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Abstract

The yield curve is widely regarded as a powerful descriptor of the
economy and market expectations. A common approach to its statis-
tical representation relies on a small number of factors summarizing
the curve, which can then be used to forecast real economic activity.

We argue that optimal factor extraction is crucial for retrieving
information when considering an approximate factor model. By in-
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1 Introduction

Two fundamental facts about the yield curve have been known for a long
time: i) it embodies information on the state of the economy and market
expectations that can very useful for several purposes, notably forecasting or
identification of monetary policy shocks; ii) its structure can be described,
at a given point in time, by a limited number of factors.

The profound interactions of macroeconomic factors with the yield curve
has led many to monitor the term structure of interest rates for predicting
recessions and creating better proxies for expectations of future economic
conditions (see Chinn and Ferrara, 2024). This builds on a long tradition
linking the slope of the yield curve to future economic conditions (Estrella
and Hardouvelis, 1991).

In general, as explained in Coroneo et al. (2016), the short end of the
yield curve is more closely connected with the policy instruments of the
central banks, whereas the average level of the yield curve usually co-moves
with broader macroeconomic forces, such as the inflation rate. Finally, the
spread of long versus short rates is associated with business cycle conditions.
These interactions are often analysed in order to predict economic recessions
(Bordo and Haubrich, 2024; Minesso et al., 2022), interest rates (Caruso and
Coroneo, 2023), financial crises (Bluwstein et al., 2023) and the business cycle
(Han et al., 2021).

Modelling the yield curve is challenging because of its complexity and the
dynamic nature of the factors influencing it, which can also be unobservable.
Importantly, different modelling choices can lead to heterogeneous forecasting
performances (see, e.g., Caldeira et al., 2025).

One of the most commonly accepted way of modelling the yield curve
relies on the fact that the entire structure can be described by a small number
of factors. Examples are the famous Nelson and Siegel (1987) model, which
syntheses all the information contained in several yields in only three factors
governing the shape of the curve, and the extension to four factors proposed
by Svensson (1994).1 Diebold and Li (2006); Diebold et al. (2006) extend
the Nelson-Siegel model by considering dynamic factors, opening the way to

1Recently, Wahlstrøm et al. (2022) have demonstrated that the Nelson-Siegel parameter
estimates are more stable with respect to those of the Svensson alternative.
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dynamic factor models (DFM) as the preferred estimation tool for modelling
the yield curve.

In this paper, we revisit the important contributions by Diebold and Li
(2006) and Diebold et al. (2006) in the light of more recent developments
in the literature on Dynamic Factor Models and provide evidence on how
differences in the methods for extracting yield curve factors are reflected
in the estimated components, and thereafter, in forecasting performance.
Specifically, Diebold and Li (2006) express yields as combinations of three
common dynamic factors governing the level, slope and curvature of the
curve. In this framework, the loading matrix is constrained and depends
non-linearly on a scalar unknown parameter, universally denoted as λ.2

One of the main ideas in the present contribution is that the cointegration
properties of the observed yields can be used to perform a rotation of the ob-
servable terms: we show that taking the cointegration structure of the yields
into account leads to a significant reduction of the cross-sectional correlation
of the idiosyncratic components of the DFM.3 The advantages of embedding
cointegration in a DFM are highlighted in Barigozzi and Luciani (2019); Ca-
soli and Lucchetti (2022). Our setup considers a similar background to the
Casoli and Lucchetti (2022) work, in which cointegration is assumed among
the observable variables rather than the factors.

The importance of reducing the cross-correlation of the idiosyncratic com-
ponents relies on the fact that more information is included in the common
component, therefore leading to a better estimation of the factors space.
Fresoli et al. (2023) demonstrate that ignoring cross-correlated idiosyncratic
components has implications in terms of forecasting, as it can underestimate
prediction intervals.

Additionally, we compare the forecasting performance of two sets of yield-
curve factors extracted from an original (unrotated) model and from a rotated
model that incorporates cointegration. Using these factors, we forecast sev-
eral macroeconomic variables for both the United States and the Euro area
and assess predictive performance by comparing predictive log-likelihoods.

We find that the two models exhibit very similar forecasting ability out-
side periods of economic instability and financial stress. However, during
episodes of large turbulence, such as the 2008 global financial crisis and the
Covid-19-related recession, the rotated model consistently outperforms the

2Notably, the literature on DFMs with constrained loading matrices is evolving rapidly
and is closely related to this setup. Examples include multilevel DFMs (Breitung and
Eickmeier, 2015; Choi et al., 2018) or matrix/tensor DFMs (see Chen et al., 2024; Yu
et al., 2024, as examples)

3Note that this is an approximate DFM, so that the variance-covariance matrix of the
idiosyncratic term is not diagonal.
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classic specification. This evidence suggests that incorporating cointegration
into yield-curve factor models is particularly relevant for predicting reces-
sions.

Finally, as a secondary result, we also estimate by Maximum Likelihood
the parameter λ governing the Nelson-Siegel loadings. The literature has
typically relied on pre-set values, but our estimates indicate much smaller
values of λ both for the US and the Euro area datasets. This finding is
consistent with the persistently flatter yield curves observed during the zero
lower bound (ZLB) period. While this is not the core focus of the paper, it
provides new empirical evidence that may inform future work on the evolu-
tion of the term structure under unconventional monetary conditions.

The structure of the paper is as follows: Section 2 introduces the motiva-
tion and research questions, Section 3 explains the way cointegration can be
embedded in a DFM, Section 4 describes our dataset, while our results are
in Sections 5 and 6. Section 7 concludes.

2 Motivation and preliminary evidence

As we anticipated in the previous section, the idea that the yield curve con-
tains information that may be useful for predicting macro variable has been
used in many cases for a long time. The possibility of using such information
is even more tempting if the entire structure of the yield curve can be sum-
marised by a few factors, the Nelson-Siegel model being the most popular
choice.

However, it can be conjectured that the predicting power of the yield curve
factors may not be uniform through time: several practitioners have recently
been concerned on the apparently decreasing relevance of the yield curve as a
predictor for recessions (see for instance Chinn and Ferrara, 2024). A possible
explanation relates the flattening of the curve, with also a decrease in the
yields volatility, to the ZLB (Opschoor and van der Wel, 2024). A related and
growing literature documents how conventional models often lose explanatory
power in ZLB environments (Rossi, 2021; Wu and Xia, 2016). Therefore,
extracting the relevant information from the yield curve is a crucial task for
several purposes, and the challenge concerning whether there is a decreasing
predictive power of the yield curve is open and difficult. That said, it is
quite natural to think that, if the added value of such information is linked
to its ability to capture agents’ expectations, its importance should increase
in times of economic turmoil.

In order to check for this possibility, we ran a very simple preliminary
experiment, using 30 selected maturities from the US yield curve and com-
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puting the first three principal components.4 For this analysis, we rely on
the standard Nelson-Siegel model with a dynamic factor structure (For the
notation, we refer the reader to Section 3). The results conform very well
with economic intuition: the first three principal components contain 99.96%
of the total information and the structure of the loading matrix is strikingly
close to what one would expect for the “level”, “slope” and “curvature” fac-
tors in the Nelson-Siegel model, as shown in Table 1.5 It would seem that
the Nelson-Siegel factors may in fact provide an excellent summary of the
information contained in the yield curve.

PC1 PC2 PC3
3 months 0.176 0.290 0.458
6 months 0.178 0.280 0.341
9 months 0.179 0.266 0.238
12 months 0.180 0.250 0.145
15 months 0.181 0.230 0.063
18 months 0.182 0.208 -0.004
21 months 0.183 0.187 -0.056
24 months 0.183 0.166 -0.099
27 months 0.184 0.146 -0.134
30 months 0.184 0.126 -0.161
33 months 0.185 0.108 -0.179
36 months 0.185 0.091 -0.192
42 months 0.186 0.058 -0.209
48 months 0.186 0.028 -0.213
54 months 0.186 -0.001 -0.205
60 months 0.186 -0.026 -0.189
66 months 0.186 -0.049 -0.173
72 months 0.185 -0.071 -0.150
78 months 0.185 -0.091 -0.123
84 months 0.185 -0.111 -0.093
90 months 0.184 -0.130 -0.062
96 months 0.184 -0.145 -0.033
102 months 0.184 -0.160 -0.006
108 months 0.183 -0.173 0.022
120 months 0.182 -0.201 0.085
132 months 0.181 -0.225 0.138
144 months 0.180 -0.244 0.179
156 months 0.179 -0.257 0.211
168 months 0.179 -0.267 0.235
180 months 0.178 -0.273 0.246

Table 1: PC loadings on US yields, 30 maturities.

Next, we used the estimated factors in a forecasting model like

yt = µ+
12∑
1=1

αiyt−1 +
12∑
1=1

β′iFt−i + εt (1)

4The data are available from Jing Cynthia Wu’s website, as reported in Section 4.
5In principle, even if the Nelson-Siegel model was exactly true, principal components

would just be a basis for the space spanned from the three factors. This distinction,
however, is immaterial for the results in this section.
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where yt is a macroeconomic variable and Ft are the three principal com-
ponent extracted above. Model (1) was estimated on a rolling window of
240 months and the p-value for the Granger-causality hypothesis β1 = β2 =
. . . = β12 = 0 was computed, mainly as a descriptive statistic of the predic-
tive power of Ft for yt, where of course smaller values imply greater predictive
power.

 0.0001

 0.001

 0.01

 0.1

 1

 2006  2008  2010  2012  2014  2016  2018  2020  2022  2024

gdp

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

1.0000000

 2006  2008  2010  2012  2014  2016  2018  2020  2022  2024

unemp_rate

Monthly GDP Unemployment rate

 0.001

 0.01

 0.1

 1

 2006  2008  2010  2012  2014  2016  2018  2020  2022  2024

inflm

0.0000001

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

1.0000000

 2006  2008  2010  2012  2014  2016  2018  2020  2022  2024

hp_indpro

Inflation rate (monthly) Industrial production

Figure 1: Predictive power of principal components

Results for a few US macroeconomic series (taken from FRED), are shown
in Figure 1. It is quite evident that the predictive power of principal com-
ponents is very high during the main episodes of economic instability: the
2008 financial crisis, the COVID outbreak and the Russia-Ukraine conflict.
This effect is not uniform across all the macro series, but the fact that for
all macro series the predictive power of PCs was rather limited during the
2012–2018 period is apparent.

These observations give rise to two fundamental questions, which consti-
tute the central research questions addressed in this article.

1. Is there an optimal way to condensate the information contained in the
yield curve so as to make it useful for macroeconomic forecasting?

2. Is it possible to devise a metric for the effectiveness of these factors as
predictors that takes into account its possibly time-varying nature?
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The first question will be explored next, in Section 3, while our approach
to the second one will be described in subsection 5.3.

3 The rotated Nelson-Siegel model

3.1 The classic Nelson-Siegel model

The Nelson-Siegel Nelson and Siegel (1987) model describes the yield curve
for a set of risk-free bonds as a function of their maturity. In the Diebold-Li
fashion (Diebold and Li (2006); Diebold et al. (2006)), the yield of a bond
with maturity τ is expressed as

y(τ) = β0l(τ) + β1s(τ) + β2c(τ), (2)

where the three components are known as “level”, “slope” and “curvature”.
Each is a nonlinear function of τ as follows:

• β0 = 1: constant across the maturity spectrum, models parallel yield
curve shifts (long-term factor).

• β1 = 1−e−λτ
λτ

: loading starts at 1 but decays to 0 with maturity. Inter-
preted as the (negative of the) slope of yield curve (short-term factor).

• β2 = 1−e−λτ
λτ
− e−λτ : loading starts at 0, increases, and then decays to

zero. It gives maximum weight to intermediate maturities (medium-
term factor).

The representation of yields via a Dynamic Factor Model (DFM) is:

yt = Λ(λ)ft + et, (3)

where ft is a 3-element vector containing the three factors:

f ′t =
[
Lt St Ct

]
,

and the matrix of loadings Λ, in which the only unknown parameter is λ, has
a precise structure:

Λ =


1 1−e−λτ1

λτ1
1−e−λτ1
λτ1

− e−λτ1
1 1−e−λτ2

λτ2
1−e−λτ2
λτ2

− e−λτ2
...

1 1−e−λτn
λτn

1−e−λτn
λτn

− e−λτn

 .
The fact that yt ∼ I(1) in most cases has been traditionally handled by

differencing variables. However, as shown by Barigozzi and Luciani (2019);
Casoli and Lucchetti (2022), unit roots can be accommodated if cointegration
relationships are present.
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3.2 The rotated model

As the (local) expectation hypothesis theory of the term structure of interest
rates entails,6 we assume yt to be cointegrated, with one common trend
and n− 1 spreads.7 Although the yields are I(1), spreads are stationary by
definition. This idea has been pursued in countless empirical applications,
especially in the late 1990s, with an equally impressive number of variations
on the theme. In this paper, we simply postulate the existence of a valid
VECM representation for yt as

Γ(L)∆yt = µ0 +αβ′yt + εt, (4)

where the spreads are st = β′yy.
In principle, there are two main ways to represent β:

β1 =


1 1 · · · 1
−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

 β2 =



1 0 · · · 0
−1 1 · · · 0
0 −1 · · · 0
...

...
...

...
0 0 · · · 1
0 0 · · · −1


,

that is, all spreads are computed with respect to one yield, or the spreads
are expressed as difference between bonds of similar maturity. In this paper,
we use β2, which gives rise to what we call “adjacent” spreads. The other
choice is possible, but was found to yield less satisfactory results.

Using representation (4), a “common trend” term mt can be defined by
combining the yields yt with a vector ϕ that does not belong to the space
spanned by the cointegration matrix β:

mt = ϕ′yt

There are two possible alternatives for ϕ, based on popular choices for trend-
cycle decomposition in the cointegration literature.

6See eg Brand and Cassola (2004), p. 819.
7To check if yields are in fact I(1), we implemented a set of ADF tests for unit roots,

which confirmed our hypothesis. However, there is not consensus on whether the interest
rates should be considered as stationary or non-stationary processes. In a recent con-
tribution, Rogoff et al. (2024) argue that they should be stationary over the long term.
However, when persistence in finite sample data is very high, it may be a better choice to
impose the unit root even if the DGP is in fact I(0) with high persistence (see Di Iorio
et al., 2016, for a similar discussion on near-I(2) stochastic processes).
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• The Kasa (1992) decomposition: in this case, ϕ = β′⊥. Under the
stationarity assumption for the spreads, β′⊥ is a multiple of ι, and mt

is the simple average of all the rates.

• The Gonzalo and Granger (1995) decomposition, where ϕ = α′⊥. We
have two choices:

1. assume that one of the rates is weakly exogenous so that α⊥ is
just a selection vector picking up that rate;

2. estimate α via OLS and compute α⊥ from there; in this case,
mt is a weighted average of all the rates (possibly, with negative
weights).

We use the Kasa decomposition, which produces more interpretable re-
sults and mitigates possible inferential problems when estimating α: together
with the theory-based choice we make for β, this means that the long-run
matrix Π = αβ′ in equation (4) contains no estimated elements.

Note that Equation (2) can be used to represent the spreads and the trend
as

st = β′yt = β′Λft + vt (5)

mt = ϕ′yt = ϕ′Λft + ut (6)

so as to formulate a rotated DFM as a state-space model as

[
st
mt

]
= Λ∗(λ)ft + e∗t , (7)

ft = µ+ Φft−1 + ηt (8)

where

Λ∗ =

[
β′

ϕ

]
Λ

and

Φ = I +

α∗11 α∗12
α∗21 α∗22
α∗31 α∗22

[0 1 0
0 0 1

]
=

1 α∗11 α∗12
0 1 + α∗21 α∗22
0 α∗31 1 + α∗22


so as to ensure that Lt is I(1) and St and Ct are I(0).

At this point, the question is: is there an advantage in choosing repre-
sentation (7) instead of (3)? At first sight, it would seem that the two
representations should be equivalent. However, any transformation of the
observables in a Dynamic Factor Model has consequences on the structure
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of covariance matrix of the idiosyncratic shocks: the approximate DFM dis-
cards by construction the information from the off-diagonal element of the
idiosyncratic shocks (et and e∗t , for the two models, respectively); since it
may be conjectured on theoretical grounds that these may be smaller in the
rotated system, then one representation could be more efficient at picking up
the signal than the other one.

Although we cannot pinpoint analytically the statistical mechanism that
should lead to an improvement of the estimates, we consider it quite sensible
that a representation which makes the “approximate factor model” less ap-
proximate should bring about an advantage. Moreover, the cross-correlation
issue has be proven to be important for inference on the estimated factors
(see Fresoli et al., 2023).

Moreover, Casoli and Lucchetti (2022) show that, in the case of coin-
tegrated systems, a transformation that separates I(0) and I(1) variables
can have beneficial effects on the quality of the reconstruction of the space
spanned by the factors ft. Note that, differently from Casoli and Luc-
chetti (2022), we do not consider mt in differences. Instead, we assume
that mt ∼ I(1) and adjust the state-space model accordingly, in the spirit of
Barigozzi and Luciani (2019).

In a nutshell, we extract two different sets of factors: one from the classic
Nelson-Siegel model (3) and one from the rotated model (7). In the rest of the
paper, we will refer to the two procedures as the “classic” and the “rotated”
method, respectively. The two equations are considered, alternatively, as
the observation equation in parallel state-space models. The state transition
equation for the classic model is an unrestricted VAR(1). For the rotated
model, instead, we use equation (8), so as to force the level factor to be I(1)
and the other two factors to be I(0).

4 The data

Our main analysis considers the monthly constant maturity zero-coupon
yields for the major economy of the world: the US. We consider a large
set of 30 maturities, ranging from 3 to 180 months (15 years). The maturi-
ties are: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 42, 48, 54, 60, 66, 72, 78,
84, 90, 96, 102, 108, 120, 132, 144, 156, 168 and 180 months. We use the
Treasuries data as reconstructed by Liu and Wu (2021). The dataset includes
a wide set of maturities, spanning from 1 to 360 months, and samples from
January 1972 to December 2024.8

8The data are available from Jing Cynthia Wu’s website: https://sites.google.

com/view/jingcynthiawu/yield-data.
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Given that in the initial period the yields exhibit substantial volatility
and that Liu and Wu (2021) evidence high pricing errors for constructing the
yield curve, we decided to not to use data before January 1986. This also
allows us to focus on a period that is more uniform and financially stable.

Moreover, we restrict our analysis to a set of maturities for which we are
more confident about the quality of the raw data. For instance, we discard
maturities shorter than 3 months because of potential noise, as well as very
long maturities (i.e., more than 15 years) where the data are too sparse and
the maturity distribution is characterized by relevant gaps (see Liu and Wu,
2021).

In an additional analysis, we extend our model to the European case (see
Section 6 for a full description of the Euro area dataset). Figures 2 report
the selected US and Euro area yields over time.
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Figure 2: Monthly US (left) and European (right) yields to different matu-
rities.

5 Results

As discussed in Section 3, we carry out estimation of the two DFMs: the clas-
sic and the rotated representation, and we compare the smoothed estimates
of the factors ft from the two setups.

In both cases, estimation is carried out by Quasi Maximum Likelihood,
assuming normality. It should be noted that, since we estimate the pa-
rameter λ rather than fixing it to a calibrated value (see subsection 5.1 be-
low), a straightforward implementation of the EM algorithm as in Doz et al.
(2012) is not easily feasible, because the elements of the loading matrix Λ∗(λ)
are nonlinear functions of the scalar λ. Therefore, the QML procedure em-
ploys standard numerical optimisation algorithms, such as Newton-Raphson
or BFGS.
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5.1 Estimation of λ

A key ingredient in estimating the state-space representation (2) is the nu-
merical value of the scalar parameter λ, which determines the shape of the
function linking the loadings to the maturities.

However, for a given value of λ, the model becomes linear and inference
is much simplified. Therefore, it is very common in the literature to rely
on previous findings on λ: for example, Diebold and Li (2006) perform a
grid search on a range of values and set λ = 0.0609 by optimising an ad-
hoc criterion. The same value that they fix is then re-used in many other
papers, such as for example Inoue and Rossi (2021); Opschoor and van der
Wel (2024).

In this paper, λ is instead estimated by ML along with all the other
parameters in the model. By using this method, we first attempt to replicate
the results of Diebold and Li (2006) and find a ML estimate for λ equal to
0.0586, with a 95% confidence interval equal to [0.0571, 0.0602]. This implies
that the value used in Diebold and Li (2006) is broadly comparable in terms
of orders of magnitude, but slightly outside the 95% confidence band.

Estimating the models with our extended sample, the λ values we find
are considerably smaller that the traditionally used ones: the estimates we
obtain are reported in Table 2.

Method Estimate Std.Err. 95% CI
classic 0.0402 0.0001 0.0401 0.0404
rotated 0.0382 0.0001 0.0379 0.0385

Table 2: Estimates of λ - US data

This result suggests that, at least if considering a sample including the
late 2000s and onward, the structure of the loadings is in fact very much
flatter than how often assumed by a relevant part of the literature. The
value of λ set at 0.0609 is just not consistent with more recent observations,
given that a relevant part of the sample includes the ZLB period.

5.2 Factor extraction

Unsurprisingly, the two methods we compare provide fairly similar results
from most points of view, so we concentrate on the differences.

The first difference is that the rotated model seems to perform much
better at picking up the cross-correlations between the idiosyncratic distur-
bances of the observation equations (3) and (7). The sample correlation
matrices of the idiosyncratic shocks for the two models, which are estimated
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Figure 3: Correlation matrix of the idiosyncratic shocks - US data: classic
method (left) vs rotated method (right)

as the “smoothed disturbances” from the state-space models (see Durbin and
Koopman, 2012, sec. 4.5), are markedly different from one another, with the
rotated model yielding a correlation matrix which is much closer to being
diagonal.

In order to quantify this impression numerically, we compute the ratio

rmax =
µmax

n
,

where µmax is the largest eigenvalue of the correlation matrix; clearly, this
value ranges between 1/n and 1, with the minimum corresponding to an
identity matrix and the maximum corresponding to a rank-1 matrix. This
index equals 0.4014 for the classic model and 0.2264 for the rotated model.
Figure 3 displays heatmaps of the two correlation matrices, from which the
superiority of the rotated model is evident.

Another reason for preferring the rotated model comes from the observa-
tion that the correlation matrix for the classic model appears to be nearly
block diagonal, with boundaries between blocks occurring at certain matu-
rities, which is probably an artifact of the nonparametric procedure used
by Liu and Wu (2021) for building the dataset and of the raw pricing data
structure. Such suspicious regularity is less evident in the right-hand pane.

Figure 4 displays the estimated factors for the two methods. As antici-
pated, the results are visually very similar. However, the differences between
the two estimates appear more evident by considering Figure 5, in which the
time path of the difference between estimated factors is shown. Interestingly,
it is possible to note that the difference between the two sets of factors is
larger in some periods and negligible in others. In particular, the differences
become more remarkable in conjunction with economic instabilities, such for
instance the period of turmoil following the US stock market crash in 1987,
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Figure 4: Estimated factors for the classic and the rotated model - US data
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the early 2000s recession after the dot-com bubble, the Great Recession and
the post-Covid period.
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Figure 5: Differences between the factors - US data

It could be surmised that, although the estimated factors are somewhat
different from one another, they in fact span exactly the same space. How-
ever, this seems not to be the case: we computed the trace R2 index, defined
as

TR = 1− tr [E′E]

tr [F′F]
,

where F is the matrix of rotated factors, C is the matrix of classic factors
and E = MCF, that is the residuals from an OLS regression of F on C. If
the two sets spanned exactly the same space, that index would be exacly one,
while in fact it equals 0.9967. Of course here the TR statistc is just used
as a convenient descriptive statistic, but it is easy to see that the two sets
of factors do in fact carry information that, although very similar, is partly
different.

Results for a restricted set of yields, using 18 maturities instead of 30,
are qualitatively similar and are available upon request.
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5.3 Forecasting performance

In this subsection, we compare the performance of the factors extracted via
the classic and the rotated technique for predicting a selected set of macroe-
conomic variables.

We begin with a preliminary remark: given the evident similarities be-
tween the two sets of factors (see Section 5.2), we do not expect dramatic
differences in the forecasting power between the two methods. However, the
fact that the two sets of factors are not exactly the same makes the exercise
worthwhile. More specifically, we observe that known periods of economic
turbulence, such as the 2007–2008 financial crisis and the subsequent down-
turn in economic activity, or the outbreak of the Ukraine war in 2022 seem
to be reflected in the differences between the two estimates.

Therefore, we will use a comparison strategy in which we may focus on
comparing the predictive power of the two factor extraction methods at par-
ticular points in time. In order to do so, we compare their accuracy on the
basis of the log density of the forecasts (see eg Clements and Hendry, 1998,
sec. 3.7).

The basic model we use to ascertain the forecasting power of the extracted
factors is a block-triangular forecasting VAR:

A11(L)zt = µ1 + A12(L)Ft + εt (9)

A21(L)Ft = µ2 + + ηt; (10)

where zt is a vector of macroeconomic variables and Ft are the estimated
factors.

We concentrate on the most standard key indicators: real monthly GDP
growth, the year-on-year inflation rate computed from the Consumer Price
Index, and the Federal Funds effective rate.9

The system (9) can be thought of as a VAR model in which the absence
of Granger causality from zt to Ft is assumed, so that multi-step forecast is
feasible given Ft; we also assume the the order of the three lag polynomials
is the same and we choose it by minimising the Hannan and Quinn (1979)
information criterion on the unrestricted VAR. The system is then estimated
via SUR on a sample of size H, from t−H + 1 to t− 1 and the k-step-ahead
forecast ẑt+k is computed, together with the associated covariance matrix
Σt,k.

Given equation (9), we compute the marginal predictive likelihood by

9All data are sourced from FRED (see https://fred.stlouisfed.org/). The
monthly measure of GDP growth is derived in Brave et al. (2019).
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assuming normality as

MPLt,k = −1

2
log
[
|Σt,k|+ e′t,kΣ

−1
t,ket,k

]
where et,k ≡ zt+k− ẑt+k is the k-step-ahead prediction error. The intuition is
that a superior model should yield a forecast such that the density evaluated
at the prediction error is, on average, higher.

By computing the quantity above on a rolling sample, we obtain two
series of marginal predictive likelihoods, so we have MPLct , in which the
factors extracted with the classic method were used as Ft, and MPLrt for
our alternative (rotated) method. This indicator can be interpreted as the
difference between the two models in terms of entropy:

PLLt,k = MPLrt,k −MPLct,k = log
ϕ(zrt+k)

f ∗(zt+k)
− log

ϕ(zct+k)

f ∗(zt+k)

where f ∗(·) is the true unobservable density. Therefore,

E(PLLt,k) = E

[
log

ϕ(zrt+k)

f ∗(zt+k)

]
− E

[
log

ϕ(zct+k)

f ∗(zt+k)

]
which can be interpreted as a (log) Kullback-Leibler divergence, where posi-
tive value indicate a better performance of the rotated model.

The approach above, therefore, makes it possible to judge the difference
in forecasting power between the two approaches at any given point in time
t. As argued above, however, we consider it quite important to be able
to weight the differences using a metric that somehow reflects the degree
of economic instability. To this aim, we adopt the approach proposed in
Amisano and Giacomini (2007) and use a weighted likelihood ratio test.10

Differently from the original proposal, the weight function we use is not
based on the distributional characteristics of the variable to forecast (which
would be problematic anyway, given that zt is a vector), but rather on the
VIX index, a commonly-used indicator of economic turmoil.

10Standard tests such as the Diebold and Mariano (1995) are not suited to compare the
predictive ability in this framework for two main reasons. First, both the Diebold and
Mariano (1995) and the fluctuation test of Giacomini and Rossi (2010) are designed to
evaluate point forecasts, typically at the mean, rather than the entire predictive distribu-
tion. Second, these tests aggregate performance over the evaluation window, so very short
episodes of instability may be smoothed out and remain undetected, as also discussed in
Iacone et al. (2025).
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In practice, the weight function we use is a suitable transformation of the
VIX index. The results reported here use as weights a variable wt defined as

V̄t = ρ · V IXt + (1− ρ) · V̄t−1

wt =
V̄t

maxs=1...T V̄s
,

that is, a rescaling on the 0–1 interval of an exponentially weighted moving
average of the VIX index (with ρ = 1 our weight variable is just the rescaled
VIX index). We experiment with various values of ρ to reflect the fact that
economic uncertainty may in fact be a smoother phenomenon than what the
relatively volatile VIX index indicates.

The indicator we use for our purpose can therefore be written as

WLRt,k = wt · PLLt,k (11)

and we check the hypothesis of equal forecasting power via the Amisano and
Giacomini (2007) t-statistic, that is

tk =
WLRk

σ̂
√
n

where σ̂2 is a heteroscedasticity and autocorrelation consistent (HAC) esti-
mator of the asymptotic variance of

(√
n WLRk

)
. Under the null hypothesis

of equal predictive power, this statistic has an asymptotic N(0, 1) distribu-
tion.

To give the reader a pictorial example of the results, Figure 6 depicts the
time paths of PLLt, wt and WLRt for k = 3 and ρ = 0.5.

Table 3 displays the results of the Amisano-Giacomini test for various
values of the forecasting horizon and the smoothness parameter ρ.11 As it
is shown, results indicate uniformly that the rotated model performs better
than the classic one, with significantly better results at shorter horizons. The
degree of smoothness of the weighting variable does not seem to affect the
results very much.

6 The Euro Area yield curve

For the Euro area, we rely on Eikon Refinitiv data, where the Euro zero-
coupon yield curve is reconstructed on a monthly basis, with maturities

11We set the rolling window size to 240 months; results with a shorter window of 180
months are slightly worse, but qualitatively similar.
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Figure 6: Amisano-Giacomini test – US data

horizon ρ = 0.2 ρ = 0.5 ρ = 1
1 2.5443 2.4158 2.3924
2 2.0927 2.0377 2.0217
3 1.8438 1.8053 1.7884
6 1.7506 1.8555 1.9043

12 1.4498 1.4421 1.3326

Table 3: Amisano-Giacomini test at different k – US
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ranging from 1 month to 50 years. To be consistent and provide a direct
comparison in the results, we select the same maturities used for the US
yield curve, spanning from 3 to 180 months. In this case, our sample starts
from January 1999, that is the official start of the Euro currency.

It should be noted that, unlike the US yield curve, the European one is
in fact a swap zero curve. Unfortunately, recovering a European zero-coupon
curve based on risk-free bonds would be possible only by using the ECB
data, which is unfeasible for two main reasons. First, yields are available only
starting from 2004, making the sample’s dimension not sufficient. Second,
the ECB uses parametric methods to estimate the yield curve (see Svensson,
1994), which would make the data useless for our purposes: since the yield
curve is reconstructed by assuming a factor representation, estimation of a
DFM (either rotated or not) just ends up producing the same factors that
were used for producing the data and, most importantly, yielding idiosyn-
cratic errors that are almost pure numerical noise. Unfortunately, this is the
case for yield curves as published by most central banks: a comprehensive,
albeit not very recent list, is contained in BIS (2005).12

With these data, we performe an analysis similar to the one in Section
5, with a twofold aim. First, we want to make sure that our results hold for
a different setting, and second, we provide evidence on a different economy
to highlight similarities and disparities between the yield curve’s forecasting
ability in the US and the Euro area. We select, again, 30 yields, ranging from
3 to 180 months as for the US, with the difference that the selection for the
Eurozone includes more short maturities and fewer long ones. Unfortunately,
this choice is motivated by data availability.13

Most results for the US are confirmed also when analyzing European
data, although the evidence for the difference between the two methods is
somewhat weaker. It should be noted, however, that the dataset we have for
the Euro area is considerably smaller in terms of its time span (312 monthly
observations versus 468 observations for the US).

Estimated values of λ for the Euro area, shown in Table 4, resemble very
much the ones for the US, with a flatter yield curve than the one implied by
conventional values (in fact, even flatter than the US).

Figure 7 shows the heatmap for the idiosyncratic residuals for the model
with 30 maturities. The rmax index equals 0.498 for the classic method and

12For this same reason, using other datasets such as the one provided by Gürkaynak
et al. (2007) would be problematic.

13We carefully evaluated the possibility of selecting the same maturities for the US (i.e.,
picking the available yields for the Euro area and then use these also for the US), but we
believe, at least when possible, it is better to pick a balanced structure including a wider
set of long maturities.
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Method Estimate Std.Err. 95% CI
classic 0.0308 0.0002 0.0305 0.0311
rotated 0.0304 0.0002 0.0299 0.0309

Table 4: Estimates of λ – Euro data
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Figure 7: Correlation matrix of the idiosyncratic shocks - Euro data: classic
method (left) vs rotated method (right)

0.2989 for the rotated one. Again, there is evidence of a lesser degree of cross-
correlation for the rotated model, albeit perhaps not as striking as with the
US data.

A visual comparison of the estimated factors (Figures 8 and 9) leads to
conclusions broadly similar to those for the US, although the peak in dis-
similarity around the 2008 financial crisis is less pronounced. Other periods
displaying notable divergences include the sovereign debt crisis and the recent
phase of uncertainty linked to the Russia–Ukraine conflict. This is confirmed
by the trace R2 index, equal to 0.998. In the Euro area case, the similar-
ity between the spaces spanned by the two sets of factors is much higher,
although some differences are still noticeable.

For the forecasting exercise, we estimate the block-triangular VAR of
Equation (9) with the inclusion of European macroeconomic variables, then
focus on the Amisano-Giacomini test for assessing the predictive power of
the classic and rotated models. To be consistent with the US analysis, we
set a rolling window of size 240 observations.

The European macroeconomic data are taken from the ECB and OECD,
selecting each time the most complete alternative in terms of observations.
We consider the Hamilton-filtered Euro area monthly GDP, the year-on-year
inflation rate obtained from the Harmonised Index of Consumer Prices, and
the ECB’s Main Refinancing Operations (MRO) rate.14

14In this case, we construct monthly GDP by temporally disaggregating the quarterly
series from ECB. To obtain our monthly time series, we rely on the method proposed by
Fernández (1981) and use industrial production as anchor.
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Figure 8: Estimated factors for the classic and the rotated model - Euro data
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Figure 9: Differences between the factors - Euro data
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For the considered time span, European uncertainty and economic in-
stability reflect a combination of financial turmoil and geopolitical shocks,
unlike the US. To take this into account, we select two potential weights for
the likelihood ratio test: the VSTOXX, chosen for consistency with the VIX
used for the American analysis, and the Geopolitical Risk Index (GPRI) de-
veloped by Caldara and Iacoviello (2022). Since it is unclear which weight is
more appropriate, we remain agnostic and report results for both, as well as
for a combined weight function defined as the geometric mean of the two.

Horizon VSTOXX GPRI Geometric mean
ρ = 0.2 ρ = 1 ρ = 0.2 ρ = 1 ρ = 0.2 ρ = 1

1 1.7359 1.7200 1.6096 1.3412 1.7112 1.6395
2 1.2292 0.9499 1.2017 0.9958 1.2435 1.0512
3 0.9397 0.5806 1.1084 1.0723 1.0460 0.8979
6 0.4898 0.0012 1.0265 0.9562 0.7884 0.5567

12 1.3097 1.0044 1.9202 2.0468 1.6659 1.6823

Table 5: Amisano-Giacomini test at different k – Euro Area

Table 5 summarises the results of the Amisano-Giacomini test for different
horizons and values of ρ. In the European case, the rotated and classical
forecasts produce broadly similar results, unlike in the US case. This is not
surprising, as the two sets of factors for Europe are more similar. The rotated
model shows statistically significant improvement at the 10% level only for 1-
step-ahead forecasts with VSTOXX, and for 12-step-ahead forecasts with the
GPR index.15 For all other horizons, the differences remain not significant,
although they are consistently positive, indicating a slight advantage for the
rotated model.

7 Conclusions and extensions

In this article, we propose a new transformation of the Nelson-Siegel model,
extended by Diebold and Li (2006), that incorporates cointegration. Our
approach expresses the yield curve as a function of spreads and a common
trend, and adjusts the state-space representation of the dynamic factor model
accordingly. To assess the validity of our model, we compare estimates based
on the original Diebold and Li (2006) representation with those obtained
from our cointegration-based rotation using US yield curve data.

15With the weight function constructed including both the series, the rotated model has
a higher predicted likelihood for 1 month- and 1 year-ahead forecasts.
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Our results show that, for most periods, the factors extracted by the
rotated model are very similar to those from the classical specification. How-
ever, the rotation improves the model’s ability to capture cross-correlations
among idiosyncratic components, which translates into a more efficient ex-
traction of the Nelson-Siegel factors during periods of financial and economic
crisis. This suggests that incorporating cointegration into the model can pro-
vide additional predictive power and better reflect the information contained
in the yield curve.

We then compare the forecasting ability of the two models by estimating
a block-triangular VAR including standard macroeconomic variables (namely
GDP growth, inflation, and the interest rate) and evaluate the differences in
terms of predictive log-likelihoods. In order to do so, we rely on the Amisano
and Giacomini (2007) test, which evaluates predictive accuracy at the density
level. We find that the rotated model generally improves density forecasts,
especially during episodes of economic stress, such as after the 2008 financial
crisis and the Covid-19 recession.

The analysis on Euro area yields similar but milder improvements, thus
reflecting the closer similarity between factor sets and the more limited
volatility of European yields compared to the US.

Finally, we provide evidence that the parameter governing the evolution of
the level, slope, and curvature factors (λ) is smaller than the value estimated
in Diebold and Li (2006) and commonly used in the empirical literature.
This may reflect a shift in the behavior of the term structure of interest rates
following the ZLB period. This aspect, however, is not the primary focus
of the present paper and will be investigated more thoroughly in further
research.

Future research may also consider the application of the same techniques
to economies where suitable data on the yield curve are available, and the
possible gains from estimating a time-varying λ parameter.
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