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1 Introduction

Within a long-term relationship, a buyer (she) repeatedly procures a �xed quantity of a product

from a supplier (he) and then sells it on the market. The product results from a Cobb-Douglas

technology that combines an observable input and an unobservable one, with prices of both being

public information. The supplier�s e¢ ciency in production is private information and evolves over

time following a geometric Brownian motion. The buyer�s objective is to �nd a dynamic long-term

procurement contract that maximizes her expected pro�t.

The �rst and main �nding of our paper is that the dynamic long-term procurement contract

assumes a relatively straightforward form involging a two-part periodic payment. The �xed part of

this payment is based on the initial e¢ ciency type, while the variable part depends on the current

e¢ ciency type. We show that, through the �xed part, the buyer mitigates the burden of information

rents needed to incentivize the truthful revelation of future e¢ ciency types. This is because the

initial e¢ ciency type may, depending on its informativeness, can provide a relatively accurate

prediction of future e¢ ciency levels. Additionally, we observe that the distortion in the input

mix remains constant over time and decreases in the initial type. This rea¢ rms, from a di¤erent

perspective, the signi�cance of the initial information in our procurement contract. Finally, once

the procurement cost is determined, we show how the considered dynamic adverse selection may

negatively a¤ect the optimal order quantity set by a buyer facing uncertain market demand. Lastly,

we show the adaptability of our model to cases where the supplier has private information about

the random evolution of the input price ratio.

A second signi�cant �nding emerges from the examination of an even simpler procurement

contract. Given the potential informativeness of the initial e¢ ciency, a natural question arises:

what if the buyer uses a �xed-price and quantity contract? We show that our model may also

be used to analyze this case. The mechanism is simpler and it entails a periodic payment based

only on the initial e¢ ciency type. Upon comparing the two contracts, we observe that a buyer

consistently prefers a �xed-price and quantity contract over a �xed-quantity contract, while the

opposite holds true for a supplier. This di¤erence arises from the fact that with a �xed-quantity

contract, the buyer lacks �exibility to adjust the order quantity in response to evolving procurement

costs. Consequently, the information disclosed by the supplier over time cannot be utilized by the

buyer to improve his position, rendering it not worthwhile to pay the associated information rent.

Conversely, the supplier bene�ts from receiving rent for disclosing information that, in any case,

does not impact the order quantity.

The paper is structured as follows. The next subsection provides a brief literature overview.

Section 2 introduces our model set-up, while Section 3 characterizes the optimal procurement

contract. Section 4 delves into the properties of the optimal contract, and Section 5 presents

concluding remarks. The Appendices include proofs omitted from the main text.
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1.1 Related literature

The principal-agent problem is a a well-established topic in the operations literature, particularly

within the context of supply chain contracting under asymmetric information.1 Typically, this

information concerns production cost, productive capacity, or demand state. In the majority of

papers, contracts cover a single period, with the solution involving o¤ering a contract that induces

the truthful revelation of the agent�s private information (or type) throught the payment of an

information rent. In other cases, despite dealing with multiperiod contracts, the agent�s type

remains constant over time, simplifying the problem into a static one that can be addressed by

o¤ering optimal static contracts at each period. The complexity increases when dynamic information

asymmetry is considered, as the principal may �nd value in using information gathered over time

about the agent�s type (see e.g. La¤ont and Martimort, 2002, Ch. 8; P. Bolton and Dewatripont,

2005, Ch. 9).

The economics literature addressing dynamic allocation problems similar to ours originates

with Baron and Besanko (1984), who derived optimal contracts in a two-period setting, with types

correlated over time.2 Battaglini (2005) explores the repeated sale of a nondurable good to a buyer

over an in�nite time horizon, with the marginal bene�t evolving over time according to a commonly

known Markov process with two possible types. Pavan et al., (2014) delve into a general dynamic

allocation model with a continuum of types, private information evolving over time and decisions

spanning multiple periods over an in�nite time horizon. They provide general necessary conditions

for incentive compatibility and su¢ cient conditions for revenue-maximizing contracts in di¤erent

environments. Bergemann and Strack (2015) extend the previous analysis, developed in discrete

time, with a continuous-time model considering a revenue-maximising principal repeatedly selling

a nondurable good to consumers who possess private information about their willingness to pay.3

Bergemann and Strack (2015) is the closest paper to ours. Similar to their work, private infor-

mation follows a Brownian motion, and the problem is time-separable. However, our model diverges

as we explore a cost-minimizing mechanism, in contrast to their focus on revenue maximization.

Therefore, our emphasis is on the distortion, arising from information asymmetry, in the productive

input mix chosen by the supplier rather than on the quantity of the good sold to the consumer.

Finally, our paper contributes to a growing body of operations literature applying a dynamic

mechanism design approach to explore multiperiod contracts with i) dynamic adverse selection,

and ii) operational decisions that must be made dynamically. Zhang et al. (2010) examine a

supply chain where a single supplier sells to a downstream retailer under asymmetric demand

information, assuming the use of short-term contracts. At the beginning of each period, the supplier

o¤ers a contract, and the retailer makes purchasing decisions anticipating random demand. Excess

inventory, not observed by the supplier, is carried over, and in the next period, a new contract is

designed based on the supplier�s belief about the retailer�s inventory. The optimal contract, in the

1Refer to Chen (2003), Ha and Tang (2017) and Vosooghidizaji et al. (2020) for reviews of this literature.
2See Bergemann and Välimäki (2019) for a comprehensive review of this literature.
3See Arve and Zwart (2023) for a solution to the non time-separable problem that arises when handling durable

goods.
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presence of high production and holding costs, takes the form of a batch-order contract, minimizing

the retailer�s information advantage. Lobel and Xiao (2017) address a similar problem but consider

long-term contracts.4 Under backlogging, the optimal long-term contract entails an upfront fee

and a wholesale price charged on periodic orders, while under lost sales, the contract is similar but

the retailer has the option to reduce the wholesale price initially chosen, exercisable at any time

point upon payment of a �xed strike price. In Gao (2015), the buyer is the principal, operating a

multiperiod inventory system with lost sales and a �xed order cost under evolving private supply

information. The optimal long-term contract involves the payment of a real information rent only

in the initial period, compensating for production cost in every period, and distorting the order

quantity in the initial period in order to reduce the information rent.

2 Model set up

Consider a buyer who wants to purchase a periodic quantity of a product from an upstream supplier.

The contract between the parties is �nalized at the initial time period t = 0 and its duration is

long enough to be reasonably approximated by an in�nite time horizon.5

We make the following assumptions:

� Assumption 1: The parties adopt a �xed-quantity (FQ) contract.6 We denote by Q the

observable order quantity to be supplied at each time period and, at no loss in terms of generality,

we assume that Q = 1. The buyer sells the product to customers7 at a market price, which is

constant over time and equal to b > 0.8

� Assumption 2: The supplied product is manufactured by means of two inputs: an observ-
able input xt and a non-observable input yt. These inputs are combined based on the following

Cobb-Douglas production function:9

1 = �t � x�t � yt1��; (1)

where � and 1� � with 0 < � < 1 are the elasticities of output with respect to each input and �t
is an index of the supplier�s e¢ ciency.

4On short-term vs. long-term contracting in supply chain interactions, see Johnsen et al. (2021).
5The assumption of an in�nite time horizon simpli�es the analysis, but it does not alter the results as long as the

parties set the contract duration at the initial time period t = 0.
6 In long-term and exclusive relationships, the supplier may hesitate to invest in capacity if anticipating a poor

future return, stemming from low bargaining power in ex-post negotiations or prices that yield an insu¢ cient margin.
Therefore, the parties may choose to adopt a �xed-quantity (FQ) contract to ensure that the supplier can appropriate
a signi�cant portion of the surplus generated by the investment. For further insights into contract and capacity
investment, see e.g. Cachon and Lariviere (2001), Taylor and Plambeck (2007) and Davis and Leider (2015).

7We opt for a buyer/retailer, but one may, at no cost, consider also the case of a manufacturer procuring a
component from a supplier.

8 In Section (4.6), we examine a buyer facing stochastic demand and determining the optimal order quantity based
on the expected demand over the considered time horizon.

9Note that we can easily incorporate the impact of the returns to scale in production by adopting the function
Q = �t � (x�t � y1��t )! with ! > 0:
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� Assumption 3: The e¢ ciency level, �t, evolves over time according to the following di¤usion
process:10

d�t=�t = � � dLt; (2)

where � is the instantaneous volatility and dLt � N(0; t) is the increment of a standard Wiener

process.11 Solving Eq. (2) yields:

�t � �(t; �0; Lt) = �0 � e�
1
2
�2t+�Lt : (3)

By Eq. (3), as shown immediately, the e¢ ciency level �t is a function of its initial value �0, the

volatility � and the contemporaneous shock Lt. Note that, as Process (2) is trendless, �0 represents

the best estimate for the values taken by the e¢ ciency index at any later time period t > 0, i.e.

E0[�tj �0] = �0: Furthermore, �t is a persistent process since the contemporaneous shock Lt has a

non-vanishing e¤ect on any later �s with s > t.12

Eq. (3) has several interesting properties.13 In particular,

i) the e¢ ciency over time is increasing in its initial level, i.e. �0, since

��(t; �0; Lt) =
@�(t; �0; Lt)

@�0
=
�t
�0
> 0: (3.1)

The function ��(t; �0; Lt) is the so-called stochastic �ow, measuring the in�uence of the e¢ ciency

level �0 on future e¢ ciency levels �t.

ii) the e¢ ciency over time is increasing in the contemporaneous shock Lt since

�L(t; �0; Lt) =
@�(t; �0; Lt)

@Lt
= � � �t > 0; (3.2)

iii) the relative impact of the initial e¢ ciency level on future e¢ ciency levels is decreasing in �0
since

��(t; �0; Lt)

�(t; �0; Lt)
=
1

�0
; (3.3)

10 In Eq. (2), we abstract from the drift to focus on the impact of uncertainty on the outcome. However, note that
introducing a non-zero drift for �t would not alter the quality of our results due to the Markov property of Eq. (2).
11 In a Wiener process, dLt = "t �

p
dt where "t � N(0; 1): Hence, E0 [dLt] = 0 and E0

�
dL2t

�
= dt where E0 is the

expectation taken at time t = 0 (see Dixit and Pindyck, 1994, pp. 63 - 65).
12For a trendless process such as (2), the autocorrelation, �t;s, between �t and �s is given by:

�t;s =
COV (�t; �s)p
V (�t) �

p
V (�s)

=

 
e�

2t � 1
e�2s � 1

!1=2
< 1

where s > t: Note that �t;s decreases with the distance between s and t: Additionally, �t;s ! 0 as either s ! 1 or
� !1:
13Further insights and details can be found in Bergemann and Strack (2015).
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iv) the expected impact of the initial e¢ ciency level on future e¢ ciency levels is �nite since

E0(��(t; �0; Lt)) =
E0(�tj �0)

�0
= 1; (3.4)

v) the relative impact of the initial e¢ ciency level versus the contemporaneous shock is decreasing
in �0 and � since

��(t; �0; Lt)

�L(t; �0; Lt)
=

1

� � �0
> 0: (3.5)

This means that, all else being equal, 1) a higher initial e¢ ciency level provides less informa-

tion about future e¢ ciency levels since their realizations are more in�uenced by contempo-

raneous shocks fLt; t > 0g and 2) the initial e¢ ciency level is less informative about future
e¢ ciency levels as uncertainty, i.e. �, increases.

� Assumption 4: While the volatility � is public knowledge, we assume that the supplier is
better informed than the buyer about the initial level �0 and all future realizations f�t; t > 0g. The
initial value �0 is distributed on a positive support [�l; �h] = � � R+ according to the cumulative

distribution function G(�0), with a continuously di¤erentiable density g(�0) > 0; g(�l) > 0; and

g(�h) > 0, which is common knowledge. Furthermore, the distribution function G(�0) is such that

H(�0)=�0, where H(�0) =
1�G(�0)
g(�0)

is the inverse hazard rate, is monotone and decreasing in �0.

Note that this condition is strictly weaker than the standard increasing hazard rate assumption

(see e.g. Guesnerie and La¤ont, 1984, and Jullien, 2000).

� Assumption 5: The buyer commits to a periodic payment pt.
� Assumption 6: Production costs are linearly increasing in the two inputs levels. The unit

costs for input xt and input yt are equal to c > 0 and k > 0; respectively.

� Assumption 7: Both the supplier and the buyer are risk-neutral and discount future payo¤s
using the interest rate r.

� Assumption 8: Both parties can commit themselves not to renegotiate the initial contract.
� Assumption 9: Both parties can not hold inventories.
By Assumptions 5 and 6, the supplier�s periodic utility is given by

ut = pt � (c � xt + k � yt) , (4)

while, at t = 0; the expected present value of the intertemporal supplier�s utility �ow is equal to:

U = E0

�Z 1

0
ut � e�rt � dt

�
: (5)

The buyer�s periodic utility is given by

wt = b� pt; (6)
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while the expected present value of the intertemporal buyer�s utility �ow is equal to:

W = E0

�Z 1

0
wt � e�rt � dt

�
=
b

r
� E0

�Z 1

0
pt � e�rt � dt

�
: (7)

Lastly,

� Assumption 10: The market price b is such that W � 0. Otherwise, the buyer does not

�nd it convenient to procure the product from the supplier.

3 The optimal procurement contract

The e¢ ciency levels f�t; t � 0g represent the evolution over time of the supplier�s type. According
to Eq. (7), as the order quantity remains constant over time, the supplier�s procurement problem is

a cost-minimization problem. The contract payment must induce the supplier to choose, given his

own e¢ ciency type, a cost-minimizing bundle of inputs. Two agency problems seem to be blended

together since the buyer cannot observe the level of the input fyt; t � 0g used, nor can the supplier�s
initial and subsequent e¢ ciency types be observed. However, considering the �xed and observable

order quantity, we are dealing with a false moral hazard problem since yt can be fully determined

by the following identity:14

yt = (�t � x�t )
� 1
1�� : (1.1)

Henceforth, we can concentrate on deriving a procurement mechanism that incentivizes only the

supplier to truthfully report the e¢ ciency types f�t; t � 0g.
Our optimization problem belongs to the class of allocation problems that Bergemann and

Strack (2015) have categorized as weakly time separable. In fact, in our problem, (i) the set of

available allocations at each time period t is independent of the history of allocations and (ii)

the periodic utility functions of both the supplier and the buyer depend only on the initial and

the current private information about the supplier�s e¢ ciency types, i.e. �0 and �t, respectively.

Therefore, we address the procurement problem in the following two steps:15

1. For any given initial e¢ ciency type �0, at each t > 0 the buyer o¤ers a single-period contract

with a payment, p2(�t); compensating for the truthful revelation of the current e¢ ciency type

�t.

2. As each future realization �t depends on the initial value �0 and on the contemporaneous

shock Lt, i.e. �t = �(�0; Lt), at t = 0 the buyer sets a periodic payment, p1(�0); compensating

for the truthful revelation of the initial e¢ ciency type �0.

14See La¤ont and Martimort (2002, Section 7.1.4, pp. 287-290) for further details.
15 In the following, for notational convenience, we drop in �(t; �0; Lt) the direct dependence on time t.
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3.1 Incentive-compatibility conditions

In this section, we present the conditions for a direct incentive-compatible mechanism robust to

consistent deviations.16 These deviations are de�ned as follows:17

De�nition A deviation is de�ned as consistent if a supplier of e¢ ciency type �0 misreports b�0 at
t = 0 and continues to misreport b�t � �(b�0; Lt) instead of its true type �t at all future dates
t > 0:

This means that, after an initial misreport b�0, the supplier will report an e¢ ciency type b�t
following the same di¤usion process that would be followed by his true e¢ ciency type �t. Therefore,

the buyer will not be able to detect the deviation, and payments will be set according to the

misreported b�0 and its consistent evolution over time.
As standard, let�s proceed backward. Assume that at t = 0 the supplier has, by setting an

appropriate p1(�0); reported the true �0. The buyer can then o¤er a standard single-period contract

at each time period t > 0. The periodic supplier�s utility function is as follows:

u(�0; �t; b�t) = p(�0; b�t)� (c � xt(b�t) + k � yt(�t; b�t)); (8)

where b�t is the report by a supplier-type �t, p(�0; b�t) = p1(�0) + p
2(b�t), and, by Eq. (1),

yt(�t; b�t) = (�t � xt(b�t)�)� 1
1�� : (8.1)

The payment p2(b�t) must be set such that the supplier reports b�t = �t thruthfully. In order to do

so:

Lemma 1 At each t > 0; necessary and su¢ cient conditions for incentive compatibility require

that the payment p2(�t) is set such that:

@u(�0; �t)

@�t
=

k

1� � �
yt(�t)

�t
; (9)

@xt(�t)

@�t
� 0: (10)

Proof. See Appendix A.
Once p2(�t) is determined, we step backward to set the payment p1(�0): Also in this case, the

payment can be determined by solving a standard static problem.

At t = 0, the expected present value of the intertemporal supplier�s utility �ow is equal to:

U(�0; b�0) = E0

�Z 1

0

h
p(b�0)� �c � xt(b�0) + k � yt(�0; b�0)�i � e�rtdt� ; (11)

16This class of deviations is considered in Es½o and Szentes (2007), Pavan et al. (2014) and Bergemann and Strack
(2015).
17See Bergemann and Strack (2015, De�nition 3, p. 826).
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where b�0 is the report by a supplier-type �0; p(b�0) = p1(b�0) + p2(�(b�0; Lt)); xt(b�0) = xt(�(b�0; Lt))
and, by Eq. (1),

yt(�0; b�0) = (�(�0; Lt) � xt(b�0)�)� 1
1�� : (11.1)

The payment p1(b�0) must be set such that the supplier reports b�0 = �0 thruthfully. In order to do

so,

Lemma 2 At t = 0, necessary and su¢ cient conditions for incentive compatibility require that the
payment p1(�0) is set such that:

@U(�0)

@�0
=

k

1� � � E0
�Z 1

0

�
yt(�t) �

��(�0; Lt)

�(�0; Lt)

�
� e�rtdt

�
; (12)

dxt(�t)

d�0
� 0: (13)

Proof. See Appendix A.

3.2 The two-part payment

Let�s start by considering the �rst step of the procurement problem. Assuming that the supplier

has reported his true �0, the buyer can determine i) the optimal input mix, (x�t (�t); y
�
t (�t)) ; and ii)

the optimal payment, p2�(�t); by solving the following problem:

min
xt(�t); yt(�t)

Z �h

�l
E0

�Z 1

0
p(�0; �t) � e�rt � dt

�
� g(�0) � d�0; (14)

s.t. (1), (9), (10),

where p(�0; �t) = p1(�0) + p2(�t) is the total periodic payment resulting from the sum of the �xed

payment p1(�0) and the time varying payment p2(�t): Note that, as p1(�0) does not depend on �t,

Problem (14) captures the repetition, at each t > 0; of a standard static incentive problem where

both the incentive compatibility Conditions (9) and (10) must hold (see Baron and Myerson, 1982;

La¤ont and Martimort, 2002).

Let�s now turn to second step of the problem. Once p2(�t) is determined; the buyer must set

the payment p1(�0) such that the supplier reports his intial type �0 truthfully: However, as p2�(�t)

has been set such that, for any given initial �0, the supplier reports his type �t truthfully, the

buyer determines the optimal payment p1�(�0) by solving a static incentive problem where both

the incentive compatibility Conditions (12) and (13) must hold.
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Solving both problems yields the following proposition:

Proposition 1 Under the above assumptions, at each t � 0 the buyer o¤ers the supplier a two-part
payment p�(�0; �t); which includes:

i)

p1�(�0) = r � k

1� � �

24 R �0�l �R10 E0

n
y�t (s)
�(s;Lt)

� �s(s; Lt)
o
� e�rt � dt

�
� ds

�
R1
0 E0

nR �t
0

y�t (z)
z � dz

o
� e�rt � dt

35 ; (15)

as �xed part, and

ii)

p2�(�t) = c � x�t (�t) + k � y�t (�t) +
k

1� � �
Z �t

0

y�t (z)

z
� dz; (16)

as variable part, where the optimal input mix (x�t (�t); y
�
t (�t)) is such that

�

1� � �
y�t (�t)

x�t (�t)
=

c

k �
�
1 + 1

1��
H(�0)
�0

� : (16.1)

Proof. See Appendix B.

4 The properties of the optimal procurement contract

In this section, we present and discuss the properties of the optimal procurement contract derived

above.

4.1 The optimal input mix

By Eq. (16.1), the optimal input levels are chosen such that the technical rate of substitution,

i.e. �
1�� �

y�t (�t)
x�t (�t)

, equals the input price ratio, i.e. c=k �
�
1 + 1

1��
H(�0)
�0

�
; where

�
1 + 1

1��
H(�0)
�0

�
is the wedge taking into account the distortion due to the initial e¢ ciency type �0 being private

information. To further analyze the impact of the distortion, let�s use, as benchmark, the optimal

input mix under a �rst-best scenario. In this case, as information is symmetric, the distortion

vanishes, and the cost-minimizing input mix,
�
xFBt (�t); y

FB
t (�t)

�
; satis�es the following condition:

�

1� � �
yFBt (�t)

xFBt (�t)
=
c

k
; (17)

where, by Eq. (1),

xFBt (�t) =
1

�t
�
�
c

k
� 1� �

�

��(1��)
; yFBt (�t) =

1

�t
�
�
c

k
� 1� �

�

��
: (17.1-17.2)

Using Eq. (1), Eq. (16.1) and Eq. (17), we �nd that:
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x�t (�t) = xFBt (�t) �
�
1 +

1

1� � �
H(�0)

�0

�(1��)
� xFBt (�t); (17.3)

y�t (�t) = yFBt (�t) �
�
1 +

1

1� � �
H(�0)

�0

���
� yFBt (�t): (17.4)

By Eq. (17.3) and Eq. (17.4), in a second-best scenario, the input mix is always distorted in favor of

the observable input xt. This is because a higher price is implicitly charged for the non-observable

input yt; i.e. k �
�
1 + 1

1��
H(�0)
�0

�
> k: The distortion is constant over time18 and decreasing in �0

since, by assumption, d (H(�0)=�0) =d�0 < 0. Hence, there is no distortion at the top, i.e. �0 = �h,

over the entire time horizon. Information about the initial e¢ ciency type �0 is central in our

procurement mechanism. This can be explained by considering that, as �t � �(�0; Lt); the buyer

exploits the information about �0 to predict future e¢ ciency levels. This, in turn, allows pinning

down the distortion to the level associated with �0. Further, in order to highlight its centrality even

more, using Eq. (17.3) and Eq. (17.4) and rearranging, we �nd that

y�t (�t)

x�t (�t)
=

yFBt (�0)

xFBt (�0) �
�
1 + 1

1��
H(�0)
�0

� : (17.5)

that is, the second-best input ratio, y�t (�t)=x
�
t (�t); remains constant over time and equals the ratio

between the �rst-best level of the unobservable input, yFBt (�0), and the distorted �rst-best level of

the observable input, xFBt (�0) �
�
1 + 1

1��
H(�0)
�0

�
, both determined using the initial e¢ ciency type

�0.

4.2 The persistence of the shocks

By using Eq. (1) and Eq. (16.1), we �nd that:

x�t (�t) =
1

�t
�

24 c

k �
�
1 + 1

1�� �
H(�0)
�0

� � 1� �
�

35�(1��) ; (18)

y�t (�t) =
1

�t
�

24 c

k �
�
1 + 1

1�� �
H(�0)
�0

� � 1� �
�

35� : (19)

As can be immediately seen, both x�t (�t) and y
�
t (�t) are decreasing in �t since

dx�t (�t)
d�t

= �x�t (�t)=�t <
0 and dy�t (�t)

d�t
= �y�t (�t)=�t < 0. This means that, at each time period t; the higher the e¢ ciency,

the lower the amount needed for both input factors. Furthermore, using the Ito�s lemma, it can be

18The dynamic of the distortion over time depends, through the stochastic �ow, on the nature of the initial
information and on the shape of the stochastic process governing the evolution of the state variable. In our case, the
initial information is about the initial state of the process, but it may very well concern a parameter of the stochastic
process itself, such as the drift or the volatility. See Bergemann and Välimäki (2019) for examples and discussion.
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easily shown that x�t (�t) and y
�
t (�t) follow the same geometric Brownian motion,

19 in particular,

dx�t (�t)=x
�
t (�t) = dy�t (�t)=y

�
t (�t) = �2 � dt+ � � dLt: (18.1-19.1)

To explore the role played by the initial e¢ ciency type �0; let�s rearrange Eq. (18) and Eq. (19) as

follows:

x�t (�t) = x�(�0) �
�0
�t
; y�t (�t) = y�(�0) �

�0
�t
; (18.2-19.2)

where:

x�(�0) =
1

�0
�

24 c

k �
�
1 + 1

1�� �
H(�0)
�0

� � 1� �
�

35�(1��) ; (18.3)

y�(�0) =
1

�0
�

24 c

k �
�
1 + 1

1�� �
H(�0)
�0

� � 1� �
�

35� ; (19.3)

represent the optimal input levels initially chosen by a supplier with e¢ ciency type �0:

By using Eq. (18.2) and Eq. (19.2), the optimal input expansion path can be visualized by

projecting over time the initial optimal input levels, i.e. (x�(�0); y�(�0)) ; using the ratio �0=�t. At

any given time period t > 0; if the supplier exhibits improved e¢ ciency, i.e. �t > �0, a lower amount

of both inputs is used for production; conversely, if the e¢ ciency is lower, i.e. �t < �0, a higher

amount of both inputs is required. The properties20 of the Process (2) indicate that the optimal

input levels chosen at time periods close to t = 0 are more strongly and positively correlated than

those chosen at time periods distant from t = 0 , with correlation diminishing as the distance

increases. Furthermore, we �nd that:21

E fx�t (�t)g = x�(�0) � e�
2t; E fy�t (�t)g = y�(�0) � e�

2t; (18.4-19.4)

implying that, in expected terms, the optimal input levels diverge from x�(�0) and y�(�0), increasing

over time.

Changing perspective to focus on the informativeness of the initial e¢ ciency type �0, note that

the ratio �0=�t is the inverse of the stochastic �ow ��(�0; Lt) = �t=�0 = e�
1
2
�2t+�Lt . Therefore,

in Eq. (18.2) and Eq. (19.2), we consider the in�uence that the information about �0 has on

information about the future e¢ ciency types �t: The lower ��(�0; Lt); the weaker the in�uence of �0
and the larger the margin by which the optimal input mix (x�t (�t); y

�
t (�t)) deviates from the initial

input mix (x�(�0); y�(�0)).

19See, for instance, Dixit and Pindyck (1994, p. 82).
20See Section 2 (Assumption 3).
21See Appendix C for the calculation of these expected values.
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Last, comparative statics with respect to �0 reveal that:

dx�t (�t)

d�0
= �x�t (�t) �

24��(�0; Lt)
�(�0; Lt)

+ (1� �) �

������
d ln

�
1 + 1

1�� �
H(�0)
�0

�
d�0

������
35 < 0; (18.5)

and

dy�t (�t)

d�0
= �y�t (�t) �

0@��(�0; Lt)
�(�0; Lt)

� � �

������
d ln

�
1 + 1

1�� �
H(�0)
�0

�
d�0

������
1A : (19.5)

By Eq. (18.5) and Eq. (19.5), both optimal input levels are decreasing in the term ��(�0;Lt)
�(�0;Lt)

= 1
�0
.

As stated in Section 2, this term measures the relative impact of the initial supplier�s e¢ ciency

on his e¢ ciency over time. Consistently, the buyer proposes a procurement mechanism that, by

using the information about the initial e¢ ciency type, induces a reduction in the amount of inputs

used over time. As �0 increases, its relative impact on future e¢ ciency types decreases, leading

to a smaller reduction. The second terms in Eq. (18.5) and Eq. (19.5) represent the distortion

arising from �0 being private information. In particular, the term

�����d ln
�
1+ 1

1�� �
H(�0)
�0

�
d�0

����� represents, in
absolute value, the rate at which the distortion vanishes. A higher rate implies a higher dy

�
t (�t)
d�0

and

the lower dx�t (�t)
d�0

. If the rate is su¢ ciently high, i.e.

�����d ln
�
1+ 1

1�� �
H(�0)
�0

�
d�0

����� > 1
� �

��(�0;Lt)
�(�0;Lt)

, the second

term in Eq. (19.5) dominates the �rst one, and dy�t (�t)
d�0

> 0; otherwise dy�t (�t)
d�0

� 0. This implies that
a faster vanishing of distortion leads to a wider margin for the supplier to exploit the imperfect

substitutability of the two inputs.

4.3 The payment

Let�s now discuss the periodic payment p�(�0; �t). By Eq. (15), the �xed part, p1�(�0); corresponds

to the annuitization of two components.

The �rst component, i.e. k
1�� �

R �0
�l

�R1
0 E0

n
y�t (s)
�(s;Lt)

� �s(s; Lt)
o
� e�rt � dt

�
� ds; represents the

information rent that the buyer pays for incentivizing the thruthful revelation of the initial e¢ ciency

type �0. The second component, i.e. k
1�� �

R1
0 E0

nR �t
0

y�t (z)
z � dz

o
� e�rt � dt, to be subtracted from

the �rst one, is equal to the expected present value of the �ow of future information rents paid for

incentivizing the thruthful revelation of the e¢ ciency type �t at each time period.

By Eq. (16), the variable part, p2�(�t) > 0; compensates the supplier for the production cost

borne, i.e. c � x�t (�t) + k � y�t (�t); and pays him an information rent , i.e. k
1�� �

R �t
0

y�t (z)
z � dz, for

the truthful revelation of the e¢ ciency type �t. The production cost and the information rent are

decreasing and increasing in �t, respectively:

As highlighted above, the buyer exploits the informativeness of �0 for predicting the future

e¢ ciency types �t. This, in turn, allows reducing future information rents. In fact, note that when

considering the periodic payment p�(�0; �t), the buyer pays, on the one hand, the information rents

13



for the truthful revelation of the e¢ ciency type �t through p2�(�t) and, on the other hand, she

extracts, through p1�(�0), the equivalent annuity of their expected present value.

Lastly, in Appendix C, we show that while p1�(�0) < 0 consistently, the periodic payment

p�(�0; �t) is always strictly positive.

4.4 The value functions

Substituting the payment p(�0; �t) into Eq. (4) and Eq. (6), the periodic payo¤s for the supplier

and the buyer are:

u(�0; �t) =
r

r � �2 �
k

1� � �
�Z �0

�l

y�(s)

s
� ds+ y�(�0) �

�
1� r � �2

r
� �0
�t

��
; (20)

and

w(�0; �t) = b� p(�0; �t) = b� (c � x�t (�t) + k � y�t (�t) + u(�0; �t)) ; (21)

respectively.

The utility left to the supplier is equal to the periodic amount of information rents paid for

compensating the thuthful revelation of both �0 and �t. Interestingly, these rents re�ect the implicit

adoption of a risk-sharing mechanism based on the information about �0: In fact, whenever the

supplier performs su¢ ciently worse than expected in terms of e¢ ciency, i.e. �t < r��2
r � �0 < �0 =

E(�t), the second term in Eq. (20) is negative. Therefore, a penalty applies in response to the

higher production cost that, by Eq. (21), the buyer must cover with the payment. Otherwise, i.e.

�t >
r��2
r � �0, a reward applies in response to the lower production cost.

By Eq. (20), the expected present value of the intertemporal supplier�s utility �ow is equal to:

U(�0) = E0

�Z 1

0
u(�0; �t) � e�rt � dt

�
=

k

1� � �
R �0
�l

y�(s)
s � ds

r � �2 � 0; (22)

with U(�l) = 0:

Moving from Eq. (20) to Eq. (22), it is worth highlighting that the buyer is able to extract,

in expected terms, the present value of the �ow of all future information rents. In fact, note that
r

r��2 � E0
�R1
0 y�(�0) � e�rt � dt

	
= E0

nR1
0 y�(�0) � �0�t � e

�rt � dt
o
. This is, of course, not suprising

considering how the buyer sets p1�(�0).

Di¤erentiating U(�0) with respect to �0 and �2, we �nd that

dU(�0)

d�0
=

k

1� � �
y�(�0)
�0

r � �2 > 0; (22.1)

dU(�0)

d�2
=
U(�0)

r � �2 > 0; (22.2)

respectively. By Eq. (22.1) and Eq. (22.2), the rent U(�0) left to the supplier is increasing in both

the initial level and the volatility of his e¢ ciency type. This result relates to the informativeness of
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his initial e¢ ciency type about his e¢ ciency type over time, which is decreasing in both �0 and �.

This leads to higher rents to be paid to a supplier with a higher initial e¢ ciency type and a more

volatile e¢ ciency type.

Lastly, the expected present value of the intertemporal buyer�s utility �ow is:

W (�0) =
b

r
� E0

�Z 1

0
p�(�0; �t) � e�rt � dt

�
=
b

r
�
�
c � x�(�0) + k � y�(�0)

r � �2 + U(�0)

�
: (23)

By Eq. (23), the bene�t accruing to the buyer�s is given by the present value of the �ow of

revenue associated with the sale of the product, i.e. b
r . From this amount, the buyer subtract the

procurement cost, which includes: i) the expected present value of the �ow of production costs, i.e.
c�x�(�0)+k�y�(�0)

r��2 and ii) the rent U(�0) paid to the supplier.

Di¤erentiating W (�0) with respect to �0 and �2; we �nd

dW (�0)

d�0
= �

 
c � dx

�(�0)
d�0

+ k � dy
�(�0)
d�0

r � �2 +
dU(�0)

d�0

!
> 0; (23.1)

dW (�0)

d�2
= �

�
c � x�(�0) + k � y�(�0)

(r � �2)2
+
dU(�0)

d�2

�
< 0; (23.2)

respectively.

Even tough the rent U(�0) is increasing in the supplier�s initial e¢ ciency type, the net rev-

enue W (�0) accruing to the buyer is increasing in �0. This is because a higher �0 reduces the

expected present value of the �ow of production costs, and this reduction dominates the in-

crease in the rent. Conversely, a higher volatility in the evolution of the e¢ ciency type re-

duces W (�0). Here, in addition to the e¤ect driven by the rent, i.e. dU(�0)
d�2

> 0; the reduc-

tion is also due to the higher expected present value of the �ow of production costs. In fact,

note that, by Eq. (18.4) and Eq. (19.4), the expected input levels E fx�t (�t)g and E fy�t (�t)g
increase exponentially over time at a rate equal to �2:

4.5 Fixed quantity vs. Fixed price and quantity contract

In this section, we consider a potential �xed-price and quantity (FPQ) contract where the parties

agree on the periodic provision of a �xed product quantity at a �xed unit price. In particular,

assume that at t = 0 the buyer considers a procurement mechanism to be based exclusively on the

initial e¢ ciency type. The choice can be justi�ed considering that, at that date, �0 is, in expected

terms, the best available estimate of the future e¢ ciency types since E0[�tj �0] = �0. The solution

to this procurement problem can be found using our model. In fact, it su¢ ces to consider the

limit case where the realizations of the future �t are perfectly correlated over time (or perfectly

persistent), i.e. lim�!0 ��(�0; Lt) = 1. In this case, the optimal FPQ contract corresponds to the
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repetition of a standard static contract where22

p(�0) = c � x�(�0) + k � y�(�0) +
k

1� � �
Z �0

�l

y�(s)

s
� ds (24)

is the periodic �xed payment.

In this case, the periodic payo¤s for the supplier and the buyer are:

u(�0) =
k

1� � �
Z �0

�l

y�(s)

s
� ds; (25)

and

w(�0) = b� p(�0) = b� (c � x�(�0) + k � y�(�0) + u(�0)) ; (26)

respectively.

As it can be immediately seen by comparing these payo¤s with the ones under a FQ contract,

i.e. Eq. (20) and Eq. (21), the impact of the e¢ ciency shocks is now shifted entirely to the buyer�s

side. In fact, by its own de�nition, a �xed price and quantity contract secures a positive payment

irrespective of �t. If compared with the case of a FQ contract, the supplier is worse o¤ only for

su¢ ciently high �t; otherwise he is always better o¤. In particular, note that he de�nitely does

better when, trivially, �t is such that u(�0; �t) < 0:23

However, when considering the deal at an intertemporal level, we �nd that

Proposition 2 The supplier prefers always a FQ contract to a FPQ contract since

U(�0) > U(�0) =
k

1� � �
R �0
�l

y�(s)
s � ds
r

; (27)

while the buyer prefer always a FPQ contract to a FQ contract since

W (�0) < W (�0) =
b

r
�
�
c � x�(�0) + k � y�(�0)

r
+ U(�0)

�
: (28)

The result in Proposition 2 may seem surprising since, as discussed above, the supplier does

not face any payment risk under a FPQ contract. However, note that, when taking an intertem-

poral perspective, the payment variability that the supplier would face under a FQ contract is, in

expected terms, fully absorbed. This is because, as shown above, r
r��2 �E0

�R1
0 y�(�0) � e�rt � dt

	
=

E0

nR1
0 y�(�0) � �0�t � e

�rt � dt
o
. The result can then be explained by reminding that under a FQ

contract the buyer is not able to adjust the order quantity in response to the time-varying pro-

curement cost. Hence, as the information about the supplier�s e¢ ciency, gathered over time at a

cost, is not valuable in this respect, the buyer prefers a cheaper FPQ contract based on a periodic
22The use of information after the time period t = 0 generates the so-called ratchet e¤ect. Hence, even though the

e¢ ciency levels are perfectly correlated over time, the buyer is better o¤ by committing to the repetition of a static
contract (see Bolton and Dewatripont, 2005, Ch. 9).
23 In Appendix C, we determine under which conditions these scenarios materialize.
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procurement cost, which is reasonably approximated using only the initial e¢ ciency type. Oppo-

site considerations hold for the supplier who, conversely, cashes an additional rent for revealing

information that, in any case, would not a¤ect the order quantity.

4.6 Stochastic market demand

In this section, we relax the assumption Q = 1 and consider a buyer facing market uncertainty.

Let�s assume that the buyer�s revenue associated with the periodic sale of a generic quantity Q of

the product is given by:

B(�t; Q) = �t � b(Q); (29)

where b(Q) is a determistic component with b(0) = 0; b0(Q) > 0 and b00(Q) < 0 and �t is a demand

shift factor that evolves stochastically over time according to the following geometric Brownian

Motion:

d�t = � � �t � dt+ ! � �t � dMt; (29.1)

where � is the drift parameter, ! is the instantaneous volatility and dNt � N(0; t) is the increment

of a standard Wiener process. As standard, we assume that r > � to ensure that the expected

present value of the buyer�s revenue �ow is �nite.

Provided that, as assumed in our model set-up, the production technology is a Cobb-Douglas

with constant return to scale, the expected present value of the procurement cost �ow associated

with the periodic provision of Q units of the product is:

C(�0; Q) =

�
c � x�(�0) + k � y�(�0)

r � �2 + U(�0)

�
�Q: (30)

Hence, the expected present value of the buyer�s intertemporal utility �ow is equal to:24

W (�0; �0; Q) = E0

�Z 1

0
�t � b(Q) � e�rt � dt

�
� C(�0; Q) =

�0
r � � � b(Q)� C(�0; Q): (31)

The order quantity Q must maximize W (�0; �0; Q): From the �rst-order condition of the maximiza-

tion problem, we obtain:

�0
r � � � b

0(Q�) =
c � x�(�0) + k � y�(�0)

r � �2 + U(�0): (32)

In Eq. (32), as standard, we require that at Q� the marginal revenue, i.e. the expected present

value of the marginal revenue �ow, is equal to the marginal cost, i.e. the expected present value of

the marginal procurement cost �ow. Note that, by the properties of b(Q), the higher the marginal

cost, the lower the order quantity Q�. In contrast, the higher the current state of demand, �0; the

higher the marginal revenue, and, consequently, the higher the order quantity Q�.

Let�s consider, for example, the case where b(Q) = Q
=
 with 
 < 1: Substituting into Eq. (32)

24Note that here, in line with Assumption 10, we assume that �0 is such that W (�0; �0; Q) � 0:
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and solving for Q� gives:

Q� =

"
�0

r � � �
�
c � x�(�0) + k � y�(�0)

r � �2 + U(�0)

��1# 1
1�


; (33)

and

W (�0; �0; Q
�) = (

1



� 1) �

�
c � x�(�0) + k � y�(�0)

r � �2 + U(�0)

�
�Q�: (34)

Concerning the impact of volatility in the evolution of the e¢ ciency type, we �nd that

dQ�

d�2
= � 1

1� 
 �
Q�

r � �2 < 0; (33.1)

and
dW (�0; �0; Q

�)

d�2
=
W (�0; �0; Q

�)

Q�
�
�

Q�

r � �2 +
dQ�

d�2

�
< 0: (34.1)

A higher volatility increases the expected present value of the marginal procurement cost �ow. In

response to this increase, the buyer orders a lower quantity of the product. While this choice helps

reduce the expected present value of the procurement cost �ow, it also lowers the expected present

value of the revenue �ow. The dominance of the second e¤ect over the �rst results in an overall

negative impact on the net revenue, W (�0; �0; Q�).

5 Concluding remarks

We conclude by showing that our results apply also when considering some alternative speci�cations

of the procurement problem. For instance:

1) Let�s consider the case where both input prices evolve randomly over time. As standard, we

can recast the problem in a single stochastic variable using, for instance, the input price kt as the

numeraire and letting the input prices ratio  t = ct=kt evolve as the geometric Brownian motion:

d t= t = � � dt+ � � dNt; (35)

where � is the drift parameter, � is the instantaneous volatility and dMt � N(0; t) is the increment

of a standard Wiener process.

Applying the same procedure used to solve our problem, one can easily verify that the optimal

input levels x�t (�t) and y
�
t (�t) must satisfy:

�

1� � �
y�t (�t)

x�t (�t)
=

 t

1 + 1
1�� �

H(�0)
�0

: (36)
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Combining Eq. (1) and Eq. (36) yields

x�t (�t;  t) =
1

�t
�
 

 t

1 + 1
1�� �

H(�0)
�0

� 1� �
�

!�(1��)
; (36.1)

y�t (�t;  t) =
1

�t
�
 

 t

1 + 1
1�� �

H(�0)
�0

� 1� �
�

!�
: (36.2)

The optimal payment can then be determined following the steps outlined in Section 3. It is

noteworthy that, since both  t and �t follow a geometric Brownian motion, x�t (�t;  t) and y
�
t (�t;  t)

also follow a geometric Brownian motion.25 The analysis of the properties of the mechanism is then

similar to the one developed in Section 4.

2) Let�s consider the case where �t = 1 for any t � 0; and the buyer has private information

about the ratio  t = ct=kt, still following Eq. (35). In this case, the optimal input levels x�t (�t) and

y�t (�t) must satisfy:
�

1� � �
y�t ( t)

x�t ( t)
=

 t

1 + G( 0)
g( 0)� 0

: (37)

Combining Eq. (1) and Eq. (37) yields

x�t ( t) =

0@  t

1 + G( 0)
g( 0)� 0

� 1� �
�

1A�(1��) ; (37.1)

y�t ( t) =

0@  t

1 + G( 0)
g( 0)� 0

� 1� �
�

1A�

: (37.2)

The optimal payment can then be determined following the steps outlined in Section 3. Note that,

also in this case, both x�t ( t) and y
�
t ( t) follow a geometric Brownian motion. The analysis of the

properties of the mechanism is then similar to the one developed in Section 4.

As leads for future work, exploring the impact of �exible order quantities on procurement

strategy is intriguing, especially considering the interplay of adverse selection and moral hazard

stemming from the presence of an unobservable input factor. Additionally, the limited liability of

the supplier, given its potential realism, is another aspect deserving attention.

25See, for instance, Dixit and Pindyck (1994, p. 82).
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A Appendix

A.1 Incentive compatibility

A.1.1 Lemma 1

Taking as given a truthful report �0, the supplier�s periodic utility function is equal to:

u(�0; �t; b�t) = p(�0; b�t)� �c � xt(b�t) + k � yt(�t; b�t)� ; (A.1)

where b�t is the report by a supplier-type �t, p(�0; b�t) = p1(�0) + p
2(b�t), and, by Eq. (1),

yt(�t; b�t) = (�t � xt(b�t)�)� 1
1�� :

The FOC for the optimal report b�t is:
dp2(b�t)
db�t � dxt(b�t)

db�t �
 
c� k � �

1� � �
yt(�t; b�t)
xt(b�t)

!
= 0: (A.2)

A truthful report is optimal if Condition (A.2) holds at b�t = �t, i.e.

dp2(�t)

d�t
� dxt(�t)

d�t
�
�
c� k � �

1� � �
yt(�t)

xt(�t)

�
= 0: (A.2.1)

Further, the following local SOC must hold:

d2p2(b�t)
db�2t � d2xt(b�t)

db�2t �
�
c� k � �

1�� �
yt(�t;b�t)
xt(b�t)

�
+

�
�
dxt(b�t)
db�t � 1

xt(b�t)
�2
� k � �

(1��)2 � yt(�t; b�t)
�������b�t=�t

� 0; (A.3)

or
d2p2(�t)
d�2t

� d2xt(�t)
d�2t

�
�
c� k � �

1�� �
yt(�t)
xt(�t)

�
+

�
�
dxt(�t)
d�t

� 1
xt(�t)

�2
� k � �

(1��)2 � yt(�t)
� 0: (A.3.1)

Di¤erentiating Eq. (A.2.1) yields

d2p2(�t)
d�2t

� d2xt(�t)
d�2t

�
�
c� k � �

1�� �
yt(�t)
xt(�t)

�
+

�dxt(�t)
d�t

� k � �
(1��)2 �

yt(�t)
xt(�t)

�
�
1
�t
+ dxt(�t)

d�t
1

xt(�t)

� = 0: (A.2.2)

Plugging Eq. (A.2.2) into Condition (A.3.1), we obtain

@2u(�0; �t)

@�2t
=
dxt(�t)

d�t
� k � �

(1� �)2 �
yt(�t)

xt(�t)
� 1
�t
� 0; (A.3.2)
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which holds only if dxt(�t)d�t
� 0.

As shown by La¤ont and Martimort (2002, pp. 134-136), local incentive constraints also imply

global incentive constraints. Hence, a truthful revelation mechanism can be characterized by the

following two conditions:

@u(�0; �t)

@�t
=

k

1� � �
1

�t
� (�t � xt(�t)�)�

1
1�� (A.4)

=
k

1� � �
yt(�t)

�t
; at each t > 0;

@xt(�t)

@�t
� 0; at each t > 0: (A.5)

This concludes the proof.

A.1.2 Lemma 2

At t = 0, the time-varying terms in the periodic utility function, û(�0; b�0), depend on b�0 through
the function �t = �(b�0; Lt). Therefore, the expected present value of the intertemporal supplier�s
utility �ow is equal to:

U(�0; b�0) = E0

�Z 1

0

h
p(b�0)� �c � xt(b�0) + k � yt(�0; b�0)�i � e�rtdt� ; (A.6)

where b�0 is the report by a supplier-type �0; p(b�0) = p1(b�0) + p2(�(b�0; Lt)); xt(b�0) = xt(�(b�0; Lt))
and, by Eq. (1),

yt(�0; b�0) = (�(�0; Lt) � xt(b�0)�)� 1
1�� :

The FOC for the optimal report b�0 is:
E0

(Z 1

0

"
dp(b�0)
db�0 � dxt(b�0)

db�0 �
 
c� k � �

1� � �
yt(�0; b�0)
xt(b�0)

!#
� e�rtdt

)
= 0: (A.7)

A truthful report is optimal if Condition (A.7) holds at b�0 = �0, i.e.

E0

�Z 1

0

�
dp(�0)

d�0
� dxt(�0)

d�0
�
�
c� k � �

1� � �
yt(�0)

xt(�0)

��
� e�rtdt

�
= 0: (A.7.1)

Further, the following local SOC must hold:

E0

8<:
Z 1

0

24 d2p(b�0)
db�20 � d2xt(b�0)

db�20 � (c� k � �
1�� �

yt(�0;b�0)
xt(b�0) )+

�(dxt(b�0)
db�0 � 1

xt(b�0))2 � k � �
(1��)2 � yt(�0; b�0)

35 � e�rtdt
9=;
������b�0=�0 � 0; (A.8)

or

E0

8<:
Z 1

0

24 d2p(�0)
d�20

� d2xt(�0)
d�20

� (c� k � �
1�� �

yt(�0)
xt(�0)

)+

�(dxt(�0)d�0
� 1
xt(�0)

)2 � k � �
(1��)2 � yt(�0)

35 � e�rtdt
9=; � 0: (A.8.1)
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Di¤erentiating Eq. (A.7.1) yields:

E0

8>><>>:
Z 1

0

2664
d2p(�0)
d�20

� d2xt(�0)
d�20

� (c� k � �
1�� �

yt(�0)
xt(�0)

)+

�dxt(�0)
d�0

� k � �
(1��)2 �

1
xt(�0)

� ( yt(�0)
�(�0;Lt)

� ��(�0; Lt)+
+dxt(�0)

d�0

yt(�0)
xt(�0)

)

3775 � e�rtdt
9>>=>>; = 0: (A.7.2)

Plugging Eq. (A.7.2) into Condition (A.8.1), we obtain

@2U(�0)

@�20
= k � �

(1� �)2 �E0
�Z 1

0

�
dxt(�0)

d�0
� 1

xt(�0)
� yt(�0)

�(�0; Lt)
� ��(�0; Lt)

�
� e�rtdt

�
� 0: (A.8.2)

Hence, a truthful revelation mechanism can be characterized by the following two conditions:

@U(�0)

@�0
=

k

1� � � E0
�Z 1

0

yt(�0)

�(�0; Lt)
� ��(�0; Lt) � e�rtdt

�
; (A.9)

E0

�Z 1

0

�
dxt(�t)

d�0
� 1

xt(�0)
� yt(�0)

�(�0; Lt)
� ��(�0; Lt)

�
� e�rtdt

�
� 0: (A.10)

This concludes the proof.

B Appendix

B.1 Proof of Proposition 1

As standard, we abstract, for the moment, from considering the second-order Conditions (A.5) and

(A.10). By the Envelope Theorem (see Milgrom and Segal, 2002, Theorem 1 and Theorem 2) and

using Condition (A.9) we have:

U(�0) =
k

1� � �
Z �0

�l
E0

�Z 1

0
yt(s) �

�s(s; Lt)

�(s; Lt)
� e�rtdt

�
� ds

=
k

1� � �
Z �0

�l

�Z 1

0
E0

�
yt(s)

�(s; Lt)
� �s(s; Lt)

�
� e�rt � dt

�
� ds; (B.1)

where

yt(s) = (�(s; Lt) � xt(�(s; Lt))�)�
1

1�� :

Note that the lowest e¢ ciency type gets zero rents, i.e. U(�l) = 0.
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Using Eq. (B.1) and integration by parts, we obtain:

Z �h

�l
U(�0) � g(�0) � d�0 =

k

1� � �
Z �h

�l

�Z �0

�l

�Z 1

0
E0

�
yt(s)

�(s; Lt)
� �s(s; Lt)

�
� e�rt � dt

�
� ds
�
� g(�0) � d�0

= � k

1� � �
�Z �0

�l

�Z 1

0
E0

�
yt(s)

�(s; Lt)
� �s(s; Lt)

�
� e�rt � dt

�
� ds
�
� (1�G(�0))

�����
h

�l

+
k

1� � �
Z �h

�l

�Z 1

0
E0

�
yt(�0)

�(�0; Lt)
� ��(�0; Lt)

�
� e�rt � dt

�
� (1�G(�0)) � d�0

=
k

1� � �
Z �h

�l

�Z 1

0
E0

�
yt(�0)

�(�0; Lt)
� ��(�0; Lt)

�
� e�rt � dt

�
�H(�0) � g(�0) � d�0

=
k

1� � �
Z �h

�l

�Z 1

0
E0 fyt(�t)g � e�rt � dt

�
� H(�0)

�0
� g(�0) � d�0: (B.2)

Integrating Eq. (5) in the interval
�
�l; �h

�
and rearranging yields:

Z �h

�l
E0

�Z 1

0
p(�0; �t) � e�rt � dt

�
� g(�0) � d�0 =

Z �h

�l
U(�0) � g(�0) � d�0+

+

Z �h

�l
E0

�Z 1

0
(c � xt(�t) + k � yt(�t)) � e�rt � dt

�
� g(�0) � d�0: (B.3)

Hence, substituting Eq. (B.2) into Eq. (B.3), we obtain

Z �h

�l
E0

�Z 1

0
p(�0; �t) � e�rt � dt

�
� g(�0) � d�0 =

k

1� � �
Z �h

�l

�Z 1

0
E0 fyt(�t)g � e�rt � dt

�
� H(�0)

�0
� g(�0) � d�0

+

Z �h

�l
E0

�Z 1

0
(c � xt(�t) + k � yt(�t)) � e�rt � dt

�
� g(�0) � d�0

=

Z �h

�l

�Z 1

0
E0

�
c � xt(�t) + k �

�
1 +

1

1� � �
H(�0)

�0

�
� yt(�t)

�
� e�rt � dt

�
� g(�0) � d�0 (B.4)

Using Eq. (B.4), Problem (14) can be rearranged as follows:

min
xt(�t);yt(�t)

Z �h

�l

�Z 1

0
E0

�
c � xt(�t) + k �

�
1 +

1

1� � �
H(�0)

�0

�
� yt(�t)

�
� e�rt � dt

�
�g(�0)�d�0; (B.5)

where, by Eq. (1),

yt(�t) = (�t � xt(�t)�)�
1

1�� : (B.5.1)

Using the �rst-order conditions, the optimal input combination (x�t (�t); y
�
t (�t)) must satisfy the

following equation: �
1 +

1

1� � �
H(�0)

�0

�
� �

1� � �
y�t (�t)

x�t (�t)
=
c

k
: (B.6)
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Substituting Eq. (B.5.1) in Eq. (B.6) yields:

x�t (�t) = x�(�0) � (�0=�t); (B.7)

y�t (�t) = y�(�0) � (�0=�t); (B.8)

where:

x�(�0) = x�0(�0) =
1

�0
�
�
c

k
� 1� �

�

��(1��)
�
�
1 +

1

1� � �
H(�0)

�0

�(1��)
; (B.7.1)

y�(�0) = y�0(�0) =
1

�0
�
�
c

k
� 1� �

�

��
�
�
1 +

1

1� � �
H(�0)

�0

���
: (B.8.1)

Using Eq. (B.7), we can easily show that both the second-order Conditions (A.5) and (A.10) are

satis�ed since:
dx�t (�t)

d�t
= �x

�
t (�t)

�t
< 0; (B.9)

and

dx�t (�t)

d�0
=
dx�(�0)

d�0
� (�0=�t) + x�(�0) � (1=�t)� x�t (�0) � (�0=�2t ) � ��(�0; Lt)

=
dx�(�0)

d�0
� (�0=�t) = �x�t (�t) �

24 1
�0
� (1� �) �

d ln
�
1 + 1

1�� �
H(�0)
�0

�
d�0

35 < 0; (B.10)

since, by assumption, d(H(�0)=�0)d�0
< 0:

Di¤erentiating Eq. (B.8) with respect to �t and �0 yields:

dy�t (�t)

d�t
= �y

�
t (�t)

�t
< 0; (B.11)

and

dy�t (�t)

d�0
=
dy�(�0)

d�0
� (�0=�t) = �y�t (�t) �

0@ 1

�0
+ � �

d ln
�
1 + 1

1�� �
H(�0)
�0

�
d�0

1A : (B.12)

Note that dy�t (�t)
d�0

< 0 if
d ln

�
1+ 1

1�� �
H(�0)
�0

�
d�0

> � 1
���0 and

dy�t (�t)
d�0

� 0; otherwise.
Let�s now determine optimal variable part of the payment, i.e. p2�(�t). At each time period

t > 0, the periodic utility associated with the optimal input mix (x�t (�t); y
�
t (�t)) would be equal to

u(�0; �t) = p1(�0) + p
2�(�t)� (c � x�t (�t) + k � y�t (�t)): (B.13)
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Integrating Eq. (A.4) yields:

u(�0; �t)� u(�0; 0) =
k

1� � �
Z �t

0

y�t (z)

z
� dz: (B.14)

No rents should be paid when the e¢ ciency type �t drops to 0. Therefore, p2�(0) = c�x�t (0)+k �y�t (0)
and, according to Eq. (B.13), u(�0; 0) = p1(�0). Substituting u(�0; 0) = p1(�0) into Eq. (B.14)

yields

u(�0; �t) = p1(�0) +
k

1� � �
Z �t

0

y�t (z)

z
� dz: (B.15)

Last, substituting Eq. (B.13) into Eq. (B.15) and rearranging, we obtain

p2�(�t) = c � x�t (�t) + k � y�t (�t) +
k

1� � �
Z �t

0

y�t (z)

z
� dz: (B.16)

Using Eq. (B.15), the expected present value of the intertemporal supplier�s utility �ow is

U(�0) = E0

�Z 1

0
u(�0; �t) � e�rt � dt

�
=

Z 1

0
E0

�
p1(�0) +

k

1� � �
Z �t

0

y�t (z)

z
� dz
�
� e�rt � dt

=
p1(�0)

r
+

k

1� � �
Z 1

0
E0

�Z �t

0

y�t (z)

z
� dz
�
� e�rt � dt: (B.17)

Let�s now turn to the �xed part of the payment, i.e. p1(�0).26 Since, by construction, the payment

p2�(�t) induces, irrespective of the initial report �0, the truthful report of �t, we have:

U(�0; b�0) = p1(b�0)
r

+
k

1� � �
Z 1

0
E0

�Z �t

0

y�t (z)

z
� dz
�
� e�rt � dt: (B.18)

As it is optimal to report �t truthfully at each t > 0, we have:

@u(b�0; �t)
@�t

=
k

1� � �
y�t (�t)

�t
: (B.18.1)

Hence, as �t = �(�0; Lt); the derivative of Eq. (B.18) with respect to the initial e¢ ciency type �0
reduces to Condition (A.9) whereas integrating Condition (A.9) yields Eq. (B.1). Therefore, the

�xed part can be determined by equating Eq. (B.1) to Eq. (B.17) and solving for p1�(�0). This

yields:

p1�(�0) = r � k

1� � �

24 R �0�l �R10 E0

n
y�t (s)
�(s;Lt)

� �s(s; Lt)
o
� e�rt � dt

�
� ds

�
R1
0 E0

nR �t
0

y�t (z)
z � dz

o
� e�rt � dt

35 : (B.19)

26Our proof follows Theorem 2 in Bergemann and Strack (2015).
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C Appendix

C.1 Useful formulas

Let�s �rst state some useful results to be used later. By the properties of Process (2):27

1. #t = ln [�t] has a normal distribution with mean #0 � �2

2 � t and variance �
2 � t. Hence,

E(�t) = E(e#t) = e#0�
�2

2
�t+�2

2
�t = �0:

2. �t = ln
�
��1t
�
= � ln [�t] = �#t has a normal distribution with mean �(�0� �2

2 �t) and variance
�2 � t. Hence,

E(��1t ) = E(e�t) = e�(#0�
�2

2
�t)+�2

2
�t = ��10 � e�2t:

Using these results yields:

E0 fx�t (�t)g = x�(�0) � �0 � E0
�
��1t
	
= x�(�0) � e�

2t; (B.20)

E0 fy�t (�t)g = y�(�0) � �0 � E0
�
��1t
	
= y�(�0) � e�

2t; (B.21)

and

E0

�Z 1

0
x�t (�t) � e�rt � dt

�
=

Z 1

0
E0 fx�t (�t)g � e�rt � dt =

x�(�0)

r � �2 ; (B.22)

E0

�Z 1

0
y�t (�t) � e�rt � dt

�
=
y�(�0)

r � �2 : (B.23)

C.2 The optimal two-part payment

First, the �rst term into brackets in Eq. (B.20) can be rearranged as followsZ �0

�l

�Z 1

0
E0

�
y�t (s)

�(s; Lt)
� �s(s; Lt)

�
� e�rt � dt

�
� ds

=

Z �0

�l

�Z 1

0
E0 fy�t (s)g � e�rt � dt

�
� 1
s
� ds

=

Z �0

�l

�Z 1

0
y�(s) � e�(r��2)t � dt

�
� 1
s
� ds =

R �0
�l

y�(s)
s � ds

r � �2 : (C.1)

Substituting Eq. (C.1) in Eq. (B.20) yields

p1�(�0) =
r

r � �2 �
k

1� � �
�Z �0

�l

y�(s)

s
� ds� (r � �2) �

Z 1

0
E0

�Z �t

0

y�t (z)

z
� dz
�
� e�rt � dt

�
: (C.2)

Note that p1�(�0) < 0 since
R �t
0

y�t (z)
z � dz = �

R �t
0

dy�t (z)
dz � dz diverges.

27See Dixit (1993, Section 1.3).
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By using Eq. (C.2) and Eq. (B.16), we obtain

p�(�0; �t) = p1�(�0) + p
2�(�t)

= c � x�t (�t) + k � y�t (�t) +
r

r � �2 �
k

1� � �
�Z �0

�l

y�(s)

s
� ds+ (y�(�0)�

r � �2
r

� y�t (�t))
�

= c � x�t (�t)�
�

1� � � k � y
�
t (�t) +

r

r � �2 �
k

1� � �
�Z �0

�l

y�(s)

s
� ds+ y�(�0)

�
= c � x�t (�t) �

"
1�

�
1 +

1

1� � �
H(�0)

�0

��1#
+

r

r � �2 �
k

1� � �
�Z �0

�l

y�(s)

s
� ds+ y�(�0)

�
> 0:

(C.3)

C.3 Value functions

Let�s now consider the periodic utility associated with the contract. Subtracting the input cost,

i.e. c � x�t (�t) + k � y�t (�t), from the periodic payment p�(�0; �t) yields

u(�0; �t) =
r

r � �2 �
k

1� � �
�Z �0

�l

y�(s)

s
� ds+ y�(�0) �

�
1� r � �2

r
� �0
�t

��
: (C.6)

The expected present value of the intertemporal supplier�s utility �ow is equal to:

U(�0) = E0

�Z 1

0
u(�0; �t) � e�rt � dt

�
=

r

r � �2 �
k

1� � �
" R1

0 (
R �0
�l

y�(s)
s � ds) � e�rt � dt+

+y�(�0) �
R1
0

�
1� r��2

r � E0
n
�0
�t

o�
� e�rt � dt

#

=
k

1� � �
R �0
�l

y�(s)
s � ds

r � �2 � 0: (C.7)

Taking the derivative of U(�0) with respect to �0 and �2 yields

dU(�0)

d�0
=

k

1� � �
y�(�0)
�0

r � �2 > 0; (C.7.1)

dU(�0)

d�2
=
U(�0)

r � �2 > 0; (C.7.2)

respectively.
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The expected present value of the intertemporal buyer�s utility �ow is equal to:

W (�0) =
b

r
� E0

�Z 1

0
p�(�0; �t) � e�rt � dt

�
=
b

r
�
�Z 1

0
(c � E0 fx�t (�t)g+ k � E0 fy�t (�t)g) � e�rt � dt+ U(�0)

�
=
b

r
�
�
c � x�(�0) + k � y�(�0)

r � �2 + U(�0)

�
=
b

r
�
(
c �
"
1 +

1� �
�

�
�
1 +

1

1� � �
H(�0)

�0

��1#
� x

�(�0)

r � �2 + U(�0)
)
: (C.8)

Taking the derivative of W (�0) with respect to �0 and �2 yields

dW (�0)

d�0
= � c

r � �2 �

8>><>>:
�1��

� �
�
1 + 1

1�� �
H(�0)
�0

��1
�
d ln

�
1+ 1

1�� �
H(�0)
�0

�
d�0

� x�(�0)+

+

�
1 + 1��

� �
�
1 + 1

1�� �
H(�0)
�0

��1�
� dx

�(�0)
d�0

+ r��2
c � dU(�0)d�0

9>>=>>;

= � c

r � �2 �

8>>>><>>>>:
� 1
� �
�
1 + 1

1�� �
H(�0)
�0

��1
�
�
dx�(�0)
d�0

+ x�(�0)
�0

�
+

+

�
1 + 1��

� �
�
1 + 1

1�� �
H(�0)
�0

��1�
� dx

�(�0)
d�0

+

+ 1
� �
�
1 + 1

1�� �
H(�0)
�0

��1
� x

�(�0)
�0

9>>>>=>>>>;
= � c

r � �2 �
"
1�

�
1 +

1

1� � �
H(�0)

�0

��1#
� dx

�(�0)

d�0
> 0; (C.8.1)

dW (�0)

d�2
= �

�
c � x�(�0) + k � y�(�0)

r � �2 +
dU(�0)

d�2

�
= � 1

r � �2 �
�
c � x�(�0) + k � y�(�0)

r � �2 + U(�0)

�
< 0: (C.8.2)

respectively.

C.4 The buyer�s periodic utility

Using Eq. (C.6), we can derive the condition that must hold for having u(�0; �t) < 0, i.e.

u(�0; �t) < 0;

!

r �
R �0
�l

y�(s)
s � ds+ y�(�0)
r � �2 < y�t (�t);

!
�t
�0
< A(�0); (C.9)
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where A(�0) = r��2
r �

�R �0
�l

y�(s)
s
�ds

y�(�0)
+ 1

��1
< 1.

Using Eq. (C.6) and Eq. (25), we can derive the condition that must hold for having u(�0; �t) �
u(�0), i.e.

u(�0; �t) � u(�0);

!��Z �0

�l

y�(s)

s
� ds
�
�
�
1� r � �2

r

�
+ y�(�0) �

�
1� r � �2

r
� �0
�t

��
� 0;

!

�t
�0
� r � �2

r
�
"R �0

�l
y�(s)
s � ds

y�(�0)
�
�
1� r � �2

r

�
+ 1

#�1
> A(�0): (C.10)

In the limit case where �2 ! r; Condition (C.9) does not hold whereas Condition (C.10) does.

In general, as �2 increases, Condition (C.9) and Condition (C.10) becomes more and less binding,

respectively, since
dA(�0)

d�2
= � A(�0)

r � �2 < 0: (C.11)

Last, in the limit case where � ! 0, Condition (C.9) does not hold wheras Condition (C.10) does,

since, as lim�!0 �t = �0; u(�0; �t) = u(�0) > 0.
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