives and friends (Feick and Price, 1987), innovations often get 

transmitted between firms and experimentation is often shared amongst farmers (Foster and Rosenzweig, 
1995; Conley and Udry, 2010). For a discussion of best shot games, see Hirshleifer (1983). 
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ante symmetry. Players may end up with different positions in a network and 
conditional beliefs, but their beliefs are only updated based on their realized 
position and not on their names. This means that the information structure is 
given by a family of anonymous conditional distributions P  {[P(k | k)]kℕk}kℕ. In 
some of our results, we also need to refer to the underlying unconditional degree 
distribution, which is denoted by P(). 

We would like to emphasize that our framework allows for correlation 
between neighbours’ degrees. This means that the conditional distributions 
concerning neighbours’ degrees can in principle vary with a player’s degree. This is 
particularly important in face of the empirical evidence illustrating that social 
networks generally display such internode correlations. Newman (2003), for 
example, summarizes empirical results in this respect across different contexts. He 
reports, specifically, that some networks such as those of scientific collaboration 
(reflecting joint authorship of papers) or actor collaboration (film co-starring) 
display significant positive degree correlation while others, such as the internet 
(physical connections among routers) or the world wide web (hyperlinks between 
webpages), have a negative one. As these correlations, positive or negative, may 
well have some bearing (in interplay with game payoffs) on the strategic problem 
faced by agents, they should be accommodated by the model. 

To deal with this issue, we generalize (i.e. weaken) a standard definition of 
affiliation that has been amply used in the economic literature to capture 
statistical correlations between collections of random variables (e.g. individual 
valuations in auctions, as in Milgrom and Weber (1982)).12 To introduce the 
notion formally, denote by kN(i) = (k1, k2, ..., kki ) the degrees of the neighbours of a 
typical player with degree . Then, given any function f : {0, 1, ..., n − 1}m   where 
m ≤ ki , let 


)(

).,...,()|(][ )()|(
iN

i miiNkP kkfkPfE
k

k 1  (5) 

The above expression simply fixes some subset m ≤ ki of i’s neighbours, and then 
takes the expectation of f operating on their degrees. We say that P exhibits positive 
neighbour affiliation if, for all k  > k, and any non-decreasing f : {0, 1, ..., n − 1}k  . 

].[][ )|()|( fEfE kPkP    (6) 

Analogously, P exhibits negative neighbour affiliation if the reverse inequality 
holds for each k  > k and non-decreasing f. 

                                                           
12 Affiliation, in turn, can be viewed as a strengthening of the notion of association that is common in the 

statistical literature – see, e.g. Esary et al.(1967) for a useful reference. In this paper, we are interested in 
both the notion of positive affiliation (which is the usual case postulated in the literature) as well as a 
negative one – the conditions and implications, however, are obviously fully symmetric in each case. 
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As indicated, our notion of neighbour affiliation is weaker than what 
affiliation (positive or negative) among the whole vector of random variables 
(ki, kN(i)) would entail.13 It simply embodies the idea that higher degrees for a given 
player are correlated with higher or lower degree (depending on whether it is 
positive or negative, respectively) of all her neighbours. Obviously, it is satisfied in 
the case where neighbours’ degrees are all stochastically independent. This is, for 
example, a condition that holds asymptotically in many models of random 
networks, including the classical model of Erdös–Rényi or the more recent 
configuration model (see, e.g. Newman, 2003; Vega-Redondo, 2007; and 
Jackson, 2008 for discussions). Positive neighbour affiliation, on the other hand, 
is a feature commonly found in other models of network formation that have a 
dynamic dimension – cf. the model of Barabàsi and Albert (1999) based on 
preferential attachment or the models by Vazquez (2003) and Jackson and Rogers 
(2007) reflecting network-based search.14 In addition, an important motivation 
for internode degree correlations is empirical. For, as mentioned, many of the 
studies on real social networks undertaken in recent years find strong evidence for 
either positive or negative correlations. Neighbour affiliation, while entailing some 
restrictions, provides a workable tool for capturing these observations. 

Finally, we also need a way of comparing situations where the network (and 
thus the corresponding beliefs) undergo changes in connectivity. We focus on 
changes that reflect unambiguous increases or decreases in the distribution of 
agents’ degrees. So we use a suitable extension of the standard notion of FOSD to 
embody changes in the degree distributions that capture the idea of link addition. 
Specifically, we say that P  dominates P if for all k, and any non-decreasing f : {0, 1, 
..., n − 1}k   

].[][ )|()|( fEfE kPkP     

This concept of dominance is a generalization of stochastic dominance 
relationships adapted to vectors and families of distributions. 

To conclude, a network game is fully described and is henceforth denoted by 
a quadruple (N, X, {vk}k, P). In certain cases, concentrating on degree distributions 
that exhibit independence between neighbours’ degrees allows us to derive further 
insights. In these cases, the entire set of conditionals is captured by the underlying 
distribution P and so we denote the corresponding network game by (N, X, {vk}k, P ). 
                                                           
13  To see this, refer to Theorem 5 in Milgrom and Weber (1982), which establishes that affiliation implies 

that the counterpart of equation (6) must hold when we condition on any subset of the random variables 
in (ki, kN(i)) and compute the expected value for any non-decreasing function of those random variables. 
More precisely, our notion of neighbour affiliation is identical to the concept of positive regression 
dependence with respect to ki, as formulated by Lehmann (1966). Esary et al. (1967) show that this 
concept is weaker than the standard one of association, except for bivariate random variables. 

14 See the working paper version, (Galeotti et al. 2006) for a formal description of neighbour affiliation 
attributes of commonly observed and studied network formation procedures. 
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3.3. The Bayesian game 
A strategy for player i is a mapping i : {0, 1, ..., n − 1} (X), where (X) is the set 
of probability distributions on X. So, i(k) is the mixed strategy played by a player 
of degree k. We analyse (symmetric) Bayesian equilibria of this game and they can 
be represented simply as a (mixed) strategy,  ().15 

More formally, given a player i of degree ki let  (xNi(g), , ki) be the probability 
distribution over xNi(g)  Xki induced by the beliefs P(| ki) over the degrees of i’s 
neighbours when composed with the strategy . Thus, the expected payoff to a 
player i with degree ki when other players use strategy  and i chooses action xi is 

 


ik
giN

iiiXx igNgNikii kxdxxvkxU
)(

).,,(),(),,( )()(   (7) 

A strategy  comprises a symmetric Bayesian equilibrium (or just an 
equilibrium, for short) if  (ki) is a best response, for each degree ki to the strategy 
 being played by other players. That is,  is an equilibrium if for every degree ki 
displayed by any typical agent i, the following holds: 

U(xi,, ki) ≥ U(xi,, ki),  xi  X, xi  supp( (ki)). (8) 

Our interest is in understanding the effects of networks on behaviour and 
welfare. To bring out these effects clearly, we focus on symmetric Bayes–Nash 
equilibria, i.e. configurations where all players with the same network 
characteristic (which, under our informational assumptions, is their degree) 
choose the same strategy. This is further motivated by the observation that, in 
fact, all equilibria of the game must be symmetric when the following two 
conditions apply: 

 
(i) the underlying network formation mechanism is anonymous and the 

population very large; 
(ii) the payoff function is strictly concave in own action. 

 
For, in this case, all agents of any given degree face the same decision 

problem (from (i)) and the optimal choice in it is unique (by (ii)). This leads to a 
symmetric behaviour.16 

                                                           
15  Static equilibrium refinements are not so useful in our case, as our equilibria are typically strict; e.g., in 

our applications (as, say, in best shot games of the sort discussed in Section 2), both in the complete and 
incomplete information scenarios. Finally, it is worth noting, refinements that require dynamic stability in 
terms of an adjustment process can encounter non-existence problems. As an illustration, consider the 
notion of stable equilibrium used by Bramoullé and Kranton (2007) for their analysis of local public 
goods in networks. As they show, these equilibria exist only for networks whose maximal independent set 
has two nodes in every non-provider’s neighbourhood, which rules out many networks. 

16  Formally, the statement here is in effect of an asymptotic nature, pertaining to the limit equilibrium 
behaviour as the population size grows infinite. To be precise, consider the relatively simple case where the 
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It is worth emphasizing as well that the contrast between complete and 
incomplete information that is the heart of our analysis remains in force when we 
restrict attention to symmetric equilibria in both cases. To illustrate this, recall the 
star networks that were considered in Section 2 (see especially Figure 1). There, 
the restriction of symmetry under complete information requires that all 
peripheral players choose the same action. But, as we saw, this allows for two 
polar and very different Nash equilibria. Instead, symmetry under incomplete 
information singles out a unique equilibrium outcome in which the centre does 
not contribute. Our discussion in Section 2 suggests that analogous observations 
hold for games with strategic complements (see Figure 3). 

To relate network structure and the primitives of the payoffs to features of 
equilibrium, we need to relate strategies to degrees. Some basic definitions of 
monotonicity are thus useful in stating our results. 

A strategy  is non-decreasing if  (ki) first-order stochastically dominates  (k) 
for each k > k. Similarly,  is non-increasing if the domination relationship is reversed. 

Expected payoffs exhibit degree complementarity if 

U(xi, , ki) − U(xi, , ki) ≥ U(xi, , ki) − U(xi,, ki), 

whenever xi > xi, ki > ki and  is non-decreasing. Analogously, payoffs exhibit degree 
substitution if the inequality above is reversed in the case where  is non-increasing. 

Degree complementarity captures the idea that if a high strategy is more 
attractive than a low strategy for a player of some degree, then the same is true for 
a player of a higher degree when the strategy being played by other players is non-
decreasing. Degree complementarity arises in many contexts that are covered by 
our framework. We illustrate this by considering two cases of interest. 

Recall that Property A says that vk + 1(xi, (x, 0)) = vk(xi, x) for any (xi, x)  Xk + 1. 
We note that Property A, strategic complements of vk(, ) and positive neighbour 
affiliation of P ensure degree complementarity. To see why this is true consider a 
strategy  which is non-decreasing and suppose that k  = k + 1. Now observe that 

U(xi, , k) − U(xi, , k) 
 = x X k [vk(xi, x) − vk(xi, x)]d (x, , k) 
 = x X k [vk (xi, (x, 0)) − vk (xi, (x, 0))] d (x, , k) 
  ≤ x X k  [vk (xi, (x, 0)) − vk (xi, (x, 0))] d ((x, 0), , k ) 
  ≤ (x, xk + 1) X k [vk (xi, (x, xk + 1)) − vk (xi, (x, xk + 1))] d ((x, xk + 1), , k ) 
  = U(xi, , k ) − U(xi, , k ) 

                                                                                                                                        
underlying network formation mechanism is random, the degree distribution has a uniformly bounded 
support and every two networks differing only in some arbitrary permutation of player indices have an 
identical ex-ante probability. Under these conditions, the probability that any two agents be connected 
becomes insignificant for large populations and, therefore, if they have the same degree, they must also 
face a probability distribution over neighbours’ actions that is essentially the same. Then, by strict 
concavity and continuity of payoffs, the claim follows. 
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where the second equality follows from Property A, the first inequality follows 
from positive neighbour affiliation,  being non-decreasing and strategic 
complements, while the second inequality follows from strategic complements. 
Analogous considerations establish that Property A, strategic substitutes of vk(, ) 
and negative neighbour affiliation of P ensure degree substitution. 

While Property A (taken along with the corresponding properties on P and 
vk(, )) is sufficient to establish degree complementarity and substitution, it is not 
necessary. The following discussion, which builds on Example 3, illustrates this point. 

 
EXAMPLE 4 – Degree complements and substitutes without Property A. Suppose that 
payoffs are as in Example 3. In addition, let P be such that neighbours’ degrees 
are stochastically independent (e.g. as in an asymptotic Erdös–Rényi random 
network discussed in Section 2). When neighbours’ degrees are independent, k

kkP )(  
captures the probability that a random neighbour is of degree k (see, e.g. Jackson, 
2008). Let Ym be a random variable that has a binomial distribution with m draws 
each with probability k k

kkP k),()(   the expected action of any neighbour. Then, 
the expected payoffs to a player i are given by: 
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Note that k
Yk

 is a mean preserving spread of k

Yk  when k  < k. Thus, if f is 
concave, we have degree complementarity, whereas if f is convex then degree 
substitution obtains. 

 
4. Equilibrium: Existence and Monotonicity 
 
We start by showing existence of an equilibrium involving monotone strategies. We 
then provide conditions under which all equilibria are monotone. Finally, we close 
the section by exploring the relationship between network degree and equilibrium 
payoffs. The latter analysis, in particular, identifies conditions under which 
payoffs increase/decrease with network degree, thereby clarifying the contexts in 
which network connections are advantageous and disadvantageous, respectively. 

Recall that a strategy  is non-decreasing if  (k ) first-order stochastically 
dominates  (k) for each k  > k. Similarly,  is non-increasing if the domination 
relationship is reversed. 
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Proposition 1. There exists a symmetric equilibrium, and if the game has degree 
complements, then there exists a symmetric equilibrium in pure strategies. If there is degree 
complementarity (substitution) then there is a symmetric equilibrium that is non-decreasing 
(non-increasing). 

 
To show the validity of this result, we start by addressing the existence of a 

symmetric equilibrium. It has been assumed that players have identical action sets 
X, the payoff functions are also the same and player’s beliefs concerning network 
are ex-ante symmetric. The game, therefore, is a symmetric one of incomplete 
information. Given that the action set is compact, the payoff function is 
continuous in all arguments (when the action set is non-discrete) and concave in 
own action, it is then straightforward to adapt the usual fixed-point argument to 
show that there exists a symmetric equilibrium, possibly in mixed strategies. 
Moreover, the fact that this symmetric equilibrium can be chosen in pure 
strategies under degree complements follows from standard strategic 
complements arguments (see, e.g. Milgrom and Shannon, 1994). 

On the other hand, concerning monotonicity, one can readily exploit the 
degree complements/substitutes property to show that for a player faced with a 
monotone strategy played by the rest of the population, there always exists a 
monotone best reply. Then, as the set of monotone strategies is convex and 
compact, the existence of a monotone equilibrium derives from standard 
arguments (see, e.g. Milgrom and Shannon, 1994; van Zandt and Vives, 2007). 

Next, we elaborate on two aspects of Proposition 1. First, we discuss whether 
every symmetric equilibrium is monotone. Consider a game with action set 
X = {0, 1} and payoffs vk(xi, xNi(g)) = xi j Ni(g) xj − c xi, where 0 < c < 1 (a special case 
of the second example in Section 2). This example satisfies Property A and the 
underlying game displays strategic complements. Now suppose that there is 
perfect degree correlation so that players are connected to others of the same 
degree. It is then clear that any symmetric pure strategy profile defines an 
equilibrium.17 This example suggests that the possibility of non-monotone 
equilibria is related to the correlation in degrees. This point is highlighted by the 
following result. 

 
Proposition 2. Suppose that payoffs satisfy Property A and that the degrees of neighbouring 
nodes are independent. Then, under strict strategic complements (substitutes) every symmetric 
equilibrium is non-decreasing (non-increasing). 

 
The key point to note here is that, under independence, degree k and degree 

k  = k + 1 players have the same beliefs about the degree of each of their 

                                                           
17  In fact, the best response of a degree k player is to choose 0 (1) if all other degree k players also choose 0 (1). 
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neighbours. If the k + 1th neighbour is choosing 0 then under Property A the 
degree k  player will choose the same best response as the degree k player; if the 
k + 1th neighbour chooses a positive action then strict complementarities imply 
that the degree k  player best responds with a higher action.18 

Going back to some of our motivating examples, Proposition 2 has very clear 
implications. Consider the student aiming at a career of diplomacy and 
contemplating learning a new language. As the value of knowing a language is 
increasing with the number of connected individuals who speak that language (it 
is a game of complements), we would expect that student to be more likely to 
take on the study of the new language than a student who aims at a less 
interactive career. 

A second issue is whether the nature of degree correlation – positive neighbour 
affiliation under strategic complements or negative neighbour affiliation under 
strategic substitutes – is essential for existence of monotone equilibria. Consider a 
special case of Example 1 in which X = [0, 1], f (y) =  y +  y 2, y = xi + j Ni(g) xj and 
c (xi) =  xi

2 for some , ,  > 0. This game exhibits strategic complements. Next 
suppose that the unconditional degree distribution satisfies P(1) = P(2) =   and 

)(kP = 1 − 2  for some small  and a given large .k  Further suppose that )|( 1kP = 
P(2 |2) = 1, i.e., all agents with degree 1 are connected to those of degree k  and 
all those of degree 2 are connected among themselves. Note that this pattern of 
connections violates positive neighbour affiliation. It is now possible to verify that 
if   >   then every equilibrium is interior; moreover if k  is large enough and   
sufficiently small then  satisfies 2 < 1 < k

  and is not monotone. 
A recurring theme in the study of social structure in economics is the idea 

that social connections create personal advantages. In our framework, the relation 
between degrees and payoffs is the natural way to study network advantages. Let 
us consider games with positive externalities and positive neighbour affiliation, 
and look at a player with degree k + 1. Suppose that all of her neighbours follow 
the monotone increasing equilibrium strategy, but her k + 1th neighbour chooses 
the minimal 0 action. Property A implies that our (k + 1) degree player can assure 
herself an expected payoff which is at least as high as that of any k degree player 
by simply using the strategy of the degree k player. These considerations lead us to 
state the following result. 

 
Proposition 3. Suppose that payoffs satisfy Property A. If P exhibits positive neighbour 
affiliation and the game displays positive externalities (negative externalities), then in every 
non- decreasing symmetric equilibrium the expected payoffs are non-decreasing (non-
increasing) in degree. If P exhibits negative neighbour affiliation and the game displays 

                                                           
18  The strictness is important for the result. For instance, if players were completely indifferent between all 

actions, then non-monotone equilibria are clearly possible. 
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positive externalities (negative externalities), then in every non-increasing symmetric 
equilibrium the expected payoffs are non-decreasing (non-increasing) in degree. 

 
We emphasize that under positive externalities, players with more neighbours 

earn higher payoffs irrespective of whether the game exhibits strategic complements 
or substitutes (under the appropriate monotone equilibrium). These network 
advantages are especially striking in games with strategic substitutes (such as local 
public goods games) and negative neighbour affiliation: here higher degree players 
exert lower efforts but earn a higher payoff as compared to their less connected peers. 

 
5. The Effects of Changing Networks 
 
We now investigate how changes in a network – such as the addition/deletion of 
links or the redistribution of links away from a regular network to highly unequal 
distributions that characterize empirically observed networks – affect the 
behaviour and welfare of players. We start with games of strategic substitutes and 
then take up games of strategic complements. 

 
5.1. Games with strategic substitutes 
We refer to games where payoffs are of strict strategic substitutes and satisfy 
Property A and where P exhibits negative neighbour affiliation as binary network 
games of substitutes, and we focus on such games in the following analysis. An 
attractive feature of binary action network games with substitutes is that there is a 
unique symmetric equilibrium strategy , and it involves a threshold. 

 
Proposition 4. Consider a binary network game of substitutes. There exists some threshold  
t  {0, 1, 2,.. .} such that the probability  (1|) of choosing action 1 in the unique non- 
increasing symmetric equilibrium strategy  satisfies  (1| ki) = 1 for ki < t,  (1| ki) = 0 for 
all  ki > t and  (1|t)  (0, 1] for ki = t. 

 
Now we ask: what is the effect of adding links on equilibrium behaviour? We 

first observe that the best response of a player depends on the actions and hence 
the expectations concerning the degrees of her neighbours. Thus, the effects of 
link addition must be studied in terms of the change in the degree distribution of 
the neighbours.19 We therefore approach the addition of links in terms of an 

                                                           
19  Indeed, it is important to note that the relationship between two underlying (unconditional) degree 

distributions does not imply a similar relation for the conditional distribution over neighbours’ degrees, 
even under independence. As an illustration consider a case where degrees of neighbours are independent. 
Consider two degree distributions P and P , where P  assigns one half probability to degrees 2 and 10 
each, whereas distribution P assigns one half probability to degrees 8 or 10 each. Clearly P FOSD P . As 
mentioned above, when neighbouring degrees are independent, the probability of having a link with a 
node is (at least roughly, depending on the process) proportional to the degree of that node, so that for all 
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increase in the degrees of a neighbour. In our context of non-increasing strategies, 
this means a fall in her action (on average), which, from strategic substitutes, 
suggests that the best response of the player in question should increase. 
However, this increase in action of every degree may come into conflict with the 
expectation that neighbours must be choosing a lower action, on average. The 
following result clarifies how this tension is resolved. Denote by t the threshold in 
the game (N, X, {vk}k, P) and by t  the threshold in game (N, X, {vk}k, P). 

 
Proposition 5. Let (N, X, {vk}k , P) and (N, X, {vk}k , P) be binary network games of 
substitutes. If P dominates P , then t ≥ t . However, for the threshold degree type t the 
probability that a neighbour chooses 1 is lower under P. 

 
This result clarifies that an increase in threshold for choosing 1 is consistent 

with equilibrium behaviour because each of the neighbours is more connected and 
chooses 1 with a lower probability (in spite of an increase in the threshold). The 
best shot game helps to illustrate the effects of dominance shifts in degrees which 
are derived in the above result. 

 
EXAMPLE 5 – Effects of increasing degrees in a best shot game. Consider the best shot 
game discussed in the introduction and described in Example 2. Set c = 25/64. 
Suppose that degrees take on values 1, 2 and 3 and that the degrees of 
neighbours are independent. Note that, in view of Proposition 2 and Proposition 
4, the assumption that the degrees of neighbouring nodes are stochastically 
independent implies that there exists a unique symmetric equilibrium which is 
non-increasing and it is fully characterized by a threshold. 

Let us start with initial beliefs P  that assign probability one-half to 
neighbouring players having degrees 1 and 2. In the unique symmetric equilibrium, 
degree 1 players choose 1 with probability 1, whereas degree 2 players choose 1 
with probability 0. Hence, at equilibrium, the probability that a neighbour of a 
degree 2 player chooses action 1 is ½. 

Consider now a dominance shift to P, so that neighbouring players are 
believed to have degrees 2 and 3 with probability one-half each. It can be checked 
that the unique equilibrium involves degree 2 players choosing action 1 with 
probability ¾, whereas degree 3 players choose 1 with probability 0. Consequently, 
the probability that a neighbour of a degree 2 player chooses action 1 is 3/8. 

Overall, the dominance shift in the beliefs from P  to P  leads to an increase 
in the threshold from 1 to 2. However, the threshold degree 2 player has lower 
expectation of action 1 under P  as compared to P . 
                                                                                                                                        

k, P(k |k) = k  P (k )/ P(l )l. Let P
~
(k ) be the neighbour’s degree distribution. Under P

~
, the probability 

that a neighbour has degree 10 is 5/6, while under P
~
, the same probability is 5/9. Thus,    P

~
does not FOSD 

P
~
. 
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We now turn to the effects on welfare. The expected welfare is assessed by 
the expected payoff of a randomly chosen player (according to the prevailing 
degree distribution). Observe that dominance shifts in the interaction structure 
lower the expected probability that a randomly selected neighbour of a t-degree 
player (the threshold player under P ) chooses 1. If the degrees of neighbours are 
independent, then the average effort of a randomly selected neighbour of a player 
i does not depend on i’s degree, and therefore all players expect lower action from 
each of their neighbours. However, in the presence of negative neighbour 
affiliation, matters are more complicated, and it is possible that the overall effect 
of a dominance shift in the distribution of connections can be positive for some 
degrees and negative for others. 

Proposition 5 compares behaviour across networks when there is an increase 
in the density of links in the sense of domination. However, there are many cases 
where we might be interested in comparing networks when there is not a clear cut 
domination relation. We now develop a result on the effect of arbitrary changes in 
the degree distribution. 

For simplicity, we focus on the case where degrees of neighbours are 
independent. Let P  and P  be two different sets of beliefs and suppose that F

~
and 

F 
~

are the corresponding induced cumulative distribution functions of the degree 
distributions, respectively. Let t and t  stand for the threshold types defining the 
(unique) threshold equilibria under P  and P , respectively. 
 
Proposition 6. Let (N, X, {vk}k , P) and (N, X, {vk}k , P ) be binary network games of 
substitutes with independent neighbour degrees. Let t and t  denote the unique equilibrium 
thresholds for these games. If F

~
(t ) ≤ F 

~
(t  − 1) then t ≥ t . Moreover, in these equilibria, 

the probability that any given neighbour chooses 1 in (N, X, {vk}k , P) is lower than in 
(N, X, {vk}k , P ). 

 
The key issue here is the change in the probability mass relative to the 

threshold. If the probability of degrees equal or below the threshold goes down 
then the probability of action 1 decreases and from strategic substitutes, the best 
response of threshold type t must still be 1. In other words, the threshold rises 
weakly. 

The contribution of Proposition 6 is that it allows us to examine the effect of 
any change of the degree distribution. A natural and important example of such 
changes is increasing the polarization of the degree distribution by shifting weights 
to the ends of the support of the degree distribution, as is done under a mean 
preserving spread (MPS) of the degree distribution. In particular, the above results 
can be directly applied to the case of strong MPS shifts in the degree distributions. 
Focusing on the unconditional beliefs (taken to coincide with the unconditional 
degree distributions because of independence), we say that P() is a strong MPS of 
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P () if they have the same mean and there exists L and H such that P(k) ≥ P (k) if 
k < L or k > H, and P(k) ≤ P (k) otherwise. Proposition 6 implies that, in the 
context of binary-action games, the equilibrium effects of any such change can be 
inferred from the relative values of the threshold t, L and H. 

 
5.2. Games with strategic complements 
This section studies the effects of changes in the network on equilibrium 
behaviour and payoffs in games with strategic complements. From Proposition 1 
we know that equilibria are increasing in degree in games with degree 
complementarities. As we shift weight to higher degree neighbours each player’s 
highest best response to the original equilibrium profile would be at least as high 
as the supremum of her original strategy’s support. We can now iterate this best 
response procedure. As the action set is compact, this process converges and it is 
easy to see that the limit is a (symmetric) non-decreasing equilibrium that 
dominates the original one. The following result summarizes this argument. 

We refer to a network game in which payoffs satisfy strict strategic 
complements and Property A and P exhibits positive neighbour affiliation as a 
network game of complements. 

 
Proposition 7. Let (N, X, {vk}k , P) and (N, X, {vk}k , P ) be network games of complements. 
If P dominates P , then for every non-decreasing equilibrium   of (N, X, {vk}k , P ), there 
exists a non-decreasing equilibrium  of (N, X, {vk}k , P) that dominates it. 

 
The proof is straightforward and omitted.20 Consider next the effect of a 

dominance shift in the social network on welfare. Recall that the expected welfare 
is assessed by the expected payoff of a randomly chosen player. Naturally, it must 
depend on whether the externalities are positive or negative. Suppose, for 
concreteness, that they are positive and let P dominate P . Then, from Proposition 
7, we know that for every non-decreasing equilibrium   under P  there exists a 
non-decreasing equilibrium  under P in which players’ actions are all at least as 
high. Hence, the expected payoff of each player is higher under P. However, as 
expected payoffs are non-decreasing in the degree of a player, to assess welfare it 
is also important to consider the relation between the corresponding 
unconditional degree distributions P() and P (). If, for example, P() FOSD P (), 
then, the above considerations imply that the ex-ante expected payoff of a 
randomly chosen player must rise when one moves from P  to P. We summarize 
this argument in the following result. For a non-decreasing strategy profile  

                                                           
20 Note that if (N, X, {vk}k, P) is a network game of complements, and P dominates P, it is not necessarily 

the case that P exhibits positive neighbour affiliation. In that case, we can still use similar arguments to 
construct a new symmetric equilibrium (under P) that dominates , although it need not be non-
decreasing. 
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under P, define WP() to be the expected payoff of a node picked at random 
(under P()). 
 
Proposition 8. Let (N, X, {vk}k , P) and (N, X, {vk}k , P ) be network games of complements, 
in which payoffs satisfy positive externalities. Suppose that P dominates P and P() FOSD 
P (). For any non-decreasing equilibrium   of (N, X, {vk}k , P ), there exists a non-
decreasing equilibrium  of (N, X, {vk}k , P ) such that WP() ≥ WP( ). 

 
The proof follows from the arguments above and is omitted. 
Propositions 7 and 8 pertain to dominance shifts in the conditional degree 

distributions. However, as in the case of games of substitutes, in binary games with 
independent degree distributions, we can identify the effects of arbitrary changes in 
the degree distribution. Indeed, in those games, an analogue of Proposition 4 can 
be readily established and symmetric equilibria take the form of threshold equilibria: 
 (1|ki) = 0 for ki < t,  (1|ki) = 1 for all ki > t and  (1| t)  (0, 1] for ki = t. Recalling 
that for any two distributions P and P , F

~
 and F 

~
denote their respective cumulitive 

distributions, we have: 
 
Proposition 9. Let (N, X, {vk}k , P ) and (N, X, {vk}k , P ) be binary network games of 
complements and independent neighbour degrees. Let t  be an equilibrium threshold of 
(N, X, {vk}k , P ). If )(

~
tF  ≤ )(

~
1 tF then there is an equilibrium of (N, X, {vk}, P ) with 

corresponding threshold type t ≤ t . Moreover, the probability that any given neighbour 
chooses 1 rises. 

 
The proof for this result follows along the lines of the proof of Proposition 6 

and is omitted. 
We conclude by observing that the strategic structure of payoffs has an 

important effect: recall from Subsection 5.1 that in the case of strategic 
substitutes, the probability that any neighbour chooses 1 falls when network 
connectivity grows. By contrast, in games of strategic complements the addition 
of links leads to an increase in the probability that a neighbour chooses action 1. 

 
6. Deeper Network Information 
 
So far we have focused on the case where players only know their own degree and 
best respond to the anticipated actions of their neighbours based on the 
(conditional) degree distributions. We now investigate the implication of 
increasing the information that players possess about their local networks. As a 
natural first step along these lines, we examine situations where a player knows 
not only how many neighbours she has but also how many neighbours each of her 
neighbours has (e.g. a researcher deciding on an operating system may know the 
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identities of her coauthors, and the number of coauthors that they each have, but 
nothing beyond that). The arguments we develop in this section extend in a 
natural way to general radii of local knowledge. Indeed, in the limit, as this radius 
of knowledge grows, we arrive at complete knowledge of the arrangement of 
degrees in the network.21 

Formally, the common type space T of every player i consists of elements of 
the form (k; 1, 2, ..., k) where k  {0, 1, 2, ..., n − 1} is the degree of the player 
and j is the degree of neighbour j (j = 1, 2, ..., k), where (in an anonymous setup 
where the identity of neighbours is ignored) we may assume without loss of 
generality that neighbours are indexed according to decreasing degree (i.e. 
j ≥ j + 1). Given the multi-dimensionality of types in this case, the question arises 
as to how one should define monotonicity. In particular, the issue is what should 
be the order relationship  on the type space underlying the requirement of 
monotonicity. For the case of strategic complements, it is natural to say that two 
different types, t = (k; 1, 2, ..., k) and t  = (k ; 1, 2, ..., k ), satisfy t  t  if and 
only if k ≥ k  and u ≥ u  for all u = 1, 2, ..., k . On the other hand, for the case of 
strategic substitutes, we write t  t  if and only if k ≥ k  and u ≤ u for all u = 1, 2, 
3, ..., k . Given any such (partial) order on T, we say that a strategy  is non-
decreasing if for all ti, ti  T, ti  ti   (ti) FOSD  (ti). The notion of a non-
increasing strategy is defined analogously. 

We first illustrate the impact of richer knowledge on the nature of equilibria. 
It is easier to see the effects of deeper network information in the simpler setting 
where the degrees of the neighbours are independent and so, for expositional 
simplicity, we assume independence of neighbours’ degrees in this section.22 Recall 
from Proposition 2 that under degree independence all symmetric equilibria are 
non-decreasing (non-increasing) in the case of strategic complements (substitutes) 
when agents are only informed of their own degree. The following example shows 
that greater network knowledge introduces non-monotone equilibrium even if the 
degrees of neighbouring nodes are stochastically independent. 

 
EXAMPLE 6 – Non-monotone equilibria with knowledge of neighbours’ degrees. Consider a 
setting where nodes have either degree 1 or degree 2, as given by the corresponding 
probabilities P(1) and P(2). Suppose that the game is binary action with X = {0, 1} 
and displays strategic complements. Specifically, suppose that the payoff of a 
player only depends on his own action xi and the sum x  of his neighbours’ actions 
as given by a function ),( xxv i  as follows: v(0, 0) = 0, v(0, 1) = ½, v(0, 2) = ¾, 
v(1, 0) = −1, v(1, 1) = 1, v(1, 2) = 3. 

                                                           
21  For results on this limit case, see the earlier version of this paper (Galeotti et al., 2006). See also Kets 

(2007) for more discussion about the structure of information and its effects. 
22  We note that the assumption of stochastic independence of the degrees of neighbouring nodes implies 

independence of degrees of neighbours. 
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It is readily seen that, for any P with support on degrees 1 and 2, the following 
strategy  defines a symmetric equilibrium: (1|1; 1) = 1; (1|1; 2) = 0; 
(1|2; 1, 2) = 0 for any 1, 2  {1, 2}. Here, two players that are only linked to 
each other both play 1, while all other players choose 0. 

Similar non-monotonic equilibrium examples can be constructed for games 
with strategic substitutes. These observations leave open the issue of whether 
there exist any suitably increasing or decreasing equilibria. The following result 
shows that a monotone equilibrium always exists if players have deeper network 
information. 

 
Proposition 10. Suppose that neighbours’ degrees are independent, players know their own 
degree and the degrees of their neighbours and payoffs satisfy Property A. Under strategic 
complements (strategic substitutes) there exists a symmetric equilibrium that is non-
decreasing (non-increasing). 

 
The proof of the proposition, which appears in the Appendix, extends naturally 

the ideas mentioned for the proof of Proposition 2, i.e., the best reply to a 
monotone strategy can be chosen monotone and the set of all monotone strategies 
is compact and convex. A direct implication of the result is that there is always an 
equilibrium that, on average across the types (k; 1, 2, ..., k) consistent with each 
degree k, prescribes an (average) action that is monotone in degree. Equipped with 
the above monotonicity result, it is also possible to recover most of the insights 
obtained earlier under the assumption that players only know their own degree. 

 
7. Concluding Remarks 
 
Empirical work suggests that the patterns of social interaction have an important 
influence on economic outcomes. These interaction effects have however been 
resistant to systematic theoretical study: even in the simplest examples games on 
networks have multiple equilibria that possess very different properties. The 
principal innovation of our paper is the introduction of the idea that players have 
incomplete network knowledge. In particular, we focus on an easily measurable 
aspect of networks, the number of personal connections/degree, and suppose 
that players know their own degree but have incomplete information concerning 
the degree of others in the network. This formulation allows us to develop a 
general framework for the study of games played on networks. On the one hand, 
it allows us to accommodate a large class of games with strategic complements 
and strategic substitutes. On the other hand, it allows us to capture features 
displayed by real world networks such as general patterns of correlations across 
the degrees of neighbours. 

The analysis of this framework yields a number of powerful and intuitively 
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appealing insights with regard to the effects of location within a network as well 
as with regard to changes in networks on equilibrium actions and payoffs. These 
results also clarify how the basic strategic features of the game– as manifest in the 
substitutes and complements property– combine with different patterns of degree 
correlations to shape behaviour and payoffs. 

In this paper, we have focused on the degree distribution in a network. The 
research on social networks has identified a number of other important aspects of 
networks, such as clustering, centrality and proximity, and in future work it would 
be interesting to bring them into the model. 

 
Appendix 

 
Proof of Proposition 2. We present the proof for the case of strategic complements. 
The proof for the case of strategic substitutes is analogous and omitted. Let { k*} 
be the strategy played in a symmetric equilibrium of the network game. If { k*} is a 
trivial strategy with all degrees choosing action 0 with probability 1, the claim 
follows directly. Therefore, from now on, we assume that the equilibrium strategy 
is non-trivial and that there is some k  and some x  > 0 such that x   supp( k*). 

Consider any k  {0, 1,... , n} and let xk = sup[supp( k*)]. If xk = 0, it trivially 
follows that xk  ≥ xk for all xk   supp( k*) with k  > k. So let us assume that xk > 0. 
Then, for any x < xk, Property A and the assumption of (strict) strategic 
complements imply that 

vk + 1(xk, xl1, …, xlk, xs) − vk + 1(x, xl1, …, xlk, xs) ≥ vk(xk, xl1, …, xlk ) − vk(x, xl1, …, xlk ) 

for any xs, with the inequality being strict if xs > 0. Then, averaging over all types, 
the fact that the degrees of any two neighbouring nodes are stochastically 
independent random variables together with the fact that there are some players 
with degree k who choose xk > 0 implies that 

U(xk, *, k + 1) − U(x,  *, k + 1) > U(xk,  *, k) − U(x, *, k). 

On the other hand, note that from the choice of xk, 

U(xk, *, k) − U(x,  *, k) ≥ 0  

for all x. Combining the aforementioned considerations we conclude: 

U(xk, *, k + 1) − U(x,  *, k + 1) > 0, 

for all x < xk. This in turn requires that if xk + 1  supp( *k + 1) then xk + 1 ≥ xk , which of 
course implies that  *k + 1 FOSD  *k . Iterating the argument as needed, the desired 
conclusion follows, i.e.,  k* FOSD  *k  whenever k  > k.      
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Proof of Proposition 3. We present the proof for positive externalities. The proof for 
negative externalities is analogous and omitted. The claim is obviously true for a 
trivial equilibrium in which all players choose the action 0 with probability 1. So, 
let  * be a (non-trivial) equilibrium strategy. Suppose xk  supp( *k ) and xk + 1  

supp( *k + 1). Property A implies that 

vk + 1(xk, xl1, …, xlk, 0) = vk(xk, xl1, …, xlk ), 

for all xl1, …, xlk. As the payoff structure satisfies positive externalities, it follows 
that for any x > 0, 

vk + 1(xk, xl1, …, xlk, x) ≥ vk(xk, xl1, …, xlk ). 

We now have to consider two cases. First, assume positive neighbour 
affiliation and let  * be a monotone increasing equilibrium. Then, looking at 
expected utilities, we obtain that: 

U(xk, *, k + 1) ≥ U(xk,  *, k). 

As  *k + 1 is a best response in the network game being played and xk + 1  

supp( *k + 1), 

U(xk + 1, *, k + 1) ≥ U(xk,  *, k + 1) 

and the result follows. Second, observe that the case of negative neighbour 
affiliation and monotone decreasing equilibrium strategy can be proven using 
analogous arguments.      

 
Proof of Proposition 4. We know from Subsection 3.3 that network games of 
substitutes exhibit the degree substitutes property. Proposition 1 then tells us that 
there exists a symmetric equilibrium which is non-increasing in degree. Fix the 
strategy  in one such equilibrium. Suppose that for degree k > 0 there is positive 
probability (1|k) of choosing action 1. We prove that (1|l ) = 1, for all l < k. 
Consider first degrees l = k − 1 < k. Then, letting the same notation vk(, ) stand for 
the usual mixed extension of the original payoff function, the marginal return to 
action 1 can be written as follows: 

U(1, , l ) − U(0,, l ) 
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]))(),...,(,())(),...,(,()[|,...,(
),...,(

 
kkk

kkkk kkvkkvkkkkP
1

111 01   

 = U(1, , k) − U(0, , k) ≥ 0, 

where the second equality holds by Property A, the subsequent (weak) inequality 
holds because  (k − 1) FOSD  (k), P exhibits negative neighbour affiliation and 
strict strategic substitutes holds, and the second (strict) inequality holds due to 
strict strategic substitutes and  (1|k) > 0. Finally, the last inequality simply reflects 
the hypothesis that  constitutes an equilibrium. This argument can be repeated to 
establish that  (1|l ) = 1, for all l < k. Analogous arguments, with a simple switching 
of inequality signs, shows that if  (0|k) > 0 then  (0|k ) = 1, for all k  > k. 

The above argument establishes that every non-increasing symmetric 
equilibrium strategy  is defined by a threshold t . To complete the proof, we next 
show that this threshold is unique. Thus, for the sake of contradiction, suppose 
that there are two distinct thresholds, t and t  with t  < t , which induce strategies 
 and   respectively. If the equilibrium   is played, a player with degree t  + 1 
(higher than the corresponding threshold t ) strictly prefers action 0, i.e. 

U(1,  , t  + 1) − U(0,  , t + 1) < 0, (A1) 

while if equilibrium  is played, a player with degree t  + 1 (no higher than the 
corresponding threshold t ) weakly prefers action 1, i.e. 

U(1, , t  + 1) − U(0, , t + 1) ≥ 0. (A2) 

We can then write: 

0 ≤ U(1, , t  + 1) − U(0, , t + 1) 
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 = U(1,  , t  + 1) − U(0,  , t + 1) < 0 

where the first and third inequalities are simply (A1) and (A2), while the middle 
inequality is a consequence of strategic substitutes and the hypothesis that 
 (1|k) ≥  (1|k), for all k  {0, 1, ..., n − 1}. This yields the contradiction that 
completes the proof.      
 
Proof of Proposition 5. Under the maintained hypotheses there exists a unique non-
increasing symmetric equilibrium with a threshold property under both degree 
distributions. Suppose that this equilibrium   has threshold t  under P . The 
assumptions that P  dominates P  for all k and that players choose a non-
increasing strategy imply that the equilibrium threshold under P  cannot be lower 
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than t . To see this, suppose that in the non-increasing equilibrium under P , , 
the threshold t < t . We now show that this yields a contradiction. In equilibrium 
  under P , for the threshold degree t  the expected payoffs from action 1 are 
higher than the expected payoffs from action 0. Thus, again identifying each vk(, ) 
with the mixed extension of the corresponding payoff function, we can write: 

0 ≤ U(1,  , t ) − U(0,  , t ) 
]))(),...,(,())(),...,(,()[|,...,(

),...,(




 
tkk
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111 01    

 = U(1, , t ) − U(0, , t ), 

where the second inequality follows from the hypotheses that P  dominates P ,   
is non-increasing and vt (, ) satisfies the strategic substitutes property, while the 
third inequality follows from the hypothesis that t < t  and vt (, ) satisfies the 
strict strategic substitutes property. This however implies that for degree t  action 
1 yields strictly higher expected payoffs than action 0 under equilibrium , a 
contradiction with t < t .      

 
Proof of Proposition 6. Suppose that )(

~
tF  ≤ )(

~
1 tF  but, contrary to what is 

claimed, t < t . Then, under P , the probability that any of the neighbours chooses 
action 1 is bounded above by )(

~
tF   and, therefore, by ).(

~
1 tF  Given the 

hypothesis that t  is the threshold under P , the assumption of strategic 
substitutes now generates a contradiction with the optimality of actions of degree 
t  in an equilibrium under P , and this completes the proof.      
 
Proof of Proposition 10. Let us consider first the case of strategic complements and 
denote by m the set of monotone strategies. The proof is based on the following 
two claims: 
 
Claim 1. For any player i, if all other players j  i use a common strategy   m there 
is always a strategy i  m that is a best response to it. 

Claim 2. A symmetric equilibrium exists in the strategic form game where players’ 
strategies are taken from m. 

 
To establish Claim 1, consider a player i and let ti, ti  T such that ti  t , 

where  is the partial order applicable to the case of strategic complements (see 
Section 6). For any  m chosen by every j  i, let BR(, ti) be the set of best-
response strategies of player i to  when his type is ti. Let us assume that  (tj)  0 
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for some tj  T. (Otherwise, the desired conclusion follows even more directly, 
since the best-response correspondence is unaffected by being connected to a 
player whose strategy chooses action 0 uniformly.) By definition, for every xti  
BR(, ti ), we must have that 

x  X,     U(xti, , ti) − U(x, , ti) ≥ 0.  

Then, since ti  ti , the assumption of (strict) strategic complements implies that 

x  xti,     U(xti, , ti) − U(x, , ti) > 0.  (A3) 

This follows from a two-fold observation: 
 
(i) From Property A, if ti = (k, 1, 2, ..., k) and ti = (k , 1, 2, ..., k ) and ti  ti 

we can think of ti involving k  neighbours with all neighbours indexed from 
k + 1 to k  (if any) choosing the action 0; 

(ii) From strict strategic complements, since u ≥ u the probability distribution 
over actions corresponding to each of his neighbours under ti, u = 1, 2, ..., k, 
is dominated in the FOSD sense by the corresponding neighbour under ti. 
This follows from the fact the beliefs applying separately to each of the u 
and u second-neighbours under consideration in each case are identical and 
stochastically independent. 

 
Let us now make use of (A3) in the case where xti is the highest best response 

by type ti to . Then, it follows that any xti  BR(, ti) must satisfy: 

xti ≥ sup{ xti : xti  BR(, ti)}, 

which establishes Claim 1. 
To prove Claim 2, we can simply invoke that, for any given x  Xk , the 

function vk(, x) in own action either has a discrete domain or is concave, 
combined with the fact that the set of monotone strategies is compact and 
convex. To see the latter point, note that the monotonicity of a strategy  is 
characterized by the condition: 

ti, ti  T,     ti  ti   (ti) FOSD  (ti). (A4) 

Clearly, if two different strategies  and   satisfy (A4), then any convex 
combination ̂  =  + (1 − )  also satisfies it. 

Finally, to prove the result for the case of strategic substitutes, note that the 
above line of arguments can be applied unchanged, with the suitable 
adaptation of the partial order used to define monotonicity. In this second case, 
as explained in Section 6, we say that t  t  if and only if k ≥ k  and u ≤ u for all 
u = 1, 2, ..., k .      
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It is common to define a network organization as one that is fast and flexible in adapting 
to changes in the underlying environment. But besides the short-run advantages of 
adaptability, fast changes in the structure of the organization can also be detrimental in 
the longer run. This is due to the fact that agents need some stability in the 
organizational structure in order to channel appropriately (and thus speed up) search. 
I discuss that trade-off between adaptability and structural stability in a context where 
not only the environment is continuously changing over time but the organization is 
also adjusting to those changes. The main conclusion obtained is that, as the 
environmental volatility increases, the optimal functioning mode of the organization 
sharply switches from being totally flexible to being completely rigid, i.e. no 
intermediate configurations are essentially ever optimal. This has stark positive and 
normative implications on the dichotomy of stability versus change that is at the center 
of recent organization literature. 

 
 
 
1. Introduction 

 
A ‘network organization’ is usually conceived as an organization that is quick and 
flexible in adapting to changes in its environment. But changes in the structure of 
the organization can also be detrimental in the medium run, since it is partly the 
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knowledge of the organization’s structure that mediates (and thus speeds up) 
search. Here I discuss the tension between these two considerations. That is, I 
study the trade-off between adaptability and structural stability in a (network) 
organization that confronts a changing environment. 

The model proposed to study this trade-off is particularly simple and stylized. 
The organization consists of an underlying backbone structure (a one-dimensional 
lattice network) that remains fixed, combined with a limited number of links that 
can be ‘rewired’ over time (for simplicity, just one per agent). In the background, 
there is an environment that changes over time – a phenomenon that we call 
volatility. More specifically, it is assumed that every node/agent has a target node 
it has to reach, whose identity independently changes at a rate p. The dilemma 
faced by a node whose target has been reassigned is the following: should I redraw 
my flexible link to the new target? If this is done, direct access to that node (possibly 
the target as well in the immediate future) is secured. But, on the other hand, 
under the assumption that freshly rewired links take some time to become widely 
available to the organization at large, such an adaptation also imposes a negative 
externality on others. Namely, it removes from the immediate operational structure 
of the organization some links that can be particularly valuable for overall search. 

So, in a nutshell, the problem we pose can be formulated as follows. What is 
the optimal speed at which the organization should adapt to the changing 
environment? To cast the question sharply, the adaptability of the organization is 
supposed embodied by a single parameter q, the probability with which a node 
will redraw its flexible link to a new target. In this setup, the answer delivered by 
the paper is a drastic one: depending on whether the value of p (volatility) is high 
or low, the optimal q (adaptability) should essentially be, respectively, either zero 
or one. Thus, in this sense, one finds that an optimal organization is typically 
either totally rigid or totally flexible, and essentially never in between. As we shall 
explain, this has an interesting bearing on the dichotomy of stability versus change 
that has been highlighted by recent organization literature. 

The rest of the paper is organized as follows. Next, Section 2 provides a brief 
discussion of related literature. Then, Section 3 presents the model. The analysis is 
undertaken in Section 4, while Section 5 concludes. 

 
2. Related Literature 

 
There are three distinct branches of literature quite related to our present 
concerns: (a) the economic theory of organizations, (b) models of search in 
complex networks, (c) the transactive-memory theory of organizations. I briefly 
discuss each of them in turn.  

(a) The economic theory of organizations has produced a large body of 
research whose focus has been both on incentive issues and/or the way in which 
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organizations can effectively handle decentralized information. In the latter vein, 
the work of Radner (1993) was a seminal contribution that (abstracting from 
incentive considerations) first modelled explicitly the organization as a network of 
informal flows. Other subsequent researchers have followed his lead (see e.g. 
Bolton and Dewatripoint (1994), van Zandt (1999), and Garicano (2000)), all 
aiming at characterizing the optimal network structure that, under varying 
conditions and in different senses, best pools the information disseminated 
throughout the organization. Even more in line with our approach, a recent 
interesting paper that stresses the issue of organization adaptability in the face on 
environmental change is Dessein and Santos (2006). Their focus, however, is on the 
tradeoff between coordination and specialization when individuals have only local 
information on the environment and their communication is impaired by noise.  

(b) In recent years, and partly motivated by the rise to prominence of 
internet, there has been a surge of interest on the problem of how to conduct 
effective search in large and complex social networks. Building upon the early 
experimental work of Milgram (1967) on ‘small worlds’ and the subsequent 
theoretical developments of Watts and Strogatz (1998), a key issue in this respect 
is that of searchability. More specifically, the question is how to find short paths 
joining the nodes of large networks that (as indeed happens in the real world) 
involve a significant random component. Kleinberg (2000) provided key insights 
on the problem, formulating it as one of an algorithmic nature. The path opened 
by this seminal contribution has then been pursued by several authors – see e.g. 
Guimerà et al. (2002) or Dodds et al. (2003) – to address issues of organization 
design. Specifically, they pose the problem of how to design the social network 
underlying the operation of large organizations so as to optimize their search-
related performance. In contrast with our approach, however, the underlying 
network is taken as fixed once and for all, so that the notion of adaptability does 
not pertain to the organizational structure governing informational flows.  

(c) Finally, I discuss the so-called transactive-memory theory of 
organizations. This theory originates in the work of Wegner (1986). He stressed 
the importance of the process by which, as new information arrives to an 
organization, it is first allocated to individuals, then registered in the 
‘organizational directory’, and later retrieved in the most efficient manner. This 
three-fold mechanism is what has been called the organization’s transactive 
memory system. A large body of theoretical and empirical literature has followed 
suit (see e.g. Moreland and Argote (2003) for a survey). In much of it, researchers 
have emphasized the importance of informal (and thus flexible) links in the 
successful implementation of an organization’s transactive memory. 

A good case in point is provided by the empirical work of Hansen (2003).1 He 

                                                           
1 See also Hansen (1999) and Schulz (2003). 
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studied 120 product development projects in a large electronics company, where 
each project was separately undertaken by one of the 41 business units of the firm. 
Hansen started by constructing a knowledge network, on the basis of the informal 
contacts identified among the members of the different units. Then, much in line 
with the key assumptions of our model, he found that the overall performance of 
each unit (specifically, the fraction of projects completed and the speed of their 
completion) was highly dependent on the existence of short network paths to other 
units possessing relevant knowledge. Indirect connections, in other words, were 
crucial for good results, but their value was found to decay significantly with 
distance.2 This, indeed, is consistent with the central measure of performance 
contemplated in our model, which in turn underlies the problem of network 
design addressed by our theoretical analysis. 

 
3. The Model 

 
Consider a large set of nodes N = {1, 2, ..., n} arranged along an organizational 
backbone, which is assumed to be one-dimensional and without boundaries, i.e. 
a ring.3 Each node i is connected to both of its direct neighbors in the backbone, 
i – 1 and i + 1 (where the index here is interpreted as ‘modulo n’). These links are 
conceived as formal and rigid ones, possibly reflecting the formal chart of the 
organization. In addition to such formal links, every i is also connected to some 
 (i) through an informal link, which may well be ‘long-range’ (i.e. far away from i 
on the underlying backbone). Such long-range links are flexible so they can be 
adjusted over time, as determined by the plasticity/adaptability of the 
organization (see below for the dynamic formulation). For the moment, we may 
simply assume that each  (i) has been randomly selected from N \{i} with uniform 
probability. The resulting (undirected) network – consisting of the backbone plus 
the long-range links – will be denoted by . 

Let us further postulate that each node i  N has a target  (i)  N \{i}, whom 
i has to reach in order to address a specific demand or tackle a particular 
problem. Again, let us momentarily assume that  (i) has been randomly selected 
from N \{i} with uniform probability. Then, given the prevailing network  and the 
array of targets n

ii 1 )]([ the performance of the organization is tailored to the 

                                                           
2  These considerations were most decisive for the transfer of knowledge that could be largely codified. 

Instead, for hardly codifiable knowledge, direct and close contact between the source and the target played 
a primary role. 

3  Conceivably, one could consider other network architectures – e.g. hierarchic or tree-like – to model the 
backbone of the organization. This, however, would complicate the formal analysis of the setup, which in 
our case heavily relies on the theory that has been developed for the so-called small-world networks, i.e. 
networks defined on a lattice (in terms of the corresponding distance), to which a few lattice-independent 
links are added to establish some extent of ‘global connectivity’. It seems intuitive, however, that none of 
the essential features and insights of the model depend on the details posited for the fixed backbone of the 
organization. 
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average path length (along the network) between every node and its target. More 
specifically, its aim will be to have this magnitude be as low as possible, so that 
the objective function that the organization will aim to maximize is given by 

 = – 〈d(i, (i)) |  i  N. 

This is motivated by the idea that the network distance separating an agent 
from a valuable partner (e.g. one that helps undertake current tasks) should have 
an important bearing on the speed and success of job completion. As explained 
above – recall the Introduction – this idea is not only intuitive but also enjoys some 
significant empirical support. 

But, as advanced, the focus of the paper is on the tension between adaptability 
and structure in a dynamic context where the environment changes over time. So let us 
introduce time into the model, indexing it by t = 0, 1, 2, ... and dating the 
prevailing states t  [t(i),t ] accordingly. Suppose that the initial state 
0  [0(i), 0] is constructed randomly, as explained above – i.e. both the target 
and the long-range neighbor of each node are selected in a stochastically 
independent and uniform manner among all the other nodes. Then, as time 
proceeds, the law of motion that governs the change from t – 1 to t for every 
t ≥ 1 consists of two separate components: target revision and update of the long-
range neighbor. For simplicity, we assume that each of these components is 
implemented sequentially in the following two consecutive stages: 

 
1. Target revision: Independently (i.e. ‘simultaneously’) for each node i, its 

previous target t – 1(i) is redrawn afresh with probability p  [0,1]. (Thus, with 
probability (1 – p), we have t(i) = t – 1(i).) When a new target for i is redrawn, 
each j  N \{i} is selected as the new target with uniform probability. (So, in 
principle, any given node can act as the target for several other nodes.) 

2. Neighbor update: Independently for each node i, its previous long-range link to 
agent t – 1(i) is rewired with probability q to the current target t(i). (Thus, 
with probability no lower than q at every t, the long-range link of i connects 
to its current target, i.e. t(i) = t(i).) 
 
The first component of the law of motion, target revision, embodies the idea of 

volatility: over time, the environment evolves and the needs/tasks/objectives of 
individual nodes are affected by it. The parameter p  [0,1] modulates the rate at 
which the environment changes, thus leading to pressure for some adjustment to 
take place. 

On the other hand, the second component, neighbor update, specifies how and 
when, in response to the aforementioned adjustment pressure, actual changes in 
the network structure unfold as agents change their long-range neighbors. The 
parameter q  [0,1] is a measure of organizational plasticity. It can be conceived 
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as an attribute of organizations – say, a part their ‘culture’ – and will generally 
differ across them.4 Sometimes, it may also be regarded as an outcome of design, 
at least partially. This, for example, is what is implicitly suggested when managers 
or consultants speak of reshaping the culture of a firm in order to improve its 
performance.  

Finally, we turn to the issue of how to measure performance in the dynamic 
setup. As explained and motivated above, organizational performance is 
associated to the average distance between nodes and their targets. But, in the 
present dynamic context, we want to add a key twist to it. Specifically, we posit 
that, in computing node-target distances, only the links in t – 1  t can be used. 
That is, only the informal links that have remained in place for at least one period 
are assumed to form part of the operational communication structure of the 
organization. (At the beginning of the process, we posit that 0 = –1, so that all 
initial links form part of the organizational structure.) 

Several (complementary) justifications can be given to this assumption. One 
is that some ‘socialization’ time (here, just one period) is required for a fresh link 
to be formed and become effective. An alternative motivation is that it also takes 
time for a new link between two individuals to be known (and thus become 
usable) by the rest of the organization in accessing their targets. Formally, the 
implication of this assumption is that organizational performance t at each t is 
to be measured as follows: 

t = – 〈d(i, t(i)) | t – 1  t i  N , (1) 

where the conditioning included in the average 〈 indicates that, in computing the 
distances d(), only links in t – 1  t can be used. 

Clearly, it is the delay in the effectiveness of new links contemplated in (1) that 
introduces the trade-off between adaptability and structure that is at the heart of 
our model. If no such delay prevailed, instantaneous adaptability to any change in 
the environment (i.e. a value of q = 1) would obviously maximize organizational 
performance. Instead, when some time must elapse between the establishment of 
a new link and its effective use by the organization, an interesting tension arises. On 
the one hand, there is the immediate benefit to the individual adjusting node from 
having a link (and hence direct access) to its new target. And on the other hand, 
after any such adjustment by an individual node has taken place, the organization 
as a whole must face the cost imposed on other nodes by the temporary reduction 
of their communication structure.5 In general, as a result of these conflicting 
                                                           
4  This is stressed in the influential work of Schein (2002, 2004), who conceives culture as the background 

for change in any organization. In fact, somewhat in line with the role of q in our model, he suggests that 
the ‘shared assumptions and beliefs about the stability of human relationships’ is a key cultural dimension 
that differentiates organizations. 

5  The same tradeoff and qualitative implications would arise if, rather than one period, the (finite) delay 
involved in a new link becoming part of the communication structure of the organization were longer. 
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considerations, it may be optimal for the organization to limit its adaptability to 
the recurrent changes in the environment (i.e. display a value of q < 1). 

 
4. Analysis 

 
In a nutshell, our main objective will be to shed light on the interplay between the 
plasticity of the organization (as given by q) and the volatility of its environment (as 
captured by p). To fix ideas, a useful way to grasp this relationship is to consider an 
optimal-design problem in which p is the exogenous parameter and q is the 
decision/design variable. Naturally, this problem must be formulated in a long 
intertemporal framework, where volatility and adjustment have a full chance to 
unfold. Thus, let us take a truly long-run perspective and identify the overall 
performance of the organization with 

.lim 



T

t
tT T 1

1   

Since the underlying stochastic process is ergodic,  is independent of initial 
conditions and can be conceived as a function of p and q alone. Let us write 
 (p, q) to reflect such dependence. Then, our theoretical concerns are addressed 
by the following optimization problem: given any p  [0,1], find q*(p) such that 

).,(maxarg)(*
],[

qppq
q


10

  (2) 

In essence, this optimization problem reflects a trade-off between two opposing 
objectives: 

 
1. adaptability – swiftness in responding to a mismatch between links and targets; 
2. structure – preservation of the network connectivity (specifically, the long-range 

links) required to conduct search effectively. 
 
To gain an analytical understanding of the essential implications resulting 

from this trade-off, we study the problem through an idealization of our 
framework in which the dynamics of the system is identified with its expected 
motion. As customary, we call such an idealization the Mean-Field Model (MFM). 
Given the stochastic independence displayed by the forces impinging on each 
node (both concerning volatility and link rewiring), it is natural to conjecture that 
the MFM should capture the essential behavior displayed by large finite systems. 
Indeed, this will be confirmed by numerical simulations, whose performance are 
found to match with great accuracy the theoretical predictions. 

The MFM is defined by a dynamical system formulated on a population-wide 
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(anonymous) description of the evolving situation. A sufficient specification (or 
state) of this system is given by the fraction of nodes that are currently on target – 
i.e. are connected to their respective target through their long-range links. Let (t) 
stand for the fraction of such nodes prevailing at some t. Then, its expected law of 
motion is given by the following simple difference equation: 

(t + 1) = (1 – p)(t) + q[(t)p + (1 – (t))]. 

It is straightforward to see that the system globally converges to a unique 
positive fraction of nodes on target given by 

.
)(

* 1
1





pqp

q  (3) 

This implies that, in the long run, the MFM predicts that the total number of 
long-range links that are fully operational (i.e. have been in place for at least one 
period) is given by: 
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Our next step is to compute the long-run average distance between a node 
and its target, when a direct link does not already exist between them. To this end, 
we note that the ‘operational network’ prevailing at t (i.e. t – 1  t) can be 
conceived as a small-world network of the sort studied by Newman et al. (2000), 
itself a variation of the original setup proposed by Watts and Strogatz (1998). 
Very succinctly, such a network is constructed as follows: 

 
(a) One starts with a large set of nodes, arranged linearly along a ring. Each of 

them is taken to be connected to the two nodes adjacent to it along the 
ring.6 

(b) Then, independently across every node, each of them is given an additional 
‘short-cut’ with some (small) probability . This short-cut is a link that connects 
the node in question to some randomly selected node in the whole set. 
 
Formally, the number of short-cuts in the small-world network can be 

identified with the number  of operational long-range links in our setup. This 
then allows one to rely directly on the expression derived by Newman et al. (2000) 
to approximate the average network distance in their small-world setup. In terms 

                                                           
6  In the general original formulation, the nodes can be directly connected to all those that lie within a 

certain number of steps away in the ring. This generalization is irrelevant for our purposes. 
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of our present notation, they found it to be proportional to a function F() given 
by 

.tanh)( 









 







22

2
2

1

2
F  

The function above, of course, only applies to the nodes that are not on 
target. Since the fraction of these in the long run is [1 – (1 – p)* ], the objective 
function   to be maximized in our case is7 

 (p, q) = – [1– (1 – p) *(p, q)]F(*(p, q)). (5) 

where  *(p, q) and *(p, q) stand for the long-run values for   and  respectively 
given by (3) and (4), the notation highlighting that they both depend on the 
parameters of the model, p and q. 

Combining the previous considerations, the optimization problem faced by the 
organization can be formulated as follows. Given any p  [0,1] (the environmental 
volatility), find the value q*(p) (optimal plasticity) that solves 

),(max
],[

qp
q


10

. (6) 

Once the full dependence on p and q is taken into account, the function 
 (p, q) becomes rather involved, which makes it hard to characterize analytically 
the solution of the above optimization problem. I choose, therefore, to rely on 
numerical methods (as implemented e.g. by standard software packages) to 
identify the optimal plasticity q* that solves (6), as a function of the volatility rate 
p. Figure 1 describes the induced mapping q*(p) for different values of population 
size and show that it is qualitatively the same across a wide range in orders of 
magnitude. 

The results depicted in Figures 1(a-c) provide a stark picture of the way in 
which the tension between structure and adaptability is resolved in a network 
organization that is suitably described by our model. It shows that, except for a 
very narrow transition range, the optimal level of organizational plasticity is either 
full (i.e. q*(p) = 1) or completely absent (i.e. q*(p) = 0). Thus, if we focus on the 
rate at which the organization effectively changes its network structure, the 
conclusions can be described as follows. For low levels of volatility, the rate of 
change matches that of the environment since the plasticity of the organization is 
maximal. Thus, as the environment gets more volatile, the organization undergoes  

                                                           
7 In line with the model proposed by Newman et al. (2000), we gain some notational simplicity by 

normalizing the distance between direct neighbors in the network to zero. This implies that nodes that are 
directly connected to their targets can be ignored in the performance measure as they lead to no cost or 
delay in tackling the corresponding problems. 
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Figure 1. Optimal plasticity q*(p) as a function of volatility p for various population sizes, 
n = 102, 106, 1010. The function is shown both for the whole domain p  [0,1] as well as for 
a scaled version that is ‘zoomed in’ on the region where the transition from high to low optimal 
values takes place. 
 
a fully parallel (linear) increase in network adjustment. This state of affairs, 
however, ends abruptly at levels of volatility well below complete target turnover. 
For, at a value of p sizably below 1, the optimal plasticity of the organization falls 
steeply to zero. There is, therefore, a wide range for p in which the best 
performance is achieved by freezing the network of the organization at its original 
random configuration. 
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The analytical solutions derived from the MFM closely match the behavior 
observed in numerical simulations of the model, even if the population is relatively 
small. By way of illustration, Figure 2 shows simulation results for n = 100, which 
can be compared with the theoretical prediction depicted in Figure 1(a) for the 
same population size. In both cases we observe that, within a relatively narrow 
interval for p that lies above ½, there is a sharp transition across extreme degrees 
of organizational plasticity (i.e. probabilities q  {0,1}). In the simulations the 
transition is fully completed along the interval [0.55,0.62], while the theory 
displays a narrower transition range contained in [0.54,0.57]. 

Our conclusions shed light on points made, in diverse forms, by the recent 
organization literature. For example, Schein (2002, 2004) argues that stability and 
change are ‘two sides of the same coin’, and that both are part of any successful 
adaptation to an environment in perpetual flux. Moreland and Argote (2003), on 
the other hand, elaborate on this idea by emphasizing that too much flexibility 
may deteriorate the so-called ‘intellectual capital’ of the organization (i.e. the 
knowledge available to an organization through its workers). This capital is  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The upper surface depicts the average performance   T

t tT
1

1  )/( over 
T = 20000 rounds in a context consisting of n = 100 agents where each t is computed as in 
(1). The lower line on the p – q plane represents the optimal plasticity q for which  is 
maximized at each of the volatility rates p considered (a grid with step value  = 0.025). The 
transition from a situation with full plasticity (q = 1) to another with none at all (q = 0) occurs 
as volatility (the probability p) grows from p = 0.550 to p = 0.625. As explained in the text, 
this interval is similar to that predicted by the theory (cf. Figure 1a) but somewhat wider. 
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accessed by the organization’s transactive-memory system – recall Section 2 – 
whose operation is crucially facilitated by ‘a shared awareness among workers of 
who knows what (...)’. 

The model may be regarded as having both descriptive and normative 
implications. On the descriptive side, one of its predictions is that, to the extent 
that organizations can be taken to operate efficiently, the most rigid ones should 
be those operating in the most volatile environments. This, however, raises 
normative issues as well, bearing on the likely conflict between individual 
incentives to adjust and the possibly detrimental effects of such an adjustment on 
the overall performance of the organization. 

Our present approach does not take individual payoffs into account, and thus 
precludes a rigorous study of such normative questions. Any extended model that 
would do so, however, should probably posit that individual incentives to adjust 
long-range links are directly related to the current distance between node and 
target. Then, if one were to abstract from any adjustment costs, maximum plasticity 
would always be optimal from a purely individual perspective. But, as our analysis 
underscores, this may be suboptimal for the organization as a whole if the volatility 
of the environment is relatively high. In essence, the problem at stake is a classical 
one of externalities – in this case, externalities of individual adjustment on the search 
effort by others. And, as usual, what the problem may then require is a suitable 
kind of intervention that, by impinging on individuals ability or/and payoffs to 
adjust, leads to a socially optimal outcome. To formulate and analyze this 
‘implementation problem’ in any detail is outside the scope of the present paper. 

 
5. Summary and Future Research 

 
The paper studies a model of a network organization that lives in a volatile 
environment and must therefore face the trade-off between the adaptability to 
changing circumstances and the preservation of an operational network structure. 
Our analysis yielded rather clear-cut conclusions. Specifically, we found that the 
positive effects of adaptability fully dominate for low levels of volatility but are 
sharply and completely offset beyond some intermediate threshold. This raises 
positive and normative issues on the ‘dynamic design’ of organizations, which are 
left for subsequent research.  

Additional issues to be explored in the future concern the sensitivity of these 
conclusions to some of the simplifying features of the approach. Since the 
theoretical framework is so stylized, many extensions could be explored. By way of 
illustration, consider the assumption that the rewiring of a long range link occurs 
with the same probability, independently of the distance to the target that is closed 
by the adjustment. In the same spirit of the model, it would be natural to postulate 
instead that rewiring occurs (say, again with some probability q) only if that 
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distance exceeds a certain threshold. Obviously, a suitable choice for this 
threshold could just improve the overall performance of the organization. But a 
trade-off akin to that of the original model would still arise and, therefore, it 
would be interesting to know whether similar conclusions continue to hold, at 
least qualitatively. 

In my view, however, one of the most interesting variations of the model to 
be considered would affect the postulated backbone of the organization. The 
present model has assumed that this backbone is a regular boundariless lattice 
(i.e. a ‘ring’). Often, however, the formal and stable network of an organization is 
best conceived as displaying a less symmetric form. A natural alternative is given 
by a hierarchical tree structure, where each individual – except for the single apex – 
is connected to one ‘supervisor’. Such a hierarchy is descriptive of many of the 
real-world structures observed in organizations, and probably this is partly due to 
the advantages it allows in the routing and processing of information (cf. Radner, 
2003). Recently, however, it has been argued (see e.g. Dodds et al., 2003) that 
the addition of long-range links connecting distant parts of an underlying 
hierarchic structure can greatly improve its overall performance. Indeed, this is 
supported by a large body of empirical research which finds that ‘(...) much of the 
real work in any company gets done through an informal organization, with 
complex networks of relationships that cross functions and divisions’. (Cf. 
Krackhardt and Hanson ,1993) 

The models that have been proposed in the theoretical literature to 
understand the aforementioned considerations, however, have been mostly static. 
They conceive the organization network as fixed, even if it consists of a complex 
blend of hierarchic and transversal links. To enrich that approach with a genuinely 
dynamic model of the organization appears to be an interesting development, 
which could be carried out along the lines suggested in this paper. 
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A set of networks G is pairwise farsightedly stable (i) if all possible farsighted pairwise 
deviations from any network g  G to a network outside G are deterred by the threat of 
ending worse off or equally well off, (ii) if there exists a farsighted improving path from 
any network outside the set leading to some network in the set, and (iii) if there is no 
proper subset of G satisfying conditions (i) and (ii). A non-empty pairwise farsightedly 
stable set always exists. We provide a full characterization of unique pairwise 
farsightedly stable sets of networks. Contrary to other pairwise concepts, pairwise 
farsighted stability yields a Pareto dominant network, if it exists, as the unique 
outcome. Finally, we study the relationship between pairwise farsighted stability and 
other concepts such as the largest pairwise consistent set and the von Neumann-
Morgenstern pairwise farsightedly stable set.  

 
 
 
1. Introduction 

 
The organization of individual agents into networks and groups or coalitions plays 
an important role in the determination of the outcome of many social and 
economic interactions. For instance, networks of personal contacts are important 
in obtaining information on goods and services, like product information or 
information about job opportunities. Many commodities are traded through 
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networks of buyers and sellers. The partitioning of societies into groups is also 
important in many contexts, such as the provision of public goods and the 
formation of alliances, cartels, and federations.  

A simple way to analyze the networks that one might expect to emerge in the 
long run is to examine the requirement that individuals do not benefit from 
altering the structure of the network. An example of such a condition is the 
pairwise stability notion defined by Jackson and Wolinsky (1996).1 Their 
approach is static and myopic. Individuals are not forward-looking in the sense 
that they do not forecast how others might react to their actions. For instance, 
individuals might not add a link that appears valuable to them given the current 
network, as that might in turn lead to the formation of other links and ultimately 
lower the payoffs of the original individuals.  

A dynamic (but still myopic) network formation process has been recently 
studied by Jackson and Watts (2002), who have proposed a dynamic process in 
which individuals form and sever links based on the improvement that the 
resulting network offers them relative to the current network. This deterministic 
dynamic process may end at a pairwise stable network or may cycle.  

In this paper we address the question which networks one might expect to 
emerge in the long run when players are farsighted. Since most of the literature 
considers the case where at most one link is changed at a time, we will also restrict 
our analysis to network formation processes with this characteristic. This enables 
us to make the best comparison of our results to those found in the literature. It is 
straightforward to adapt our concept to more general network formation 
processes.  

We first extend the Jackson and Wolinsky pairwise stability notion to a new 
set-valued solution concept, called the pairwise myopically stable set. A set of 
networks G is pairwise myopically stable (i) if all possible myopic pairwise 
deviations from any network g  G to a network outside the set are deterred by 
the threat of ending worse off or equally well off, (ii) if there exists a myopic 
improving path from any network outside the set leading to some network in the set, 
and (iii) if there is no proper subset of G satisfying conditions (i) and (ii). We 
show that there is a unique pairwise myopically stable set and that it is equal to 
the collection of closed cycles. It follows that the pairwise myopically stable set is 
non-empty and contains all pairwise stable networks.  

We then introduce the pairwise farsightedly stable set, to predict which 
networks may be formed among farsighted players. The definition corresponds to 
the one of a pairwise myopically stable set with myopic deviations and myopic 

                                                           
1  There are alternative ways to model network stability. One is to explicitly model a game by which links 

form and then to solve that game using the concept of Nash equilibrium or one of its refinements. See 
Aumann and Myerson (1988) and Dutta and Mutuswami (1997). Jackson (2003, 2005) provides surveys 
of models of network formation. 
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improving paths replaced by farsighted deviations and farsighted improving paths. 
A farsighted improving path is a sequence of networks that can emerge when 
players form or sever links based on the improvement the end network offers 
relative to the current network. Each network in the sequence differs by one link 
from the previous one. If a link is added, then the two players involved must both 
prefer the end network to the current network, with at least one of the two strictly 
preferring the end network. If a link is deleted, then it must be that at least one of 
the two players involved in the link strictly prefers the end network.  

In contrast to other concepts incorporating farsightedness, we do not only 
request that all possible pairwise deviations out of the set are deterred by the 
threat of ending worse off, but also that there exists a farsighted improving path 
from any network outside the set leading to some network in the set. This 
property is equivalent to the requirement that networks within the set are robust 
to perturbations. Perturbations may be due to exogenous forces acting on the 
network, or simply miscalculations or errors on the part of an individual making 
an assessment or taking an action.2 

We show that a pairwise farsightedly stable set always exists and we provide a 
full characterization of unique pairwise farsightedly stable sets of networks. As a 
corollary, we give the necessary and sufficient condition such that a unique 
pairwise farsightedly stable set consisting of a single network exists. We apply 
these results to examples, such as the criminal network model of Calvó-Armengol 
and Zenou (2004). We find that in criminal networks with n players, the set 
consisting of the complete network (where all criminals are linked to each other) 
is a pairwise farsightedly stable set.  

We consider the relationship between farsighted stability and efficiency of 
networks. We provide conditions under which pairwise farsighted stability singles 
out a strongly efficient network. We show that if there is a network that Pareto 
dominates all other networks, then that network is the unique prediction of 
pairwise farsighted stability. This property does not hold for other pairwise 
solution concepts.  

Finally, we study the relationship between pairwise farsighted stability and 
other farsighted concepts such as the largest pairwise consistent set, a notion due 
to Chwe (1994), and the von Neumann-Morgenstern pairwise farsightedly stable 
set. Under some conditions, a pairwise farsightedly stable set is a subset of the set 
of pairwise stable networks, which in turn is a subset of the largest pairwise 
consistent set. We show that any von Neumann-Morgenstern pairwise farsightedly 

                                                           
2  Jackson and Watts (2002) use improving paths as the foundation for a stochastic analysis, where in 

addition to intended changes in the network, unintended mutations or errors are introduced. However, in 
their definition of improving path it is assumed that players behave myopically: all a player needs to know 
is whether adding or deleting a given link is directly beneficial to him or her under the current 
circumstances. 



 

290 
·················· 

Farsightedly Stable Networks 

Coalitions and Networks Chap 11 

stable set is also a pairwise farsightedly stable set. Under some conditions, also 
the reverse statement holds. By means of examples we show that pairwise 
farsightedly stable sets have no relationship to either largest pairwise consistent 
sets or pairwise myopically stable sets.  

Although the literature on stability in networks is well established and 
growing (see Jackson, 2005), the literature on farsighted stability is still in its 
infancy. Page et al. (2005) address the issue of farsighted stability in network 
formation by extending Chwe’s (1994) result on the nonemptiness of farsightedly 
consistent sets. In order to demonstrate the existence of farsightedly consistent 
directed networks, they provide a new framework that extends the standard 
notion of a directed network and also introduces the notion of a supernetwork. A 
supernetwork specifies how the different directed networks are connected via 
coalitional moves and coalitional preferences, and thus provides a network 
representation of agent preferences and the rules governing network formation. A 
supernetwork is equivalent to the social environment studied by Chwe (1994), 
when the set of outcomes is replaced by the set of directed networks. Given the 
rules governing network formation and agents’ preferences as represented via the 
supernetwork, a directed network (i.e., a particular node in the supernetwork) is 
said to be farsightedly consistent if no agent or coalition of agents is willing to 
alter the network (via the addition, subtraction, or replacement of arcs) in fear 
that such an alteration might induce further network alterations by other agents 
or coalitions that in the end leave the initially deviating agent or coalition no 
better off, and possibly worse off. They have shown that for any supernetwork 
corresponding to a given collection of directed networks, the set of farsightedly 
consistent networks is non-empty; see also Page and Wooders (2005).  

Dutta et al. (2005) have studied a model of dynamic network formation 
where individuals are farsighted and evaluate the desirability of a move in terms of 
its consequences on the entire discounted stream of payoffs. Contrary to ours, 
their model is in spirit closer to non-cooperative game theory. They show that a 
Markovian equilibrium process of network formation exists and they provide two 
conditions, link monotonicity and increasing returns to link creation, each of 
which guarantees that there is some equilibrium at which the complete graph is 
reached in the limit from all initial networks. They also show that there are 
valuation structures in which the process will not converge to any efficient network 
for any equilibrium strategy profile. This can be viewed as the dynamic 
counterpart of the conflict between static stability and efficiency demonstrated by 
Jackson and Wolinsky (1996), a conflict that is also confirmed by our results. 
Dutta et al. (2005) provide an example where there is a network that Pareto 
dominates all other networks, but which is not reached in equilibrium. In our 
framework, such an example is not possible. If there is a network that Pareto 
dominates all other networks, then that network is the unique prediction of 
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pairwise farsighted stability. Other approaches to farsightedness in network 
formation are suggested by the work of Xue (1998), Herings et al. (2004), and 
Mauleon and Vannetelbosch (2004).  

The paper is organized as follows. In Section 2 we introduce some notations 
and basic properties and definitions for networks. In Section 3 we define the notion 
of pairwise myopically stable set of networks. In Section 4 we define the notion of 
pairwise farsightedly stable set of networks and we characterize it in Section 5. In 
Section 6 we consider the symmetric connections model and the co-author 
model. We look at the relationship between farsighted stability and efficiency of 
networks in Section 7. In Section 8 and Section 9 we analyze, respectively, the 
relationship with the von Neumann-Morgenstern pairwise farsightedly stable set and 
the largest pairwise consistent set. Finally, in Section 10 we conclude.  

 
2. Networks 

 
Let N = {1, …, n} be the finite set of players who are connected in some network 
relationship. The network relationships are reciprocal and the network is thus 
modeled as a non-directed graph. Individuals are the nodes in the graph and links 
indicate bilateral relationships between individuals. Thus, a network g is simply a 
list of which pairs of individuals are linked to each other. We write ij  g to 
indicate that i and j are linked under the network g. Let g N be the collection of all 
subsets of N with cardinality 2, so g N is the complete network. The set of all 
possible networks or graphs on N is denoted by  and consists of all subsets of 
g N. The network obtained by adding link ij to an existing network g is denoted 
g + ij and the network that results from deleting link ij from an existing network g 
is denoted g – ij. For any network g, let N(g) = {i | there is j such that ij  g } be the 
set of players who have at least one link in the network g. A path in a network 
g   between i and j is a sequence of players i1, …, iK such that ik ik + 1  g for each 
k  {1, …, K – 1} with i1 = 1 and iK = j. A non-empty network h  g is a component 
of g, if for all i  N(h) and j  N(h)\ {i}, there exists a path in h connecting i and j, 
and for any i  N(h) and j  N(g), ij  g implies ij  h. The set of components of g 
is denoted by C(g). Knowing the components of a network, we can partition the 
players into groups within which players are connected. Let (g) denote the 
partition of N induced by the network g.3 

A value function is a function v :    that keeps track of how the total 
societal value varies across different networks. The set of all possible value 
functions is denoted by V. An allocation rule is a function Y :  × V  N that 
keeps track of how the value is allocated or distributed among the players forming 
a network. It satisfies  i  N Yi(g, v) = v(g) for all v and g.  

                                                           
3  Throughout the paper we use the notation  for weak inclusion and  for strict inclusion. Finally, # will 

refer to the notion of cardinality. 
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Jackson and Wolinsky (1996) have proposed a number of basic properties of 
value and allocation functions. A value function is component additive if v(g) = h  C(g) v(h) 
for all g  . Component additive value functions are the ones for which the value 
of a network is the sum of the value of its components. An allocation rule Y is 
component balanced if for any component additive v  V, g  , and h  C(g), we have 
i  N(h) Yi(h, v) = v(h). Component balancedness only puts conditions on Y for v’s 
that are component additive, so Y can be arbitrary otherwise. Given a permutation 
of players π and any g  , let g π = {π(i)π(j) | ij  g}. Thus, g π is a network that is 
identical to g up to a permutation of the players. A value function is anonymous if 
for any permutation π and any g  , v(g π) = v(g). Given a permutation π, let v π 
be defined by v π(g) = v(gπ–1) for each g  . An allocation rule Y is anonymous if for 
any v  V, g  , and permutation π, we have Yπ(i)(g π, v π) = Yi(g, v).4 

An allocation rule that is component balanced and anonymous is the 
componentwise egalitarian allocation rule. For a component additive v and network g, 
the componentwise egalitarian allocation rule Y ce is such that for any h  C(g) and 
each i  N(h), Yi

ce(g, v) = v(h)/#N(h). For a v that is not component additive,  
Y ce(g, v) = v(g)/n for all g; thus, Y ce splits the value v(g) equally among all players if 
v is not component additive.  

In evaluating societal welfare, we may take various perspectives. A network g 
is Pareto efficient relative to v and Y if there does not exist any g    such that 
Yi(g ,v) ≥ Yi(g, v) for all i with at least one strict inequality. A network g   is 
strongly efficient relative to v if v(g) ≥ v(g ) for all g   . This is a strong notion of 
efficiency as it takes the perspective that value is fully transferable.  

The network-theoretic literature uses two different notions of deviation by a 
coalition. Pairwise deviations (Jackson and Wolinsky, 1996) are deviations involving a 
single link at a time. Moreover, link addition is bilateral (two players that would 
be involved in the link must agree to adding the link), link deletion is unilateral (at 
least one player involved in the link must agree to deleting the link), and network 
changes take place one link at a time. Coalitionwise deviations (Jackson and van den 
Nouweland, 2005) are deviations involving several links and some group of players 
at a time. Link addition is bilateral, link deletion is unilateral, and multiple link 
changes can take place at a time. Whether a pairwise deviation or a coalitionwise 
deviation makes more sense will depend on the setting within which network 
formation takes place.  

We will restrict our analysis to pairwise deviations. A simple way to analyze 
the networks that one might expect to emerge in the long run is to examine the 
requirement that agents do not benefit from altering the structure of the network. 

                                                           
4  Anonymous value functions are those such that the architecture of a network matters, but not the labels of 

individuals. Anonymity of an allocation rule requires that if only the labels of the agents change and the 
value generated by networks changes in an exactly corresponding fashion, then the allocation only changes 
according to the relabeling. 
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A weak version of such a condition is the pairwise stability notion defined by 
Jackson and Wolinsky (1996). A network is pairwise stable if no player benefits 
from severing one of their links and no other two players benefit from adding a 
link between them, with one benefiting strictly and the other at least weakly. 
Formally, a network g is pairwise stable with respect to value function v and 
allocation rule Y if  

 
(i)  for all ij  g, Yi(g, v) ≥ Yi(g – ij, v) and Yj(g, v) ≥ Yj(g – ij, v), and  
(ii)  for all ij  g, if Yi(g, v) < Yi(g + ij, v) then Yj(g, v) > Yj(g + ij, v).  

 
We say that g  is adjacent to g if g  = g + ij or g  = g – ij for some ij. A network 

g  defeats g if either g  = g – ij and Yi(g , v)>Yi(g, v) or Yj(g , v) > Yj(g, v), or if 
g  = g + ij with Yi(g , v) ≥ Yi(g, v) and Yj(g , v) ≥ Yj(g, v) with at least one inequality 
holding strictly. Pairwise stability is equivalent to the statement of not being 
defeated by another network.5 

 
3. Pairwise Myopically Stable Sets of Networks 

 
Pairwise stable networks do not always exist. Following Jackson and Watts 
(2002), we introduce the notion of myopic improving path. A myopic improving 
path is a sequence of networks that can emerge when players form or sever links 
based on the improvement the resulting network offers relative to the current 
network. Each network in the sequence differs by one link from the previous one. 
If a link is added, then the two players involved must both prefer the resulting 
network to the current network, with at least one of the two strictly preferring the 
resulting network. If a link is deleted, then it must be that at least one of the two 
players involved in the link strictly prefers the resulting network.  

 
Definition 1. A myopic improving path from a network g to a network g  ≠ g is a finite 
sequence of graphs g1, …, gK with g1 = g and gK = g  such that for any k  {1, …, K – 1} 
either:  

 
(i) gk + 1 = gk – ij for some ij such that Yi(gk + 1, v) > Yi(gk, v) or Yj(gk + 1, v) > Yj(gk, v), or  
(ii) gk + 1 = gk + ij for some ij such that Yi(gk + 1, v) > Yi(gk, v) and Yj(gk + 1, v) ≥ Yj(gk, v).  

 
A myopic improving path is a sequence of adjacent networks that might be 

observed in a dynamic process where players are adding and deleting links, one at 
                                                           
5 Jackson and van den Nouweland (2005) have proposed a refinement of pairwise stability where 

coalitionwise deviations are allowed: the strongly stable networks. A strongly stable network is a network 
which is stable against changes in links by any coalition of individuals. Strongly stable networks are Pareto 
efficient and maximize the overall value of the network if the value of each component of a network is 
allocated equally among the members of that component. 
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a time. If there exists a myopic improving path from g to g , then we write g  g . 
For a given network g, let M(g) = {g    | g  g }. This is the set of networks that 
can be reached by a myopic improving path from g. Thus, g  g  means that g  is 
the endpoint of at least one myopic improving path from g. Notice that if g is 
pairwise stable then M(g) = .  

It is well-known that there are many allocation rules and value functions for 
which pairwise stable networks do not exist. We therefore consider a set-valued 
solution concept that captures the pairwise stability notion, called the pairwise 
myopically stable set of networks.  

 
Definition 2. A set of networks G   is pairwise myopically stable with respect v and Y if  
 
(i) g  G,  
 (ia) ij  g such that g + ij  G, (Yi(g + ij, v), Yj(g + ij, v)) = (Yi(g, v), Yj(g, v)) or 
  Yi(g + ij, v) < Yi(g, v) or Yj(g + ij, v) < Yj(g, v),  
 (ib) ij  g such that g – ij  G, Yi(g – ij, v) ≤ Yi(g, v) and Yj(g – ij, v) ≤ Yj(g, v),  
(ii) g   \G, M(g )  G ≠ ,  
(iii) ∄G   G such that G  satisfies conditions (ia), (ib), and (ii).  

 
Conditions (ia) and (ib) in Definition 2 capture deterrence of external 

deviations. In condition (ia) the addition of a link ij to a network g  G that leads 
to a network outside G is deterred because the two players involved do not prefer 
the resulting network to network g. Condition (ib) is a similar requirement, but 
then for the case where a link is severed. Condition (ii) requires external stability. 
External stability asks for the existence of a myopic improving path from any 
network outside G leading to some network in G. Condition (ii) implies that if a 
set of networks is pairwise myopically stable, it is non-empty. Notice that the set  
(trivially) satisfies conditions (ia), (ib), and (ii) in Definition 2. This motivates 
condition (iii), the minimality condition.  

Jackson and Watts (2002) define the notion of a closed cycle. A set of 
networks C is a cycle if for any g  C and g   C \{g}, there exists a myopic 
improving path connecting g to g . A cycle C is a maximal cycle if it is not a proper 
subset of a cycle. A cycle C is a closed cycle if no network in C lies on a myopic 
improving path leading to a network that is not in C. A closed cycle is necessarily a 
maximal cycle. If g is a pairwise stable network, then trivially {g} is a closed cycle.  

 
Lemma 1. For every g  , either g is pairwise stable or there is a closed cycle C such that 
C  M(g).  

 
Proof. Consider a network g   that is not pairwise stable. Construct a sequence 
of networks g1, …, gk such that g1 = g, gj + 1  M(gj) for j = 1, …, k – 1, and either 
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M(gk) =  or gk = gj for some j < k. In the former case, gk is pairwise stable and by 
transitivity of M, {gk}  M(g). In the latter case, let C 1 be a maximal cycle 
containing {gj, …, gk – 1}. Either C 1 is a closed cycle and we are done, or it has a 
myopic improving path going out of it, leading to a new maximal cycle C 2. 
Repeating this argument we reach after a finite number of steps a maximal cycle 
without myopic improving paths going out of it, i.e. a closed cycle.      

 
Lemma 1 confirms the result of Jackson and Watts (2002) that for any value 

function and allocation rule there exists at least one closed cycle of networks. The 
next result claims that there is a unique pairwise myopically stable set of networks. 
It contains all networks that belong to a closed cycle.  

 
Theorem 1. The set of networks consisting of all networks that belong to a closed cycle is the 
unique pairwise myopically stable set.  

 
Proof. Let G be the set consisting of all networks that belong to a closed cycle. We 
show that G satisfies conditions (i), (ii), and (iii). Obviously, G satisfies condition 
(i). The set G also satisfies condition (ii). Indeed, consider some g   G. By 
Lemma 1, either g  is pairwise stable or there is a closed cycle C such that 
C  M(g ). The former case contradicts g   G. The latter case implies g  M(g ) 
for some g  G, i.e. implies condition (ii). Suppose G does not satisfy condition 
(iii). Let G   G satisfy conditions (i) and (ii). Let g be a network that belongs to 
G but not to G . If g is pairwise stable, then there is no g   G  such that 
g   M(g), so G  violates condition (ii). The network g is therefore part of a closed 
cycle C consisting of at least two networks. Moreover, for everyg  C it holds that 
g  )( gM . If C  G  = , we violate condition (ii). If C  G  contains a 
networkg, then g  )( gM implies that condition (i) is violated. It follows that a 
set G   G satisfying conditions (i) and (ii) does not exist, so G is a pairwise 
myopically stable set.  

Next we show that if a set of networks G satisfies conditions (i)-(iii), then G 
consists of all networks that belong to a closed cycle. If G does not contain a 
pairwise stable network, then we have a contradiction to condition (ii). If G does 
not contain some network that belongs to a closed cycle with at least two elements, 
then we have a contradiction to condition (i). It follows that G contains all 
networks that belong to a closed cycle. condition (iii) together with the first part 
of the proof now yields that G cannot contain any other networks.      

 
Sengupta and Sengupta (1994) define an indirect dominance relation for 

transferable utility games in coalition structure that is analogous to our notion of 
an improving path. Following them, we can define a network g to be viable if for 
every network g   M(g) it holds that g  M(g ). It is easily verified that any viable 
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network g belongs to a closed cycle. Indeed, if g is viable, then M(g) is a closed 
cycle, and vice versa. We can therefore rephrase Theorem 1 as the statement that 
the unique pairwise myopically stable set coincides with the set of viable networks.  

 
4. Pairwise Farsightedly Stable Sets of Networks 

 
We start this section with an example that shows the limitations of the pairwise 
myopically stable set and that motivates the incorporation of an appropriate 
notion of farsightedness.  
 
EXAMPLE 1 – Criminal networks.6 Each player is a criminal. If two players are 
connected, then they are part of the same criminal network. Each group of 
connected criminals has a positive probability of winning the loot. The loot is 
divided among the connected criminals based on the network architecture. 
Criminal i’s payoff is given by 

Yi(g) = pi(g) · [yi(g) · (1 – )] + (1 – pi(g)) · yi(g) 
 = yi(g) · [1 – pi(g) · ], 

where yi(g) is i’s expected share of the loot, pi(g) is i’s probability of being caught, 
and  > 0 is the penalty rate.7 Beside being competitors in the crime market, 
criminals may also benefit from having criminal mates. It is assumed that (i) the 
bigger the group of connected criminals, the higher its probability of getting the 
loot, and (ii) the higher the number of links a criminal has, the lower his 
individual probability of being caught. Suppose the probability of being caught 
for criminal i is simply given by 

n
nngp i

i



1)( , 

with ni the number of links criminal i has.8 For any group S  (g) of connected 
criminals, letn(S) = maxi  S[ni]. A criminal i that is part of a group S  (g) 
expects a share of the loot B > 0 given by 

,)(||)( Bg
n
Sgy ii    

                                                           
6  This is a simplified version of Calvó-Armengol and Zenou (2004) where, in addition to forming links 

with criminal mates, criminals choose their level of criminal activities and whether or not to be involved 
in criminal activities. 

7  The value function v is simply v(g) = i  N Yi(g). Since v is fixed, we omit it in the notation of Yi(v, g). 
8  This assumption captures the idea that delinquents learn from other criminals belonging to the same 

network how to commit crime in a more efficient way by sharing the know-how about the technology of 
crime (see Calvó-Armengol and Zenou, 2004) 
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where |S|/n is the probability that group S will win the loot, and i(g) is the share 
of the loot criminal i  S would obtain, which is given by 





 




otherwise.

),( if
)(

)}(|{#

0

1 Snn
g

iSnnSj
i

j  

That is, within each component, the criminal who has the highest number of 
links gets the loot. If two or more criminals have the highest number of links, then 
they share the loot equally among them. In Figure 1 we have depicted the 3-player 
case with all payoffs in 1/9-th’s. For  < 3/2, both the partial networks (g1, g2, g3) 
and the complete network (g7) are pairwise stable networks. There are four closed 
cycles, {g1}, {g2}, {g3}, and {g7}. The pairwise myopically stable set of networks is 
therefore given by {g1, g2, g3, g7}. For  ≥ 3/2, the complete network g7 is the only 
pairwise stable network. There is only one closed cycle, {g7}, which is therefore also 
the pairwise myopically stable set of networks.  

  

 
Figure 1. Criminal networks 

 
Take some strictly positive  smaller than 3/2 in Example 1. The partial 

networks g1, g2, and g3 are pairwise stable. Notice that two links have to be added 
to a partial network g1, g2, or g3 to form the complete network g7. Farsighted 
players may decide to add one link to a network like g1, g2, or g3, accepting a loss, 
in the expectation that a further link will be added to form the complete network. 
A farsighted improving path is a sequence of networks that can emerge when players 
form or sever links based on the improvement the end network offers relative to 
the current network. Each network in the sequence differs by one link from the 
previous one. If a link is added, then the two players involved must both prefer the 
end network to the current network, with at least one of the two strictly preferring 
the end network. If a link is deleted, then it must be that at least one of the two 
players involved in the link strictly prefers the end network. We now introduce the 
formal definition of a farsighted improving path.  
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Definition 3. A farsighted improving path from a network g to a network g ≠ g is a 
finite sequence of graphs g1, …, gK with g1 = g and gK = g  such that for any 
k  {1, …, K – 1} either:  

 
(i) gk + 1 = gk – ij for some ij such that Yi(gK, v) > Yi(gk, v) or Yj(gK, v) > Yj(gk, v), or  
(ii) gk + 1 = gk + ij for some ij such that Yi(gK, v) > Yi(gk, v) and Yj(gK, v) ≥ Yj(gk, v).  

 
If there exists a farsighted improving path from g to g , then we write g  g . 

For a given network g, let F(g) = {g    | g  g }. This is the set of networks that 
can be reached by a farsighted improving path from g. Thus, g  g  means that g  
is the endpoint of at least one farsighted improving path from g. Notice that F(g) 
may contain many networks and that a network g   F(g) might be the endpoint 
of several farsighted improving paths starting in g. Since we are interested in 
stability of networks, there will be no need to specify on which particular path 
players eventually agree. Rather F(g) represents the networks that could possibly 
be reached by farsighted players when starting in g, and our concept of stability 
takes these possible end networks into account in a way that we will make precise 
in Definition 4.  

The notion of farsightedness is relevant whenever payoffs can only be reaped 
after some stable network has formed, or when players are sufficiently patient so 
that they can safely ignore the payoffs that they obtain before a stable network 
settles down. It lies at the other end of the spectrum than myopia, where only 
immediate payoffs count. An intermediate (but difficult) approach is the one of 
Dutta et al. (2005), where the entire discounted stream of payoffs matters.  

Suppose in Example 1 with  smaller than 3/2 that the starting network g is a 
partial network like g1, g2, or g3. Then, from g no myopic improving path results in 
the complete network. The problem is that the isolated player will loose from 
making a link with any of the other players. However, there are farsighted 
improving paths that go to the complete network. An example of the sequence of 
graphs on a farsighted improving path is (g1, g4, g7) when starting in g1. Similar 
farsighted improving paths exist starting in any of the other partial networks. 
Examples of other farsighted improving paths starting in g1 and ending in g7 are 
(g1, g4, g7), (g1, g5, g7), or even (g1, g0, g2, g6, g7). Moreover, from any g ≠ g7 there is a 
farsighted improving path going to g7. Thus, we observe that the partial networks 
are pairwise stable, but not stable when players are farsighted. The complete 
network on the other hand is not only pairwise stable. It is also stable when 
players are farsighted.  

We now introduce a new solution concept, the pairwise farsightedly stable 
set. The definition corresponds to the one of a pairwise myopically stable set with 
myopic deviations replaced by farsighted deviations. It is obtained by requiring the 
deterrence of farsighted external deviations, farsighted external stability, and 
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minimality. More precisely, a set of networks G is pairwise farsightedly stable if (i) 
all possible pairwise deviations from any network g  G to a network outside G are 
deterred by a credible threat of ending worse off or equally well off, (ii) there exists 
a farsighted improving path from any network outside the set leading to some 
network in the set, and (iii) there is no proper subset of G satisfying conditions (i) 
and (ii). Formally, pairwise farsightedly stable sets are defined as follows.  

 
Definition 4. A set of networks G   is pairwise farsightedly stable with respect v and Y if  

 
(i) g  G,  
 (ia) ij  g such that g + ij  G, g   F(g + ij)  G such that (Yi(g , v), 

Yj(g , v)) = (Yi(g, v), Yj(g, v)) or Yi(g , v) < Yi(g, v) or Yj(g , v) < Yj(g, v),  
 (ib) ij  g such that g – ij  G, g , g   F(g – ij)  G such that Yi(g , v) ≤ 
  Yi(g, v) and Yj(g , v) ≤ Yj(g, v),  
(ii) g   \G, F(g )  G ≠ .  
(iii) ∄G   G such that G  satisfies conditions (ia), (ib), and (ii).  

 
Condition (ia) in Definition 4 captures that adding a link ij to a network 

g  G that leads to a network outside of G, is deterred by the threat of ending in 
g . Here g  is such that there is a farsighted improving path from g + ij to g . 
Moreover, g  belongs to G, which makes g  a credible threat. Condition (ib) is a 
similar requirement, but then for the case where a link is severed. Condition (ii) in 
Definition 4 requires external stability and implies that the networks within the set 
are robust to perturbations. From any network outside G there is a farsightedly 
stable path leading to some network in G.9 Condition (ii) implies that if a set of 
networks is pairwise farsightedly stable, it is non-empty. Notice that the set  
(trivially) satisfies conditions (ia), (ib), and (ii) in Definition 4. This motivates the 
requirement of a minimality condition, namely condition (iii).  

 
Theorem 2. A pairwise farsightedly stable set of networks exists.  

 
Proof. Notice that  satisfies conditions (i) and (ii). Let us proceed by 
contradiction. Assume that there does not exist any set of networks G   that is 
pairwise farsightedly stable. This means that for any G 0   that satisfies 
conditions (i) and (ii) in Definition 4, we can find a proper subset G 1 that satisfies 
conditions (i) and (ii). Iterating this reasoning we can build an infinite decreasing 
sequence {Gk}k ≥ 0 of subsets of  satisfying conditions (i) and (ii). But since  has 
finite cardinality, this is not possible.      

                                                           
9  There are some random dynamic models of network formation that are based on incentives to form links 

such as Watts (2001), Jackson and Watts (2002), and Tercieux and Vannetelbosch (2006). These models 
aim to use the random process to select from the set of pairwise stable networks. 
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We show next that in Example 1 with n = 3, the set consisting of the complete 
network is the unique pairwise farsightedly stable set whatever the fine .  

We consider first the case  < 3/2. It can be verified that F(g0) = {g1, g2, g3, g7}, 
F(g1) = {g2, g3, g7}, F(g2) = {g1, g3, g7}, F(g3) = {g1, g2, g7}, F(g4) = {g1, g2, g3, g7}, F(g5) = {g1, 
g2, g3, g7}, F(g6) = {g1, g2, g3, g7}, and F(g7) = . Notice that the analysis of farsighted 
improving paths can be intricate. The only way to go from g1 to g2 is via g4. At the 
same time it holds that g4  F(g1). Indeed, players 1 and 2 make a link to go from 
g1 to the intermediate network g4 in the anticipation that player 3 will subsequently 
delete his link with player 1. To go from g1 to the terminal network g4 is a strict 
deterioration for players 2 and 3. The only thing player 1 can do is to sever his link 
with player 2, which leads to g0. This is not helpful for player 1, since once at g0 he 
is still the only one that is better off at g4 compared to g0, and there is nothing that 
he can do anymore.  

We show next that {g7} is pairwise farsightedly stable. Since g7  g  \{g7}F(g), 
condition (ii) of the definition is clearly satisfied. Moreover, condition (i) is 
satisfied, since any deviation from g7 may lead back to g7. Clearly, {g7} is minimal, 
so condition (iii) is satisfied too.   

There are no other pairwise farsightedly stable sets. Since F(g7) = , condition 
(ii) implies that g7 belongs to any pairwise farsightedly stable set. Since {g7} is 
pairwise farsightedly stable, using condition (iii) it follows that {g7} is the only 
pairwise farsightedly stable set.  

Take now  ≥ 3/2. For 3/2 ≤  ≤ 3 we have F(g0) = {g1, g2, g3, g4, g5, g6, g7}, F(g1) = 
{g4, g5, g7}, F(g2) = {g4, g6, g7}, F(g3) = {g5, g6, g7}, F(g4) = {g7}, F(g5) = {g7}, F(g6) = {g7}, 
and F(g7) = . For  > 3 we have F(g0) = {g1, g2, g3, g4, g5, g6, g7}, F(g1) = {g4, g5, g6, g7}, 
F(g2) = {g4, g5, g6, g7}, F(g3) = {g4, g5, g6, g7}, F(g4) = {g7}, F(g5) = {g7}, F(g6) = {g7}, and 
F(g7) = . So, g7  g  \{g7}F(g) for  ≥ 3/2. Since F(g7) = , we can use the same 
arguments as in the case  < 3/2 and can therefore conclude that {g7} is the 
unique pairwise farsightedly stable set.  

5. Characterizations of Pairwise Farsightedly Stable Sets 

The next theorem provides an easy to verify condition for a set G to be pairwise 
farsightedly stable.  

Theorem 3. If for every g   \G we have F(g )  G ≠  and for every g  G, 
F(g)  G = , then G is a pairwise farsightedly stable set.  

Proof. Condition (ii) is trivially satisfied.  
Suppose condition (i) is not satisfied. Then there is g  G and a deviation to 

g   G such that every g   F(g )  G defeats g. In particular, it then follows that 
g   F(g), a contradiction, since by assumption there is no g   G with that 
property. Consequently, condition (i) holds.  
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To verify condition (iii), suppose there is a proper subset G  of G that 
satisfies conditions (i) and (ii). Let g be in G but not in G . Then F(g)  G   
F(g)  G = , where the equality follows by the assumption in the theorem. It 
follows that G  violates condition (ii), leading to a contradiction. We have shown 
that G is minimal.       

 
Later on in the paper, we will show by means of Example 3 that Theorem 3 

cannot be extended to an ‘if and only if’ statement. The ‘if and only if’ statement 
is true, however, when restricting the scope of the theorem to sets consisting of a 
single network.  

 
Theorem 4. The set {g} is a pairwise farsightedly stable set if and only if for every  
g   \{g} we have g  F(g ).  

 
Proof. If {g} is a pairwise farsightedly stable set, then by condition (ii) in Definition 
4 it follows that g  F(g ) for every g   \{g}.  

Now suppose that for every g   \{g} we have g  F(g ). Condition (ii) is 
trivially satisfied. Since g  F(g + ij) and g  F(g – ij), conditions (ia) and (ib) hold. 
Finally, condition (iii) is satisfied because {g} is a singleton.       

 
Theorem 4 tells us that {g} is a pairwise farsightedly stable set if and only if 

there exists a farsighted improving path from any network leading to g. Condition 
(iii) of the definition implies that if {g} is a pairwise farsightedly stable set, then g 
does not belong to any other pairwise farsightedly stable set. But there may be 
pairwise farsightedly stable sets not containing g.   

The next result provides a full characterization for unique pairwise 
farsightedly stable sets.  

 
Theorem 5. The set G is the unique pairwise farsightedly stable set if and only if  
G = {g   | F(g) = } and for every g   \G, F(g )  G ≠ .  

 
Proof. () Condition (ii) of Definition 4 is trivially satisfied. Suppose condition (i) 
is not satisfied. Then there is g  G and ij   g such that g + ij  G and for every 
g   F(g + ij)  G it holds that (Yi(g , v), Yj(g , v)) > (Yi(g, v),Yj(g, v)), or there is 
g  G and ij  g such that g – ij  G and for every g   F(g + ij)  G it holds that 
Yi(g , v) > Yi(g, v). In both cases it follows that g   F(g), a contradiction, since by 
assumption F(g) = . Consequently, condition (i) holds. Since for every g  G, 
F(g) = , by condition (ii) it holds that G is a subset of any pairwise farsightedly 
stable set. It then follows from condition (iii) that G is the unique pairwise 
farsightedly stable set.  

() Condition (ii) yields that for every g   \G, F(g )  G ≠. From this it 
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also follows that every g with F(g) =  belongs to G. It remains to be shown that 
for every g  G, F(g) = . Suppose not. Let g* and g  be such that g*  G and 
g   F(g*). Consider G  = {g }  {g   | g   F(g)}. Notice that g*  G  and that 
for any g  G  we have that g   F(g).  

Claim. G  satisfies conditions (i) and (ii).  

Since for any g  G  we have that g   F(g), condition (ii) is satisfied. Consider 
any pairwise deviation from g  to g   G . By construction of G , g   F(g ) and 
the deviation is deterred. Consider any pairwise deviation from any g 0  G \{g } to 
some g   G . Suppose that all g  F(g )  G  are preferred by the player(s) 
initially deviating from g 0. Then it follows that F(g )  G   F(g0). By definition of 
G , g   F(g ), so g   F(g )  G   F(g 0), contradicting g   F(g 0) for any g 0  
G \{g }. Consequently, all pairwise deviations from g 0  G \{g } are deterred. Since 
we already showed that pairwise deviations from g  are deterred too, the set G  
satisfies condition (i).  

Finally, if G  satisfies condition (iii), then G  is a pairwise farsightedly stable 
set, a contradiction to the uniqueness of G. If G  does not satisfy condition (iii), 
then, following the reasoning in the proof of Theorem 2, there is a proper subset 
G  of G  satisfying conditions (i), (ii), and (iii). Since g*  G \G , it holds that 
G ≠ G  and we obtain a contradiction to the uniqueness of G.      

Theorem 5 implies that if G is the unique pairwise farsightedly stable set and 
the network g belongs to G, then F(g) = , which implies that g is pairwise stable. 
Thus, pairwise farsighted stability is a refinement of pairwise stability when there is 
a unique pairwise farsightedly stable set.  

From Theorem 5 we obtain the following corollary that provides the necessary 
and sufficient conditions such that there is a unique pairwise farsightedly stable 
set consisting of a single network.  

Corollary 1. The set {g} is the unique pairwise farsightedly stable set if and only if for every 
g   \{g} we have g  F(g ) and F(g) = .  

If for every g   \{g} we have g  F(g ), then by Theorem 4 {g} is a pairwise 
farsightedly stable set. If, moreover, F(g) = , then {g} is the unique pairwise 
farsightedly stable set by Corollary 1. If, on the other hand, F(g) ≠ , then there is 
another pairwise farsightedly stable set by Corollary 1. 

Using Theorem 4 we prove that in the example of criminal networks with n 
players, the complete network {g N} is a pairwise farsightedly stable set.  
 
Proposition 1. In the criminal networks model, the set {g N} is a pairwise farsightedly 
stable set.  
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Proof. We show that for every g  \{g N} we have g N  F(g). (1) We show that 
from any g ≠ g N there is always a player who wants to delete a link looking forward 
to g N. This enables us to build a sequence of networks where at each step some 
player (who is looking forward to g N) is deleting a link until we reach the empty 
network. (2) Next, starting from the empty network, we build up a sequence of 
networks towards g N so that, at each step, links are only added, and players that 
are adding links are strictly better off at g N compared to the current network. 
Then, (1) and (2) implies that from any possible network there is a farsighted 
improving path leading to the complete network g N.  

In the complete network we have that Yi(g N) = yi(g N) = B/n because pi(g N) = 0 
for all i  N. Notice that expected payoffs of members of a component do not 
depend on how other components are structured (are linked). They only depend 
on the number of links and on the number of criminals within the component. 
That is, criminal i who belongs to group S  (g) will get Yi(g) = yi(g)[1 – pi(g)] = 
(|S|/n)i(g)B[1 – (n – 1 – ni)/n], with i(g) = [#{j  S | nj =n(S)}]–1 if ni =n(S) and 
i(g) = 0 otherwise.  

(1) Take any g ≠ g N. Case 1: For all S  (g), for every i,j  S, we have that 
ni = nj. Then, for every i  N, Yi(g) = B/n[1 – (n – 1 – ni)/n] < B/n = Yi(g N) and thus 
everyone who has a link is willing to delete a link looking forward to g N. Case 2: 
There exists S  (g) such that ni <n(S). Then, player i gets Yi(g) = 0, so i wants to 
delete a link looking forward to g N. We can repeat the arguments of Case 1 and 2 
until we reach the empty network.  

(2) Once we have reached the empty network we build up a sequence of 
networks towards g N as follows. For k = 1, …, n, we successively build networks so 
that the subset of players {1, …, k} forms a complete component, and players 
k + 1, …, n are singletons (do not have any link). We start with the empty network 
denoted g 1. Adding to g 1 the link {1,2} leads to the network g 2. Notice that {1,2} is 
a complete component of g 2, whereas players 3, …, n are singletons. Let g k, for 
some k  {1, …, n}, be a network such that the subset of players {1, …, k} forms a 
complete component, and players k + 1, …, n are singletons. To g k we add 
successively the links {1, k + 1}, {2, k + 1}, …, {k, k + 1} to obtain the network g k + 1. 
Along this sequence of networks, the players that are adding a link are strictly 
better off at g N compared to what they obtain at the current network. Indeed, 
when involved in adding a link, player 1 has a payoff of B/n[1 – (n – k)/n] < B/n, 
player k + 1 has a payoff of B/n[1 – (n – 1)/n] < B/n (before linking to player 1) or 
0 (before linking to players {2, ..., k}), and the other players have a payoff of 0.  

Thus, for all g ≠ g N we have g N  F(g). Applying Theorem 4, we conclude that 
{g N} is a pairwise farsightedly stable set.      
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6. The Symmetric Connections Model and the Co-Author Model 
 

EXAMPLE 2 – Symmetric connections model (Jackson and Wolinsky, 1996). Players form 
links with each other in order to exchange information. If player i is connected to 
player j by a path of t links, then player i receives a payoff of  t from his indirect 
connection with player j. It is assumed that 0 <  < 1, and so the payoff  t decreases 
as the path connecting players i and j increases; thus information that travels a 
long distance becomes diluted and is less valuable than information obtained 
from a closer neighbor. Each direct link ij results in a cost c to both i and j. This 
cost can be interpreted as the time a player must spend with another player in 
order to maintain a direct link. Player i’s payoff from a network g is given by 
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where t(ij) is the number of links in the shortest path between i and j (setting 
t(ij) =  if there is no path between i and j).  

In Figure 2 we have depicted the 3-player case where (i) for c <  (1 – ), the 
complete network (g7 in Figure 2) is the unique pairwise stable network and {g7} is 
the pairwise myopically stable set, (ii) for  (1 – ) < c < , the star networks 
(g4, g5, g6 in Figure 2) are pairwise stable and {g4, g5, g6} is the pairwise myopically 
stable set, and (iii) for c > , the empty network is the unique pairwise stable 
network and {g0} is the pairwise myopically stable set.  

Applying our concept of pairwise farsightedly stable sets to the symmetric 
connections model with three players, we obtain that a network g is pairwise 
stable if and only if {g} is a pairwise farsightedly stable set. First we consider the 
case c <  (1 –  ). It holds that F(g0) = {g1, g2, g3, g4, g5, g6, g7}, F(g1) = {g4, g5, g6, g7}, 
F(g2) = {g4, g5, g6, g7}, F(g3) = {g4, g5, g6, g7}, F(g4) = {g5, g6, g7}, F(g5) = {g4, g6, g7}, F(g6) = 
{g4, g5, g7}, and F(g7) = . Now it follows by Corollary 1 that {g7} is the unique 
pairwise farsightedly stable set.  
 

 

Figure 2. The symmetric connections model with three players 
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Next we consider the case  (1 – ) < c < . It holds that F(g0) = {g1, g2, 
g3, g4, g5, g6}, F(g1) = {g4, g5, g6}, F(g2) = {g4, g5, g6}, F(g3) = {g4, g5, g6}, F(g4) = {g5, g6}, 
F(g5) = {g4, g6}, F(g6) = {g4, g5}, and F(g7) = {g4, g5, g6}.  

By a repeated application of Theorem 4, it follows that {g4}, {g5}, and {g6} are 
pairwise farsightedly stable sets.  

Finally, we examine the case c > . One may verify that F(g0) = , F(g1) = {g0}, 
F(g2) = {g0}, F(g3) = {g0}, F(g4) = {g0, g1, g2},  F(g5) = {g0, g1, g3}, F(g6) = {g0, g2, g3}, and 
F(g7) = {g0, g1, g2, g3, g4, g5, g6}. It follows by Corollary 1 that {g0} is the unique 
pairwise farsightedly stable set. 

 
EXAMPLE 3 – Co-author model (Jackson and Wolinsky, 1996). Each player is a 
researcher who spends time writing papers. If two players are connected, then 
they are working on a paper together. The amount of time researcher i spends on 
a given project is inversely related to the number of projects, ni, that he is involved 
in. Formally, player i’s payoff is given by 
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for ni > 0. For ni = 0 we assume that Yi(g) = 0. In Figure 3 we have depicted the 3-
player case. It is easily verified that the complete network g7 is the unique pairwise 
stable network. Moreover, it is easy to demonstrate that the pairwise myopically 
stable set is {g7}.  
No singleton set is pairwise farsightedly stable in Example 3. Indeed, there is no 
network such that there is a farsighted improving path from any other network 
leading to it. More precisely, F(g0) = {g1, g2, g3, g4, g5, g6}, F(g1) = {g4, g5}, F(g2) ={g4, g6}, 
F(g3) = {g5, g6}, F(g4) = {g7}, F(g5) = {g7}, F(g6) = {g7}, and F(g7) = . However, a set 
formed by the complete and two star networks is a pairwise farsightedly stable set 
of networks. The pairwise farsightedly stable sets are {g4, g5, g7}, {g4, g6, g7}, 
{g5, g6, g7}, and {g1, g2, g3, g7} in the co-author model with three players. 

 

 

Figure 3. The co-author model with three players 
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7. Efficiency and Farsighted Stability 
 

We now turn to the question of the relationship between farsighted stability and 
efficiency of networks. A first result is that the set of pairwise farsightedly stable 
networks and the set of strongly efficient networks, those which are socially 
optimal, may be disjoint for all allocation rules that are component balanced and 
anonymous.10 

 
Theorem 6. There exists a value function such that for every component balanced and 
anonymous rule, strongly efficient networks are not included in any of the pairwise 
farsightedly stable sets.  

 
Proof. Take the following value function defined for any g  : v({12, 13, 23}) = 9, 
v({12, 13}) = 0, v({12, 23}) = 0, v({13, 23}) = 0, v({12}) = 8, v({13}) = 8, v({23}) = 8, 
and v() = 0. Fix any component balanced and anonymous allocation rule Y. 
Then, by component balance and anonymity,  

(i) Y1({12, 13, 23}, v) = Y2({12, 13, 23}, v) = Y3({12, 13, 23}, v) = 3,  
(ii) Y1({12, 23}, v) = c, Y3({12, 23}, v) = c, Y2({12, 23}, v) = –2c, Y2({12, 13}, v) = c, 

Y3({12, 13}, v) = c, Y1({12, 13}, v) = –2c, Y1({13, 23}, v) = c, Y2({13, 23}, v) = c, 
Y3({13, 23}, v) = –2c,  

(iii) Y1({12}, v) = Y2({12}, v) = 4, Y3({12}, v) = 0, Y1({13}, v) = Y3({13}, v) = 4, 
Y2({13}, v) = 0, Y2({23}, v) = Y3({23}, v) = 4, Y1({23}, v) = 0, and  

(iv) Y1(, v) = Y2(, v) = Y3(, v) = 0.  

The unique strongly efficient network is {12, 13, 23}. We have:  

(i) F() = {{12}, {13}, {23}, {12, 13, 23}};  
(ii) F({12}) = {{13}, {23}}, F({13}) = {{12}, {23}}, F({23}) = {{12}, {13}};  
(iii) For c < 3, F({12, 13}) = {{12}, {13}, {23}, {12, 13, 23}}, for 3 ≤ c < 4, 

F({12, 13}) = {{12}, {13}, {23}}, and for c ≥ 4, F({12, 13}) = {{12}, {13}}. Next, for 
c < 3, F({12, 23}) = {{12}, {13}, {23}, {12, 13, 23}}, for 3 ≤ c <4, F({12, 23}) = {{12}, 
{13}, {23}}, and for c ≥ 4, F({12, 23}) = {{12}, {23}}. And, for c < 3, F({13, 23}) = 
{{12}, {13}, {23},  {12, 13, 23}}, for 3 ≤ c < 4, F({13, 23}) = {{12}, {13}, {23}}, and 
for c ≥ 4, F({13, 23}) = {{13}, {23}};  

(iv) For c < 3, F({12, 13, 23}) = {{12}, {13}, {23}, {12, 13}, {12, 23}, {13, 23}}, for 
c ≥ 3, F({12, 13, 23}) = {{12}, {13},  {23}}.   
 
Thus, {{12}}, {{13}}, and {{23}} are the only pairwise farsightedly stable sets.      
 

                                                           
10  Bhattacharya (2005) has obtained a similar result with respect to the notion of the largest consistent set. 
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A second result considers the case where there is a network that strictly 
Pareto dominates all other networks. That is, if there is a network g such that for 
all g   \{g} it holds that, for all i, Yi(g, v) > Yi(g , v). Although the network that 
strictly Pareto dominates all others is pairwise stable, there might be many more 
pairwise stable networks. We will show in Section 8 that also the concept of the 
largest pairwise consistent set suffers from a similar defect. The following result 
asserts that pairwise farsighted stability singles out the Pareto dominating 
network as the unique pairwise farsightedly stable set.  

Theorem 7. If there is a network g that strictly Pareto dominates all other networks, then {g} 
is the unique pairwise farsightedly stable set.  

Proof. It is immediate that g  F(g ) for all g   \{g} and that F(g) = . Corollary 
1 leads to the desired result.       

We next provide sufficient conditions on the allocation rule and/or the value 
function such that there is no conflict between strong efficiency and farsighted 
stability.  

An immediate application of Theorem 7 is the case of increasing returns to 
link creation as defined in Dutta et al. (2005). This property requests that along 
every nested sequence of increasingly connected networks, there is a threshold 
network for which the value turns nonnegative, and both aggregate as well as 
payoffs of individuals who form extra links then increase as the network becomes 
even larger. Under this condition, and with a componentwise egalitarian 
allocation rule, g N Pareto dominates all other networks, so Theorem 7 applies.  

An allocation rule is said to be egalitarian if for every v  V and g  , 
Yi(g, v) = v(g)/n. The following result follows as a corollary to Theorem 7.  

Corollary 2. Suppose that Y is the egalitarian rule and there is a unique strongly efficient 
network g e. Then, {g e} is the unique pairwise farsightedly stable set.  

8. The von Neumann-Morgenstern Pairwise Farsightedly Stable Set 
 

The pairwise farsightedly stable set requires deterrence of external deviations, 
external stability, and minimality. The von Neumann-Morgenstern stable set (von 
Neumann and Morgenstern, 1953) imposes internal and external stability. 
Incorporating the notion of farsighted improving paths into the original definition 
of the von Neumann-Morgenstern stable set, we obtain the von Neumann-
Morgenstern pairwise farsightedly stable set.  

Definition 5. The set G is a von Neumann-Morgenstern pairwise farsightedly stable set 
if (i) g  G, F(g)  G =  and (ii) g   \G, F(g )  G ≠ .  
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Von Neumann-Morgenstern pairwise farsightedly stable sets do not always 
exist. Consider the situation where three players can form links and where the 
payoffs are given in Figure 4. We have F(g0) = F(g7) = {g1, g2, g3, g4, g5, g6}, F(g1) = 
{g2, g3}, F(g2) = {g3, g4, g5}, F(g3) = {g4, g5}, F(g4) = {g1, g5, g6}, F(g5) = {g1, g6}, F(g6) = 
{g1, g2, g3}. We prove that there is no von Neumann-Morgenstern pairwise 
farsightedly stable set. Suppose on the contrary that G is a von Neumann-
Morgenstern pairwise farsightedly stable set. Suppose g1  G. The internal stability 
condition implies that no other network can belong to G. Since F(g2)  {g1} =  it 
follows that external stability is violated, a contradiction. As a consequence, 
g1  G. A symmetric argument leads to the result that g3  G and g5  G. Suppose 
now that g2  G. The internal stability condition implies that no other network 
can belong to G. Since F(g5)  {g2} =  it follows that external stability is violated, 
a contradiction. By symmetry it follows that g4  G and g6  G. Suppose g0  G. 
Internal stability implies that no other network can belong to G. Since F(g1)  
{g0} = , it follows that external stability is violated, a contradiction. By a similar 
argument we can show that g7  G. The only remaining possibility is G  =  . This 
clearly violates external stability. Thus, there is no von Neumann-Morgenstern 
pairwise farsightedly stable set in this example. However, pairwise farsightedly 
stable sets do exist by virtue of Theorem 3. The pairwise farsightedly stable sets are 
{g1, g2, g3}, {g3, g4, g5}, and {g1, g5, g6}.  

From Theorem 3 we immediately obtain the following corollary, which states 
that a von Neumann-Morgenstern pairwise farsightedly stable set is also a 
pairwise farsightedly stable set. 

 
Corollary 3. If G is a von Neumann-Morgenstern pairwise farsightedly stable set, then G is 
a pairwise farsightedly stable set.  
 

Since internal stability is automatically satisfied when a set of networks 
contains only one element, Theorem 4 leads to the following corollary.  

 

 
Figure 4. Non-existence of von Neumann-Morgenstern pairwise farsightedly stable sets 

 

0 0 1

10

Pl.1 

Pl.2 

Pl.3 

g0 g1 g2 g3 

g7 g6g5g4 

1 

2 0 11 1 

4 2

4

0 1 1 0

0 0 0 42 1



 

309 
·················· 
Coalitions and Networks 

Coalitions and Networks Chap 11 

Corollary 4. The set {g} is a pairwise farsightedly stable set if and only if it is a von 
Neumann-Morgenstern pairwise farsightedly stable set.  

 
From Theorem 5 and Corollary 3 we immediately get the next result, which 

implies the converse of Corollary 3, a unique pairwise farsightedly stable set is also 
a von Neumann-Morgenstern pairwise farsightedly stable set.  

 
Corollary 5. If G is the unique pairwise farsightedly stable set, then G is the unique von 
Neumann-Morgenstern pairwise farsightedly stable set.  

 
We have shown that replacing the internal stability condition in the von 

Neumann-Morgenstern pairwise farsightedly stable set by deterrence of external 
deviations and minimality, leads to a stability concept that contains the von 
Neumann-Morgenstern pairwise farsightedly stable set, and is always non-empty.  
 
EXAMPLE 1 – Criminal networks, n = 3 (continued). Since {g7} is the unique pairwise 
farsightedly stable set, Corollary 4 shows that {g7} is the unique von Neumann-
Morgenstern pairwise farsightedly stable set.  

 
EXAMPLE 3 – Co-author model (continued). By Corollary 3 we have to analyze whether 
any of the pairwise farsightedly stable sets is a von Neumann-Morgenstern 
pairwise farsightedly stable set. The unique von Neumann-Morgenstern pairwise 
farsightedly stable set is given by {g1, g2, g3, g7}. The other pairwise farsightedly 
stable sets {g4, g5, g7}, {g4, g6, g7}, {g5, g6, g7}, are not von Neumann-Morgenstern 
pairwise farsightedly stable sets because they do not satisfy the internal stability 
condition.  

 
9. The Largest Pairwise Consistent Set 

 
In this section we study the relationship between pairwise farsighted stability and 
the largest pairwise consistent set, a concept that has been defined in Chwe 
(1994) for general social environments. By considering a network as a social 
environment, and by allowing only pairwise deviations, we obtain the definition of 
the largest pairwise consistent set.  

 
Definition 6. G is a pairwise consistent set if g  G,  

 
(ia) ij  g, g   G, where g  = g + ij or g   F(g + ij)  G, such that Yi(g , v) < 

Yi(g, v) or Yj(g , v) < Yj(g, v) or (Yi(g , v), Yj( g , v)) = (Yi(g, v), Yj(g, v)),  
(ib) ij  g, g , g   G, where g  = g – ij or g   F(g – ij)  G, and g  = g – ij or 

g ′  F(g – ij)  G, such that Yi(g , v) ≤ Yi(g, v) and Yj( g , v) ≤ Yj(g, v).  
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The largest pairwise consistent set is the pairwise consistent set that contains 
any pairwise consistent set.  

The set G is a pairwise consistent set if both external and internal deviations 
are deterred. The largest pairwise consistent set is the set that contains any 
pairwise consistent set. It follows from the results in Chwe (1994) that the largest 
pairwise consistent set exists, is non-empty, and satisfies external stability.  

Our pairwise farsightedly stable sets need not be consistent in the sense of 
Chwe (1994) since we do not require internal deviations to be deterred. Moreover 
a pairwise consistent set does not necessarily satisfies the external stability 
condition. Only the largest pairwise consistent set is guaranteed to satisfy external 
stability.  

Whenever G is a von Neumann-Morgenstern pairwise farsightedly stable set, 
G is also a pairwise farsightedly stable set (Corollary 3) and a largest pairwise 
consistent set (see Chwe, 1994). Replacing the internal and external stability 
conditions of the von Neumann-Morgenstern pairwise farsightedly stable set by 
the conditions that internal and external deviations should be deterred, Chwe 
(1994) has proposed a stability concept that always exists and that contains the 
von Neumann-Morgenstern pairwise farsightedly stable set. In this paper, replacing 
the internal stability condition by the condition that external deviations should be 
deterred and the minimality condition, we propose another stability concept that 
also contains the von Neumann-Morgenstern pairwise farsightedly stable set.  

Chwe (1994) provides the following iterative procedure to find the largest 
consistent set. Let Z 0  . Then, Z k (k = 1,2,…) is inductively defined as follows: 
g  Z k – 1 belongs to Z k with respect to Y and v if  

 
(ia) ij  g, g   Z k – 1, where g  = g + ij or g   F(g + ij) such that Yi(g , v) < 

Yi(g, v) or Yj(g , v) < Yj(g, v) or (Yi(g , v), Yj(g , v)) = (Yi(g, v), Yj(g, v)).  
(ib) ij  g, g , g   Z k – 1, where g  = g – ij or g   F(g – ij), and g  = g – ij or 

g   F(g – ij), such that Yi(g , v) ≤ Yi(g, v) and Yj(g , v) ≤ Yj(g, v).   
 
The largest pairwise consistent set is given by k ≥ 1 Z k. That is, a network 

g  Z k – 1 is stable (at step k) and belongs to Z k, if all possible pairwise deviations 
are deterred. Consider a pairwise deviation from g that involves making the link ij. 
There might be further pairwise deviations which end up at g , where g + ij  g . If 
either i or j is worse off at g  or both are equally well off compared to the original 
network g, then the pairwise deviation is deterred. Similarly for a pairwise deviation 
from g that involves deleting the link ij. There might be further pairwise deviations 
which end up at g  and g  where g – ij  g  and g – ij  g . If i is equally well or 
worse off at g  and j is equally well or worse off at g ′ compared to the original 
network g, then the pairwise deviation is deterred. Since  is finite, there exists 
m  N such that Z k = Z m for all k ≥ m, and Z m is the largest pairwise consistent set. 
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The next result states that if a network is not in the largest pairwise consistent 
set, it cannot be a pairwise farsightedly stable set of networks.  

 
Theorem 8. If {g} is a pairwise farsightedly stable set, then g belongs to the largest pairwise 
consistent set.  

 
Proof. Since {g} is a pairwise farsightedly stable set we have that for all ij  g: 
g  F(g + ij) and for all ij  g : g  F(g – ij). So g  Z 1. By induction, g  Z k for 
k ≥ 1. So, g belongs to the largest pairwise consistent set.      

 
Remember that two networks g and g  are adjacent if they differ by one link. 

The value function v and allocation rule Y exhibit no indifference if for any g and g  
that are adjacent either g defeats g  or g  defeats g.  

 
Theorem 9. Suppose that Y and v exhibit no indifference. If g is pairwise stable then it 
belongs to the largest pairwise consistent set.  

 
Proof. Since Y and v exhibit no indifference, we have that a pairwise stable network 
g defeats (i) g + ij for all ij  g and (ii) g – ij for all ij  g. Thus, g  F(g + ij) and 
g  F(g – ij). So g  Z 1. By induction g  Z k for k ≥ 1. So, g belongs to the largest 
pairwise consistent set.      

 
We claimed in Section 7 that even if there is a network that strictly Pareto 

dominates all other networks, the largest pairwise consistent set may contain 
other networks. It is not difficult to construct examples where the no indifference 
property holds, and some network strictly Pareto dominates all others. Moreover, 
such an example can be constructed such that inefficient networks are pairwise 
stable. It then follows from Theorem 9 that such a network also belongs to the 
largest pairwise consistent set. By virtue of Theorem 7, such a network does not 
belong to any pairwise farsightedly stable set.  

Let us calculate the largest pairwise consistent set in two examples. 
 

EXAMPLE 1 – Criminal networks, n = 3,  < 3/2 (continued). We apply the iterative 
procedure of Chwe (1994) to find the largest pairwise consistent set. We start 
with Z 0 = {g0, g1, …, g7}.  

Starting in g0, players 1 and 2 can add the link {1,2} to move to g2. The 
indirect dominance relation implies that from there it is only possible to end up in 
g1, g3, or g7. In all these networks both players have at least the same payoffs as in 
g0, and at least one player has strictly higher payoffs. It follows that g0  Z 1. Any 
deviation from g1 may lead back to g1 and is thereby deterred, so g1  Z 1. By 
symmetry it holds that g2, g3  Z 1. Starting in g4, players 2 and 3 can add the link 
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{2, 3}, resulting in g7. Since F(g7) =  and both players have higher payoffs in g7 
than in g4, we find that g4  Z 1. By symmetry it holds that g5, g6  Z 1. Any 
deviation from g7 may lead back to g7 and is thereby deterred, so g7  Z 1. The 
same arguments can be used to show that Z 2 = Z 1. It follows that the largest 
pairwise consistent set equals {g1, g2, g3, g7}.  

Theorem 8 implies that g7 belongs to the largest pairwise consistent set. This 
example therefore demonstrates that the largest pairwise consistent set may 
contain other networks too.  

 
EXAMPLE 3 – Co-author model (continued). We apply the iterative procedure of Chwe 
(1994) to find the largest pairwise consistent set. We start with Z 0 = {g0, g1, …, g7}. 
Starting in g0, players 1 and 2 can add the link {1,2} to move to g2. The indirect 
dominance relation implies that from there it is only possible to reach g4 or g6. In 
all these networks, players 1 and 2 have higher payoffs than at g0. It follows that 
g0  Z 1. Starting in g4, players 2 and 3 will add a link to move to g7. Since 
F(g7) = , no further moves will occur. Players 2 and 3 have higher payoffs at g7 
than at g4. It follows that g4  Z 1. For similar reasons, g5  Z 1 and g6  Z 1. It can 
be verified that Z 1 = {g1, g2, g3, g7}.  

We show next that Z 2 = {g1, g2, g3, g7}. Starting in g1, players 1 and 2 may add 
a link to go to g4, a network not in Z 1. From g4 the indirect dominance relation 
dictates a move to g7. In g7 player 1 is worse off than in g1. It follows that no link 
will be added by them to g1. Repeating such arguments, it can be shown that 
Z 2 = {g1, g2, g3, g7} = Z k for all k ≥ 2. It follows that the largest pairwise consistent 
set equals {g1, g2, g3, g7}.  

Since the assumptions of Theorem 9 are satisfied in this example, it follows 
that g7 belongs to the largest pairwise consistent set. The example shows that the 
largest pairwise consistent set may contain other networks too.  

 
Table 1 summarizes our findings in Example 1 with n = 3 and  < 3/2 and 

Example 3.  
 
Table 1. The (no)-relationships among solution concepts for network stability 
 

Concept Example 1 Example 3 

Pairwise myopically stable set {g1, g2, g3, g7} {g7} 

Pairwise farsightedly stable set {g7} {g4, g5 ,g7},{g4, g6, g7}, {g5, g6, g7},{g1, g2, g3, g7} 

vN-M farsighted stable set {g7} {g1, g2, g3 ,g7} 

Largest pairwise consistent set {g1, g2, g3, g7} {g1, g2, g3, g7} 
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10. Conclusion 
 

We have proposed a new concept, the pairwise farsightedly stable set, to predict 
which networks may be formed among farsighted players. A set of networks G is 
pairwise farsightedly stable (i) if all possible pairwise deviations from any network 
g  G to a network outside G are deterred by the threat of ending worse off or 
equally well off, (ii) if there exists a farsighted improving path from any network 
outside the set leading to some network in the set, and (iii) if there is no proper 
subset of G satisfying conditions (i) and (ii). We have shown that a pairwise 
farsightedly stable set always exists and we provide a full characterization of 
unique pairwise farsightedly stable sets of networks. As a corollary we have given 
the necessary and sufficient condition such that a unique pairwise farsightedly 
stable set consisting of a single network exists. We have found that the pairwise 
farsightedly stable sets and the set of strongly efficient networks may be disjoint. 
Nevertheless, contrary to other pairwise concepts, if there is a network that Pareto 
dominates all other networks, then that network is the unique prediction of 
pairwise farsighted stability. We have also been able to provide some conditions 
on the allocation rule and the value function such that pairwise farsighted stability 
singles out the strongly efficient network. Finally, we have studied the relationship 
between pairwise farsighted stability and other concepts such as pairwise myopic 
stability, the von Neumann-Morgenstern pairwise farsightedly stable set, and the 
largest pairwise consistent set. When there is a unique pairwise farsightedly stable 
set, then its elements are also pairwise stable. Pairwise stable networks belong to 
the largest pairwise consistent set when a mild no indifference criterion is 
satisfied. Moreover, any von Neumann-Morgenstern pairwise farsightedly stable 
set is also a pairwise farsightedly stable set. A pairwise farsightedly stable set 
consisting of a unique element is also a von Neumann-Morgenstern pairwise 
farsightedly stable set. If there is a unique pairwise farsightedly stable set, then it is 
also the unique von Neumann-Morgenstern pairwise farsightedly stable set. By 
means of examples we have shown that there is no general relationship between 
(i) pairwise farsightedly stable sets and pairwise myopically stable sets and (ii) 
pairwise farsightedly stable sets and largest pairwise consistent sets.  
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This paper evaluates with numerical computations the respective merits of two 
competing notions of coalition stability in the standard global public goods model of 
climate change. To this effect it uses the CWS integrated assessment model. After a 
reminder of the two game theoretical stability notions involved – core-stability and 
internal-external stability – and of the CWS model, the former property is shown to 
hold for the grand coalition if resource transfers of a specific form between countries are 
introduced. The latter property appears to hold neither for the grand coalition nor for 
most large coalitions whereas it is verified for most small coalitions in a weak sense that 
involves transfers. Finally, coalitions, stable in either sense, that perform best in terms of 
carbon concentration and global welfare are always heterogeneous ones. Therefore, if 
coalitional stability is taken as an objective, promoting small or homogeneous coalitions 
is not to be recommended. 

 
 
 
1. Introduction 

 
The global public good character of combating the effects of climate change requires 
voluntary cooperation amongst countries if any improvement upon the laissez faire 
business-as-usual is sought for. Such cooperation, institutionalized in international 
environmental treaties, consists in joint actions decided and implemented by the 
signatory countries. Negotiated under the United Nations Framework Convention on 
Climate Change (UNFCCC), the Kyoto Protocol represents the first legally binding 
agreement on climate. As such, it is now considered as a decisive step. However it 

                                                           
 The authors wish to thank Johan Eyckmans for the collaboration under the CLIMNEG project. This paper is 
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is widely acknowledged that, in order to be environmentally effective, post-Kyoto 
agreements should include more countries and yield stronger carbon emission 
abatement. This twin issue (which countries and how much more abatement?) is 
at the heart of the on-going negotiation process that currently prepares, under the 
UNFCCC, for the post 2012 world climate regime. 

Calling a ‘coalition’ any set of countries thus joining their efforts against 
climate change, an abundant literature has developed over the last 15 years 
dealing with the issue of the likeliness of ‘stable’ climate coalitions. In that 
literature, two stability concepts are competing: the core-stability and the 
internal-external stability.1 An early summary of that competition was reported in 
Tulkens (1998) with an update in Chander and Tulkens (2009). In brief, the core-
stability concept focuses on strategies chosen by the members of the grand 
coalition, which gather all countries. By contrast, the internal-external stability 
focuses on strategies chosen by any coalitions of any size, and evaluates the 
benefits for each country of being inside or outside these coalitions.2 Formal 
definitions are provided in Section 2.2 below. Up to now, the confrontation of the 
two concepts has been exclusively in terms of their logical properties. 

In this paper we wish to make the confrontation at the level of an 
application, and discuss some policy implications. For that purpose we make use 
of a dynamic numerical integrated assessment model, namely the ClimNeg World 
Simulation (henceforth CWS) model, which lends itself to proceed fairly easily to 
the comparison we are interested in. Such a numerical approach of the coalitional 
stability problem has been initiated in Eyckmans and Tulkens (2003), who 
actually introduced the CWS model and used it to explore one of the two 
conceptual approaches just mentioned. This was followed and pursued in Carraro 
et al. (2006), who explored with CWS the other approach.3 By putting together 
these two explorations with an updated version of the CWS model, the present 
paper presents an explicit comparison, with the purpose of bringing to light the 
properties of potential coalitions in three respects: stability, climate performance 
and global welfare. 

The contribution of our paper is twofold. First, it is methodological. By testing 
on the same integrated assessment model the two alternative game theoretic 
stability concepts, we better show their respective merits, most typically in terms 
of existence of stable coalitions in either sense. Second, the paper contributes to 
the policy debate. Assessing the properties of alternative climate coalitions in a 
concrete numerical context gives a powerful justification for recommendations as 
                                                           
1  One of the two concepts is often assimilated with ‘self enforcement’ (of treaties signed by members of stable 

coalitions), as suggested initially by Barret (1994) and elaborated upon in Barret (2003). Actually, this 
attractive expression applies equally well to both stability concepts. There is thus no gain in using it here. 

2  In the literature it is sometimes referred to the latter as the cooperative approach and to the former as the 
non-cooperative approach, see e.g. Bréchet and Eyckmans (2010). 

3  There exist some other works that also use game theory, e.g. Bernard et. al. (2008) or Yang (2008). 
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to the size and nature (versus heterogeneity) of possible climate coalitions. 
Moreover, by showing explicitly which transfers among countries are appropriate 
to stabilize efficient coalitions, the paper also identifies a way of widening the 
scope of negotiations that the success of the Montreal Protocol has confirmed. 

The paper is organized as follows. After this introduction, Section 2 presents 
the reader with the basic game theoretic concepts of coalition stability that we 
wish to put to a test. Section 3 presents the CWS integrated assessment model, 
including its calibration. Section 4 contains the main numerical results on the two 
alternative stability concepts when applied to the CWS model, and Sections 5 and 
6 comment on the issues of homogeneity vs heterogeneity, aggregate welfare and 
environmental performance of alternative coalitions. Some sensitivity analyzes 
presented in Section 7 show the robustness of our results and the concluding 
Section 8 summarizes our main findings and derives their policy implications. 

 
2. The Conceptual Framework 

 
2.1 The climate-economic model and its associated games 
The methodology we are using requires to make precise the relationship between 
the climate-economic model (CWS) and the games to which the alternative 
stability concepts are applied. In this section we deal with the game theoretic 
concepts while the economic model will be described in Section 3. 

Two categories of games are involved, namely cooperative and non-
cooperative ones. In either case the players are the countries, each player’s 
strategies are the values chosen for the economic decision variables and the 
players payoffs are the countries’ welfare level at the end of that period. A family 
of n such strategies, one for each player, defines what we call in the following 
section a scenario. Among the many conceivable ones we shall deal with (i) the 
Nash equilibrium scenario, (ii) various scenarios of partial agreement Nash 
equilibrium with respect to given coalitions, and (iii) the Pareto efficient scenario. 

Non-cooperative games are those that consider strategies enacted by 
individual players; they lead essentially to the Nash equilibrium concept. 
Cooperative games, by contrast, typically consider in addition the strategies 
chosen jointly by groups of players, usually called coalitions, that is, subsets of 
players (including singletons and the all players set). In either case the behavioral 
assumption is made that the strategy chosen by individual players as well as the 
strategies chosen jointly by coalitions result from payoff maximization over some 
feasible set: the individual payoffs in the non-cooperative setting, the joint payoffs 
of the coalition members in the cooperative setting, this joint payoff being called 
the worth of the coalition.4 

                                                           
4  We deal only with transferable utility (TU) games, for two reasons. On the one hand, at the theoretical 
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2.2 The stability concepts 
The two approaches of the stability of a coalition rest on different views when 
applied to international environmental agreements. The core-stability approach 
assumes that, if one or several countries attempt to free-ride on an efficient 
agreement with transfers, the other countries do not cooperate among themselves 
anymore, so as to make the free rider(s) see that their country is better off by not 
free riding. This threat is what induces stability. In the internal-external stability 
approach, stability of an agreement within a coalition obtains if no individual 
country attempts to free ride on it, assuming that free riding does not prevent the 
other countries from keeping cooperation among themselves. 

 
2.2.1 ‘Gamma core’ stability 
The core-stability theory focuses on strategies chosen jointly by the members of 
the grand coalition, that is, the set N of all players. The behavioral assumption 
mentioned above implies that, in the CWS model, N chooses the Pareto efficient 
scenario. 

This scenario and the grand coalition that generates it are then said to be 
stable in the core sense if the scenario belongs to the core of a suitably defined 
cooperative game, that is, if it is such that (i) no individual player can reach a 
higher payoff by not adopting the strategy assigned to him in the efficient scenario 
and choosing instead the best individual strategy he could find; and (ii) no subset 
of players, smaller than N, can similarly do better for its members, that is, by 
rejecting the strategies assigned to them by the efficient scenario and adopting a 
strategy of their own. Consequently, the grand coalition N is called strategically 
stable and its scenario may rightly be called self enforceable since no coalition can 
find a better one for its members. 

Formally, let i refer to players (i = 1, …, n), Wi denote the payoff of player i. 
S  N denote a coalition, the scalar W(S) be the worth of coalition S and the 
vector W = (W1, …,Wi, …,Wn) denote an imputation.5 The imputation W will be 
said to belong to the core of the cooperative game if the individual payoffs Wi 
satisfy the following property: 

 Property CR: Coalitional rationality    S  N,  i  SWi ≥ W(S) 

Notice that this property implies: 

 Property IR: Individual rationality    i  N,  Wi ≥ W({i}) 

                                                                                                                                        
level, the stability concepts we use have been developed for such games only; on the other hand, only TU 
games are used in applied numerical works such as this one. 

5  An imputation is any vector of individual payoffs Wi such that their sum is equal to the worth of the 
grand coalition, formally: i  NWi = W(N). By construction it is induced by an efficient strategy. 
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To be complete, the formal statement of these two properties should further 
specify what are the players’ strategies implicit in the right hand sides of these 
expressions, namely W({i}) and W(S). In the former, the strategy and the ensuing 
payoff of player i are those of the Nash equilibrium scenario; in the latter, the worth 
of coalition S is the sum of the payoffs obtained by the members of S as they result 
from enacting the joint strategy that maximizes this sum; this is the scenario dubbed 
above partial agreement Nash equilibrium (PANE) with respect to a coalition.6 

 
2.2.2 Internal-external stability 
Rather than focusing on strategies of the grand coalition, the internal-external 
stability theory considers any coalition S and the payoffs of its members at the 
corresponding PANE scenario.7 It then considers the strategies and the resulting 
individual payoffs that can be reached by every player along that scenario 
according to whether he is inside or outside of the coalition.8 Being inside means 
for the player to follow the strategy he is assigned to within the coalition he is a 
member of, whereas being outside means behaving as a singleton, taking as given 
the behavior of the coalition he is not a member of as well as of the other players 
(assumed to behave as singletons too). A coalition S and the PANE scenario it 
generates are then said to be stable in the internal-external sense if the scenario is such 
that no insider prefers to stay out of the coalition and no outsider prefers to join 
the coalition rather than stay aside. Consequently, the coalition S is called stable 
and its PANE scenario self enforceable, not by reference to alternative coalitions as 
in the preceding concept, but instead because of the structure of the individual 
motivations of the players within and outside the coalition. 

Formally, letting Wi(S) denote the individual payoff of player i when coalition 
S is formed, this means that the payoffs satisfy the following two properties:9 

 IS Property (Internal Stability):    i  S,  Wi(S) ≥ Wi(S\{i})  
 ES Property (External Stability):   i  S,  Wi(S) ≥ Wi(S  {i}) 

 

                                                           
6  In a partial agreement Nash equilibrium with respect to a coalition, the coalition members are assumed, as 

usual, to maximize their joint payoffs; but it is assumed in addition – and this is not usual – that the 
players outside of the coalition choose, as singletons, the strategy that maximizes their individual payoff, 
given what the coalition and the other singletons do. The equilibrium concept derived from this 
assumption (called the ‘gamma’ assumption) was introduced in Chander and Tulkens (1995) and (1997) 
as the essential building block of the ‘gamma core’ concept they proposed, which is to be used hereafter. A 
powerful further justification of the assumption is provided in Chander (2008). 

7  Thus, the gamma assumption is used here too. 
8  It is assumed that a player can only either join the coalition or remain alone. 
9  The internal-external stability concept originates in the work of D’Aspremont et al. (1983) and (1986) on 

the stability of cartels and has been imported in the literature on IEAs by Carraro and Siniscalco (1993) 
and Barrett (1994). The way it is presented here – in particular its connection with the PANE concept – 
owes much to Eyckmans and Finus (2004). 
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2.3 Transfer schemes 
It has often been suggested that when a coalition and its strategies are not stable, 
transfers of payoffs (of economic goods, in economic games) between players 
may induce stability. To what extent is this the case for each of the two forms of 
stability just defined? 

In the context of the core-stability theory, transfers were proposed by Chander 
and Tulkens (1995, 1997) for the standard game with multilateral externalities 
used to deal with international environmental agreements. They proved 
analytically that transfers formulated as follows induce the stability property. 

Let Wi
Nash be the payoff of player i at the Nash equilibrium of the non-

cooperative game, that is, in absence of cooperation; and let 

W*(N) = (W1*, ..., Wn*), 

be the payoff vector of the players at the Pareto efficient solution of the 
cooperative game. The transfers consist of the following payoff amounts (positive 
if received, negative if paid by i): 

,...,,)*()*( 



Nj

Nash
j

Nj
ji

Nash
iii niWWWW 1  (1) 

with i ≥ 0 i such that i i = 1. 
These transfers guarantee that each player receives a payoff at least equal to 

what it is in case of no cooperation and it divides the surplus of cooperation over 
non-cooperation according to weights i. In the multilateral environmental model, 
each weight is equal to the ratio of player i’s marginal damage cost over the sum 
over all players of such marginal damage costs. With these weights, the payoff 
vector,10 given by 

W*(N) + n =def (W1* + 1, ..., Wn* + n), 

is shown by Chander and Tulkens (1995, 1997) to belong to the core of the game. 
The internal-external stability theory proposes no specific transfer formula 

but introduces instead, in Eyckmans and Finus (2004), the notion of potentially 
internally stable coalitions. A coalition (of any size) is potentially internally stable if it 
can guarantee to all its members at least their free-rider payoff. For a given a 
coalition, the free-rider payoff of any of its members is the payoff the member 
would obtain in the PANE scenario w.r.t. that coalition if he would stay out and 
behave as a singleton in the face of that coalition. 

Formally, for any coalition S, this reads as follows: 

                                                           
10 That W *(N) + n is an imputation follows from the fact that (1) implies i  Ni = 0, i.e. the transfers 

budget balances. 
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 PIS Property (Potential Internal Stability):   W(S) ≥  i  SWi(S\{i}) 

The free rider payoff of a player i vis-à-vis some coalition S – that is, each term 
of the sum in the right hand side of the equation – may be seen as the minimum 
payoff player i requires to remain a member of the coalition. Coalitions whose 
worth under their PANE is large enough to meet this requirement for all their 
members can thus be stabilized at least internally.11 

 
3. The ClimNeg World Simulation model (CWS) 

 
3.1 Overview of the model 
The ClimNeg World Simulation model (CWS) is a dynamic integrated assessment 
model of climate change and optimal growth, adapted for coalitional analysis from 
Nordhaus and Yang (1996). It encompasses economic, climatic and impact 
dimensions in a worldwide intertemporal setting. As a Ramsey-type model, growth 
is driven by population growth, technological change and capital accumulation. The 
time dimension is discrete, indexed by t, finite, but very long. The world is split into 
six countries/regions: USA, Japan, Europe,12 China, the Former Soviet Union and the 
Rest of the World.13 In each country/region14 i = 1, ..., n gross output is given by a 
Cobb-Douglas production function combining capital and population. Population 
is exogenous. Capital accumulation comes from (endogenous) gross investment less 
(exogenous) scrapping. Technical progress is Hicks-neutral. Carbon emissions stem 
from global output with an emission coefficient which can be reduced by national 
policies, ti , = (1 – μi,t)i,t, where μi,t  (0,1) stands for the carbon abatement rate 
and i,t is the exogenous carbon intensity of the economy. Abatement costs are given 
by an increasing and convex cost function Ci(μi,t). Carbon emissions accumulate in 
the atmosphere. Concentration, through a simplified carbon cycle, yields a global 
mean temperature, expressed as temperature change with respect to pre-industrial 
level, Tt. The impacts of global warming in each country are considered through 
damage cost functions Di(Tt), increasing and convex. Thus, consumption is given 
by the gross output minus investment, abatement costs and damage costs, 
Zi, t = Yi, t – Ii, t – Ci(μi, t) – Di(Tt). The welfare of each country is measured as the 
aggregate discounted consumption until the end of the simulation period. 

                                                           
11  By using the expression of ‘Sharing scheme’ in the title of their paper, Eyckmans and Finus indicate that 

they do not propose a particular solution but are interested instead in identifying a class of sharing rules 
that stabilize all PIS coalitions. 

12  Europe is defined as EU-15. 
13  One may find that having 6 regions is too aggregated. This is true for the ROW where identifying some 

key countries, like India or Brazil would be desirable. But on the other hand it must be noticed that we 
have the key players, and that more players would make this kind of computational analysis non-
manageble. As an example, a 18-region version of the CWS is currently under development: it generates 
about 270,000 PANEs. 

14  For short, we henceforth use only country. 
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The model is used to determine, over the period 2000–2300, paths of 
investment (Iit) and emissions (through the abatement rate μit) over time and, 
consequently, capital accumulation, carbon concentration, temperature change 
and finally consumption, all at the world and country levels. 

This economic model is converted into a six-player dynamic game by letting 
the six countries be the six players, whose strategies are the decision variables Iit 
and μit, i = 1, ..., 6, t = 2010, ..., 2300 (with a 10 year step size), and whose 
individual payoffs are their respective aggregate discounted consumptions until 
the end of the period as they result from capital accumulation, carbon 
concentration and temperature change. 

The players-countries’ strategies are specified according to a number of 
alternative scenarios. First, the Nash equilibrium scenario,15 which is the joint 
outcome of each country maximizing its welfare taking the actions of the others as 
given. Next, the scenarios called Partial Agreement Nash Equilibria with respect to a 
coalition,16 each of which is the outcome of a subset of countries maximizing jointly 
their welfare, while the others act individually (there are as many such scenarios 
considered as there are coalitions, that is, proper subsets of N). And, finally, the 
Pareto efficient scenario where all countries act jointly so as to maximize the world 
welfare. 

The dynamic optimization problems whose solutions are the numerical 
values of each one of these scenarios are stated in Appendix.17 Parameter values as 
well as initial values are gathered there also. The CWS model allows for different 
(exogenous) regional discount rates, namely 1.5% in developed countries and 
3.0% in developing ones. The huge differences among countries in terms of stage 
of development and access to financial markets justify this assumption. Higher 
discount rates for developing countries reflect both a higher degree of impatience 
and less efficient capital markets. 

Finally, transfers between countries are, as in Eyckmans and Tulkens (2003), 
generalized GTT transfers,18 that is, a dynamic extension due to Germain et al. 
(1997) of the Chander and Tulkens (1995, 1997) transfers mentioned above. 

 
3.2 Data set and calibration 
The CWS model is calibrated on standard international databases. The key data 
and parameters value are gathered into the Appendix. All details are available in 
Gerard (2006, 2007). A special attention should be deserved to two key features 

                                                           
15  In the terminology of dynamic non-cooperative games, this is an ‘open loop’ Nash equilibrium. ‘Closed 

loop’ or ‘feedback’ Nash equilibria have also been introduced in dynamic core-stability analysis in 
Germain et al. (2003), albeit with a simpler model. An extension to the CWS model is still awaiting. 

16  These are of open loop nature as well. 
17  The model runs under GAMS. All codes are available from the authors upon request. 
18  The formula, reproduced here as expression A.12 and A.13 in Appendix, is of the same structure as 

equation (1) in the text above. 
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that will have a clear influence on model’s properties: population profiles and 
technological changes. 

For population growth we use the publications of the United Nations, World 
Population to 2300 (2004) and World Population Prospects: The 2004 Revision (2005). 
At this horizon, world population is expected to reach 9 billion people. The time 
profiles of various regions become are contrasted. Europe, Japan and China face a 
peak in their population between 2020 and 2030, or even before, and then 
experience a decline. The population in the Former Soviet Union is expected to 
decrease while it should be increasing in the USA, mainly because of immigration 
and fertility rates. In the Rest of the World, short-term population growth would 
be strong, but followed by a strong slowdown. We assume that, in each country 
population size converges to a steady state value in the long run. 

In the CWS model technological progress encompasses two elements, the 
global factor productivity and the carbon intensity of economic activity. As far as 
the former is concerned, high positive trends are expected for China and the USA, 
while lower progress would occur in Japan, the Former Soviet Union (FSU) and the 
Rest of the World (ROW). The most striking update concerns carbon intensities 
which have exhibited contrasting patterns in the recent years. Our data come from 
the International Energy Agency for carbon emissions and from the World Bank for 
GDP.19 Apparently, stringent industrial adjustments are in place that could yield 
sharp decreases in carbon intensities. This is particularly true for China and FSU. On 
the contrary, recent trends in Japan and ROW suggest slower carbon improvements. 

 
4. Stability Analysis of Coalitions 

 
We now apply the different concepts of coalition stability to the numerical CWS 
model. Given the six regions and the 63 coalitions that can possibly form, 
denoted by S, we compute for each of them its worth WS in the sense of the 
gamma-characteristic function, that is, at a Partial Agreement Nash Equilibrium 
of the model. More precisely, for each S we solve simultaneously the following n –
 s + 1 dynamic optimization problems: 

 for the insider, i  S :    
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t t
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where each Wi is the value of the objective function A.1 of the CWS model as 
stated in Appendix, subject to the constraints A.2-A.11. 

                                                           
19  In fact, we use the Climate Analysis Indicators Tool of the World Resources Institute that gathers data from 

the International Energy Agency and the World Bank. 
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4.1 Core-stability 
Let us focus first on the results for the cooperative approach as they appear in 
Table 1. In this table, the first column contains a six digit key specifying the 
structure of the coalition: if a region is a member of the coalition, it obtains a ‘1’ 
at the appropriate position in the key. For instance, the key ‘111111’ refers to 
S = N = {USA, JPN, EU, CHN, FSU, ROW}. Column 2 contains the worth of a coalition 
(that is the aggregate welfare of its members, W(S)) at its corresponding partial 
agreement Nash equilibrium and column 3 contains the total of what members of 
each coalition get at the efficient allocation, as achieved by the grand coalition 
without transfers (WS* = i  SWi*). Column 4 gives the difference between the 
values of the two previous columns. If this difference is negative, it means that S is 
worse off in the grand coalition. Column 6 gives the total amount of generalized 
GTT transfers for the coalition S (S = i  S i). 

Checking Table 1 reveals two main results. First, without transfers the world 
efficient allocation, which needs the grand coalition to be achieved, is not core-
stable: 18 smaller coalitions (out of 63) can improve upon it. Thus, the grand 
coalition without transfers cannot form. Second, with GTT transfers the world 
efficient allocation becomes core-stable. This result is of particular importance as 
it shows that achieving core stability of the world efficient allocation is possible.  
 
Table 1. Coalitions payoffs at all PANE w.r.t. a coalition (WS

S) and at EFF (WS
*); generalized 

GTT transfers (S) (billion 1990 US$) 
 
key W(S)  WS

*     WS
*–W(S) (%)  ΨS WS

*+ΨS WS
*+ΨS –W(S) (%)   

Coalitions of 1 country 

100000 148266 148946 680 0.459 –312 148633 368 0.248 

010000 30645 30755 110 0.359 –42 30714 68 0.222 

001000 108413 108886 473 0.437 –209 108677 265 0.244 

000100 36156 36064 –92 –0.256 196 36260 104 0.288 

000010 9745 9790 44 0.454 –23 9766 21 0.217 

000001 52326 52107 –219 –0.419 389 52496 170 0.325 

Coalitions of 2 countries 

110000 178914 179701 787 0.440 –354 179347 433 0.242 

101000 256690 257832 1141 0.445 –521 257311 621 0.242 

100100 184488 185009 521 0.283 –116 184893 406 0.220 

100010 158016 158735 720 0.455 –335 158400 384 0.243 

100001 200852 201052 200 0.100 77 201130 277 0.138 

011000 139059 139641 582 0.418 –84 139558 498 0.358 

010100 66804 66819 15 0.023 155 66973 170 0.254 

 (Continued) 
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Table 1 (Continued) 
 
key W(S)  WS

*     WS
*–W(S) (%)  ΨS WS

*+ΨS WS
*+ΨS –W(S) (%)   

010010 40391 40544 154 0.381 –65 40480 89 0.220 

010001 83016 82862 –154 –0.185 348 83210 194 0.233 

001100 144602 144949 348 0.240 –12 144937 335 0.232 

001010 118160 118675 515 0.436 –232 118444 283 0.240 

001001 160901 160993 92 0.057 181 161173 273 0.170 

000110 45902 45853 –49 –0.107 173 46026 124 0.271 

000101 88532 88170 –362 –0.409 586 88756 224 0.253 

000011 62103 61896 –207 –0.333 366 62263 160 0.257 

Coalitions of 3 countries 

111000 287346 288587 1241 0.432 –563 288024 679 0.236 

110100 215156 215764 608 0.283 –158 215607 451 0.209 

110010 188665 189490 825 0.438 –377 189113 448 0.238 

110001 231556 231808 251 0.109 35 231843 287 0.124 

101100 293010 293895 885 0.302 –324 293571 560 0.191 

101010 266446 267621 1175 0.441 –544 267077 631 0.237 

101001 309540 309938 398 0.129 –132 309807 267 0.086 

100110 194248 194799 551 0.284 –139 194660 412 0.212 

100101 237156 237116 –40 –0.017 274 237389 234 0.098 

100011 210630 210842 212 0.101 54 210896 266 0.126 

011100 175264 175705 440 0.251 –54 175651 386 0.220 

011010 148808 149431 623 0.418 –274 149157 349 0.235 

011001 191595 191748 153 0.080 139 191887 292 0.152 

010110 76553 76609 56 0.073 132 76740 187 0.245 

010101 119214 118926 –289 –0.242 544 119469 255 0.214 

010011 92776 92652 –125 –0.134 324 92976 200 0.216 

001110 154358 154739 381 0.247 –35 154704 346 0.224 

001101 197157 197057 –101 –0.051 377 197433 276 0.140 

001011 170672 170782 110 0.065 158 170940 268 0.157 

000111 98294 97960 –334 –0.340 563 98522 228 0.232 

Coalitions of 4 countries 

111100 323695 324650 956 0.295 –366 324284 590 0.182 

111010 297104 298376 1272 0.428 –586 297791 687 0.231 

111001 340268 340694 426 0.125 –173 340520 253 0.074 

110110 224919 225554 635 0.282 –181 225373 454 0.202 

110101 267888 267871 –17 –0.006 232 268103 215 0.080 

110011 241338 241597 259 0.107 12 241609 271 0.112 

101110 302782 303685 903 0.298 –348 303337 555 0.183 

101101 345972 346002 30 0.009 65 346067 95 0.028 
 (Continued) 
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Table 1. Coalitions payoffs at all PANE w.r.t. a coalition (WS
S) and at EFF (WS

*); generalized 
GTT transfers (S) (billion 1990 US$) (Continued) 
 
key W(S)  WS

*     WS
*–W(S) (%)  ΨS WS

*+ΨS WS
*+ΨS –W(S) (%)   

101011 319333 319728 395 0.124 –155 319573 240 0.075 

100111 246948 246905 –43 –0.017 250 247156 208 0.084 

011110 185022 185494 472 0.255 –77 185417 395 0.213 

011101 227875 227812 –64 –0.028 335 228147 272 0.119 

011011 201370 201538 168 0.083 116 201653 283 0.141 

010111 128982 128715 –267 –0.207 521 129236 254 0.197 

001111 206940 206846 –94 –0.046 354 207200 260 0.125 

Coalitions of 5 countries 

111110 333468 334440 971 0.291 –389 334051 582 0.175 

111101 376733 376757 24 0.006 23 376780 47 0.012 

111011 350063 350483 420 0.120 –196 350287 223 0.064 

110111 277685 277661 –25 –0.009 209 277869 184 0.066 

101111 355782 355791 9 0.003 42 355833 51 0.014 

011111 237663 237601 –62 –0.026 312 237913 251 0.105 

Coalitions of 6 countries 

111111 386547 386547 0 0.000 0 386547 0 0.000 

 
4.2 Internal-external stability 
Table 2 presents the results for the non-cooperative approach. The columns refer, 
for the various coalitions, to the three different stability properties [internal (IS), 
external (ES), and potential internal (PIS)] proposed by this approach. A cross in a 
column means that the property is satisfied for the corresponding coalition. We 
summarize the main results as follows, distinguishing again between without and 
with transfers cases: 

 

 Internal and external stability: very few coalitions pass the IS test (8 or 7 of 
them, out of 57).20 In particular, the grand coalition, that is, the one that 
would achieve the world efficient allocation without transfers, does not pass 
it. More coalitions (11 or 15 out of 56 – the grand coalition is irrelevant here) 
pass the ES test. No coalition passes both tests however, except for one, 
namely the couple USA, EU.  

 Potential internal stability: contrary to the IS and ES tests, the PIS test is one 
 that implicitly refers to transfers within the coalitions, with the purpose of 
 inducing internal stability. Here again, the grand coalition does not pass the 

                                                           
20 Here we exclude singletons. 
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Table 2. Non cooperative stability properties satisfied by different coalitions  
 
 

Coalition IS     ES PIS 

USA, JPN   

USA, EU   

USA, CHN   

USA, FSU   

USA, ROW   

JPN, EU   

JPN, CHN   

JPN, FSU   

JPN, ROW   

EU, CHN   

EU, FSU   

EU, ROW   

CHN, FSU   

CHN, ROW   

FSU, ROW    

USA, JPN, EU   

USA, JPN, CHN   

USA, JPN, FSU   

USA, JPN, ROW   

USA, EU, CHN   

USA, EU, FSU   

USA, EU, ROW   

USA, CHN, FSU   

USA, CHN, ROW   

USA, FSU, ROW   

JPN, EU, CHN   

JPN, EU, FSU   

JPN, EU, ROW   

JPN, CHN, FSU   

JPN, CHN, ROW   

JPN, FSU, ROW   

EU, CHN, FSU   

EU, CHN, ROW   

EU, FSU, ROW   

CHN, FSU, ROW    

 

Coalition IS     ES PIS 

USA, JPN, EU, CHN    
USA, JPN, EU, FSU    
USA, JPN, EU, ROW    

USA, JPN, CHN, FSU    
USA, JPN, CHN, ROW    
USA, JPN, FSU, ROW    
USA, EU, CHN, FSU    
USA, EU, CHN, ROW    
USA, EU, FSU, ROW    
USA, CHN, FSU, ROW    
JPN, EU, CHN, FSU    
JPN, EU, CHN, ROW    
JPN, EU, FSU, ROW    
JPN, CHN, FSU, ROW    
EU, CHN, FSU, ROW    

USA, JPN, EU, CHN, FSU    

USA, JPN, EU, CHN, ROW    
USA, JPN, EU, FSU, ROW    
USA, JPN, CHN, FSU, ROW    
USA, EU, CHN, FSU, ROW    
JPN, EU, CHN, FSU, ROW    

GRAND COALITION  irrelevant  

 
Notes:  IS = Internal Stability,  

ES = External Stability,  
PIS = Potential Internal Stability. 
 means that the property is satisfied 

for the coalition. 
 
 

 
test, and only 1 five-country coalition passes the test. However, many smaller 
coalitions do. More precisely, 10 four-country coalitions, out of 15, are PIS, 
and all the three-country and two-country coalitions are. In sum, only 5 
coalitions (out of 63) are not PIS. 
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These results are in line with the main conclusion of the theoretical literature 
on IS-ES stability,21 namely that no large coalitions can be stable in that sense. 
There is however the following novel interest with the present results: as this 
theoretical literature establishes its claim only for simple models with identical 
countries, it is shown here by an example that the thesis may also holds by and 
large in the case of a much more complex economic model and for non identical 
countries. On the question whether transfers can improve that stability, our 
mostly negative results do also confirm those obtained by Eyckmans and Finus 
(2004) and Carraro et al. (2006). 

 
4.3 Core and internal-external stability compared 
Considering the grand coalition N, we can report the following three results: 

 
1. Without transfers, the world efficient allocation, that only the grand coalition 

can achieve, is lacking stability in both the core sense and the internal-
external sense when computed with the CWS model.  

2. By contrast, if transfers are introduced, the world efficient allocation 
achieved by N can be stabilized in the core sense, by means of GTT transfers 
within the grand coalition.  

3. This is not possible in the internal-external sense, i.e. by means of PIS transfers. 
 
The reason for this difference (GTT transfers work while PIS transfers do not) 

is in the logic that lies behind the two stability concepts: in the core case, stability 
of N is obtained from threatening the objecting parties to be deprived of any part 
in the surplus generated by the collective move to efficiency. By construction, this 
is always feasible. In the internal-external stability case, stability results from 
offering each country its free rider payoff; but there is no general assurance that 
this be always feasible: the surplus generated by the move to efficiency may be 
insufficient for ensuring that payoff to all countries. This depends upon 
characteristics of the computational model, such as, e.g. the distance in welfare 
terms between the Nash and Pareto solutions, that is, the size of the surplus. 

As far as coalitions other than N are concerned, none of them can evidently be 
stable in the core sense because it is precisely the meaning of the core result that N 
with transfers can improve upon any of them. Concerning their stability in the 
internal-external stability sense, one finds in Tables 1 and 2 hardly any correlation 
between those coalitions that meet either internal or external stability (coalitions 
with an ‘’ in the IS or ES columns of Table 2) and those which could block in the 
core sense the efficient allocation without transfers (coalitions with a negative sign 

                                                           
21 As initiated by Barrett (1994) and Carraro and Siniscalco (1993); Asheim et al. (2006) is in the same 

spirit. 
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in column 4 of Table 1). In short, this is because the reasons for blocking (which are, 
for the members of S, the hope to do better by themselves) are fundamentally 
different from those for free riding (which are the search for benefit from the others’ 
actions). This last argument also explains why the PIS property prevails better with 
small coalitions: vis-à-vis a small coalition, there is little to free ride about (because 
the coalition does not achieve much), so that the surplus generated can be 
sufficient to deter from such behavior. 

In summary, the core vs internal-external stability concepts have quite 
opposing properties, not only as to the grand coalition, N, but also for smaller 
ones. One concept excludes small coalitions, whereas the other concept can be 
found to be satisfied with small coalitions. 

 
5. Stability versus Performance 

 
Can policy implications be derived from the above stability discussion and 
simulation results? In particular, how important are the coalitional stability 
properties we have identified? Should they serve as an argument to support or 
advocate specific structures for climatic international agreements such as small 
coalitions rather than large ones, or homogeneous rather than heterogeneous ones? 

To answer these questions, let us consider two criteria measuring the global 
outcome resulting from an agreement, that is, 

 
 the aggregate welfare level reached at the world level, 
 the environmental performance achieved, expressed by atmospheric carbon 

concentration. 
 

and consider how these are met by alternative coalition structures. This is done in 
Figure 1 with the numerical results provided by the CWS model. On the two axes 
we use a welfare and an environmental index respectively, that we borrow from 
CEF-06. Both indexes give the value 1 to the world efficient allocation (the grand 
coalition case) that produces the highest aggregate welfare and the lowest carbon 
concentrations, and the value 0 to the non-cooperative Nash case, that depicts 
the lowest aggregate welfare and the highest carbon concentrations. Formally, the 
indexes are computed as follows: 

Welfare index: ,
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where i  NWi(S) and M2300(S) are respectively the aggregate welfare and carbon 
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concentration levels in 2300 under the corresponding coalition structure S, while 
‘*’ refers to the world efficient allocation (full cooperation) and ‘Nash’ refers to 
the Nash case (no cooperation). An increasing relation is obtained with the non-
cooperative Nash equilibrium (lowest global welfare, highest carbon concentration) 
at the bottom left and the grand coalition (highest global welfare, lowest carbon 
concentration) at the top right. 

Remembering that internal stability in its potential form prevails with small 
coalitions while core-stability is achieved only with the largest one, the relation 
also depicts both the welfare and the environmental performances of alternative 
coalition sizes. 

Figure 1 displays many appealing results. First, it shows that different 
coalitions are able to provide similar outcome, either for welfare or environmental 
quality. Put differently, an improvement in the environmental quality does not 
necessarily goes with an improvement in welfare at the world level, and conversely. 
The outcome depends on the coalition. As an example, it is striking to see that a 
coalition formed by three countries, namely {CHN, FSU, ROW}, performs as well as 
a 5-country coalition in terms of environmental quality, namely {USA, JPN, EU, CHN, 
FSU}. Still, the former ranks much higher in terms of global welfare. It shows that a 
smaller coalition may perform better than a larger coalition. This result is even 
reinforced by the fact that the former coalition is internally stable while the latter 
cannot be stabilized. Another striking result is the performance of the Annex B 
coalition: it is almost similar to the Nash equilibrium. 

 

 
Figure 1.  Global outcome (aggregate welfare and the environment) with alternative coalition 

structures  
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Finally, two coalitions are of special interest because of their performance: 
{USA, EU, CHN, ROW} and {USA, JPN, CHN, FSU, ROW}. The former is quite close to 
the grand coalition. The latter is almost at the same welfare performance level but 
with a somewhat lower environmental index. How can this be explained? First, it 
must be noticed that the former can not be stabilized, while the latter is PIS. In 
other words, the former cannot form, while the latter can because it is beneficial 
to all parties. This makes a huge difference between the two in terms of political 
applicability. Second, the latter enlarges the coalition by inviting FSU and JPN, but 
puts the EU outside. By doing so, it makes the coalition PIS. In our model (as well 
as in many integrated models) the EU is known to have large climate damages. As 
a consequence, it asks for strong carbon emission reductions, which is costly for 
all coalition members. By putting the EU outside and inviting FSU and JPN, the 
coalition becomes potentially internally stable, the world welfare level is almost 
the same and the climate is better-off. 

Clearly, accepting or recommending small coalition arrangements because of 
their potential internal stability virtues entails a loss on both counts, that striving 
for an efficient and core stable alternative could avoid. Internal stability thus 
appears to be a weakly desirable objective. 

 
6. Is Coalition Homogeneity Desirable? 

 
A common argument in the climate policy debate is that developed countries 
should engage themselves first, and developing countries would thereafter be 
invited to join the agreement and participate in the mitigation process. Although 
this argument seems reasonable on the ground of historical responsibilities, one 
may question its effectiveness in combating climate change.22 This question has 
been partly addressed by McGinty (2007) who shows that the benefits from 
cooperation are greater when countries are heterogenous. Here, we go one step 
further by linking effectiveness with stability. We shall analyze how the 
composition of a coalition, that is, its degree of homogeneity (which is to be 
defined), affects its stability. 

The regions/countries considered in the CWS model can be split into two 
categories: 

 
 developed-Annex B countries (USA, EU and JPN), with high per capita 

emissions and GDP,  
 developing-non-Annex B countries (CHN and ROW), with low per capita 

emissions and GDP, and low-cost abatement opportunities. 

                                                           
22 This is the principle of ‘common but differentiated responsibilities’ of countries stated in the UN 

Framework Convention. 
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In the following we will talk about an heterogeneous coalition when a coalition is 
formed by countries coming from more than a single category. Conversely, an 
homogeneous coalition will designate a coalition formed by countries from a single 
category. The FSU will move as a free electron in this categorization as it offers the 
characteristics of both a developed country (high emissions per capita) and a 
developing one (low cost abatement opportunities, low GDP per capita). 
Accordingly, our 57 coalitions (excluding singletons) are broken down into 42 
heterogeneous coalitions and 15 homogeneous ones. We examine the relation 
mentioned above, successively without and with transfers 

In the no transfer case, all the 4 homogeneous coalitions involving FSU and 
developing-non-Annex B countries pass the IS test, and the homogenous coalition 
{USA, EU} is both internally and externally stable. On the other hand, 5 of the 7 
internally stable coalitions are homogenous coalitions. Among these 5 
homogenous IS coalitions, only one involve developed countries, USA or EU. The 
two heterogenous IS coalitions include JPN as developed-Annex B country, which 
is the least important emitter of the six regions.23 So it seems that adding a large 
developed country to an homogenous coalition of developing country is 
detrimental to its internal stability. 

It is sometimes argued that, for the sake of effectiveness, the big polluters of 
each category should be included in a coalition. In CWS, the two main polluters 
in each category are USA or EU, on the one hand, and CHN or ROW on the other 
hand. It appears that none of the coalitions involving at least one of these big 
polluters is internally stable. Moreover, none of the coalitions that involve the two 
main emitters of a category and at least one emitter of the other category is 
internally stable. 

When the possibility of transfers is introduced, again stability seems to be 
enhanced by homogeneity. Indeed, it is striking to see that the 5 coalitions that 
are not PIS are all heterogenous ones. Those coalitions are large, as they gather 4 
or 5 countries. Put differently, all the homogenous coalitions can be stabilized, 
but those coalitions are smaller. Interestingly, the Annex B coalition turns out to 
be more stable than the ‘Annex B without the USA’ coalition.24 Indeed, this latter 
coalition does not satisfy the ES property: this means that the United States would 
be better off by coming back to the Annex B coalition. Furthermore, no four-
country (or more) coalitions that involve both the USA and the EU and at least 
one non-Annex B countries pass the PIS test. 

The discussion about homogeneity vs heterogeneity can also be analyzed by 
using Figure 1. One can see that the ‘best’ (in terms of global welfare) 
homogeneous coalition, namely {CHN, FSU, ROW}, leads to far lower global welfare 

                                                           
23 JPN is less important in terms of emissions than USA or EU. 
24  The so-called Present Kyoto coalition in CEF-06. 
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and far higher carbon concentrations than both the ‘best’ heterogeneous 
coalition (the grand coalition) and the ‘best’ heterogeneous coalition satisfying 
the PIS property, that is, {USA, JPN, CHN, FSU, ROW}. As a consequence, promoting 
homogeneous coalitions would lead to very low mitigation policies at the world 
level, unable to tackle climate change issue as heterogeneous (larger) coalitions 
could do. 

In sum, there seems to be a trade-off between stability and environmental 
effectiveness. Homogeneity in climate coalitions fosters stability but is detrimental 
to climate effectiveness. 

 
7. Sensitivity Analyses 

 
The objective of this section is to test to what extent our results are robust to the 
choice of some key parameters. Extensive sensitivity analyses have revealed that 
two assumptions may be key (Gerard, 2006). The first one is the evolution of 
carbon intensity (it in equations of Appendix) in China in the forthcoming years, 
and the second one is the slope of the damage functions in all countries. They will 
be considered in the two first sub-sections. Then, we will pay some attention to 
the update of the CWS model, in particular in terms of carbon intensity profiles 
and population profiles between the version used in ET-03 and the current one. 
The question here is to see if updating the economic part of such a the model can 
alter our conclusions or not. This will be done in a last subsection. Sensitivity 
analyses with respect to the discount rate have not revealed important varying 
results as to the stability of alternative coalitions with respect to this parameter. 

 
7.1 Carbon intensity in China 
China is expected to become the world largest carbon emitter soon, but when 
heavily depends on the assumption made on technological progress. In our 
model, carbon intensity and total factor productivity are calibrated and projected 
on the basis of past profiles, which yields a quite rapid – and optimistic – 
decarbonization of the Chinese economy in the forthcoming decades. As a first 
sensitivity analysis, we reduced the rate of decarbonization by half, while keeping 
the asymptotical value unchanged. This raises Chinese emissions by 60% in the 
business-as-usual scenario in 2100 while the level of emissions in the very long-term 
is kept unchanged. The fact that Chinese emissions are higher increases the 
climate externality generated (the effect of its own strategy on the other countries) 
and therefore the possible gain from cooperation. However, the free-riding 
incentive may also be stronger for the other countries in the coalitions including 
China because these coalitions will internalize a larger part of the global 
externality. Both effects potentially raise concern for stability. 

The model shows that the gain in world welfare between the Nash 



 

334 
·················· 

Efficiency versus Stability in Climate Coalitions 

Coalitions and Networks Chap 11b 

equilibrium and the efficient scenarios is slightly increased by around 1%. Our 
main results on the core-stability of the grand coalition and the best PIS coalition 
(which includes China) still prevail. The effect on the stability of coalitions 
without China is negative: the difference between the aggregate welfare of the 
coalition and the sum of the free-riding claims of its members (definition of the 
PIS property) decreases for 23 out of the 26 coalitions considered; indeed, such 
coalitions internalize a smaller part of the externality. However, the effect on the 
coalitions including China is less clear: it increases for 16 out of 31 coalitions, but 
decreases for 18. In short, the model confirms the mechanisms at stake in this test 
and our main conclusions remain valid. The surprise may be that the effect on 
global welfare gain from cooperation is quite low. 

 
7.2 Slope of damage functions 
The second sensitivity analysis concerns the damage functions. These, still 
borrowed from Nordhaus and Yang (1996), bear major uncertainties. The 
relationship between global temperature increase and climatic impacts is highly 
difficult to quantify, and the most recent studies (including the Stern Review and 
the Fourth IPCC Assessment Report) seem to suggest higher damage sensitivity. 
We did this by increasing the exponent of the damage functions (i,2 in equations 
of Appendix) by 50% in all countries. Intuitively, this will reinforce the climate 
externality, and thus the desirability of cooperation. But, it is difficult to infer, a 
priori, the implication for stability because the free-riding incentive may also be 
stronger when the coalitions try to better internalize the climate externality. 

After computation the CWS model confirms that the gain in global welfare 
associated with cooperation is stronger, and this time the increase is significant 
(the gain is three times higher). However, even with such a strong incentive for 
cooperation, our main results on core-stability of the grand coalition and the best 
PIS coalition remain valid. This means that the stronger gain from cooperation 
dominates the reinforcement of the free-riding incentives. No clear conclusion can 
be drawn about the impact on the stability of the other coalitions. Indeed, the 
difference between the aggregate welfare of the coalition and the sum of the free-
riding claims of its members increases for 38 out of 57 coalitions, but decreases 
for 19 others, making 6 coalitions no more PIS. The increase concerns mainly 
small coalitions, for which we have already mentioned that there is less to free-
ride about. 

 
7.3 Economic update 
In this paper we use an updated version of the CWS model initially presented in ET-
03.25 The update consists essentially in changes in the numerical value of several 

                                                           
25  The details of this update are reported in the discussion paper version of our article, Bréchet et al. (2007). 
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parameters of the optimization model (A.1)-(A.11), reflecting new assumptions on 
population growth and technological change. These have two main implications for 
the scenarios. First, world emissions are lower in the business-as-usual scenario than 
they were in the previous version of the model. Second, heterogeneity among 
countries is reinforced: national emission profiles are generally lower in all countries, 
in particular in China, but the USA experience higher emissions. Thus, the relative 
weight of countries in the global system is significantly changed, and so do the costs 
and benefits for each country of participating in a given climate agreement. The 
implications for our coalitional stability analyzes are as follows. 

About the cooperative approach, the main economic theoretic point is to 
verify whether a gamma-core solution can also be found with the new values of 
the parameters, as was the case with the original ones.26 The result happens to be 
positive. Here, as in the previous version, GTT transfers need to be used because, 
without them, the efficient solution is blocked by 18 coalitions (a number that 
was 14 previously). The concept of gamma-core thus appears to be robust to our 
updating. But the presence of four newly blocking coalitions may be seen as 
revealing an increased instability of the efficient allocation without transfers. This 
makes the transfers all the more necessary if efficiency is being sought in the 
international agreement. 

As far as the non-cooperative approach is concerned, in both versions of 
CWS very few coalitions are internally stable (8 or 7 of them, out of 57). A few 
more coalitions (11, or 15, out of 56) are externally stable. No coalition passes 
both tests, except the couple {USA, EU} which does so only in the updated version. 
When transfers are introduced, 2 three-country coalitions that were not stable in 
the first version become potentially internally stable (PIS) after the update, namely 
{USA, EU, CHN} and {JPN, CHN, FSU}. The number of four-country coalitions that are 
PIS remains the same in the two versions (10, out of 15). 

Finally, as to the distinction between homogenous vs. heterogenous 
coalitions in relation with stability, we find that without transfers, while 6 of the 8 
internally stable coalitions were heterogeneous coalitions in the earlier version, 
only two of these 6 heterogeneous coalitions still pass the IS test after the update. 
With transfers, homogeneity favors somewhat more the stability of coalitions in 
the updated version of CWS than in the original one. 
 
8. Conclusion and Policy Implications 

In the literature on international climate agreements, two alternative game 
theoretic approaches are used to discuss the stability of climate coalitions, which 
are based on two different stability concepts, namely ‘gamma-core’ stability and 
                                                           
26  Remember that existence of a gamma-core solution is established analytically only for the usual basic 

models (linear and convex, respectively) of Chander and Tulkens 1995, 1997, not for the CWS model. 
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‘internal-external’ stability. With the integrated assessment CWS model, this 
paper numerically compares and contrasts the results obtained from applying to it 
either one of these approaches. From a methodological viewpoint, it turns out 
that, in this model, transfers are required to ensure the stability of most coalitions 
whatever the concept used. But transfers are not equally successful to stabilize 
coalitions in either approaches because of the different logic that lies behind the 
two concepts. More precisely, while transfers can make the grand coalition stable 
in the gamma-core sense (which rests on the threat of failing to reach an 
agreement), this is never the case in the internal-external stability sense (which 
rests on offering compensation for resisting the temptation of free riding); only 
smaller coalitions, where there is little to free-ride about, are found stable in this 
sense, sometimes with transfers. Moreover, while we note that homogeneity 
among the members of a coalition appears to help the coalition’s potential 
internal stability irrespective of its size,  the global outcome in terms of either 
aggregate welfare or environmental performance reached by small or 
homogeneous coalitions is far less attractive compared with the world efficient 
allocation that what can be reached by the heterogeneous grand coalition only. 

Policy-wise, these results bring strong support to the view that environmental 
agreements which include a large number of countries are desirable both in terms 
of the countries’ welfare as in terms of global environmental performance. In 
addition, stability in the gamma-core sense can be achieved only if the agreement 
includes all countries of the world, whereas stability in the internal-external sense 
can be achieved only among smaller numbers of signatories. Therefore, 
agreements including all countries, such as the Kyoto Protocol (before the 
withdrawal of the USA), are most desirable from the three points of view of 
welfare, environment, and stability. 

As illustrated in the paper, the last property can be ensured by means of 
appropriately designed transfers of resources. These can take many forms, some 
of which are quite different from the lump sum ones used here. Among them, and 
most importantly, the transfers implied by a cap and trade scheme of the type 
established by the Kyoto Protocol do have all the stability properties required here 
for transfers – and a few more virtues as well.27 

Finally, if for reasons other than those invoked above, a treaty involving the 
‘grand’ coalition of all countries cannot be signed and smaller coalitions are 
envisaged, the above simulations indicate that heterogeneity of composition 
matters more than size for the stability of a coalition.28 Thus, promoting 
homogeneous coalitions, as is sometimes done, is not supported by our analysis if 
effectiveness is taken as a policy objective. 

                                                           
27 For a full development of this point, which is often overlooked, see Chander et al. (2002). For an analysis 

applied to the EU unilateral strategy before Copenhagen, see Bréchet et al. (2010). 
28  See Bréchet and Eyckmans (2010) for further analyzes about this point. 
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Appendix 
 

Statement of the CWS model. The index i = 1,...n stands for region/country. 
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Table I: List of variables 
 

Yi,t Production (billions 1990 US$) 
Ai,t Productivity 
Zi,t Consumption (billions 1990 US$) 
Ii,t Investment (billions 1990 US$) 
Ki,t Capital stock (billions 1990 US$) 
Li,t Population (million people) 
Ci,t Cost of abatement (billions 1990 US$) 
Di,t Damage from climate change (billions 1990 US$) 
Ei,t Carbon emissions (billions tons of C) 

i,t Carbon intensity of GDP (kgC/1990 US$) 

i,t Carbon emission abatement rate 
Mt Atmospheric carbon concentration (billions tons of C) 
Ft Radiative forcing (Watt per m²) 

Tt Temperature increase atmosphere (°C) 
Tt

o Temperature increase deep ocean (°C) 
Wi Welfare (billions 1990 US$) 

 
Table II: Global parameter values 
 

δK  Capital depreciation rate 0.10 
γ Capital productivity parameter 0.25 
β Airborne fraction of carbon emissions 0.64 
δM Atmospheric carbon removal rate 0.08333 
τ1 Parameter temperature relationship 0.226 
τ2 Parameter temperature relationship 0.44 
τ3 Parameter temperature relationship 0.02 
λ Feedback parameter 1.41 

M  Pre-industrial carbon concentration 590 
M0 Initial carbon concentration in 2000 783 
ΔT0 Initial temperature change atmosphere in 2000 0.622 
T0

0 Initial temperature change deep ocean in 2000 0.108 
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Table III: Regional parameter values 
 

 i,1 i,2 bi,1 bi,2 i 

Damage function Abatement cost function Discount rate

USA 0.01102 2.0 0.07 2.887 0.015 
JPN 0.01174 2.0 0.05 2.887 0.015
EU 0.01174 2.0 0.05 2.887 0.015
CHN 0.01523 2.0 0.15 2.887 0.030
FSU 0.00857 2.0 0.15 2.887 0.015
ROW 0.02093 2.0 0.10 2.887 0.030

 
Table IV: 2000 reference year variables 
 

 Yi,0 (%) Ki,0 (%) Li,0 (%) Ei,0 (%) 

USA 7563.8099 27.45 19740.6885 27.97 282.224 4.66 1.5738 24.01 

JPN 3387.9305 12.29 9753.9695 13.82 126.870 2.10 0.3295 5.03 

EU 8446.9010 30.65 22804.4771 32.31 377.136 6.23 0.8875 13.54 

CHN 968.9064 3.52 2686.0563 3.81 1262.645 20.86 0.9468 14.44 

FSU 558.4360 2.03 1490.0376 2.11 287.893 4.76 0.6258 9.55 

ROW 6633.4274 24.07 14105.2089 19.98 3715.663 61.39 2.1918 33.44 

World 27559.4112 100.00 70580.4379 100.00 6052.4310 100.00 6.5552 100.0 

 billion  
1990 US$ (%) billion 

1990 US$ (%) million 
people (%) 

billion tons 
of carbon 

(GtC) 
(%) 
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