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1 Introduction

Complete information games with strategic complementarities do often display multiple Nash
equilibria. This is the case for group contests, as well. When within-group strong complemen-
tarities in group contests are modelled by the weakest-link impact function which equates the
minimum of the efforts provided by the teammates, this multiplicity translates into the con-
tinuum of pure strategy Nash equilibria result found by Chowdhury, Lee, and Topolyan [2016],
who term deterministic group contests with the weakest-link impact function as “max-min group
contests”. The authors employ a public good prize, whereas Gilli and Sorrentino [2024a] and
Gilli and Sorrentino [2024b] analyze the private good prize setting with binary and continuous
effort provision choices, respectively, and confirm the strong multiplicity result. These works
share the complete information assumption. Departing from the information completeness as-
sumption, Barbieri, Kovenock, Malueg, and Topolyan [2019] confirm the multiplicity result for
a deterministic group contest with the weakest-link impact function, a public good prize and
incomplete information about the cost of exerting effort. The authors focus on the interplay be-
tween dispersed private information about the cost of effort and the weakest-link impact function
and characterize the set of Bayes-Nash equilibria in pure strategies. Despite allowing for very
general distributions of the cost of effort, with common support being an unnecessary assump-
tion, nevertheless, the uniqueness result they get is limited to nondegenerate equilibria without
mass-points at the top, along with a continuum of nondegenerate equilibria with mass-points
at the top and degenerate equilibria. On the other hand, global games introduced by Carlsson
and van Damme [1993a] relax the complete information assumption in 2×2 games in such a way
that a unique equilibrium in switching strategies is selected as the noise vanishes, independently
from its distribution, as the result of iterated deletion of (interim) strictly-dominated strategies.
Therefore, in this paper we pursue the research agenda of merging these two classes of games
by introducing incomplete information à la global games in max-min binary two-group contests.
We perturb complete information about the value of the prize contested and about the cost of
providing effort, separately. In the first case, we find both a unique equilibrium in (monotonic)
switching-strategies and an equilibrium robust to incomplete information à la Kajii and Mor-
ris [1997], in which no player exerts effort; in the second one, we obtain a unique equilibrium
in (monotonic) switching-strategies. The properties of the payoff-structure of the underline
complete information games are the key to understand this difference. Our results are closely
related to the generalization of payoffs perturbation of 2×2 games to the n-player case of stag
hunt games due to Carlsson and van Damme [1993b], where it is apparent that risk-dominance
fails to be the appropriate equilibrium selection criterion, when going beyond the two-player
case. However, we will not make claims about limit-uniqueness, independence of both specific
distributional assumptions and the number of parameters involved as, in turn, Carlsson and van
Damme [1993a] do.

As stressed in Gilli and Sorrentino [2024a] for research groups, international alliances and
group strikes, many economic applications can be modelled as competition between groups
with agents choosing whether to exert effort or not, rather than selecting an effort level from
a continuous support. Military conflict is an additional example that can be brought to the
fore, where soldiers can decide whether to abide with orders or not, for instance. Sports, music
performances and research activities are some settings presented by Barbieri et al. [2019] as
possible applications of their perfectly-discriminating group contest with perfect within-group
complementarities. Back to Chowdhury et al. [2016], R&D competition, negative campaigning
on multiple dimensions for products or elections, cybersecurity conflict are additional examples
presented as being suitable examples of max-min group contests. Moreover, contests with binary
decisions have been the object of a wide theoretical and experimental literature, spanning from
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corporate science, to sabotage activities and contests for status, as reviewed by Sheremeta [2018].
The paper is structured as follows. Section 2 presents two examples which should clarify

the parallelism between group contests and the supermodular payoff structure perturbed in the
global games à la Carlsson and van Damme [1993a] and how equilibrium selection naturally
arises when modelling incomplete information à la global games. In Section 3 the formal model
with both complete information and incomplete information is presented under two different
specifications. Section 4 delivers the conclusions.

2 An Example1

Let us consider a deterministic group contest defined by the following elements:

1. two groups, denoted by j ∈ {1, 2} ;

2. each group consists of nj = 2 members. The total number of agents is N = n1 + n2 = 4.
As notation device, let us write ij or j (i) for agents i ∈ {1, . . . , nj} of group j;

3. the choice of member i ∈ {1, 2} in group j ∈ {1, 2} , to increase the possibility of getting
the prize, is denoted by xj (i) ∈ {0, 1}. Let xj be the vector of all agents’ efforts of group
j, and x the vector of all agents’ efforts. Moreover, let xj (i) = 1 be denoted by a and
xj (i) = 0 by a;

4. a club good prize worth v ∈ R to be allocated to one of the groups: thus, the prize v can
be worth negative utils, which means that it can be a bad;

5. the impact function of group j is given by the weakest-link technology

Xj = min {xj (i) ∈ {0, 1} , i ∈ {1, ..., nj}} ;

6. the contest success function is given by the all-pay auction:

pj (X1, X2) =

 1 if Xj > X−j
1
2 if Xj = X−j

0 if Xj < X−j ;

7. the individual costs of effort Cij (xj (i)) = xj (i).

As a consequence of these modelling characteristics, player ij has the payoff

πij (x11, x12, x21, x22) = pjv − xij =

=

 v − xj (i) if min {xj} > min {x−j}
1
2v − xj (i) if min {xj} = min {x−j}
−xj (i) if min {xj} < min {x−j} .

Let players 1, 2 belong to group 1 and players 3, 4 to group 2. Consider the following
geometric representation of the game, where player 3 “moves horizontally”, while player 4 “moves
vertically”:

1This section is a direct application of the example carried out by Carlsson and van Damme [1993a] in their
introduction.
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3 a

1/2 a a

a v
2
− 1; v

2
− 1; v

2
− 1; v

2
− 1 −1; 0; v − 1; v − 1

a 0;−1; v − 1; v − 1 0; 0; v − 1; v − 1

a

1/2 a a

a v − 1; v − 1; 0;−1 v
2
− 1; v

2
; v
2
; v
2
− 1 a

a v
2
; v
2
− 1; v

2
; v
2
− 1 v

2
; v
2
; v
2
; v
2
− 1

1/2 a a

a v − 1; v − 1;−1; 0 v
2
− 1; v

2
; v
2
− 1; v

2

a v
2
; v
2
− 1; v

2
− 1; v

2
v
2
; v
2
; v
2
− 1; v

2

1/2 a a

a v − 1; v − 1; 0; 0 v
2
− 1; v

2
; v
2
; v
2

a

a v
2
; v
2
− 1; v

2
; v
2

v
2
; v
2
; v
2
; v
2

4

It is straightforward to derive the following properties:

• if v > 2, there are four strict Nash equilibria in pure strategies

NE ≡ {(a, a, a, a) ; (a, a, a, a) ; (a, a, a, a) ; (a; a; a; a)}

and a Nash equilibrium in symmetric strictly-mixed strategies σ∗
i (a) =

2
v ∀i ∈ {1, 2, 3, 4};

• if v = 2, there are four Nash equilibria in pure strategies

NE ≡ {(a, a, a, a) ; (a, a, a, a) ; (a, a, a, a) ; (a; a; a; a)} ;

• if v < 2, the unique Nash equilibrium derived by strict-dominance is (a, a, a, a);

• if v > 2, (a, a, a, a) payoff-dominates (a, a, a, a) for group 1 and (a, a, a, a) payoff-dominates
(a, a, a, a) for group 2;2

• if v > 4, (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for
group 1 and, symmetrically, (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium
strategy profiles for group 2. As a matter of fact, let us compare the Nash products of
(a, a, a, a) and (a, a, a, a). Then, for group 1:(v

2
− 1
)(v

2
− 1
)
> (0− (−1)) (0− (−1)) ⇔

(v
2
− 1
)2

> 1 ⇔ v > 4,

that is, for v > 4, (a, a) is associated with the largest Nash product.
Moreover, let us compare the Nash products of (a, a, a, a) and (a, a, a, a). Then, for group
1:(
v − 1− v

2

)(
v − 1− v

2

)
>
(v
2
−
(v
2
− 1
))(v

2
−
(v
2
− 1
))

⇔
(v
2
− 1
)2

> 1 ⇔ v > 4 ,

that is, for v > 4, (a, a) is associated with the largest Nash product.
The same inequalities hold symmetrically for group 2 as well;

2For the formulation of payoff-dominace and risk-dominance concepts see Harsanyi and Selten [1988].
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• if 2 < v < 4, (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles
for group 1 and, symmetrically, (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium
strategy profiles for group 2 . Clearly this follows from what shown at the previous point
for both groups;

• overall, there is a one-sided dominance region: for v < 2, a is a strictly dominated action.

Finally, note that, for 2 < v < 4, (a, a, a, a) is the payoff-dominant equilibrium strategy profile
for group 1, whereas (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles
for group 1, and, symmetrically, (a, a, a, a) is the payoff-dominant equilibrium strategy profile
for group 2, whereas (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles
for group 2. Hence, there is a tension between payoff-dominance and risk-dominance.

Now let us consider a slight variation of the game above and let:

• the individual costs of effort Cij (xj (i)) = c with c ∈ R and the club good prize worth
v > 0 . Thus, costs of effort may be negative, which means that agents could enjoy effort
per se, while the prize v is always worth positive utils, so that it is a good.

Then, we have the following representation of the game, where player 3 “moves horizontally”
and player 4 “moves vertically”:

3 a

1/2 a a

a v
2
− c; v

2
− c; v

2
− c; v

2
− c −c; 0; v − c; v − c

a 0;−c; v − c; v − c 0; 0; v − c; v − c

a

1/2 a a

a v − c; v − c; 0;−1 v
2
− c; v

2
; v
2
; v
2
− c a

a v
2
; v
2
− 1; v

2
; v
2
− c v

2
; v
2
; v
2
; v
2
− c

1/2 a a

a v − c; v − c;−1; 0 v
2
− c; v

2
; v
2
− c; v

2

a v
2
; v
2
− c; v

2
− c; v

2
v
2
; v
2
; v
2
− c; v

2

1/2 a a

a v − c; v − c; 0; 0 v
2
− c; v

2
; v
2
; v
2

a

a v
2
; v
2
− c; v

2
; v
2

v
2
; v
2
; v
2
; v
2

4

It is straightforward to derive the following properties:

• if c < 0, the unique Nash equilibrium derived by strict dominance is (a, a, a, a);

• if c > v
2 , the unique Nash equilibrium derived by strict dominance is (a, a, a, a);

• if 0 ≤ c < v
2 , there are four strict Nash equilibria in pure strategies

NE = {(a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a)}

and an equilibrium in symmetric strictly mixed strategies σ∗
i (a) =

2c
v ∀i ∈ {1, 2, 3, 4};

• if c = v
2 , there are four Nash equilibria in pure strategies

NE = {(a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a)} ;
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• if c < v
2 , (a, a, a, a) payoff-dominates (a, a, a, a) for group 1 and (a, a, a, a) payoff-dominates

(a, a, a, a) for group 2;

• if 0 ≤ c < v
4 , (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles

for group 1 and, symmetrically, (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium
strategy profiles for group 2 . As a matter of fact, let us compare the Nash products of
(a, a, a, a) and (a, a, a, a). Then, for group 1:(v

2
− c
)(v

2
− c
)
> (0− (−c)) (0− (−c)) ⇔

(v
2
− c
)2

> c2 ⇔ v > 4c ⇔ c <
v

4
,

that is, for c < v
4 , (a, a) is associated with the largest Nash product.

Moreover, let us compare the Nash products of (a, a, a, a) and (a, a, a, a). Then, for group
1:(
v − c− v

2

)(
v − c− v

2

)
>
(v
2
−
(v
2
− c
))(v

2
−
(v
2
− c
))

⇔
(v
2
− c
)2

> c2 ⇔ c <
v

4
,

that is, for c < v
4 , (a, a) is associated with the largest Nash product.

The same inequalities hold symmetrically for group 2 as well;

• if v
4 < c < v

2 , (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles
for group 1 and, symmetrically, (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium
strategy profiles for group 2 . Clearly this follows from what shown at the previous point
for both groups;

• overall, there are two dominance regions: for c < 0 , a is a strictly dominated action; for
c > v

2 , a is a strictly dominated action.

Finally, note that, for v
4 < c < v

2 , (a, a, a, a) is the payoff-dominant equilibrium strategy profile
for group 1, whereas (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles
for group 1, and, symmetrically, (a, a, a, a) is the payoff-dominant equilibrium strategy profile
for group 2, whereas (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles
for group 2. Hence, there is a tension between payoff-dominance and risk-dominance.

In turn, we would like to draw a possible comparison with the classical example due to
Carlsson and van Damme [1993a] about a 2× 2 game under complete information, reported in
table 1.

α2 β2

α1 x, x x, 0

β1 0, x 4, 4

Table 1: Game g(x) by Carlsson and van Damme [1993a] .

Carlsson and van Damme [1993a] highlight the following properties of this game under
complete information:

• if x > 4, the unique Nash equilibrium derived by strict dominance is (α1, α2);

• if x < 0, the unique Nash equilibrium derived by strict dominance is (β1, β2);
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• if 0 < x < 4, there are two strict Nash equilibria, that is (α1, α2) and (β1, β2);

• if x ∈ (2, 4), (α1, α2) is the risk-dominant equilibrium;

• if x ∈ (0, 2), (β1, β2) is the risk-dominant equilibrium;

• overall, there are two dominance regions.

Finally, note that, for 2 < x < 4, (β1, β2) is the payoff-dominant equilibrium, whereas (α1, α2) is
the risk-dominant equilibrium: there is a tension between payoff-dominance and risk-dominance.

2.1 Incomplete Information about the Prize

Let us consider the case where the individual costs of effort Cij (xj (i)) = xj (i) . Henceforth,
we refer to this game as g (v). We closely follow Carlsson and van Damme [1993a] introducing
incomplete information about the prize v as follows:

• let V be a random variable which is uniform on some interval [v, v], e.g. [1, 5];

• given the realization v, each player i ∈ {1, 2, 3, 4} idiosyncratically observes the realization
of a random variable Vi, uniform on [v − ε, v + ε] for some ε> 0, so that the players’
observation errors V1 − v, V2 − v, V3 − v and V4 − v are independent;

• after these idiosyncratic observations, each player i ∈ {1, 2, 3, 4} simultaneously and in-
dependently decides whether to exert effort or not and gets a payoff as described by the
strategic form game of g (v);

• note that E (V |vi) = vi, if i observes vi ∈ [v + ε, v − ε] so that V |vi ∼ U (vi − ε, vi + ε);

• furthermore, for vi ∈ [v + ε, v − ε], the conditional distribution of the teammate’s or op-
ponents’ observation will be centered around vi with support [vi − 2ε, vi + 2ε] . Hence,
Prob [V−i < vi|vi] = Prob[V−i > vi|vi] = 1

2 .

Now, let us further assume ε<
∣∣v
2 − 1

∣∣ and suppose player i ∈ {1, 2, 3, 4} observes vi < 2.
Then, i’s conditionally expected payoff from exerting effort, that is choosing a, is smaller than
the one from exerting no effort, that is choosing a. Accordingly, a is a conditionally strictly
dominant action for player i ∈ {1, 2, 3, 4} whenever she observes vi < 2. Suppose i = 1 without
loss of generality. Iterating this dominance argument, if players −i ∈ {2, 3, 4} are forced to
play a whenever they observe v−i < 2, then player i, observing vi = 2 has to assign at least

probability
(
1
2

)3
= 1

8 to (a2, a3, a4). Thus, i’s conditionally expected payoff from not exerting
effort, that is choosing ai, will be at least 3

4 , so that ai can be discarded by iterated dominance
for vi = 2, since the conditionally expected payoff from exerting effort equals 1

4 . Let v∗i be the
smallest observation such that ai cannot be excluded by iterated dominance. Then, it is possible
to show that v∗i = 4. Note that vi = 4 is the threshold for the risk-dominance regions as well.
As a matter of fact, when vi = 4, the conditionally expected payoff from exerting effort equals

1

8

(
4

2
− 1

)
+
1

8
(−1)+

1

8
(4− 1)+

1

8

(
4

2
− 1

)
+
1

8
(4− 1)+

1

8

(
4

2
− 1

)
+
1

8
(4− 1)+

1

8

(
4

2
− 1

)
=

3

2
,

while the conditionally expected payoff from not exerting effort equals

1

8
∗ 0 + 1

8
∗ 0 + 1

8

(
4

2

)
+

1

8

(
4

2

)
+

1

8

(
4

2

)
+

1

8

(
4

2

)
+

1

8

(
4

2

)
+

1

8

(
4

2

)
=

3

2
.
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The cutoff v∗i = 4 is the unique threshold that can be established from the lower dominance
regions by iterated deletion of strictly dominated strategies, since it is the unique value for
vi ∈ [v − ε, v + ε] solving

1

8

(vi
2

− 1
)
+
1

8
(−1)+

1

8
(vi − 1)+

1

8

(vi
2

− 1
)
+
1

8
(vi − 1)+

1

8

(vi
2

− 1
)
+
1

8
(vi − 1)+

1

8

(vi
2

− 1
)
=

=
1

8
∗ 0 + 1

8
∗ 0 + 1

8

(vi
2

)
+

1

8

(vi
2

)
+

1

8

(vi
2

)
+

1

8

(vi
2

)
+

1

8

(vi
2

)
+

1

8

(vi
2

)
.

The same kind of reasoning cannot be carried out for large observations of v, since it does
not exist an upper dominance region. Conversely, this is possible in our second setting in which
there is incomplete information about the cost of effort itself. As a matter of fact, in the latter
there are both a lower dominance region and an upper dominance region.

Hence, in g (v) under incomplete information à la global games, for sufficiently small ε, there
is a unique equilibrium in (monotonic) cutoff strategies, such that ∀i ∈ {1, 2, 3, 4}:

x∗
i (vi) =

{
1 if vi > 4
0 if vi ≤ 4

Nonetheless, given the absence of an upward dominance region, the following equilibrium ∀i ∈
{1, 2, 3, 4} exists as in De Mesquita [2011]:

x∗∗
i (vi) = 0 ∀vi ∈ [v + ε, v − ε] .

As a matter of fact, at (a1, a2, a3, a4) any deviation is strictly dominated for any vi ∈[v + ε, v − ε],
so that (a1, a2, a3, a4) is robust to incomplete information in the sense of Kajii and Morris [1997].

2.2 Incomplete Information about the Cost of Effort

Let us consider the case where the individual costs of effort is Cij (xj (i)) = c with c ∈ R and
the club good prize worth v > 0. Henceforth, we refer to this game as g (c). We closely follow
Carlsson and van Damme [1993a] introducing incomplete information about the cost of effort c
as follows:

• let C be a random variable which is uniform on some interval [c, c];

• given the realization c, each player i ∈ {1, 2, 3, 4} idiosyncratically observes the realization
of a random variable Ci, uniform on [c− ε, c+ ε] for some ε> 0, so that the players’
observation errors C1 − c, C2 − c, C3 − c and C4 − c are independent;

• after these idiosyncratic observations, each player i ∈ {1, 2, 3, 4} simultaneously and in-
dependently decides whether to exert effort or not and gets a payoff as described by the
strategic form game g (c) ;

• note that E (C|ci) = ci, if i observes ci ∈ [c+ ε, c− ε] so that C|ci ∼ U (ci − ε, ci + ε);

• furthermore, for ci ∈ [c+ ε, c− ε], the conditional distribution of the teammate’s or op-
ponents’ observation will be centered around ci with support [ci − 2ε, ci + 2ε]. Hence,
Prob [C−i < ci|ci] = Prob[C−i > ci|ci] = 1

2 .

Now, let us further assume ε<
∣∣ 2c−v

4

∣∣ and suppose player i ∈ {1, 2, 3, 4} observes ci > v
2 .

Then, i’s conditionally expected payoff from exerting effort, that is choosing a, is smaller than
the one from exerting no effort, that is choosing a. Accordingly, a is a conditionally strictly
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dominant action for player i ∈ {1, 2, 3, 4} whenever she observes ci >
v
2 . Suppose i = 1 without

loss of generality. Iterating this dominance argument, if players −i ∈ {2, 3, 4} are forced to
play a whenever they observe c−i >

v
2 , then player i, observing ci =

v
2 has to assign at least

probability
(
1
2

)3
= 1

8 to (a2, a3, a4). Thus, i’s conditionally expected payoff from not exerting
effort, that is choosing ai will be at least 3

8v, so that ai can be discarded by iterated dominance
for ci =

v
2 , since the conditionally expected payoff from exerting effort equals v

8 . Let c∗i be the
smallest observation such that ai cannot be excluded by iterated dominance. Then, it is possible
to show that c∗i = v

4 . Note that ci =
v
4 is the threshold for the risk-dominance regions as well.

As a matter of fact, when ci =
v
4 , the conditionally expected payoff from exerting effort equals

1

8

(v
2
− v

4

)
+

1

8

(
−v

4

)
+

1

8

(
v − v

4

)
+

1

8

(v
2
− v

4

)
+

1

8

(
v − v

4

)
+

1

8

(v
2
− v

4

)
+

+
1

8

(
v − v

4

)
+

1

8

(v
2
− v

4

)
=

3

8
v

and the conditionally expected payoff from not exerting effort equals

1

8
∗ 0 + 1

8
∗ 0 + 1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
=

3

8
v .

The cutoff c∗i = v
4 is the unique threshold that can be established from the upper dominance

region by iterated deletion of strictly dominated strategies, since it is the unique value for
ci ∈ [c− ϵ, c+ ϵ] solving

1

8

(v
2
− ci

)
+
1

8
(−ci)+

1

8
(v − ci)+

1

8

(v
2
− ci

)
+
1

8
(v − ci)+

1

8

(v
2
− ci

)
+
1

8
(v − ci)+

1

8

(v
2
− ci

)
=

=
1

8
∗ 0 + 1

8
∗ 0 + 1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
.

The same kind of reasoning can be carried out for small observations of c, since it does exist
a lower dominance region.

Again, let us assume ε<
∣∣− c

2

∣∣ and suppose player i ∈ {1, 2, 3, 4} observes ci < 0. Then, i’s
conditionally expected payoff from exerting effort, that is choosing a, is positive and greater
than the one from exerting no effort, that is choosing a. Accordingly, a is a conditionally
strictly dominant action for player i ∈ {1, 2, 3, 4} whenever she observes ci < 0. Iterating this
dominance argument, suppose i = 1 without loss of generality. Then, if players −i ∈ {2, 3, 4}
are forced to play a whenever they observe c−i < 0, player i, observing ci = 0 has to assign at

least probability
(
1
2

)3
= 1

8 to (a2, a3, a4). Thus, i’s conditionally expected payoff from exerting
effort, that is choosing ai will be at least 5

8v, so that ai can be discarded by iterated dominance
for ci = 0, since the conditionally expected payoff from not exerting effort equals 3

8v. Let c∗∗i
be the smallest observation such that ai cannot be excluded by iterated dominance. Then, it is
possible to show that c∗∗i = v

4 . Note that ci =
v
4 is the threshold for the risk-dominance regions

as well. As a matter of fact, when ci =
v
4 , the conditionally expected payoff from exerting effort

equals

1

8

(v
2
− v

4

)
+

1

8

(
−v

4

)
+

1

8

(
v − v

4

)
+

1

8

(v
2
− v

4

)
+

1

8

(
v − v

4

)
+

1

8

(v
2
− v

4

)
+

+
1

8

(
v − v

4

)
+

1

8

(v
2
− v

4

)
=

3

8
v

and the conditionally expected payoff from not exerting effort equals

1

8
∗ 0 + 1

8
∗ 0 + 1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
=

3

8
v .
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The cutoff c∗∗i = v
4 is the unique threshold that can be established from the lower dominance

region by iterated deletion of strictly dominated strategies, since it is the unique value for
ci ∈ [c− ε, c+ ε] solving

1

8

(v
2
− ci

)
+
1

8
(−ci)+

1

8
(v − ci)+

1

8

(v
2
− ci

)
+
1

8
(v − ci)+

1

8

(v
2
− ci

)
+
1

8
(v − ci)+

1

8

(v
2
− ci

)
=

=
1

8
∗ 0 + 1

8
∗ 0 + 1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
+

1

8

(v
2

)
.

Hence, c∗i = c∗∗i and in g (c) under incomplete information à la global games, for sufficiently
small ε, there exists a unique equilibrium in switching strategies such that ∀i ∈ {1, 2, 3, 4}

x∗
i (ci) =

{
1 if ci <

v
4

0 if ci ≥ v
4 .

2.3 Observations

Overall, we can state some general points from the example above:

• under complete information, there are multiple Nash equilibria in pure strategies in a
max-min two-group four-player contest with binary actions and a public good prize, inde-
pendently from whether the cost of effort equates effort itself or a parameter belonging to
the set of real numbers.

• Focusing on the geometric representation of each two-player group it is apparent the
similarity with the symmetric 2x2 game by Carlsson and van Damme [1993a]: in both
of them there is a supermodular payoff-structure and the cardinality of the actions set is
equal to two, as in classical stag hunt games. Accordingly, symmetric Nash equilibria in
pure strategies naturally emerge.

• In both examples we highlight a tension between payoff-dominance and risk-dominance,
as in the example due to Carlsson and van Damme [1993a].

• Relaxing complete information à la global games induces the existence of an equilibrium in
(monotonic) switching strategies, whose cutoff coincides with the one of the risk-dominance
region.

• Equilibrium selection happens even for “a pinch of uncertainty”, no matter how small ε
is.

• Whether the selection induced delivers uniqueness or not crucially depends on the prop-
erties of the payoffs structure under complete information: in particular, the presence of
both an upward and a downward dominance region is conducive to a unique equilibrium
in (monotonic) switching strategies by deletion of interim-strictly dominated strategies
when departing from the complete information assumption in the sense of Carlsson and
van Damme [1993a].

• Finally, note that whether the risk-dominant equilibrium in g (vi) and g (ci) coincides with
the risk-dominant equilibrium in the actual game selected by Nature, i.e. g (v) and g (c)
respectively, or not, depends on whether ε is sufficiently small, that is for ε < |v − 2| and
ε <

∣∣c− v
4

∣∣ , respectively.
Once highlighted the main properties of our example, the general model and the mechanisms

guiding to the related results should be more transparent in the next section.
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3 The Model

Let us consider a deterministic group contest defined by the following elements:

1. two groups, denoted by j ∈ {1, 2} ;

2. each group has nj ≥ 2 members, where n1 ≥ n2 without loss of generality. The total
number of agents is n1+n2 = N . As notation device, let us write ij or j (i) for agents i ∈
{1, . . . , nj} of group j;

3. the choice of member i ∈ {1, . . . , nj} in group j ∈ {1, 2} , to increase the possibility of
getting the prize, is denoted by xj (i) ∈ {0, 1}. Let xj be the vector of all agents’ efforts
of group j, and x the vector of all agents’ efforts. Moreover, let xj (i) = 1 be denoted by
a and xj (i) = 0 by a; let us define the average exerted effort in group j, or rather the
participation rate in group j as

γj =
1

nj

nj∑
i=1

xij ∈ [0, 1] ;

4. a club good prize worth v ∈ R to be allocated to one of the two groups: thus, the prize v
can be worth negative utils, which means that it can be a bad;

5. the impact function of group j is given by the weakest-link technology

Xj = min {xj (i) ∈ {0, 1} , i ∈ {1, ..., nj}} ;

6. the contest success function is given by the all-pay auction:

pj (X1, X2) =

 1 if Xj > X−j
1
2 if Xj = X−j

0 if Xj < X−j ;

7. the individual costs of effort Cij (xj (i)) = xj (i).

As a consequence of these modelling characteristics, player ij has the expected payoff

πij (x1,x2) = pjv − xij =

=

 v − xj (i) if min {xj} > min {x−j}
1
2v − xj (i) if min {xj} = min {x−j}
−xj (i) if min {xj} < min {x−j} .

Now we are able to provide a formal definition of a binary max-min group contest with a
public good prize.

Definition 1 A Binary Max-Min Group Contest BMMGC∗ is a one-stage game BMMGC∗ =
⟨{1, 2} , N,Bij , πij⟩ defined by

1. the set of groups {1, 2} ;

2. the set of players N = {1, ..., n1 + n2} ;
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3. the set of actions Bij = {0, 1} : for each player ij, the choice of the effort xj (i) ;

4. the payoff functions for each player ij ∈ N

πij (x1,x2) = pjv − xij =

=

 v − xj (i) if min {xj} > min {x−j}
1
2v − xj (i) if min {xj} = min {x−j}
−xj (i) if min {xj} < min {x−j} .

The notation used in this paper is summed up in table 1.

Variable Meaning
ij or j (i) agent i of group j
{1, ..., nj} set of agents in group j

xj (i) or xji effort of agent i in group j
Xj = min {xj (i) ∈ {0, 1} , i ∈ {1, ..., nj}} impact of effort of all agents in group j

x =(x1,x2) vector of efforts of all agents
Cij (xj (i)) = xj (i) cost of effort for agent i of group j

pj (X1, X2) probability of group j of winning the contest
πij (x1,x2) payoff function of agent i of group j

γj =
1
nj

∑nj

i=1 xij ∈ [0, 1] share of active agents in group j

Table 1

Moreover, when γj ∈ (0, 1) , denote by

γ+
j =

1

nj

(
nj∑
i=1

xij + 1

)
∈ [0, 1]

the share of active agents at a marginal increase and by

γ−
j =

1

nj

(
nj∑
i=1

xij − 1

)
∈ [0, 1]

the share of active agents at a marginal decrease.
To simplify notation and presentation, the NE of the BMMGC∗ will be presented in terms

of share of active agents, i.e. (γ1, γ2) ∈ [0, 1]× [0, 1] .

Proposition 1 In the BMMGC∗,

• if v > 2, there are four strict Nash equilibria in pure strategies

NE ≡ {(γ1, γ2) = (1, 1) ; (γ1, γ2) = (1, 0) ; (γ1, γ2) = (0, 1) ; (γ1, γ2) = (0, 0)}

and a Nash equilibrium in within-group symmetric strictly-mixed strategies

σ∗
ij (xij = 1) =

(
2

v

)1/(nj−1)

∀i ∈ {1, . . . , nj} and j ∈ {1, 2} ;
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• if v = 2, there are four Nash equilibria in pure strategies

NE ≡ {(γ1, γ2) = (1, 1) ; (γ1, γ2) = (1, 0) ; (γ1, γ2) = (0, 1) ; (γ1, γ2) = (0, 0)} ;

• if v < 2, there is a unique Nash equilibrium in pure strategies derived by strict-dominance

(γ1, γ2) = (0, 0) .

Overall, there is a one-sided dominance region: for v < 2, xij = 1 is a strictly dominated action
for any ij ∈ {1, . . . , N}.

Proof.

- Suppose

(γ1, γ2) such that γj ∈ (0, 1) and 1 ≤
nj∑
i=1

1xij=1 ≤ nj − 1 ∀j ∈ {1, 2} .3

Then,
min {x1} = min {x2} .

Suppose xj (i) = 1, then

πij (γj , γ−j) =
v

2
− 1 .

If agent ij deviates to xj (i) = 0, then

min {x1} = min {x2}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
=

v

2
.

Hence, for player ij there is an incentive to deviate ∀v ∈ R, since

v

2
− 1 <

v

2
∀v ∈ R .

Thus,

(γ1, γ2) such that γj ∈ (0, 1) and 1 ≤
nj∑
i=1

1xij=1 ≤ nj − 1 ∀j ∈ {1, 2}

is not a Nash equilibrium ∀v ∈ R .

- Suppose
(γ1, γ2) = (1, 1) .

Then,
min {x1} = min {x2}

so that
πij (γj , γ−j) =

v

2
− 1 .

3
1xij=1 stands for the Indicator random variable taking value 1 when player ij chooses xij = 1, that is she

exerts effort.
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If agent ij deviates to xj (i) = 0, then

min {xj} = 0 < min {x−j}

so that the deviation payoff is
πD
ij

(
γ−
j , γ−j

)
= 0 .

Hence, for player ij there is no incentive to deviate if and only if

v

2
− 1 ≥ 0 ⇔ v ≥ 2 .

Thus,
(γ1, γ2) = (1, 1)

is a Nash equilibrium in pure strategies ∀v ≥ 2 .

- Suppose
(γj , γ−j) = (1, 0)∀j ∈ {1, 2} .

Then,
min {xj} = 1 > min {x−j} = 0

so that
πij (γj , γ−j) = v − 1 .

If agent ij deviates to xj (i) = 0, then

min {xj} = 0 = min {x−j}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
=

v

2
.

Hence, for agent ij there is no incentive to deviate if and only if

v − 1 ≥ v

2
⇔ v ≥ 2 .

On the other hand, if agent i− j deviates to x−j (i) = 1, then

min {xj} = 1 > min {x−j} = 0

so that the deviation payoff is

πD
i−j

(
γj , γ

+
−j

)
= −1 .

Hence, for player i− j deviating is a strictly dominated action as

πi−j (γj , γ−j) = 0 > πD
i−j

(
γj , γ

+
−j

)
= −1 .

Thus,
(γj , γ−j) = (1, 0) ∀j ∈ {1, 2}

is a Nash equilibrium in pure strategies for any v ≥ 2 .
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- Suppose
(γ1, γ2) = (0, 0) .

Then
min {x1} = min {x2}

so that
πij (γ1, γ2) =

v

2
∀j ∈ {1, 2} .

If agent ij deviates to xj (i) = 1, then

min {x1} = min {x2}

so that
πD
ij

(
γ+
j , γ−j

)
=

v

2
− 1 .

Hence, for player ij deviating is a strictly dominated action as

πij (γj , γ−j) =
v

2
> πD

ij

(
γD
j , γ−j

)
=

v

2
− 1 ∀j ∈ {1, 2} .

Thus,
(γ1, γ2) = (0, 0)

is a Nash equilibrium in pure strategies for any v ∈ R .

- Let σij (xij = 1) be the within-group symmetric randomization over pure strategy xij = 1
for player ij, then

EUij (xij = 1) = EUij (xij = 0) ⇔

⇔ Prob ((nj − 1) γj = nj − 1)·Prob (n−jγ−j < n−j)·(v − 1)+
(
Prob ((nj − 1) γj < nj − 1) ·

Prob (n−jγ−j < n−j) + Prob ((nj − 1) γj = nj − 1) · Prob (n−jγ−j = n−j)
)(v

2
− 1
)
+

+Prob ((nj − 1) γj < nj − 1) · Prob (n−jγ−j = n−j) · (−1) = Prob (n−jγ−j < n−j) ·
v

2
⇔

⇔ (σij (xij = 1))
nj−1 · (1− (σi−j (xi−j = 1))

n−j ) · (v − 1) +
(
1− (σij (xij = 1))

nj−1 ·

(1− (σi−j (xi−j = 1))
n−j ) + (σij (xij = 1))

nj−1 · (σi−j (xi−j = 1))
n−j

)
·
(v
2
− 1
)
+

+
(
1− (σij (xij = 1))

nj−1
)
· (σi−j (xi−j = 1))

n−j · (−1) = (1− (σi−j (xi−j = 1))
n−j ) · v

2
⇔

⇔ σ∗
ij (xij = 1) =

(
2

v

)1/(nj−1)

∀i ∈ {1, . . . , nj} and j ∈ {1, 2} .

Thus,

σ∗
ij (xij = 1) =

(
2

v

)1/(nj−1)

∀i ∈ {1, . . . , nj} and j ∈ {1, 2} .

is a Nash equilibrium in within-group symmetric strictly-mixed strategies ∀v > 2 .

The following result is immediate from proposition 1.
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Corollary 1 In the BMMGC∗, there are no within-group asymmetric Nash equilibria in pure
strategies.

Moreover, it is easy to prove the following result.

Proposition 2 In the BMMGC∗,

• for v > 2, (γj , γ−j) = (1, 0) is the payoff-dominant equilibrium for group j ∈ {1, 2};

• for v > 4, (γj , γ−j) = (1, 1) and (γj , γ−j) = (1, 0) are the risk-dominant equilibrium
strategy profiles for group j ∈ {1, 2};

• for 2 < v < 4, (γj , γ−j) = (0, 1) and (γj , γ−j) = (0, 0) are the risk-dominant equilibrium
strategy profiles for group j ∈ {1, 2} .

Remark 1 Note that, for 2 < v < 4 and any group j ∈ {1, 2}, (γj , γ−j) = (1, 0) is the
payoff-dominant equilibrium strategy profile for group j ∈ {1, 2}, whereas (γj , γ−j) = (0, 1) and
(γj , γ−j) = (0, 0) are the risk-dominant equilibrium strategy profiles for group j ∈ {1, 2}: there
is a tension between payoff-dominance and risk-dominance.

Proof. Following the formulation of payoff-dominance and risk-dominance concepts by Harsanyi
and Selten [1988], it is straightforward to state that:

• for v > 2, (γ1, γ2) = (1, 0) payoff-dominates (γ1, γ2) = (0, 0) for group 1 and (γ1, γ2) =
(0, 1) payoff-dominates (γ1, γ2) = (0, 0) for group 2, since

πij (γj = 1, γ−j = 0) = v − 1 > πij (γj = 0, γ−j = 0) =
v

2
⇔ v > 2 .

• for v > 4, γj = 1 is the risk-dominant equilibrium strategy profile for group j ∈ {1, 2}. As a
matter of fact, let us compare the Nash products of (γj , γ−j) = (1, 1) and (γj , γ−j) = (0, 1).
Then, for group j:(v

2
− 1
)nj

> (0− (−1))
nj ⇔

(v
2
− 1
)nj

> 1 ⇔ v > 4,

that is, for v > 4, (γ1, γ2) = (1, 1) is associated with the largest Nash product.
Moreover, let us compare the Nash products of (γj , γ−j) = (1, 0) and (γj , γ−j) = (0, 0).
Then, for group j:(

v − 1− v

2

)nj

>
(v
2
−
(v
2
− 1
))nj

⇔
(v
2
− 1
)nj

> 1 ⇔ v > 4 ,

that is, for v > 4, (γj , γ−j) = (1, 0) is associated with the largest Nash product;

• for 2 < v < 4, (γj , γ−j) = (0, 1) and (γj , γ−j) = (0, 0) are the risk-dominant equilibrium
strategy profiles for group j ∈ {1, 2} . Clearly this follows from what shown at the previous
point for both groups.

Now consider a slight variation of the game above and let:

• the individual cost of effort Cij (xj (i)) = c with c ∈ R. Thus, costs of effort may be
negative, which means that agents could enjoy effort per se;
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• the club good prize v > 0, i.e. the prize v is always worth positive utils, so that it is a
good.

Henceforth, we term this variation as BMMGC∗b. Then, it is straightforward to derive the
following results.

Proposition 3 In the BMMGC∗b,

• if c < 0, there is a unique Nash equilibrium in pure strategies derived by strict-dominance

(γ1, γ2) = (1, 1) ;

• if c > v
2 , there is a unique Nash equilibrium in pure strategies derived by strict-dominance

(γ1, γ2) = (0, 0) ;

• if 0 < c < v
2 , there are four strict Nash equilibria in pure strategies

NE = {(γ1, γ2) = (1, 1) , (γ1, γ2) = (1, 0) , (γ1, γ2) = (0, 1) , (γ1, γ2) = (0, 0)}

and an equilibrium in within-group symmetric strictly mixed strategies σ∗
i (xij = 1) =(

2c
v

)1/(nj−1) ∀i ∈ {1, . . . , nj} and j ∈ {1, 2};

• if c = 0, the set of Nash equilibria in pure strategies is

NE =

{
(γ1, γ2) = (1, 1) , (γ1, γ2) = (1, 0) , (γ1, γ2) = (0, 1) , (γ1, γ2) = (0, 0)

}
∪

∪

{
(γ1, γ2) such that γj ∈ (0, 1) and 1 ≤

nj∑
i=1

1xij=1 ≤ nj − 2 ∀j ∈ {1, 2}

}
∪

∪

{
(γj , γ−j) = (γj , 0) such that γj ∈ (0, 1) and 1 ≤

nj∑
i=1

1xij=1 ≤ nj − 2 ∀j ∈ {1, 2}

}
;

• if c = v
2 , there are four Nash equilibria in pure strategies

NE = {(γ1, γ2) = (1, 1) , (γ1, γ2) = (1, 0) , (γ1, γ2) = (0, 1) , (γ1, γ2) = (0, 0)} .

Overall, there are two dominance regions: for c < 0, xij = 0 is a strictly dominated action for
any ij ∈ {1, . . . , N}: for c > v

2 , xij = 1 is a strictly dominated action for any ij ∈ {1, . . . , N}.

Proof.

- Suppose

(γ1, γ2) such that γj ∈ (0, 1) and 1 ≤
nj∑
i=1

1xij=1 ≤ nj − 1 ∀j ∈ {1, 2} .

Then,
min {x1} = min {x2} .

Suppose xj (i) = 1, then

πij (γj , γ−j) =
v

2
− c .

17



If agent ij deviates to xj (i) = 0, then

min {x1} = min {x2}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
=

v

2
.

Hence, for player ij there is no incentive to deviate ∀v ∈ R if and only if

v

2
− c ≥ v

2
⇔ c ≤ 0 .

On the other hand, suppose xj (i) = 0 and c ≤ 0, then

πij (γj , γ−j) =
v

2

If agent ij deviates to xj (i) = 1, then

min {x1} = min {x2}

so that the deviation payoff is

πD
ij

(
γ+
j , γ−j

)
=

{
v − c if njγj = nj − 1
v
2 − c otherwise .

Hence, for player ij there is no incentive to deviate if and only if

c = 0 and njγj < nj − 1 .

Thus,

(γ1, γ2) such that γj ∈ (0, 1) and 1 ≤
nj∑
i=1

1xij=1 ≤ nj − 2 ∀j ∈ {1, 2}

is a Nash equilibrium if and only if c = 0.

- Suppose

(γj , γ−j) = (γj , 0) such that γj ∈ (0, 1) and 1 ≤
nj∑
i=1

1xij=1 ≤ nj − 1 ∀j ∈ {1, 2} .

Then,
min {x1} = min {x2} .

Suppose xj (i) = 1, then

πij (γj , γ−j) =
v

2
− c and πi−j (γj , γ−j) =

v

2
.

If agent ij deviates to xj (i) = 0, then

min {x1} = min {x2}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
=

v

2
.
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Hence, for player ij there is no incentive to deviate ∀v ∈ R if and only if

v

2
− c ≥ v

2
⇔ c ≤ 0 .

On the other hand, suppose xj (i) = 0 and c ≤ 0, then

πij (γj , γ−j) =
v

2

If agent ij deviates to xj (i) = 1, then

min {x1} = min {x2}

so that the deviation payoff is

πD
ij

(
γ+
j , γ−j

)
=

{
v − c if njγj = nj − 1
v
2 − c otherwise .

Hence, for player ij there is no incentive to deviate if and only if

c = 0 and njγj < nj − 1 .

If agent i− j deviates to x−j (i) = 1, then

min {xj} = min {x−j}

so that the deviation payoff is

πD
i−j

(
γj , γ

+
−j

)
=

v

2
− c .

Hence, for player i− j there is no incentive to deviate if and only if

v

2
≥ v

2
− c ⇔ c ≥ 0 .

Thus,

(γj , γ−j) = (γj , 0) such that γj ∈ (0, 1) and 1 ≤
nj∑
i=1

1xij=1 ≤ nj − 2 ∀j ∈ {1, 2} .

is a Nash equilibrium if and only if c = 0 .

- Suppose
(γ1, γ2) = (1, 1) .

Then,
min {x1} = min {x2}

so that
πij (γj , γ−j) =

v

2
− c .

If agent ij deviates to xj (i) = 0, then

min {xj} = 0 < min {x−j}
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so that the deviation payoff is
πD
ij

(
γ−
j , γ−j

)
= 0 .

Hence, for player ij there is no incentive to deviate if and only if

v

2
− c ≥ 0 ⇔ c ≤ v

2
.

Thus,
(γ1, γ2) = (1, 1)

is a Nash equilibrium in pure strategies ∀c ≤ v
2 .

- Suppose
(γj , γ−j) = (1, 0)∀j ∈ {1, 2} .

Then,
min {xj} = 1 > min {x−j} = 0

so that
πij (γj , γ−j) = v − c .

If agent ij deviates to xj (i) = 0, then

min {xj} = 0 = min {x−j}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
=

v

2
.

Hence, for agent ij there is no incentive to deviate if and only if

v − c ≥ v

2
⇔ c ≤ v

2
.

On the other hand, if agent i− j deviates to x−j (i) = 1, then

min {xj} = 1 > min {x−j} = 0

so that the deviation payoff is

πD
i−j

(
γj , γ

+
−j

)
= −c .

Hence, for player i− j there is no incentive to deviate if and only if

πi−j (γj , γ−j) = 0 ≥ πD
i−j

(
γj , γ

+
−j

)
= −c ⇔ c ≥ 0 .

Thus,
(γj , γ−j) = (1, 0) ∀j ∈ {1, 2}

is a Nash equilibrium in pure strategies for any 0 ≤ c ≤ v
2 .

- Suppose
(γ1, γ2) = (0, 0) .

Then
min {x1} = min {x2}

so that
πij (γ1, γ2) =

v

2
∀j ∈ {1, 2} .
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If agent ij deviates to xj (i) = 1, then

min {x1} = min {x2}

so that
πD
ij

(
γ+
j , γ−j

)
=

v

2
− c .

Hence, for player ij there is no incentive to deviate if and only if

πij (γj , γ−j) =
v

2
≥ πD

ij

(
γD
j , γ−j

)
=

v

2
− c ⇔ c ≥ 0 ∀j ∈ {1, 2} .

Thus,
(γ1, γ2) = (0, 0)

is a Nash equilibrium in pure strategies for any c ≥ 0 .

- Let σij (xij = 1) be the within-group symmetric randomization over pure strategy xij = 1
for player ij ∀j ∈ {1, 2}, then

EUij (xij = 1) = EU (xij = 0) ⇔

⇔ Prob ((nj − 1) γj = nj − 1)·Prob (n−jγ−j < n−j)·(v − c)+
(
Prob ((nj − 1) γj < nj − 1) ·

Prob (n−jγ−j < n−j) + Prob ((nj − 1) γj = nj − 1) · Prob (n−jγ−j = n−j)
)(v

2
− c
)
+

+Prob ((nj − 1) γj < nj − 1) · Prob (n−jγ−j = n−j) · (−c) = Prob (n−jγ−j < n−j) ·
v

2
⇔

⇔ (σij (xij = 1))
nj−1 · (1− (σi−j (xi−j = 1))

n−j ) · (v − c) +
(
1− (σij (xij = 1))

nj−1 ·

(1− (σi−j (xi−j = 1))
n−j ) + (σij (xij = 1))

nj−1 · (σi−j (xi−j = 1))
n−j

)
·
(v
2
− c
)
+

+
(
1− (σij (xij = 1))

nj−1
)
· (σi−j (xi−j = 1))

n−j · (−c) = (1− (σi−j (xi−j = 1))
n−j ) · v

2
⇔

⇔ σ∗
ij (xij = 1) =

(
2c

v

)1/(nj−1)

∀i ∈ {1, . . . , nj} and j ∈ {1, 2} ;

Thus,

σ∗
ij (xij = 1) =

(
2c

v

)1/(nj−1)

∀i ∈ {1, . . . , nj} and j ∈ {1, 2}

is a Nash equilibrium in within-group symmetric strictly-mixed strategies ∀ 0 < c < v
2 .

As before, it is easy prove the following result.

Proposition 4 In the BMMGC∗b,

• for 0 ≤ c < v
2 , (γj , γ−j) = (1, 0) is the payoff-dominant equilibrium for group j ∈ {1, 2};

• for 0 ≤ c < v
4 , (γj , γ−j) = (1, 1) and (γj , γ−j) = (1, 0) are the risk-dominant equilibrium

strategy profiles for group j ∈ {1, 2} ;

• for v
4 < c < v

2 , (γj , γ−j) = (0, 1) and (γj , γ−j) = (0, 0) are the risk-dominant equilibrium
strategy profiles for group j ∈ {1, 2} .
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Remark 2 Note that, for v
4 < c < v

2 and any group j ∈ {1, 2}, (γj , γ−j) = (1, 0) is the
payoff-dominant equilibrium strategy profile for group j ∈ {1, 2}, whereas (γj , γ−j) = (0, 1) and
(γj , γ−j) = (0, 0) are the risk-dominant equilibrium strategy profiles for group j ∈ {1, 2}: there
is a tension between payoff-dominance and risk-dominance.

Proof. Following the formulation of payoff-dominance and risk-dominance concepts by Harsanyi
and Selten (1988), it is straightforward to state that in the BMMGC∗b:

• if 0 < c ≤ v
2 , (γ1, γ2) = (1, 0) payoff-dominates (γ1, γ2) = (0, 0) for group 1 and (γ1, γ2) =

(0, 1) payoff-dominates (γ1, γ2) = (0, 0) for group 2, since

πij (γj = 1, γ−j = 0) = v − c > πij (γj = 0, γ−j = 0) =
v

2
⇔ c <

v

2
;

• if c = 0, for group j, (γj , γ−j) = (1, 0) payoff-dominates (γ1, γ2) = (0, 0) , (γj , γ−j) =
(γj , 0) such that γj ∈ (0, 1) and 1 ≤

∑nj

i=1 1xij=1 ≤ nj−2, (γ1, γ2) such that γj ∈ (0, 1) and 1 ≤∑nj

i=1 1xij=1 ≤ nj − 2 ∀j ∈ {1, 2} since
πij (γj = 1, γ−j = 0) = v
πij (γj = 0, γ−j = 0) = v

2
πij (γj , γ−j) =

v
2

πij (γj , 0) =
v
2

πij (γj = 0, γ−j = 1) = 0 ;

• if 0 < c < v
4 , γ1 = 1 is the risk-dominant equilibrium strategy profile for group 1 and,

symmetrically,γ2 = 1 for group 2 . As a matter of fact, let us compare the Nash products
of (γj , γ−j) = (1, 1) and (γj , γ−j) = (0, 1) ∀j ∈ {1, 2}. Then, for group j:(v

2
− c
)nj

> (0− (−c))
nj ⇔

(v
2
− c
)nj

> cnj ⇔ v > 4c ⇔ c <
v

4
,

that is, for c < v
4 , (γj , γ−j) = (1, 1) is associated with the largest Nash product.

Moreover, let us compare the Nash products of (γj , γ−j) = (1, 0) and (γj , γ−j) = (0, 0).
Then, for group j:(

v − c− v

2

)nj

>
(v
2
−
(v
2
− c
))nj

⇔
(v
2
− c
)nj

> cnj ⇔ c <
v

4
,

that is, for c < v
4 , (γj , γ−j) = (1, 0) is associated with the largest Nash product;

• if c = 0, γ1 = 1 is the risk-dominant equilibrium strategy profile for group 1 and,
symmetrically,γ2 = 1 for group 2 . As a matter of fact, let us compare the Nash products
of (γj , γ−j) = (1, 1) and (γj , γ−j) = (0, 1) ∀j ∈ {1, 2}. Then, for group j:(v

2
− c
)nj

> (0− (−c))
nj ⇔

(v
2

)nj

> 0nj ⇔ v > 0 ,

that is, for c = 0, (γj , γ−j) = (1, 1) is associated with the largest Nash product.
Moreover, let us compare the Nash products of (γj , γ−j) = (1, 0) and (γj , γ−j) = (0, 0).
Then, for group 1:(

v − c− v

2

)nj

>
(v
2
−
(v
2
− c
))nj

⇔
(v
2

)nj

> 0nj ⇔ v > 0 ,

that is, for v > 0, (γj , γ−j) = (1, 0) is associated with the largest Nash product.
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Furthermore, let us compare the Nash products of (γj , γ−j) = (1, 0) and (γj , γ−j) =
(γj , 0) such that γj ∈ (0, 1) and 1 ≤

∑nj

i=1 1xij
≤ nj − 2 ∀j ∈ {1, 2}. Then, for group 1:(

v − c− v

2

)nj

>
(v
2
− c− v

2

)njγj

·
(v
2
−
(v
2
− c
))nj(1−γj)

⇔
(v
2

)nj

> 0 ⇔ v > 0 ,

that is, for v > 0, (γj , γ−j) = (1, 0) is associated with the largest Nash product.

Finally, let us compare the Nash products of (γj , γ−j) = (1, 0) and (γ1, γ2) such that γj ∈
(0, 1) and 1 ≤

∑nj

i=1 1xij
≤ nj − 2 ∀j ∈ {1, 2}. Then, for group j:(

v − c− v

2

)nj

>
(v
2
− c− v

2

)njγj

·
(v
2
−
(v
2
− c
))nj(1−γj)

⇔
(v
2

)nj

> 0 ⇔ v > 0 ,

that is, for v > 0, (γj , γ−j) = (1, 0) is associated with the largest Nash product;

• if v
4 < c < v

2 , (γj , γ−j) = (0, 1) and (γj , γ−j) = (0, 0) are the risk-dominant equilibrium
strategy profiles for group j ∈ {1, 2}. Clearly this follows from what shown at the previous
point for both groups.

3.1 Incomplete Information à la global games about the Prize

Let us consider the case where the individual costs of effort Cij (xj (i)) = xj (i), that is the
BMMGC∗ model. We closely follow Carlsson and van Damme [1993a] introducing incomplete
information about the prize v as follows:

• let V be a random variable which is uniform on some interval [v, v], e.g. [1, 5];

• given the realization v, each player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} idiosyncratically observes
the realization of a random variable Vij , uniform on [v − ε, v + ε] for some 0 < ε <

∣∣v
2 − 1

∣∣,
so that the players’ observation errors Vij − v ∀ij ∈ {1, . . . , nj} and ∀j ∈ {1, 2} are
independent;

• after these idiosyncratic observations, each player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} simulta-
neously and independently decides whether to exert effort or not and gets a payoff as
described above.

Henceforth, we refer to this game as g1 (v). Then, we are able to obtain the following result.

Proposition 5 In the g1 (v), there is a unique equilibrium in (monotonic) switching strategies,
such that ∀ij ∈ {1, . . . , nj} and ∀j ∈ {1, 2} :

x∗
ij (vij) =

{
1 if vij > 2nj

0 if vij ≤ 2nj

other than the equilibrium
x∗∗
ij (vij) = 0 ∀vij ∈ [v + ε, v − ε] .

Remark 3 The absence of an upward dominance region is conducive to the existence of the
equilibrium x∗∗

ij (vij) = 0 ∀vij ∈ [v + ε, v − ε], so that the equilibrium (γ1, γ2) = (0, 0) in the
BMMGC∗ is robust to incomplete information in the sense of Kajii and Morris (1997).
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Remark 4 The existence of an equilibrium in (monotonic) switching strategies in the g1 (v) is
ensured as long as 0 < ε <

∣∣ v
2 − 1

∣∣. However, equilibrium selection happens even for “a pinch
of uncertainty”, no matter how small ε is.

Remark 5 Note that the cutoff of the equilibrium in (monotonic) switching strategies, i.e. vij =
2nj , does not coincide with the one of the risk-dominance region, that is vij = 4 for any j ∈
{1, 2}, differently from what happens in the two-group four-player example. This is very close
to the point made by Carlsson and van Damme [1993b] for n-player stag hunt games, where
the authors stress that risk-dominance fails as an equilibrium selection criterion when we depart
from the 2×2 case.

Proof. In the g1 (v), note that E (V |vij) = vij , if i observes vij ∈ [v + ε, v − ε] so that
V |vij ∼ U (vij − ε, vij + ε). Furthermore, for vij ∈ [v + ε, v − ε], the conditional distribu-
tion of the teammates’ or opponents’ observation will be centered around vij with support
[vij − 2ε, vi + 2ε] . Hence, Prob [V−ij < vij |vij ] = Prob[V−ij > vij |vij ] = 1

2 ∀ij ∈ {1, . . . , nj}
and j ∈ {1, 2}.

Now, suppose player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} observes vij < 2. Then, ij’s conditionally
expected payoff from exerting effort, that is choosing xij = 1, is smaller than the one from
exerting no effort, that is choosing xij = 0. Accordingly, xij = 0 is a conditionally strictly
dominant action for player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} whenever she observes vij < 2. Iterating
this dominance argument, if players −ij ∈ {1, . . . , N − 1} are forced to play x−ij = 0 whenever
they observe v−ij < 2, then player ij, observing vij = 2 has to assign at least probability(
1
2

)nj−1+n−j
to
∑N−1

−ij=1 x−ij = 0. Thus, ij’s conditionally expected payoff from not exerting

effort, that is choosing xij = 0 will be at least 1 − 2−n−j , so that xij = 1 can be discarded
by iterated dominance for vij = 2, since the conditionally expected payoff from exerting effort
equals 21−nj − 2−n−j . Note that we imposed by assumption that 0 < ε <

∣∣ v
2 − 1

∣∣, so that
vij − 2ε > v for vij = 2 . Let v∗ij be the smallest observation such that xij = 1 cannot be
excluded by iterated dominance. Then, it is possible to show that v∗ij = 2nj . Note that vij = 4
is the threshold for the risk-dominance regions. As a matter of fact, when vij = 2nj , the
conditionally expected payoff from exerting effort equals

Prob ((nj − 1) γj = nj − 1) · Prob (n−jγ−j < n−j) · (2nj − 1) +
(
Prob ((nj − 1) γj < nj − 1) ·

Prob (n−jγ−j < n−j) + Prob ((nj − 1) γj = nj − 1) · Prob (n−jγ−j = n−j)
)(2nj

2
− 1

)
+

+Prob ((nj − 1) γj < nj − 1) · Prob (n−jγ−j = n−j) · (−1) ⇔

⇔
(
1

2

)nj−1

·
(
1−

(
1

2

)n−j
)
· (2nj − 1) +

((
1−

(
1

2

)n−j
)
·

(
1−

(
1

2

)nj−1
)
+

+

(
1

2

)n−j

·
(
1

2

)nj−1
)(

2nj

2
− 1

)
+

(
1−

(
1

2

)nj−1
)
·
(
1

2

)n−j

·(−1) = 2nj−n−j−1 ·(2n−j − 1) ,

while the conditionally expected payoff from not exerting effort equals

Prob (n−jγ−j < n−j) ·
2nj

2
⇔
(
1−

(
1

2

)n−j
)
· 2

nj

2
= 2nj−n−j−1 · (2n−j − 1) .

The cutoff v∗ij = 2nj is the unique threshold that can be established from the lower dominance
regions by iterated deletion of strictly dominated strategies, since it is the unique value for
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vij ∈ [v − ε, v + ε] solving(
1

2

)nj−1

·
(
1−

(
1

2

)n−j
)
· (vij − 1) +

((
1−

(
1

2

)n−j
)
·

(
1−

(
1

2

)nj−1
)
+

+

(
1

2

)n−j

·
(
1

2

)nj−1
)
·
(vij

2
− 1
)
+

(
1−

(
1

2

)nj−1
)
·
(
1

2

)n−j

· (−1) =

(
1−

(
1

2

)n−j
)
· vij
2

.

The same kind of reasoning cannot be carried out for large observations of v, since it does
not exist an upper dominance region. Conversely, this is possible in our second setting in which
there is incomplete information about the cost of effort itself. As a matter of fact, in the latter
there are both a lower and an upper dominance region.

Hence, in g1 (x) under incomplete information à la global games there is a unique equilibrium
in (monotonic) cutoff strategies, such that ∀ij ∈ {1, . . . , nj} and ∀j ∈ {1, 2}:

x∗
ij (vij) =

{
1 if vij > 2nj

0 if vij ≤ 2nj

Nonetheless, given the absence of an upward dominance region, the following equilibrium ∀ij ∈
{1, . . . , nj} and ∀j ∈ {1, 2} exists as in De Mesquita [2011]:

x∗∗
ij (vij) = 0 ∀vij ∈ [v + ε, v − ε] .

Note that at (γ1, γ2) = (0, 0) any deviation is strictly dominated for any vij ∈[v + ε, v − ε], so
that (γ1, γ2) = (0, 0) in the BMMGC∗ is robust to incomplete information in the sense of Kajii
and Morris [1997].

Moreover, we are able to calculate the probability of winning the prize v for both groups at
the unique equilibrium in (monotonic) switching strategies, as shown by the following result.

Proposition 6 In the g1 (v), the probability of winning the prize v for group j ∈ {1, 2} at the
cutoff equilibrium equals:

• if v + ε ≤ 2nj ≤ v − ε and v + ε ≤ 2n−j ≤ v − ε,

Prob (j wins v) =

(
1− 2nj − v − ε

v − v − 2ε

)nj

·
[
1−

(
1− 2n−j − v − ε

v − v − 2ε

)n−j
]
+

+
1

2

[
1−

(
1− 2nj − v − ε

v − v − 2ε

)nj
]
·
[
1−

(
1− 2n−j − v − ε

v − v − 2ε

)n−j
]
+

+
1

2

(
1− 2nj − v − ε

v − ε− v − ε

)nj

·
(
1− 2n−j − v − ε

v − v − 2ε

)n−j

;

• if v + ε ≤ 2nj ≤ v − ε and 2n−j < v + ε,

Prob (j wins v) =
1

2
·
(
1− 2nj − v − ε

v − v − 2ε

)nj

;

• if v + ε ≤ 2nj ≤ v − ε and 2n−j > v − ε,

Prob (j wins v) =

(
1− 2nj − v − ε

v − v − 2ε

)nj

+

+
1

2

[
1−

(
1− 2nj − v − ε

v − v − 2ε

)nj
]

;
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• if 2nj < v + ε and v + ε ≤ 2n−j ≤ v − ε,

Prob (j wins v) =

[
1−

(
1− 2n−j − v − ε

v −−v − 2ε

)n−j
]
+

1

2

(
1− 2n−j − v − ε

v − v − 2ε

)n−j

;

• if 2nj < v + ε and if 2n−j < v + ε,

Prob (j wins v) =
1

2
;

• if 2nj < v + ε and 2n−j > v − ε,

Prob (j wins v) = 1 ;

• if 2nj > v − ε and v + ε ≤ 2n−j ≤ v − ε,

Prob (j wins v) =
1

2

[
1−

(
1− 2n−j − v − ε

v − v − 2ε

)n−j
]

;

• if 2nj > v − ε and 2n−j < v + ε,

Prob (j wins v) = 0 ;

• if 2nj > v − ε and 2n−j > v − ε,

Prob (j wins v) =
1

2
.

Proof. In the g1 (v), given the contest success function Pj (Xj , X−j)∀j ∈ {1, 2}, the probability
of winning the prize v for group j ∈ {1, 2} is:

Prob (j wins v) =Prob
[(
γ∗
j , γ

∗
−j

)
= (1, 0)

]
+

1

2
Prob

[(
γ∗
j , γ

∗
−j

)
= (0, 0)

]
+

+
1

2
Prob

[(
γ∗
j , γ

∗
−j

)
= (1, 1)

]
.

On the other hand, the probability of winning the prize v for group j ∈ {1, 2} at the cutoff equi-
librium x∗

ij (vij) depends on whether or not 2nj belongs to [v + ε, v − ε], where vij is uniformly
distributed. Hence, we will consider all possible cases:

• if v + ε ≤ 2nj ≤ v − ε and v + ε ≤ 2n−j ≤ v − ε , 4

Prob [(γj , γ−j) = (1, 0)] =

(
1− 2nj − v − ε

v − ε− v − ε

)nj

·
[
1−

(
1− 2n−j − v − ε

v − ε− v − ε

)n−j
]

;

Prob [(γj , γ−j) = (0, 0)] =

[
1−

(
1− 2nj − v − ε

v − ε− v − ε

)nj
]
·
[
1−

(
1− 2n−j − v − ε

v − ε− v − ε

)n−j
]

;

Prob [(γj , γ−j) = (1, 1)] =

(
1− 2nj − v − ε

v − ε− v − ε

)nj

·
(
1− 2n−j − v − ε

v − ε− v − ε

)n−j

.

4Note that for γ−j = 0, it suffices that just one i− j chooses xi−j (vi−j) = 0, due to the weakest-link impact
function.
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Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)]

=

(
1− 2nj − v − ε

v − v − 2ε

)nj

·
[
1−

(
1− 2n−j − v − ε

v − v − 2ε

)n−j
]
+

+
1

2

[
1−

(
1− 2nj − v − ε

v − v − 2ε

)nj
]
·
[
1−

(
1− 2n−j − v − ε

v − v − 2ε

)n−j
]
+

+
1

2

(
1− 2nj − v − ε

v − v − 2ε

)nj

·
(
1− 2n−j − v − ε

v − v − 2ε

)n−j

.

• If v − ε ≤ 2nj ≤ v − ε and 2n−j ≤ v + ε,

Prob [(γj , γ−j) = (1, 0)] = 0 ;

Prob [(γj , γ−j) = (0, 0)] = 0 ;

Prob [(γj , γ−j) = (1, 1)] =

(
1− 2nj − v − ε

v − v − 2ε

)nj

.

Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)]

=
1

2

(
1− 2nj − v − ε

v − v − 2ε

)nj

.

• If v + ε ≤ 2nj ≤ v − ε and 2n−j > v − ε,

Prob [(γj , γ−j) = (1, 0)] =

(
1− 2nj − v − ε

v − v − 2ε

)nj

;

Prob [(γj , γ−j) = (0, 0)] =1−
(
1− 2nj − v − ε

v − v − 2ε

)nj

;

Prob [(γj , γ−j) = (1, 1)] =0 .

Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)]

=

(
1− 2nj − v − ε

v − v − 2ε

)nj

+
1

2

[
1−

(
1− 2nj − v − ε

v − v − 2ε

)nj
]

.
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• If 2nj < v − ε and v + ε ≤ 2n−j ≤ v − ε,

Prob [(γj , γ−j) = (1, 0)] =1−
(
1− 2n−j − v − ε

v − v − 2ε

)n−j

;

Prob [(γj , γ−j) = (0, 0)] =0 ;

Prob [(γj , γ−j) = (1, 1)] =

(
1− 2n−j − v − ε

v − v − 2ε

)n−j

.

Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)]

=1−
(
1− 2n−j − v − ε

v − v − 2ε

)n−j

+
1

2

(
1− 2n−j − v − ε

v − v − 2ε

)n−j

.

• If 2nj < v + ε and 2n−j < v + ε,

Prob [(γj , γ−j) = (1, 0)] = 0 ;

Prob [(γj , γ−j) = (0, 0)] = 0 ;

Prob [(γj , γ−j) = (1, 1)] = 1 .

Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)] =

1

2
.

• If 2nj < v + ε and 2n−j > v − ε,

Prob [(γj , γ−j) = (1, 0)] = 1 ;

Prob [(γj , γ−j) = (0, 0)] = 0 ;

Prob [(γj , γ−j) = (1, 1)] = 0 .

Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)] = 1 .

• If 2nj > v − ε and v + ε ≤ 2n−j ≤ v − ε,

Prob [(γj , γ−j) = (1, 0)] =0 ;

Prob [(γj , γ−j) = (0, 0)] =1−
(
1− 2n−j − v − ε

v − v − 2ε

)n−j

;

Prob [(γj , γ−j) = (1, 1)] =0 .
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Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)]

=
1

2

[
1−

(
1− 2n−j − v − ε

v − v − 2ε

)n−j
]

.

• If 2nj > v − ε and 2n−j ≤ v + ε,

Prob [(γj , γ−j) = (1, 0)] = 0 ;

Prob [(γj , γ−j) = (0, 0)] = 0 ;

Prob [(γj , γ−j) = (1, 1)] = 0 .

Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)] = 0 .

• If 2nj > v − ε and 2n−j > v − ε,

Prob [(γj , γ−j) = (1, 0)] = 0 ;

Prob [(γj , γ−j) = (0, 0)] = 1 ;

Prob [(γj , γ−j) = (1, 1)] = 0 .

Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)] =

1

2
.

3.2 Incomplete Information à la global games about the Cost of Effort

Let us consider the case where the individual costs of effort is Cij (xj (i)) = c with c ∈ R and
the club good prize worth v > 0, that is the BMMGC∗b model . We closely follow Carlsson and
van Damme [1993a] introducing incomplete information about the cost of effort c as follows:

• let C be a random variable which is uniform on some interval [c, c], e.g. [−v,+v];

• given the realization c, each player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} idiosyncratically observes
the realization of a random variable Cij , uniform on [c− ε, c+ ε] for some 0 < ε <
min

{∣∣ 2c−v
4

∣∣ , ∣∣ c2 ∣∣}, so that the players’ observation errors Cij − c ∀ij ∈ {1, . . . , nj} and
∀j ∈ {1, 2} are independent;

• after these idiosyncratic observations, each player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} simulta-
neously and independently decides whether to exert effort or not and gets a payoff as
described above;
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Henceforth, we refer to this game as g2 (c). Then we are able to obtain the following result.

Proposition 7 In the g2 (c), there is a unique equilibrium in (monotonic) switching strategies,
such that ∀ij ∈ {1, . . . , nj} and ∀j ∈ {1, 2}:

x∗
ij (cij) =

{
1 if cij < 2−njv
0 if cij ≥ 2−njv.

Remark 6 The presence of both an upward dominance region and a downward dominance re-
gion is conducive to the selection of a unique equilibrium in (monotonic) switching strategies.

Remark 7 The existence of a unique equilibrium in (monotonic) switching strategies in the
g2 (c) is ensured as long as 0 < ε < min

{∣∣ 2c−v
4

∣∣ , ∣∣ c2 ∣∣}. However, equilibrium selection happens
even for “a pinch of uncertainty”, no matter how small ε is.

Remark 8 Note that the cutoff of the equilibrium in (monotonic) switching strategies, i.e. cij =
2−njv, does not coincide with the one of the risk-dominance region, that is cij = v

4 for any
j ∈ {1, 2}, differently from what happens in the two-group four-player example. This is very
close to the point made by Carlsson and van Damme [1993b] for n-player stag hunt games,
where the authors stress that risk-dominance fails as an equilibrium selection criterion when we
depart from the 2×2 case.

Proof. In the g2 (c), note that E (C|cij) = cij , if ij observes cij ∈ [c+ ε, c− ε] so that
C|cij ∼ U (cij − ε, cij + ε). Furthermore, for cij ∈ [c− ε, c+ ε], the conditional distribu-
tion of the teammates’ or opponents’ observation will be centered around cij with support
[cij − 2ε, cij + 2ε]. Hence, Prob [C−ij < cij |cij ] = Prob[C−ij > cij |cij ] = 1

2 .
Now, suppose player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} observes cij > v

2 . Then, ij’s conditionally
expected payoff from exerting effort, that is choosing xij = 1, is smaller than the one from
exerting no effort, that is choosing xij = 0. Accordingly, xij = 0 is a conditionally strictly
dominant action for player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} whenever she observes cij >

v
2 . Iterating

this dominance argument, if players −ij ∈ {1, . . . , N − 1} are forced to play xi−j = 0 whenever
they observe c−ij > v

2 , then player ij, observing cij = v
2 has to assign at least probability(

1
2

)nj−1+n−j
to
∑N−1

−ij=1 x−ij = 0. Thus, ij’s conditionally expected payoff from not exerting

effort, that is choosing xij = 0 will be at least 1
2 (1− 2−n−j ) v, so that xij = 1 can be discarded

by iterated dominance for cij = v
2 , since the conditionally expected payoff from exerting effort

equals
(
2−nj − 2−n−j−1

)
v. Note that we imposed by assumption that ε <

∣∣ 2c−v
4

∣∣, so that
cij + 2ε < c for cij = v

2 . Let c∗ij be the smallest observation such that xij = 1 cannot be
excluded by iterated dominance. Then, it is possible to show that c∗ij = 2−njv. Note that
cij =

v
4 is the threshold for the risk-dominance regions. As a matter of fact, when cij = 2−njv,

the conditionally expected payoff from exerting effort equals

Prob ((nj − 1) γj = nj − 1) ·Prob (n−jγ−j < n−j) ·
(
v − 2−njv

)
+
(
Prob ((nj − 1) γj < nj − 1) ·

Prob (n−jγ−j < n−j) + Prob ((nj − 1) γj = nj − 1) · Prob (n−jγ−j = n−j)
)(v

2
− 2−njv

)
+

+Prob ((nj − 1) γj < nj − 1) · Prob (n−jγ−j = n−j) ·
(
−2−njv

)
⇔

⇔
(
1

2

)nj−1

·
(
1−

(
1

2

)n−j
)
·
(
v − 2−njv

)
+

((
1−

(
1

2

)n−j
)
·

(
1−

(
1

2

)nj−1
)

+

(
1

2

)n−j

·
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·
(
1

2

)nj−1
)

·
(v
2
− 2−njv

)
+

(
1−

(
1

2

)nj−1
)

·
(
1

2

)n−j

·
(
−2−njv

)
=

1

2

(
1− 2−n−j

)
v ,

while the conditionally expected payoff from not exerting effort equals

Prob (n−jγ−j < n−j) ·
v

2
⇔
(
1−

(
1

2

)n−j
)
· v
2
=

1

2

(
1− 2−n−j

)
v .

The cutoff c∗ij = 2−njv is the unique threshold that can be established from the upper
dominance region by iterated deletion of strictly dominated strategies, since it is the unique
value for cij ∈ [c− ϵ, c+ ϵ] solving(

1

2

)nj−1

·
(
1−

(
1

2

)n−j
)
· (v − cij) +

((
1−

(
1

2

)n−j
)
·

(
1−

(
1

2

)nj−1
)

+

(
1

2

)n−j

·

·
(
1

2

)nj−1
)

·
(v
2
− cij

)
+

(
1−

(
1

2

)nj−1
)

·
(
1

2

)n−j

· (−cij) =

(
1−

(
1

2

)n−j
)
· v

The same kind of reasoning can be carried out for small observations of c, since it does exist
a lower dominance region. Again, let us assume ε< − c

2 and suppose player ij ∈ {1, . . . , nj}
∀j ∈ {1, 2} observes cij < 0. Then, ij’s conditionally expected payoff from exerting effort,
that is choosing xij = 1, is positive and greater than the one from exerting no effort, that is
choosing xij = 0. Accordingly, xij = 1 is a conditionally strictly dominant action for player
ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} whenever she observes cij < 0. Iterating this dominance argument,
if players −ij ∈ {1, . . . , N − 1} are forced to play x−ij = 1 whenever they observe c−ij < 0, then

player ij, observing cij = 0 has to assign at least probability
(
1
2

)nj−1+n−j
to
∑N−1

−ij=1 x−ij =
N−1. Thus, ij’s conditionally expected payoff from exerting effort, that is choosing xij = 1, will
be at least 1

2

(
1− 2−n−j + 21−nj

)
v, so that xij = 0 can be discarded by iterated dominance for

cij = 0, since the conditionally expected payoff from not exerting effort equals 1
2 (1− 2−n−j ) v.

Note that we imposed by assumption that 0 < ε <
∣∣ c
2

∣∣, so that cij − 2ε > c for cij = 0 . Let c∗∗ij
be the smallest observation such that xij = 0 cannot be excluded by iterated dominance. Then,
it is possible to show that c∗∗ij = 2−njv. Note that cij =

v
4 is the threshold for the risk-dominance

regions. As a matter of fact, when cij = 2−njv, the conditionally expected payoff from exerting
effort equals

Prob ((nj − 1) γj = nj − 1) ·Prob (n−jγ−j < n−j) ·
(
v − 2−njv

)
+
(
Prob ((nj − 1) γj < nj − 1) ·

·Prob (n−jγ−j < n−j) + Prob ((nj − 1) γj = nj − 1) · Prob (n−jγ−j = n−j)
)(v

2
− 2−njv

)
+

+Prob ((nj − 1) γj < nj − 1) · Prob (n−jγ−j = n−j) ·
(
−2−njv

)
⇔

⇔
(
1

2

)nj−1

·
(
1−

(
1

2

)n−j
)
·
(
v − 2−njv

)
+

((
1−

(
1

2

)n−j
)
·

(
1−

(
1

2

)nj−1
)

+

(
1

2

)n−j

·

·
(
1

2

)nj−1
)

·
(v
2
− 2−njv

)
+

(
1−

(
1

2

)nj−1
)

·
(
1

2

)n−j

·
(
−2−njv

)
=

1

2

(
1− 2−n−j

)
v ,

31



while the conditionally expected payoff from not exerting effort equals

Prob (n−jγ−j < n−j) ·
v

2
⇔
(
1−

(
1

2

)n−j
)
· v
2
=

1

2

(
1− 2−n−j

)
v .

The cutoff c∗∗ij = 2−njv is the unique threshold that can be established from the lower dominance
region by iterated deletion of strictly dominated strategies, since it is the unique value for
cij ∈ [c− ε, c+ ε] solving(

1

2

)nj−1

·
(
1−

(
1

2

)n−j
)
· (v − cij) +

((
1−

(
1

2

)n−j
)
·

(
1−

(
1

2

)nj−1
)

+

(
1

2

)n−j

·

·
(
1

2

)nj−1
)

·
(v
2
− cij

)
+

(
1−

(
1

2

)nj−1
)

·
(
1

2

)n−j

· (−cij) =

(
1−

(
1

2

)n−j
)
· v
2
.

Hence, c∗ij = c∗∗ij and there exists a unique equilibrium in switching strategies in g2 (x) such
that ∀ij ∈ {1, . . . , nj} and ∀j ∈ {1, 2}

x∗
ij (cij) =

{
1 if cij < 2−njv
0 if cij ≥ 2−njv.

Differently from what is obtained by Barbieri et al. [2019] for a deterministic two-group
contest with the weakest-link impact function, continuous effort, a public good prize commonly
valued across groups and incomplete information about the cost of effort, in the g2 (c) there
are no multiple equilibria in pure strategies but a unique equilibrium in (monotonic) switching
strategies. The uniqueness result achieved by Barbieri et al. [2019] regards only the class of
nondegenerate Bayes-Nash equilibria without mass at the top. As a matter of fact, the authors
obtain a continuum of non-degenerate Bayes-Nash equilibria with mass at the top, other than
degenerate Bayes-Nash equilibria, where players perfectly align effort choices on the highest cost
type: a degeneracy result consinstent with the complete information model due to Chowdhury
et al. [2016] . Semidegenerate equilibria, that is equilibria in which effort levels are dispersed
just in one group, are found only for the setting with asymmetric prize valuations between the
two groups, i.e. v1 ̸= v2.

Moreover, we are able to calculate the probability of winning the prize v for both groups at
the unique equilibrium in (monotonic) switching strategies, as shown by the following result.

Proposition 8 In the g2 (c), the probability of winning the prize v for group j ∈ {1, 2} at the
cutoff equilibrium equals:

• if c+ ε ≤ 2−njv ≤ c− ε and c+ ε ≤ 2−n−jv ≤ c− ε,

Prob (j wins v) =

(
2−njv − c− ε

c− c− 2ε

)nj

·
[
1−

(
2−n−jv − c− ε

c− c− 2ε

)n−j
]
+

+
1

2

[
1−

(
2−njv − c− ε

c− c− 2ε

)nj
]
·
[
1−

(
2−n−jv − c− ε

c− c− 2ε

)n−j
]
+

+
1

2

(
2−njv − c− ε

c− c− 2ε

)nj

·
(
2−n−jv − c− ε

c− c− 2ε

)n−j

;
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• if c+ ε ≤ 2−njv ≤ c− ε and 2−n−jv < c+ ε,

Prob (j wins v) =

(
2−njv − c− ε

c− c− 2ε

)nj

+

+
1

2

[
1−

(
2−njv − c− ε

c− c− 2ε

)nj
]

;

• if c+ ε ≤ 2−njv ≤ c− ε and 2−n−jv > c− ε,

Prob (j wins v) =
1

2

(
2−njv − c− ε

c− c− 2ε

)
;

• if 2−njv < c+ ε and c+ ε ≤ 2−n−jv ≤ c− ε,

Prob (j wins v) =
1

2

[
1−

(
2−n−jv − c− ε

c− c− 2ε

)n−j
]

;

• if 2−njv < c+ ε and 2−n−jv < c+ ε,

Prob (j wins v) =
1

2
;

• if 2−njv < c+ ε and 2−n−jv > c− ε,

Prob (j wins v) = 0 ;

• if 2−njv > c− ε and c+ ε ≤ 2−n−jv ≤ c− ε,

Prob (j wins v) =

[
1−

(
2−n−jv − c− ε

c− c− 2ε

)n−j
]
+

+
1

2

(
2−n−jv − c− ε

c− c− 2ε

)n−j

;

• if 2−njv > c− ε and 2−n−jv < c+ ε,

Prob (j wins v) = 1 ;

• if 2−njv > c− ε and 2−n−jv > c− ε,

Prob (j wins v) =
1

2
.

Proof. In the g2 (c), given the contest success function Pj (Xj , X−j)∀j ∈ {1, 2}, the probability
of winning the prize v for group j ∈ {1, 2} is:

Prob (j wins v) =Prob
[(
γ∗
j , γ

∗
−j

)
= (1, 0)

]
+

1

2
Prob

[(
γ∗
j , γ

∗
−j

)
= (0, 0)

]
+

+
1

2
Prob

[(
γ∗
j , γ

∗
−j

)
= (1, 1)

]
.

On the other hand, the probability of winning the prize v for group j ∈ {1, 2} at the cutoff
equilibrium x∗

ij (cij) depends on whether or not 2−njv belongs to [c+ ε, c− ε], where cij is
uniformly distributed. Hence, we will consider all possible cases:
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• if c+ ε ≤ 2−njv ≤ c− ε and c+ ε ≤ 2−n−jv ≤ c− ε, 5

Prob [(γj , γ−j) = (1, 0)] =

(
2−njv − c− ε

c− c− 2ε

)nj

·
[
1−

(
2n−jv − c− ε

c− c− 2ε

)n−j
]

;

Prob [(γj , γ−j) = (0, 0)] =

[
1−

(
2−njv − c− ε

c− c− 2ε

)nj
]
·
[
1−

(
2−n−jv − c− ε

c− c− 2ε

)n−j
]

;

Prob [(γj , γ−j) = (1, 1)] =

(
2−njv − c− ε

c− c− 2ε

)nj

·
(
2n−jv − c− ε

c− c− 2ε

)n−j

.

Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)]

=

(
2−njv − c− ε

c− c− 2ε

)nj

·
[
1−

(
1− 2−n−jv − c− ε

c− c− 2ε

)n−j
]
+

+
1

2

[
1−

(
2−njv − c− ε

c− c− 2ε

)nj
]
·
[
1−

(
2−n−jv − c− ε

c− c− 2ε

)n−j
]
+

+
1

2

(
2−njv − c− ε

c− c− 2ε

)nj

·
(
2−n−jv − c− ε

c− c− 2ε

)n−j

.

• If c+ ε ≤ 2−njv ≤ c− ε and 2−n−jv < c+ ε,

Prob [(γj , γ−j) = (1, 0)] =

(
2−njv − c− ε

c− c− 2ε

)nj

;

Prob [(γj , γ−j) = (0, 0)] =

[
1−

(
2−njv − c− ε

c− c− 2ε

)nj
]

;

Prob [(γj , γ−j) = (1, 1)] = 0 .

Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)]

=

(
2−njv − c− ε

c− c− 2ε

)nj

+
1

2

[
1−

(
2−njv − c− ε

c− c− 2ε

)nj
]

.

• If c+ ε ≤ 2−njv ≤ c− ε and 2−n−jv > c− ε,

Prob [(γj , γ−j) = (1, 0)] = 0;

Prob [(γj , γ−j) = (0, 0)] = 0 ;

Prob [(γj , γ−j) = (1, 1)] =

(
2−njv − c− ε

c− c− 2ε

)nj

.

5Note that for γ−j = 0, it suffices that just one i− j chooses xi−j (ci−j) = 0, due to the weakest-link impact
function.
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Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)]

=
1

2

(
2−njv − c− ε

c− c− 2ε

)nj

.

• If 2−njv < c+ ε and c+ ε ≤ 2−n−jv ≤ c− ε,

Prob [(γj , γ−j) = (1, 0)] = 0;

Prob [(γj , γ−j) = (0, 0)] = 1−
(
2−n−jv − c− ε

c− c− 2ε

)n−j

;

Prob [(γj , γ−j) = (1, 1)] = 0 .

Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)]

=
1

2

[
1−

(
2−njv − c− ε

c− c− 2ε

)nj
]

.

• If 2−njv < c+ ε and 2−njv < c+ ε,

Prob [(γj , γ−j) = (1, 0)] = 0 ;

Prob [(γj , γ−j) = (0, 0)] = 1 ;

Prob [(γj , γ−j) = (1, 1)] = 0 .

Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)]

=
1

2
.

• If 2−njv < c+ ε and 2−n−jv > c− ε,

Prob [(γj , γ−j) = (1, 0)] = 0 ;

Prob [(γj , γ−j) = (0, 0)] = 0 ;

Prob [(γj , γ−j) = (1, 1)] = 0 .

Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)] = 0 .
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• If 2−njv > c− ε and c+ ε ≤ 2−n−jv ≤ c− ε,

Prob [(γj , γ−j) = (1, 0)] =1−
(
2−n−jv − c− ε

c− c− 2ε

)n−j

;

Prob [(γj , γ−j) = (0, 0)] = 0 ;

Prob [(γj , γ−j) = (1, 1)] =

(
2−n−jv − c− ε

c− c− 2ε

)n−j

.

Hence,

Prob (j wins v) =Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)]

=1−
(
2−n−jv − c− ε

c− c− 2ε

)n−j

+
1

2

(
2−n−jv − c− ε

c− c− 2ε

)n−j

.

• If 2−njv > c− ε and 2−n−jv < c+ ε,

Prob [(γj , γ−j) = (1, 0)] = 1 ;

Prob [(γj , γ−j) = (0, 0)] = 0 ;

Prob [(γj , γ−j) = (1, 1)] = 0 .

Hence,

Prob (j wins v) = Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)] = 1 .

• If 2−njv > c− ε and 2−n−jv > c− ε,

Prob [(γj , γ−j) = (1, 0)] = 0 ;

Prob [(γj , γ−j) = (0, 0)] = 0 ;

Prob [(γj , γ−j) = (1, 1)] = 1 .

Hence,

Prob (j wins v) = Prob [(γj , γ−j) = (1, 0)] +
1

2
Prob [(γj , γ−j) = (0, 0)]+

+
1

2
Prob [(γj , γ−j) = (1, 1)] =

1

2
.
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4 Conclusions

We introduced incomplete information à la global games in a two-group max-min group contest
with binary actions, relaxing the complete information assumption about the value of the prize
contested and the cost of providing effort, separately. In the first case, there are both an equilib-
rium in (monotonic) switching strategies and an equilibrium robust to incomplete information
in the sense of Kajii and Morris [1997]; in the second one, a unique equilibrium in (monotonic)
switching-strategies emerges. Moreover, given the information structure, it is straightforward to
calculate the probability of winning for each group at the equilibrium in switching strategies in
both cases. Therefore, introducing incomplete information à la global games in max-min group
contests with binary actions does not only deliver informational realism, but it also reduces
significantly the burden of equilibrium multiplicity, or rather indeterminacy, which affects de-
terministic group contests with continuous efforts and a public good prize under both complete
information and under incomplete information, as in Chowdhury et al. [2016] and Barbieri et al.
[2019], respectively. We would like to stress that this selection result could be relevant for ap-
plications of deterministic two-group contests with binary actions, among which we emphasized
research groups, international alliances, group strikes and military conflict in the introduction.

37



References

Stefano Barbieri, Dan Kovenock, David A. Malueg, and Iryna Topolyan. Group contests
with private information and the “Weakest Link”. Games and Economic Behavior, 118:
382–411, 2019. ISSN 0899-8256. doi: https://doi.org/10.1016/j.geb.2019.09.008. URL
https://www.sciencedirect.com/science/article/pii/S0899825619301393.

Hans Carlsson and Eric van Damme. Global games and equilibrium selec-
tion. Econometrica, 61(5):989–1018, 1993a. ISSN 00129682, 14680262. URL
http://www.jstor.org/stable/2951491.

Hans Carlsson and Eric van Damme. Equilibrium selection in stag hunt games. MIT Press,
1993b. ISBN 0262023563.

Subhasish M. Chowdhury, Dongryul Lee, and Iryna Topolyan. The max-min group contest:
Weakest-link (group) all-pay auction. Southern Economic Journal, 83(1):105–125, 2016. ISSN
00384038, 23258012. URL https://www.jstor.org/stable/26632328.

Ethan Bueno De Mesquita. Regime change with one-sided limit dominance. mimeo, 2011.

M. Gilli and A. Sorrentino. The Set of Equilibria in Max-Min Two Groups Contests
with Binary Actions and a Private Good Prize. University of Milan Bicocca Department
of Economics, Management and Statistics Working Paper No. 539, Available at SSRN:
https://ssrn.com/abstract=4863239 or http://dx.doi.org/10.2139/ssrn.4863239, June 2024a.

M. Gilli and A. Sorrentino. Characterization of the Set of Equilibria in Max-Min Group Contests
with Continuous Efforts and a Private Good Prize. University of Milan Bicocca Department of
Economics, Management and Statistics (DEMS) Working Paper No. 541, Available at SSRN:
https://ssrn.com/abstract=4890131 or http://dx.doi.org/10.2139/ssrn.4890131, July 2024b.

John C. Harsanyi and Reinhard Selten. A General Theory of Equilibrium Selection in Games,
volume 1 of MIT Press Books. The MIT Press, December 1988. ISBN ARRAY(0x62459f78).
URL https://ideas.repec.org/b/mtp/titles/0262582384.html.

Atsushi Kajii and Stephen Morris. The robustness of equilibria to incomplete infor-
mation. Econometrica, 65(6):1283–1309, 1997. ISSN 00129682, 14680262. URL
http://www.jstor.org/stable/2171737.

Roman M. Sheremeta. Behavior in Group Contests: A Review of Experimental Research.
Journal of Economic Surveys, 32:683–704, 7 2018. ISSN 14676419. doi: 10.1111/joes.12208.

38



FONDAZIONE ENI ENRICO MATTEI WORKING PAPER SERIES 

Our Working Papers are available on the Internet at the following address:  

https://www.feem.it/pubblicazioni/feem-working-papers/

“NOTE DI LAVORO” PUBLISHED IN 2024

1. A. Sileo, M. Bonacina, The automotive industry: when regulated supply fails to meet demand. The Case of 
Italy

2. A. Bastianin, E. Mirto, Y. Qin, L. Rossini, What drives the European carbon market? Macroeconomic 
factors and forecasts

3. M. Rizzati, E. Ciola, E. Turco, D. Bazzana, S. Vergalli, Beyond Green Preferences: Alternative Pathways to Net-
Zero Emissions in the MATRIX model

4. L. Di Corato, M. Moretto, Supply contracting under dynamic asymmetric cost information

5. C. Drago, L. Errichiello, Remote work admist the Covid-19 outbreak: Insights from an Ensemble Community-
Based Keyword Network Analysis

6. F. Cappelli, Unequal contributions to CO2 emissions along the income distribution within and between 
countries

7. I. Bos, G. Maccarrone, M. A. Marini, Anti-Consumerism: Stick or Carrot?

8. M. Gilli, A. Sorrentino, The Set of Equilibria in Max-Min Two Groups Contests with Binary Actions and a Private 
Good Prize

9. E. Bachiocchi, A. Bastianin, G. Moramarco, Macroeconomic Spillovers of Weather Shocks across U.S. States

10. T. Schmitz, I. Colantone, G. Ottaviano, Regional and Aggregate Economic Consequences of Environmental 
Policy

11. D. Bosco, M. Gilli, Effort Provision and Incentivisation in Tullock Group-Contests with Many Groups: An Explicit 
Characterisation

12. A. Drigo, Environmental justice gap in Italy: the role of industrial agglomerations and regional pollution 
dispersion capacity

13. P. I. Rivadeneyra García, F. Cornacchia, A. G. Martínez Hernández, M. Bidoia, C. Giupponi, Multi-platform 
assessment of coastal protection and carbon sequestration in the Venice Lagoon under future scenarios

14. T. Angel, A. Berthe, V. Costantini, M. D’Angeli, How the nature of inequality reduction matters for CO2 
emissions

15. E. Bacchiocchi, A. Bastianin, T. Kitagawa, E. Mirto, Partially identified heteroskedastic SVARs

16. B. Bosco, C. F. Bosco, P. Maranzano, Income taxation and labour response. Empirical evidence from a DID 
analysis of an income tax treatment in Italy

17. M. M. H. Sarker, A. Gabino Martinez-Hernandez, J. Reyes Vásquez, P. Rivadeneyra, S. Raimondo, Coastal 
Infrastructure and Climate Change adaptation in Bangladesh: Ecosystem services insights from an integrated 
SES-DAPSIR framework

18. P. Maranzano, M. Pelagatti, A Hodrick-Prescott filter with automatically selected jumps

19. M. Bonacina, M. Demir, A. Sileo, A. Zanoni, The slow lane: a study on the diffusion of full-electric cars in Italy

20. C. Castelli, M. Castellini, C. Gusperti, V. Lupi, S. Vergalli, Balancing Climate Policies and Economic Development 
in the Mediterranean Countries

21. M. Gilli, A. Sorrentino, Characterization of the Set of Equilibria in Max-Min Group Contests with Continuous 
Efforts and a Private Good Prize

22. P. Pakrooh, M. Manera, Causality, Connectedness, and Volatility Pass-through among Energy-Metal-Stock-
Carbon Markets: New Evidence from the EU

23. F. F. Frattini, Francesco Vona, Filippo Bontadini, Does Green Re-industrialization Pay off? Impacts on 
Employment, Wages and Productivity

24. A. Drigo, Breathing Inequality? Income, Ethnicity and PM2.5 Exposure in Bologna, Italy



Fondazione Eni Enrico Mattei 
Corso Magenta 63, Milano – Italia 

Tel. +39 02 403 36934

E-mail: letter@feem.it 
www.feem.it


	Cover.pdf
	ndl2021-031
	Senza titolo
	Senza titolo


	Seconda pagina.pdf
	ndl2021-031




