Holistic framework for multi-vector load projection and stochastic system
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Abstract

Robust sizing of rural micro-grids is hindered by uncertainty associated with the expected load demand and its potential evolution over time. This study couples a stochastic load generation model with a two-stage stochastic micro-
grid sizing model to take into account multiple probabilistic load scenarios within a single optimisation problem. The problem is then tackled in two of its declinations: evolution over time of electrical load demand, with the

inherent uncertainty of estimation of the load change through the years and the design of a proper tool to take advantage in the sizing phase of the load evolution information. The second tackled problem is the broadening of the
concept of access to electricity to access to energy, with the problem of estimation of non electrical loads, as space and water heating and energy for cooking, and the subsequent design of a microgrid, or micro-energy system, to
satisfy the predicted load. The results suggest how the proposed solutions ensure a benefit not only in the practical tackle of the technical problems of satisfaction of usually neglected loads but also ensure a decrease in the costs of
the sized minigrid, in different declinations for the two models.
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MicroGridsPy

Multi-Year Capacity-Expansion Formulation

This approach tackles the issue of optimal microgrid
sizing in light of the evolution of energy demand over
time, which is likely to occur in newly electrified rural
contexts as a result of the modification of users’

Multi-Energy Formulation

This approach tackles the issue of optimal microgrid
sizing taking into account not only access to electricity
but access to energy as a broader problem, in areas
where temperatures can drop drastically the access to

MicroGridsPy is an open-source two-stage stochastic
optimization framework for sizing of isolated microgrids
in rural contexts capable of performing LP/MILP
optimizations.
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