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Abstract

This paper explores the potential impacts of climate change and mitigation policies

on the Euro Area, considering the uncertainty and heterogeneity in both climate and

economic systems. Using the MATRIX model, a multi-sector and multi-agent macroeco-

nomic model, we simulate various climate scenarios by employing di�erent carbon cycle

models, damage functions, and marginal abatement curves found in the literature. We

�nd that heterogeneous climate damages amplify both the magnitude and the volatility

of GDP losses associated with global warming. By the end of the century, we estimate

that assuming homogeneous shocks may underestimate the e�ects of climate change on

aggregate output by up to one-third. Moreover, we �nd that the speed and feasibility

of a low-carbon transition crucially depend on (i) the stringency of emission reduction

targets, which determine the level of a carbon tax, and (ii) the rate of technological

progress, which in�uences the shape of the abatement cost curve.
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1 Introduction

Climate change is considered one of the most pressing challenges of our time. Its impacts are
not only environmental but also economic and social, a�ecting all sectors of society in di�er-
ent ways. However, understanding the economic e�ects of climate change is a complex task,
particularly due to the presence of uncertainty and heterogeneity in both climate and eco-
nomic systems (Brown and Kroll, 2017). Climate uncertainty results from the unpredictable
and long-term consequence of climate change, caused, on the one hand, by the uncertain
evolution of CO2 emissions resulting from human activity and, on the other hand, by an
incomplete understanding of Earth's systems and their interactions. Economic heterogeneity
arises from di�erences in characteristics, preferences, and behaviors of various agents such
as households, �rms, and governments. In a complex and evolving economy, heterogeneous
agents adapt to a changing environment and interact in decentralized markets using simple
heuristics due to limited information and computational abilities (Dosi et al., 2020). That
can lead to coordination failures and market feedback loops resulting in economic uncertainty
that ultimately a�ects the climate system.1 At the same time, evidence indicates that cli-
mate damages are heterogeneously distributed, between and within countries, among agents
operating in di�erent areas and sectors that are not equally exposed to extreme weather
events (Schmidt et al., 2012; Palagi et al., 2022).

The goal of this paper is to assess the economic impacts of climate change and mitigation
policies, taking into account the role of uncertainty and heterogeneity in climate and economic
systems. To do that, we propose a climate extension of the Multi-Agent model for Transition
Risks (MATRIX) described in Ciola et al. (2023) and Turco et al. (2023).

The extended MATRIX model is an agent-based integrated assessment model that com-
bines an economic and a climate module. The economic module develops a multi-sector
and multi-agent macroeconomic replica of the Euro Area (EA). It considers a diverse set
of agents belonging to di�erent sectors, such as households, corporates, banks, and public
entities which interact in decentralized markets. The corporate sector is divided into energy,
capital, and consumption goods �rms, all of which generate CO2 emissions through the con-
sumption of fossil fuels. The climate module includes a carbon cycle and a climate damage
function. The carbon cycle converts the model-generated emissions for the Euro area and
the exogenous emissions from the rest of the world into atmospheric concentrations of CO2,
which ultimately leads to an increase in the average global temperature. The damage func-
tion maps the temperature increase into economic losses that hit �rms' production capacity.
To mitigate the negative e�ects of global warming, the government can implement a carbon
tax, whose level is adjusted as a function of the gap between targeted and actual emissions
reduction. The introduction of the carbon tax, which represents an implicit price of emitting,
motivates �rms to invest in cost-e�ective abatement technologies, whose abatement potential
increases with their costs, following the standard Marginal Abatement Cost (MAC) curve
approach.

To comprehensively assess the impacts of climate change and mitigation policies under

1For the sake of example, in late 2021, higher natural gas prices due to the market imbalances resulting
from the post-Covid recovery and subsequent global energy crisis, further exacerbated by the Russia-Ukraine
war, led many countries to slow down the process of phasing out coal, with evident adverse e�ects on the
environment.
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uncertainty and heterogeneity, we leverage the granularity and �exibility of the agent-based
modeling by testing various carbon cycle models, damage functions, and MAC curves found
in the literature. We also consider di�erent types of climate damage depending on whether
they are homogeneously or heterogeneously distributed across agents. This approach en-
ables us to address the dual dimension of uncertainty in the economic and policy analysis of
climate change: �rstly, the bottom-up approach of the agent-based framework accounts for
uncertainty in aggregate climate and economic outcomes resulting from the casual interac-
tions of heterogeneous agents in decentralized markets; secondly, the comparison of various
climate models in the literature addresses the uncertainty in modeling assumptions regarding
functional forms and parameter speci�cation that may impact results.

Simulation results show that climate change will cause average GDP losses to grow with
rising temperatures, and the presence of heterogeneous climate shocks magni�es the extent of
this e�ect. Speci�cally, when examining homogeneous climate damages, the average realized
losses at the end of the century increase from 1.2% under low-temperature scenarios (+2°C)
to 7.3% under high-temperature ones (+5.3°C), that is consistent with existing studies in
the standard IAM literature (Nordhaus and Yang, 1996; Nordhaus and Sztorc, 2013). In
the case of heterogeneous damages, yet, the average GDP losses rise by up to 50% with
respect to the homogeneous ones, amounting to 1.7% and 10.3% in the coldest and hottest
projections and peaking at 17.2% in the worst-case scenario. Further analysis of climate
impacts on other macroeconomic variables demonstrates that homogeneous climate damages
act similarly to conventional supply shocks. That leads to higher prices, lower real wages,
and reduced employment. Conversely, heterogeneous climate shocks cause a decline in output
and employment, accompanied by falling prices and real wages, similar to a supply-induced
demand shock. That is because coordination failures arising from decentralized market inter-
actions are exacerbated by heterogeneous climate shocks, resulting in disordered cascading
e�ects on the economy. In contrast, the economy can absorb more quickly homogeneous
climate shocks since all agents react similarly to the same amount of economic losses, leading
to more e�cient coordination. That shows that the standard IAM models founded on the
representative agent hypothesis run the danger of underestimating the economic impact of
climate change.

The analysis of climate policy shows that a higher level of a carbon tax is necessary
to achieve stricter emission reduction targets. In particular, to achieve a 75% reduction in
CO2 emissions by the end of the century, a value between 120 and 210 euro per ton of CO2
(EUR/tCO2) is required. However, the pace and possibility of achieving these targets cru-
cially depend on the rate of technological progress, as re�ected in the shape of cost abatement
curves. Speci�cally, without abatement options, it would be possible to reduce carbon emis-
sions only by 25% for a given level of the carbon tax because of the limited substitutability
of fossil fuel with other factors. High initial abatement costs can delay (or, in extreme cases,
prevents) the adoption of less polluting production techniques, thus leading �rms to reduce
the consumption of fossil fuels in the face of rising emission price or, to some extent, substi-
tute them with other factors. Finally, our analysis reveals that the transition path toward
the desired target exhibits a non-linear behavior. That is due to time lags between policy
updates and abatement technology adoption, which can cause the carbon tax to overshoot
the desired level. As a consequence, the government should avoid revising the carbon tax too
frequently. That will help maintain a credible commitment and allow the system to respond
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smoothly to any policy change.
This paper contributes to the climate economic literature in three distinct ways. Firstly,

we contribute to the integrated-assessment literature on how uncertainty a�ects economic
analyses of climate change and policy. The standard approach in this literature relies upon
Integrated Assessment Models (IAMs) to analyze the complex interactions between the econ-
omy and the environment and assess the costs and bene�ts of di�erent policy interventions to
mitigate climate change. Despite the signi�cant progress made in IAMs since the pioneering
work of Nordhaus (1991), criticisms regarding their ability to accurately account for the role
of uncertainty and heterogeneity in shaping climate policy persist (Pindyck, 2013; Farmer
et al., 2015).2 In contrast, we employ an agent-based IAM framework, in line with Lamperti
et al. (2018), Czupryna et al. (2020) and Safarzy«ska and van den Bergh (2022), By simulat-
ing the economy as a complex adaptive system, the agent-based approach allows capturing
the endogenous sources of uncertainty due to the presence of agent heterogeneity, bounded
rationality, and decentralized market interactions, without resorting to exogenous stochastic
processes meant to capture the volatility in economic and climate variables, e.g., through
geometric Brownian motion as in Campiglio et al. (2022). Hence, the agent-based method
enables us to account for the inherent uncertainty in the functioning of climate-economic
systems. Additionally, to control for the epistemic uncertainty brought on by the application
of discretionary modeling assumptions, we simulate alternative scenarios using various spec-
i�cations of each climate module under consideration (carbon cycle, damage function, MAC
curve).

Secondly, we contribute to the stream of literature assessing the role of heterogeneity
in evaluating climate impacts (Schmidt et al., 2012; Brown and Kroll, 2017). Despite the
growing evidence on the importance of heterogeneous e�ects of climate damage, theoretical
exploration of these elements using a modeling method has received little attention. The
representative agent hypothesis in the standard IAM allows for analyzing the diverse climate
impacts between countries (regional inequality) but not among individuals living in the same
area (socio-economic inequality). There are few exceptions in the conventional (Dennig et al.,
2015) and the agent-based literature (Lamperti et al., 2018; Safarzy«ska and van den Bergh,
2022).

Thirdly, we add to the growing body of agent-based literature on climate and economic
assessment of mitigation policies (Balint et al., 2017; Castro et al., 2020). Based on the DSK
model, Lamperti et al. (2020) compare the e�ects of market-based versus performance-based
climate policies on the direction of technical change and the prevention of environmental
disasters. They �nd that command-and-control interventions are superior to marked-based
ones such as carbon tax or green subsidies, as the former is favored by path dependence
and guarantee policy e�ectiveness irrespective of the timing of their introduction. Foramitti
et al. (2021) compare the performance of emission tax versus permit trading using a one-
sector agent-based model, �nding that under the latter arrangement, permit price falls after
the successful abatement, leading to higher production levels and resource misallocation.

In this paper, we propose a novel approach to climate policy that involves setting a
predetermined level of emission reduction target and allowing the government to progressively

2Although several studies have attempted to incorporate uncertainty in the climate system through
stochastic shocks and tipping points that may lead to catastrophic outcomes (Weitzman, 2012; Dietz and
Stern, 2015), the role of economic uncertainty has largely been overlooked in this approach.
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adjust the carbon price based on the gap between desired and actual emissions. Such a target-
based approach has the following advantages: (i) it allows reproducing the EU's climate goal
of reducing its emissions as de�ned in the "Fit for 55" package; (ii) it prevents the choice of
setting arbitrary values for the carbon tax and adjustment steps; (iii) it allows focusing on
emission reduction plans in a speci�c area, such as the EA economy, whereas climate policies
based on temperature targets inevitably call for the adoption of global or multi-regional
models, or making inferences on the emissions pattern coming from the rest of the world.

In the following, Section 2 describes the overall structure of the MATRIX model, Section
3 presents the calibration procedure, and Section 4 discusses the results of the simulation
experiments. Section 5 concludes and states future research directions.

2 Model

The Multi-Agent model for Transition Risks � the MATRIX model � (Ciola et al., 2023;
Turco et al., 2023) is an agent-based stock-�ow consistent macroeconomic model developed
to analyze the functioning of real-world economies with a focus on energy production and
consumption. Under the assumption of an economic system comprising a multiplicity of het-
erogeneous agents, the model generates the endogenous dynamics of the simulated economy
from their decentralized interactions in di�erent markets. In particular, workers provide labor
to energy (E), consumption (C), and capital (K) �rms, which employ it with other inputs in a
Constant Elasticity Substitution (CES) production function to supply sector-speci�c goods.
The latter then enter as intermediate production inputs in other sectors (i.e., energy services
and capital) or are used for �nal consumption by households. At the same time, banks collect
deposits and provide credit to �rms to �nance production, the government collects taxes and
transfers �nancial resources to low-income individuals, and the central bank sets the policy
rate following an inertial Taylor rule. Lastly, an exogenous fossil fuel producer inelastically
supplies a raw energy input at a given price3 as an additional production factor. Figure 1
provides a visual representation of the overall functioning of the model.

Since the focus of this work is on the economic consequences of climate change and
mitigation policies for the EA economy, we employ the European calibrated version of the
MATRIX model (Turco et al., 2023) as the Business-as-Usual (BAU) scenario for our analysis.
Firms now produce CO2 emissions through their consumption of fossil fuels but can limit
them by investing in a costly Abatement Technology (AbT). At the same time, anthropogenic
emissions modify the composition of the atmosphere and the energy balance of the planet,
resulting in widespread damages that a�ect the production capacity of the economic system.
Nevertheless, the government can (partially) address this process and incentivize investments
in the AbT by imposing a carbon tax on CO2 emissions. Lastly, we assume that �rms'
productivity grows following an exogenous path to reproduce the long-term dynamics of the
EA economy.

The next sections present a general description of the new features of the model, while A
and B provides additional information on the economic and climate modules.

3We set the price such that the ratio of fossil fuels expenditure over total output is in line with EA data
(see Section 3).
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Figure 1: The MATRIX model and climate extensions (dashed lines and shaded areas)

2.1 Emissions

In the new version of the model, �rms contribute to anthropogenic climate change by gener-
ating CO2 emissions through their consumption of fossil fuels. That depends on their speci�c
emission intensities, namely:

Ef,t = ef,tOf,t, (1)

where Ef,t are current period emissions of �rm f , ef,t is the �rm-speci�c emission intensity,4

and Of,t is the consumed quantity of fossil fuels. Accordingly, total emissions are equal to
the sum of individual contributions:

Et =
NF∑
f=1

Ef,t. (2)

Nevertheless, since the model represents only the EA economy, those account for only a
portion of the global �gure. Therefore, we combine them with a stylized Rest Of the World
(ROW), which evolves as follows:

EROW
t = exp

(
εROWt

)
EROW
t−1 with εROWt ∼ N

(
ζROW , σROW

)
. (3)

4We calibrate initial emission intensities ef,t∗ to re�ect sectoral di�erences at a reference year t∗ and
convert model units to real-world values (see Section 3 for details).
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In other words, we assume that the growth rate of the ROW emissions follows a normal
distribution with mean ζROW and standard deviation σROW . Lastly, the sum of EA and
ROW emissions gives the global value:

EW
t = Et + EROW

t , (4)

which enter as input into the climate module.

2.2 Climate module

As stated before, �rms contribute to anthropogenic climate change by generating CO2 emis-
sions through the consumption of fossil fuels. However, there is a huge variety of climate
models with varying degrees of complexity in the climate science literature. Accordingly,
this work adopts a �exible approach and employs di�erent models to represent the future
evolution of the climate and facilitate robustness comparisons.5

Figure 2 shows a representative reduced-form carbon cycle with three main boxes: atmo-
sphere, land, and ocean. After �owing into the atmosphere, only a fraction of anthropogenic
CO2 emissions accumulates in it. Indeed, a non-negligible share goes into land and ocean sys-
tems because of photosynthesis and the dissolution of carbon in water. Moreover, variations
in atmospheric carbon concentrations and temperatures a�ect the extent of those �uxes by
increasing heterotrophic respiration, Net Primary Production (NPP), and air-water carbon
exchange. At the same time, the gradual circulation of carbon within boxes (e.g., through
thermohaline circulation in the ocean) requires time to reach an equilibrium, thus generating
delayed feedback and re�ows into the atmosphere. Lastly, the concentration of carbon in the
atmosphere determines its radiative forcing, which a�ects the energy balance of the planet
and induces the related change in the global temperature of air and oceans.

Moving from land to its components (vegetation, detritus, and soil) or from ocean to its
layers (low and high latitude surface, intermediate or deep), or by de�ning some intermediate
levels of aggregation, the MATRIX model tests a batch of climate modules with increasing
degree of complexity. Table 1 shows the alternative forms of the carbon cycle employed in
this work with the related sources, while B provides their detailed description. We start from
a simple climate model which does not account for di�erent carbon pools (TCRE) and then
move to two comparable climate boxes (DICE-2013R and WITCH) with 3-layers: a one-pool
atmosphere plus shallow and deep oceans. Lastly, we test the C-ROADS and HECTOR
models. Both expand the carbon cycle by adding a land component with several layers and
increasing the complexity of the ocean carbon pool.

2.3 Climate damage

The estimation of economic damages associated with temperature increases is an even more
complex and uncertain process, and various factors can a�ect the accuracy of such estimates.
The major challenge is the lack of proper knowledge about the precise shape and parame-
ters of the climate damage function, which describes the relationship between temperature

5Burke et al. (2015) report that studies might focus only on a handful of climate models for their projections
and suggest using multiple models or an ensemble.
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Figure 2: Representation of the carbon cycle

increases and economic damages. As highlighted by Pindyck (2013), its assessment is �the
most speculative element of the analysis�(p. 862). To address this challenge, we adopt the
same approach used for the climate module and include di�erent climate damage functions
to limit the risk of relying on ad-hoc assumptions and control for the uncertainty of economic
damage estimates. Moreover, we assess if the presence of heterogeneous climate shocks can
amplify their aggregate impact. In particular, we test all functions assuming both homoge-
nous and heterogeneous damages on the economic agents in the system. In this way, we can
provide a more robust evaluation of the economic impacts of climate change.

As shown by Table 2, we employ four standard climate damage functions, which we
assume a�ect production by reducing labor productivity by a percentage CDt. In DICE
1991, each period's climate damage takes a simple non-linear functional form based on the
current temperature deviation from the preindustrial level (∆Tt). Its variants (RICE 1999 and
DICE 2013) adopt a comparable formulation using a well-known inverse quadratic function,
which relates temperature increase to economic losses. Conversely, the DSK 2018 damage
function assumes a stochastic process and extracts the realized values from a Beta distribution
with parameters ab,t and bd,t. The latter, which a�ect both the mean and the skewness of
the distribution, vary over time based on the temperature's evolution. More precisely, they
depend on the di�erence between the current global temperature and its preindustrial level
(∆Tt) and the growth in temperature volatility (σTt ).

Lastly, we model climate damage as both a homogeneous and a heterogeneous shock to
labor productivity. In the former case, each agent in the system experiences the same level
of economic loss as determined by the damage function CDt. In the latter case, the damage
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Table 1: Carbon cycles: main boxes

Name Boxes Source

TCRE Atmosphere Economides et al. (2018)
DICE-2013R Atmosphere; surface and deep oceans Nordhaus (1993a)
WITCH Atmosphere; surface and deep oceans Emmerling et al. (2016)

C-ROADS
Atmosphere; vegetation and soil;

Sterman et al. (2012)
surface, intermediate and deep oceans

HECTOR
Atmosphere; vegetation, detritus and soil; low and high

Hartin et al. (2015)
latitude surface oceans, intermediate and deep oceans

Table 2: Climate damage function

Name Average damage Source

DICE 1991 CDt = 0.0133

(
∆Tt
3

)2

Nordhaus (1993b)

RICE 1999 CDt = 1− 1

1 + 0.001∆Tt + 0.049∆Tt
2 Nordhaus and Boyer (2000)

DICE 2013 CDt = 1− 1

1 + 0.00267∆Tt
2 Nordhaus and Sztorc (2013)

DSK 2018 CDt =
ab,t

ab,t + bd,t
with ab,t = log (1 + ∆Tt) and bd,t = 100

σTt∗

σTt
Lamperti et al. (2018)

Note: average percentage reduction in labor productivity CDt due to a given variation in the global temperature from the
preindustrial level ∆Tt. σT

t denotes the standard deviation of the global temperature in the last 10 years.

function represents the average damage in the economy, which is distributed unevenly among
agents. In particular, each �rm has a probability CDt of su�ering a 100% reduction in labor
productivity while it has no losses in the opposite case. As a result, the expected damage
experienced by each agent is equal to CDt.

2.4 Carbon tax and abatement

Carbon tax In the MATRIX model, the government sets an environmental carbon tax to
comply with broader global climate objectives and adaptively adjusts it to reach a desired
level of aggregate emissions following a tax adjustment mechanism (Hafstead and Williams,
2020). In particular, if the aggregate emissions of the economy Et are above (below) a given

threshold E
CA

, then the government increases (reduces) the tax, namely:

τCAt =

{
τCAt−1 + ϵCA if Et > E

CA
,

τCAt−1 − ϵCA otherwise,
(5)

where ϵCA captures the speed of the adjustment, and E
CA

= (1 − ηCA)Et∗ is the long-term
desired level of emissions, computed in terms of percentage reduction ηCA ∈ [0, 1] from a
reference year t∗.

The realized carbon tax revenues are then collected at the �rm level based on their
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emissions Ef,t:

TAXCA
t = τCA

∗

t

NF∑
f=1

Ef,t = τCAt

NF∑
f=1

εf,tP
O
t Of,t, (6)

where εf,t = ef,t/ef∗,t∗ are �rms' emission intensities relative to a baseline sector/year {f ∗, t∗},
and τCA

∗
t = τCAt PO

t /ef∗,t∗ is the implicit carbon tax set by the government.6 The additional
revenues then enter the government budget, thus updating the public debt Bt to:

Bt =
(
1 + iCBt−1

)
Bt−1 + TRAt − TAXCA

t − TAXt, (7)

where TAXt is standard tax collection, TRAt are transfers to low-income households, and
iCBt is the risk-free interest rate set by the central bank and paid on emitted government
bonds. By increasing the �scal space, emission revenues allow the government to reduce
the standard tax rate and increase the transfers to low-income households. Accordingly,
we assume the public sector evenly distributes the additional revenues in those two budget
entries.

Abatement Firms can lower their emissions by investing in a costly AbT provided by
an exogenous monopolist.7 Following Foramitti et al. (2021), we assume that the AbT
determines a percentage reduction in the emission intensity of �rms and involves a number
JAbT of identical steps up to a maximum level êAbT . Each step represents a technological
advancement for its adopter, characterized by lower emission intensity and a higher MAC. As
a result, the investment in a new abatement step depends on the direct comparison between
its marginal cost and the carbon tax.

Going into detail, the abatement cost ACf,t depends on the percentage reduction in the
emission intensity êf,t and the nominal expenditure on fossil fuel PO

t Of,t:
8

ACf,t = AC

(
ef,t∗ − ef,t

ef,t∗

)
PO
t Of,t = AC (êf,t)P

O
t Of,t. (8)

Accordingly, the total costs of emissions are equal to:

TECf,t = τCA
∗

t Ef,t + AC (êf,t)P
O
t Of,t

=
[
τCAt εf,t∗ (1− êf,t) + AC (êf,t)

]
PO
t Of,t

= EC (êf,t)P
O
t Of,t,

(9)

and each �rm has the incentive to invest in an additional abatement step as long as:

∂EC (êf,t)

∂êf,t
< 0 =⇒ τCAt >

1

εf,t∗

∂AC (êf,t)

∂êf,t
=

1

εf,t∗
MAC (êf,t) . (10)

6We model the carbon tax in this way since it allows for its subsequent conversion into real-world monetary
units (see Section 3).

7The technology underlying the abatement process is not speci�ed and could involve either an increase in
e�ciency or a shift toward less polluting production factors as the model does not explicitly include a green
energy input.

8As for the carbon tax, we adopt this assumption to allow for its subsequent conversion into real-world
monetary units (see Section 3).
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As a result, the shape of the MAC curve plays a crucial role in determining the investment
decision. Therefore, we control for the uncertainty surrounding this function by considering
di�erent functional shapes (see Section 3). Moreover, since the adoption of a new technology
may require time, we suppose that �rms can update their abatement step with probability
θAbT .

Lastly, since we assume the AbT as a discrete process divided in JAbT identical steps{
j ê

AbT

JAbT

}JAbT

j=0
and given the maximum percentage reduction in the emission intensity êAbT ,

the current abatement costs of a �rm f at step Jf,t approximates as:

AC (êf,t) ≈
Jf,t∑
j=0

êAbT

JAbT
MAC

(
j
êAbT

JAbT

)
and êf,t = Jf,t

êAbT

JAbT
, (11)

from which we can compute the �nal price of fossil fuels paid by �rm f :

PO
f,t = [1 + EC (êf,t)]P

O
t . (12)

Indeed, emissions costs (i.e., the carbon tax plus the abatement) act as a markup over the
producer price, thus a�ecting the �nal demand for raw energy inputs.

2.5 Growth

As the paper focuses on the analysis of long-term trends in the coupled climate-economic
dynamics, we introduce an exogenous growth process in the original MATRIX model. Since
labor and fossil fuels are the primary inputs of production (i.e., energy and capital are
a combination of them), we assume that their productivity grows at a rate ζgrowth.9 In
particular, given the CES production function:

Qf,t =

[
J∑
j=1

Aj,f,t (Xj,f,t)
σf−1

σf

] σf
σf−1

, (13)

where Xj,f,t is the quantity of input j = 1, . . . , J employed by �rm f at time t,
∑J

j=1Aj,f,t = 1
are the factor shares, and σf is the Hicks elasticity of substitution, we update the factor shares
as follow:

Aj,f,t = Aj,f,t−1

(
1 + ζgrowth

)σf−1

σf , (14)

where j identi�es both labor and fossil fuels.

3 Calibration

In this work, we employ the parametrization of the MATRIX model presented in Turco
et al. (2023), which provides a scale replica of the EA economy. Accordingly, the additional

9In other words, we assume Harrod-neutral technical progress, which ensures a balanced growth path
(Uzawa, 1961).
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calibration e�ort regards the newly introduced parts, such as the climate modules, emissions,
abatement functions, and damages. The calibration strategy is to follow real-world data
whenever possible or rely on other studies when these are not available. In this Section, we
provide a general overview of the new calibration focusing on the economic aspects of climate
change.

Climate module and damage functions Starting from the climate modules and damage
functions, we retrieve most of the parameters from the supporting publications of the original
models. Conversely, if speci�c coe�cients or initial conditions are unavailable, we recover
their values following the indications reported in the original studies.10 B provides a detailed
description of the climate modules and a comprehensive list of the related parameters. At
the same time, Section 2.3 illustrates the damage functions employed in this work and their
sources.

CO2 emissions Given the COVID-19 outbreak at the beginning of 2020, we set t∗ = 2019
as a reference year for our analysis. We employ the historical emissions provided by the Our
World in Data CO2 and Greenhouse Gas Emissions dataset as an input of the climate module
for the period between 1800 and 2020 and then forecast the future path of temperatures up
to 2100 using the simulated emissions produced by the model.

Since we focus on the EA economy, we assume ROW emissions as exogenous and compute
the parameters ζROW = 0.0044 and σROW = 0.0100 on their quarterly growth rate between
2010 and 2020.11 At the same time, we calibrate the consumption of fossil fuels and emission
intensities of the model to replicate EA data. On the one hand, we follow Ciola et al. (2023)
and Turco et al. (2023) to set the sectoral factor shares using the symmetric input-output
tables at basic prices of Eurostat. In particular, we divide the 65 main activities of the dataset
(European Classi�cation of Economic Activities � NACE Rev. 2) between consumption (C)
and capital (K) sectors using the relative weight of �nal consumption and investments on
total demand as a proxy. Further, we identify the energy (E) and fossil fuel sectors with the
category �Electricity, gas, steam and air conditioning� in the former case and with �Coke and
re�ned petroleum products� and �Mining and quarrying� in the latter. Lastly, we compute
sectoral factor shares by dividing the nominal expenditure on each intermediate input by
total costs (see Table 3, second to fourth rows). On the other hand, we de�ne the initial
emission intensities of �rms using their observed relative values, namely:

ef,t∗ =
εf,t∗Et∗∑NF

f=1 εf,t∗Of,t∗

, (15)

where Et∗ are EA CO2 emissions in 2019 (approx. 2.90 GtCO2), Of,t∗ is the observed
consumption of fossil fuels in the model, and εf,t∗ are real-world relative emissions (see Table
3, last row). We compute the latter by converting EA sectoral emissions from NACE rev. 2

10That essentially relates to the HECTOR model, where its initial conditions and a small number of
parameters (related to ocean chemistry) depend on the resolution of a non-linear system of equations (Hartin
et al., 2016).

11ROW values computed as the di�erence between global and EA emissions. Source: OECD, Air Emission
Accounts.
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categories into the model ones (E, C, K) and then considering real-world sectoral expenditures
on fossil fuels per unit of emission in terms of consumption �rms.

Table 3: Production functions and emissions
Sector Consumption (C) Capital (K) Energy (E) Source

Number of �rms N f 100 60 15 Ciola et al. (2023); Turco et al. (2023)
Capital share AK,f,t∗ 0.25 N/A 0.33 Eurostat: Symmetric input-output table at basic prices
Labor share AN,f,t∗ 0.69 0.91 0.28 ""
Energy share AE,f,t∗ 0.03 0.04 N/A ""
Fossil fuel share AO,f,t∗ 0.03 0.05 0.39 ""
Elasticity of substitution σf 0.25 0.25 0.25 Ciola et al. (2023); Turco et al. (2023)
Relative emission intensity εf,t∗ 1 0.46 1.40 Eurostat: Air emissions accounts by NACE Rev. 2 activity

Carbon tax and abatement In Section 2, we design the (implicit) carbon tax τCA
∗

t set
by the government as a percentage τCAt of the nominal expenditure on fossil fuels per unit of
emission, namely:

τCA
∗

t =
PO
t

ef∗,t∗
τCAt =

PO
t Of∗,t∗

Ef∗,t∗
τCAt = ψOEf∗,tτ

CA
t . (16)

Therefore, we can transpose model units into real-world monetary values by computing the
conversion factor ψOEf∗,t. In particular, given its predominant role in the model due to the high
number of �rms (see Table 3, �rst row), we use as a reference the consumption sector in 2019,
which implies a value of ψOEf∗,t∗ = 90 euro per ton of CO2 (EUR/tCO2). Moreover, we assume
that the government can adjust the tax τCAt by one percentage point (i.e., ϵCA = 0.01) in
every period and test three di�erent emissions reduction targets from the 2020 level: low
(ηCA = 0.25), medium (ηCA = 0.50) and high (ηCA = 0.75). Lastly, to reduce the degree of
subjectivity, we assume that the public sector evenly distributes the additional revenues in
the available budget entries.

Moving to the AbT, Cline (2011) analyzes the abatement functions developed in three
di�erent models and computes their costs in percentage terms of GDP (Table 4). RICE
2008 and EMF 22 follows the well-known functional form developed by Nordhaus (2008).
While the calibration of the former relies on the original work of Nordhaus (2008), the latter
derives from its subsequent estimation on the results of the EMF 22 Climate Change Control
Scenarios project (Clarke et al., 2009). Further, Ackerman and Bueno (2011) estimate a
functional form reproducing the shape of the bottom-up MAC curve developed by McKinsey
& Company (2009). Lastly, since we assume that abatement costs are a function of the
nominal expenditure on fossil fuels, we convert the original curves by dividing them by the
share of fossil fuels on total output (νO = 0.021).

Figure 3 provides a visual representation of their shapes: while all curves display similar
costs for a high reduction objective (between 1.5% and 2% of real GDP), their marginal values
are markedly di�erent. Indeed, EMF 22 implies non-negligible initial costs, McKinsey follows
an asymptotic behavior near the maximum, and RICE 2008 lies between the two. Lastly,
we assume following Foramitti et al. (2021) that the AbT is characterized by JAbT = 20
steps up to a maximum percentage reduction of 80% (êAbT = 0.8, see Table 4). Moreover, we
suppose �rms revise their choices on average once a year, thus implying a quarterly switching
probability θAbT = 0.25.

13

https://ec.europa.eu/eurostat/web/products-datasets/-/naio_10_cp1700
https://ec.europa.eu/eurostat/web/products-datasets/-/env_ac_ainah_r2


Table 4: Abatement technology

Total and marginal abatement cost functions (AC and MAC) relative to fossil fuel expenditure

Name AC MAC Parameters Source

RICE 2008
αAbT

νO
(ê)β

AbT αAbT

νO
βAbT (ê)β

AbT−1 αAbT = 0.028; βAbT = 2.8 Nordhaus (2008)

EMF 22
αAbT

νO
(ê)β

AbT αAbT

νO
βAbT (ê)β

AbT−1 αAbT = 0.025; βAbT = 1.28 Clarke et al. (2009); Cline (2011)

McKinsey
αAbT

νO

[
log

(
βAbT

βAbT − ê

)
− ê

]
αAbT

νO
ê

βAbT − ê
αAbT = 8.6× 10−3; βAbT = 0.81 Ackerman and Bueno (2011); Cline (2011)

Other parameters

Variable Description Value Source

νO Fossil fuel expenditure over total output 0.021 Eurostat: Symmetric input-output table at basic prices
êAbT Maximum potential abatement 0.80 Foramitti et al. (2021)
JAbT Number of abatement steps 20 Foramitti et al. (2021)
θAbT Probability of new technology adoption 0.25 Authors' calibration

Figure 3: Total and marginal abatement costs

Note: MAC curves in terms of 2019 EUR/tCO2 (left pane) and total abatement costs in percentage terms of GDP (right pane)
for di�erent CO2 emission reductions from the BAU level.

4 Results and discussion

4.1 Climate assessment

Initially, we assess climate change patterns by utilizing the MATRIX model and augmenting
it with a climate box. We examine various carbon cycle models employed in the current
literature (see Table 1). The goal is to construct a range of climate scenarios featuring low
and high-temperature projections to analyze the economic impact of climate change.

Figure 4 illustrates the coupled climate-economic dynamics generated by the MATRIX
model. The upper pane depicts the evolution of the simulated real GDP, which grows at
a constant rate over time under the assumption of exogenous technical change. Climate
dynamics are generated using observed data on global emissions and average surface temper-
ature from 1800 to 2020. Following that point, the trajectory of global emissions is simulated
by summing the CO2 emissions for the EA generated by the MATRIX model with the rest of
the world (excluding Europe) and assuming a constant growth rate for the latter equivalent
to the average rate between 2010− 2020.

As a robustness check, we compare the observed trend in average temperature with projec-
tions generated by various climate models using both empirical data up to 2020 and simulated
data from 2020 onwards for global emissions. The following climate models are employed:
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Figure 4: Real GDP, global emissions, and average temperatures projections.

Note: projections of real GDP (upper pane), global emissions (central pane), and average temperature (bottom pane) generated
by the MATRIX model using di�erent climate boxes. Medians (solid lines) and 90% con�dence intervals (shaded areas) computed
on 250 independent replicas of the model.

DICE-2013R, C-ROADS, TCRE, WITCH, and HECTOR. Notably, all models closely repli-
cate the temperature dynamics up to 2020. After that point, despite the same macroeconomic
and emission dynamics, they project a positive change in average temperature compared to
preindustrial levels, ranging from nearly 0.8°C (C-ROADS) to 1.8°C (TCRE) by 2040. More-
over, it can be seen that the gap between temperature projections becomes wider by the end
of the century, from 2°C (C-ROADS) to 5.3°C (TCRE). These trajectories of future emissions
are in line with the IPCC scenarios (IPCC AR6, 2023). Indeed, our results span from the
low emission scenario SSP1-RCP2.6 to the very high case (SSP5-RCP8.5), with HECTOR
being the closest to match the intermediate scenario (SSP2-RCP4.5).

4.2 Economic e�ects of climate change

As temperatures rise, the economy su�ers various climate-related damages that reduce �rms'
production capacity, expressed as a percentage reduction in labor productivity. As stated
before, to evaluate the economic e�ects of climate change, we employ di�erent climate dam-
age functions developed in the current literature � DICE1991, RICE1999, DICE 2013, and
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DSK2018. Further, we examine two types of climate shocks depending on whether the
damage is homogeneous or heterogeneous across agents. Moreover, given the wide range of
temperature projections generated by di�erent carbon cycle models (see Figure 4, bottom
pane), to estimate the average temperature change and resulting climate damages, we rely
on three climate models � C-ROADS, HECTOR, and TCRE �, which represent the low-,
medium-, and high-temperature scenarios, respectively.

Figure 5: Climate damages: real GDP loss in 2100

Note: real GDP loss from BAU in 2100 under heterogeneous and homogeneous shocks for low-, medium- and high-temperature
scenarios using di�erent damage functions. Results computed on 250 independent replicas of the model.

Figure 5 compares the estimated climate-induced GDP losses for the low-, medium-, and
high-temperature scenarios (columns) using di�erent damage functions (rows). The plots
show the distribution of the values generated from 250 Monte Carlo runs, measured as the
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percentage deviation of real GDP from the BAU scenario (i.e., without damages) in 2100.
The blue plots display the homogeneous climate shock case, while the red ones show the
heterogeneous case. Table 5 provides a quantitative summary of the �gures, indicating both
the expected and realized losses resulting from the damage function.

Table 5: Climate damages: real GDP

C-ROADS (+2.0°C) HECTOR (+3.5°C) TCRE (+5.3°C)

Expected
Realized

Expected
Realized

Expected
Realized

Homog. Heterog. Homog. Heterog. Homog. Heterog.

RICE 1999 −1.8% −1.6% −2.4% −5.4% −5.7% −7.8% −11.6% −11.6% −17.2%
DICE 1991 −0.6% −0.7% −0.4% −1.8% −2.0% −2.8% −4.1% −4.3% −5.4%
DICE 2013 −1.1% −1.0% −2.0% −3.2% −3.5% −4.7% −6.9% −7.0% −9.8%
DSK 2018 −1.6% −1.7% −2.2% −2.8% −2.8% −4.5% −6.1% −6.2% −8.8%

Note: average percentage deviation of real GDP from BAU for di�erent climate boxes (C-ROADS, TCRE and HECTOR),
damage functions (RICE 1999, DICE 1991, DICE 2013 and DSK 2018) and shock types (homogeneous versus heterogeneous).
Values computed on the last observation (year 2100) of 250 independent replicas of the model.

Starting from homogenous climate shocks, it is evident that, as temperatures rise, average
GDP losses increase, irrespective of the damage function under consideration. For example,
according to Table 5, for RICE1999, the realized losses at the end of the century increase
from −1.6% under the low-temperature scenario to −11.6% under the high-temperature one.
Similarly, for DSK2018, losses rise from −1.7% to −6.2%. The same trend is observed for
heterogeneous climate shocks. However, in this case, not only does the mean of the losses
distribution increase, but the dispersion of the distribution also widens with global warming.
Thus, in the presence of heterogeneous climate shocks, rising temperature a�ects both the
magnitude and the volatility of GDP losses from climate change. The enhanced volatility in
economic damages is also re�ected in the wider gap between expected and realized GDP losses
in Table 5. While this gap is negligible under homogeneous shocks, it becomes signi�cantly
larger in the other case. That means that under heterogeneous climate shocks, the economy is
more subject to business �uctuations and market disruptions resulting from adverse climate-
related events than in the homogeneous case, experiencing, on average, a 50% increase in the
impact of those shocks.

To better understand the reason behind those di�erent e�ects, it is worth exploring the
climate impacts on other key macroeconomic variables. Table 6 compares the impacts of cli-
mate change on the GDP de�ator, real wage, and cumulative unemployment rate in 2100.12

On the one hand, results show that homogeneous climate damages act similarly to conven-
tional supply shocks, leading to higher prices, lower real wages, and reduced employment.
As expected, the magnitude of the e�ects increases with temperature. On the other hand,
heterogeneous climate shocks cause a further decline in output and employment, accompa-
nied by falling prices and real wages. Although the economic losses result from a reduction
in �rms' productivity as in the homogeneous shock case, this situation is akin to a supply-
induced demand shock. That is because the coordination failures inherent in decentralized
market interactions are exacerbated by heterogeneous climate shocks, resulting in a disor-

12The cumulative unemployment rate is de�ned as the total deviation from the baseline unemployment
rate up to 2100.
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dered impact on the economy. Faced with repeated supply bottlenecks, �rms struggle to
ful�ll production requirements and need to reduce economic activity, leading to an increase
in the unemployment rate, as shown in Table 6. A higher unemployment rate compresses
the nominal wage with depressive e�ects on aggregate demand through the income chan-
nel, prices, and output. In contrast, the economy can better absorb homogeneous climate
shocks since all agents react similarly to the same economic loss, allowing for more e�cient
coordination.

Table 6: Climate damages

GDP de�ator

C-ROADS (+2.0°C) HECTOR (+3.5°C) TCRE (+5.3°C)
Homog. Heterog. Homog. Heterog. Homog. Heterog.

RICE 1999 2.8% 0.0% 9.2% −0.9% 20.8% −1.6%
DICE 1991 1.5% −0.1% 3.3% 0.3% 7.2% −1.1%
DICE 2013 1.9% 0.8% 5.0% 0.0% 12.3% −1.4%
DSK 2018 2.7% 0.0% 4.2% −0.1% 9.7% −0.7%

Real wage

C-ROADS (+2.0°C) HECTOR (+3.5°C) TCRE (+5.3°C)
Homog. Heterog. Homog. Heterog. Homog. Heterog.

RICE 1999 −1.7% −3.6% −5.3% −11.1% −11.2% −20.0%
DICE 1991 −0.6% −1.3% −1.8% −3.9% −4.0% −7.8%
DICE 2013 −1.2% −2.1% −3.2% −6.9% −6.5% −12.8%
DSK 2018 −1.8% −4.0% −3.0% −6.9% −6.3% −12.5%

Cumulative unemployment rate

C-ROADS (+2.0°C) HECTOR (+3.5°C) TCRE (+5.3°C)
Homog. Heterog. Homog. Heterog. Homog. Heterog.

RICE 1999 3.8% 17.2% 12.5% 56.4% 25.9% 107.2%
DICE 1991 1.0% 6.9% 4.0% 19.3% 8.6% 40.3%
DICE 2013 2.7% 9.5% 8.6% 34.2% 13.7% 66.3%
DSK 2018 4.7% 19.4% 8.3% 33.9% 16.9% 63.8%

Note: average percentage deviation of GDP de�ator, real wage and cumulative unemployment rate from BAU for di�erent
climate boxes (C-ROADS, TCRE and HECTOR), damage functions (RICE 1999, DICE 1991, DICE 2013 and DSK 2018) and
shock types (homogenous vs heterogeneous). Values computed on the last observation (year 2100) of 250 independent replicas
of the model.

It is important to note that, when considering traditional homogeneous shocks, our �nd-
ings are consistent with prior research on the e�ects of climate change that we use as a guide
in the various damage function scenarios. However, they signi�cantly diverge when we take
into account heterogeneous shocks.

In particular, Nordhaus (1991) predicts for a 3°C warming a net economic harm between
1% and 2% of total world output by 2050, while in an updated version Nordhaus and Sztorc
(2013) estimate a GDP loss of 4% with a temperature increase of 3.8°C by 2100. According to
the regional variant (Nordhaus and Boyer, 2000), a 2.5°C increase in global warming will cause
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a 2.83% reduction in Europe's GDP. Those results are consistent with our estimates produced
using the DICE1991-2013 and RICE1999 damage functions for, respectively, the medium- and
low-temperature scenarios, but only in the event of homogenous climate shocks (see Table
5). Indeed, our work reveals that when heterogeneous climate shocks are taken into account,
GDP losses are substantially higher. That shows that standard IAM models founded on the
representative agent hypothesis incur the danger of underestimating the economic impact
of climate change (up to one-third under our estimates) by missing potential coordination
failures resulting from real-�nancial linkages and decentralized market interactions.

As for the DSK2018, Lamperti et al. (2018) assess the impacts of disaggregated climate
shocks in an agent-based IAM. Therefore, their projections can be directly compared to the
heterogenous scenario depicted in Table 5, though the outcomes are quite di�erent. Based on
an average temperature increase of 4.5°C, the authors �nd that the average size of the damage
�uctuates between 1% at the start and 5.4% at the end of the simulation, which is consistent
with the expected damage for the high-temperature scenario in Table 5. Regarding the actual
impacts of these damages on the end-of-century GDP level, they �nd signi�cant variations
depending on the transmission channel of the climate shock under consideration, ranging from
an 84.9% reduction through labor productivity to 13.5% through energy e�ciency, 1.1% for
inventories loss and 25.6% for capital stock, with additional harms when these shocks are
combined. Despite the high values, a few warnings are in order. In contrast to the MATRIX
model, the DSK framework features an endogenous growth process that has the potential to
make climate shocks linger longer and possibly exacerbate their e�ects, particularly through
channels related to labor productivity and capital stock.

4.3 Carbon tax and abatement

We assume that public authorities start implementing a carbon tax in 2020 and then dy-
namically adjust it depending on the wedge between actual and target CO2 emissions. In
other words, the government increases it if current emissions fall short of the target and
reduces it in the opposite situation. As shown in Section 2.4, the carbon tax represents the
implicit cost of emitting CO2 in terms of fossil fuel consumption.13 For this reason, we allow
�rms to invest in cost-e�ective emissions abatement technologies. In particular, they adopt
a less polluting technology as long as its marginal cost is lower than the (implicit) emission
price. At the same time, we also assess the e�ects of the carbon tax in the absence of any
abatement technology as a robustness check. Indeed, the increase in the �nal cost of fossil
fuels can also reduce their consumption and, consequently, CO2 emissions. Nevertheless, the
imperfect substitutability of this input with other production factors limits the extent of this
type of emissions reduction strategy. In other words, this resembles a short-term situation in
which �rms do not have more e�cient technologies at their disposition and try to substitute
the relatively more expensive (and polluting) input with other (and cleaner) goods.

Figure 6 shows the evolution of the carbon tax in terms of 2019 EUR per tonne of CO2
for three di�erent emissions reduction targets from the 2020 level: low (−25%), medium
(−50%) and high (−75%). When �rms can invest in an abatement technology, the tax
converges to a stable value before the end of the century, and the implied price of carbon

13Accordingly, we can compute its real-world counterpart by multiplying its value with the observed ex-
penditure on fossil fuels per emitted ton of CO2 (approx. 90 EUR/tCO2 in 2019, see Section 3).
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Figure 6: Price of CO2 emissions (2019 EUR/tCO2) by emission target

Note: evolution of a carbon tax in 2019 euro per tonne of CO2 (EUR/tCO2) under di�erent abatement technologies and
emissions reduction targets: low (−25%), medium (−50%) and high (−75%). Median (solid line), 50% and 90% con�dence
intervals (shaded areas) computed on 250 independent replicas of the model.

is in line with existing studies (Clapp et al., 2009; Wagner et al., 2012; Hintermayer et al.,
2020). In particular, a 25% reduction in CO2 emissions requires a marginal cost of carbon
between 15 and 70 EUR/tCO2, while the achievement of the medium (−50%) and high
(−75%) targets involves a value between 45 and 95 EUR/tCO2 in the �rst case and between
120 and 210 EUR/tCO2 in the second one (see Table 4.3). At the same time, the absence
of an abatement technology allows the economy to reach only the least ambitious goal (i.e.,
−25% and with a marginal cost between 155 and 200 EUR/tCO2, see Clapp et al. (2009)
and Hintermayer et al. (2020)), and the policy generates only a continuous but insu�cient
increase in the price of carbon under the two alternative targets. In other words, given the
limited substitutability of production factors in the short term, the growth in the price of
fossil fuels does not reduce enough their consumption and the related emissions (see Figure 7).
That highlights the importance of technological advancements and investments in emissions
reduction since the straightforward substitution of fossil fuels with other production inputs
is not feasible at a�ordable prices.14

An interesting aspect of the transition path is its non-linear behavior. After an initial
period of positive growth, the carbon tax declines to a lower level in all the abatement
technology scenarios (see Figure 6). That is due to the slow adoption of new production
techniques by �rms, which need time to make the necessary investments and lag behind the
choices made by the policymaker. Accordingly, when the economy reaches the emissions
target (see Figure 8), the carbon tax is far beyond the optimal level, �rms continue investing
in abatement technologies, and the government has to reduce it to keep the economy at the

14This result is even more signi�cant since this version of the model does not allow �rms to switch to
greener energy sources as it assumes a single energy source.
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Table 7: Abatement technology, price of carbon and emissions target

Target RICE 2008 EMF22 McKinsey No abatement

−25% 19± 7 70± 8 13± 8 177± 21
−50% 66± 11 95± 10 44± 8 312± 0
−75% 154± 11 118± 22 210± 20 312± 0

Note: median plus 90% con�dence intervals of a carbon tax in 2019 euro per tonne of CO2 (EUR/tCO2) under di�erent
abatement technologies and emissions reduction targets: low (−25%), medium (−50%) and high (−75%). Values computed on
the last observation (year 2100) of 250 independent replicas of the model.

Figure 7: Variation of fossil fuels consumption from baseline by emissions target

Note: evolution of fossil fuels consumption under di�erent abatement technologies and emissions reduction targets: low (−25%),
medium (−50%) and high (−75%). Median (solid line), 50% and 90% con�dence intervals (shaded areas) computed on 250
independent replicas of the model.
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current (and desired) level of emissions. Moreover, the delay in investments strongly depends
on the shape of the abatement cost curve (see Figure 9). High initial costs (as, for example,
in the EMF 22 scenario) postpone (or completely prevents in extreme cases) the adoption
of less polluting production techniques, instead favoring the substitution of fossil fuels with
other production factors in the short term (see Figure 7). Overall, as the economy approaches
the emissions target, all those aspects interact among them, with the government adjusting
the carbon tax to comply with the set goals and �rms completing their last investments in
abatement technologies and (partially) recovering the demand for fossil fuels.

Figure 8: Variation of CO2 emissions from baseline by emissions target

Note: evolution of CO2 emissions under di�erent abatement technologies and emissions reduction targets:
low (−25%), medium (−50%) and high (−75%). Median (solid line), 50% and 90% con�dence intervals
(shaded areas) computed on 250 independent replicas of the model.

5 Concluding remarks

This work extends the MATRIX model (Ciola et al., 2023; Turco et al., 2023) to perform
analyses akin to the Integrated Assessment literature, providing coupled dynamics for climate
and economic systems. Given the substantial uncertainty surrounding relevant factors related
to anthropogenic climate change (Pindyck, 2013), the modeling strategy entails an agnostic
and �exible approach, which nests di�erent carbon cycle modules, as well as climate damage
and abatement cost functions. The model is calibrated to simulate the EA economy and
evaluates the necessary carbon pricing to meet di�erent climate objectives.

We �nd that projected temperatures might deviate from the intended path purported
by the original calibration of their climate models. Considering the MATRIX emissions,
the di�erent climate modules highlight a temperature increase range, spanning from 2°C
to 5.3°C at the end of the century. Selecting three representative temperature paths (low-,

22



Figure 9: Abatement step by sector

Note: median abatement step by sector under di�erent abatement technologies and a high (−75%) emissions
reduction target. Median (solid line), 50% and 90% con�dence intervals (shaded areas) computed on 250
independent replicas of the model.

medium-, and high-), we then assess the e�ects of climate damages on the economy. We
account for the uncertainty about their impacts by employing four di�erent climate damage
functions from the related literature. Moreover, we test them both considering homogeneous
and heterogeneous e�ects on the population of agents.

Climate damages impact real GDP in a range of −0.7% (low-temperature) to −17.2%
(high-temperature), with signi�cant di�erences between climate damage functions. Consid-
ering the shocks as heterogeneous increases both their average e�ects and dispersion, high-
lighting the loss of economic coordination as another possible relevant factor in assessing
climate change e�ects. Additionally, the characterization of the shock modi�es accordingly,
from a purely supply shock to a supply-induced demand shock, with falling prices and real
wages.

We test a climate policy with various target shares of emission reductions for the EA
economy, considering a carbon tax coupled with di�erent abatement technologies. We show
that the increase in fossil fuel prices allows for reaching only the least ambitious climate
objective in the absence of such a technology. On the contrary, with technology, all emission
reduction objectives can be reached, resulting in carbon prices in line with previous studies.
However, uncertainty about the abatement costs' functional shape leads to di�erent technol-
ogy adoption steps, with functional calibration with higher initial costs signi�cantly slowing
the transition process.

Several policy implications can be deduced from this framework. First, di�erent com-
binations of IAMs components can provide widely di�erent scenarios, which would require
di�erent levels of carbon pricing to reach intended goals. An ensemble approach, as is stan-
dard in the climate assessment literature, can help smooth the uncertainty embedded in
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these processes. Second, considering the complexity of the socioeconomic system helps re�ne
policy measures. Models with homogeneous climate damages might underplay the resulting
economic damage. Third, a reachable abatement technology is needed for the most ambitious
climate targets, as well as a�ecting the speed of emission reductions. Related investments
are, therefore, necessary alongside carbon pricing.

This work is subject to several limitations. Most notably, the emission reduction relies
mainly on a general abatement technology rather than considering alternative renewable
energy options. Climate policy options can also be extended to include other channels, such
as emission trading schemes, regulations, and subsidies for green technologies. Additionally,
as long as the model is calibrated on single states or economic areas, the global dimension of
climate changes will be stylized, relying on exogenous paths for the evolution of the rest of
the world's emissions.

Nevertheless, we show that the climate-extended MATRIX model could provide a solid
base to develop all of these further extensions, themselves needed endeavors to assess climate
change and the green transition in light of existing uncertainties and complexities.
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A The MATRIX model

A.1 Overview

In this Appendix, we provide a brief exposition of the original MATRIX model's main com-
ponents. For more details refer to the parental paper (Ciola et al., 2023; Turco et al., 2023).

The MATRIX model depicts an economy composed of heterogeneous agents. These in-
clude households, �rms, banks, an exogenous fossil fuel sector, a central bank, and a gov-
ernment. Households (h = 1, . . . ,NH) are divided between workers (NW ), entrepreneurs
(N F ), and bankers (NB). Firms (f = 1, . . . ,N F ) belong to three di�erent sectors: energy
services (E), consumption goods (C), and capital goods (K). The banking sector consists of
(b = 1, . . . ,NB) banks. Entrepreneurs and bankers own respectively one �rm and bank each.

Households Households' income sources vary depending on their type and economic sta-
tus. They receive a wage if employed; a dividend if they are an entrepreneur or banker of an
active company; and a public transfer if their income falls below a certain level. Households
buy consumption goods and save money in the form of bank deposits. Furthermore, �rm
and bank owners recapitalize their own companies in the event of a default.

Firms Before beginning production, �rms purchase the necessary inputs in decentralized
markets. Subsequently, they update their net worth based on pro�ts or losses and adjust
their desired price, quantity, and related input demand for the following period. Because
�rms prepay for production factors, if the expected cash out�ow exceeds internal funds, they
borrow from banks to bridge the �nancing gap.

Banks Banks hold deposits, lend to businesses in accordance with capital requirements,
and purchase government bonds.

Government and Central bank The government collects income taxes from individuals
and businesses, distributes transfers to low-income individuals and bails out failing banks.
The de�cit is funded by issuing new bonds, subject to a debt sustainability rule. The risk-free
policy rate is set as an inertial Taylor rule by the central bank.

Matching protocol The agents can observe only a portion of the market and interact with
trading partners following a decentralized search and matching mechanism. Demand units
visit supply units, with the ones o�ering larger amounts of goods at a lower price having
higher chances to sell. It must be noticed that decentralized market interactions can result in
un�lled demand or excess supply. Agents adapt their consumption and production plans due
to matching frictions and changing economic conditions, which impact the macroeconomy.
The latter is thus subject to cycles, �uctuations, and possibly recessions.

In the following, we present the sequence of events as well as a synthesis of the behavioral
equations of the agents.
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A.2 Sequence of events

The model follows this sequence of events (the novel parts compared to the original model
are highlighted in italics):

1. Firms are already endowed with desired levels of production, selling prices, and input
demands from the previous turn.15

2. If climate policy is binding, the government �xes or updates the carbon price level.

Firms evaluate investment in abatement technology based on new information.

3. Markets for production factors open:

i. Labor market: workers inelastically supply waged labor (up to one unit) to hiring
�rms, pay income taxes, and set their consumption budget;

ii. Fossil fuel market: �rms purchase the energy input from the fossil fuel sector
monopolist;

iii. Energy market: E-�rms generate energy services by combining fossil fuel, labor,
and capital goods. They sell them to C- and K-�rms.

iv. Consumption goods market: C-�rms combine capital stock, labor, fossil fuel, and
energy services to produce the consumption goods. They sell it to households;

v. Capital goods market: K-�rms supply capital goods to C- and E-�rms employing
labor, fossil fuel, and energy services;

4. Expected prices and quantities are updated.These now include expected climate, abate-

ment, and policy costs.

5. Firms compute pro�ts, their due taxes, the dividends to their owner, and the share
of outstanding debt to the banks.The accounting process of the �rms now includes the

costs borne for the abatement technology and the climate policy.

6. Insolvent or illiquid �rms that cannot be bailed by their owner's own resources default
and new �rms are initialized.

7. The �rms set their new input demand for the next turn, given their expectations and
resources, resorting eventually to the credit market.This now accounts also for the

expected climate-related costs.

8. The Banks agents account for pro�ts and NPL. Banks default procedure.

9. The government updates the tax rate and social transfers according to a �scal sustain-
ability rule.

10. The central bank �xes the policy rate given its Taylor rule.

11. Climate module: �rms emissions are updated. These act as an input to the climate

module, that modi�es the mean global temperature for the next turn or year.

15The system is initialized at the perfect competition steady state solution at t = 0.
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12. Climate damages are computed and transmitted to the economy based on the previous

turn variation in temperature.

A.3 Households

The nominal income Yh,t of the households h = 1, . . . ,NW depends on their type:

Yh,t =


WtNw,t for workers,

DIVf,t −RECf,t for entrepreneurs,

DIVb,t −RECb,t for bankers.

(17)

Workers supply labor (Nw,t ∈ [0, 1]) in exchange for a uniform salary Wt that re�ects
market conditions and in�ation expectations. Entrepreneurs and bankers get dividends,
DIVh,t and sustain recapitalization costs, RECh,t if bankrupt. The household's consumption
budget, Hd

h,t, is de�ned as the weighted sum between permanent income, Ȳh,t,
16 and deposits:

Hd
h,t = Ȳh,t + χDh,t, (18)

with χ being the propensity to consume out of �nancial wealth.

A.4 Firms

Firms agents � divided into three sectors (E, C, K) � set their desired price and quantity
according to a learning mechanism based on market conditions and strategic interaction. In
particular, they set the {P,Q} combination by imitating the strategy of a target competitor,17

if more pro�table, or by exploring a neighbor of their current strategy. The �rm f sets then
a target s and updates its desired quantity and price {Q∗

f,t+1, Pf,t+1}:

Q∗
f,t+1 =

{
ζQQ∗

f,t + (1− ζQ)Qs,t if Πs,t ≥ Πf,t,

ζQQ∗
f,t + (1− ζQ)Q̂f,t otherwise,

(19)

Pf,t+1 =

{
ζPPf,t + (1− ζP )Ps,t if Πs,t ≥ Πf,t,

ζPPf,t + (1− ζP )P̂f,t otherwise,
(20)

where Ps,t, Qs,t and Πs,t are, respectively the price, quantity, and pro�ts of the target com-
petitor s, while ζQ and ζP indicate the speed of adjustment of price and desired quantity.
If the pro�ts realized by the target �rm s are greater than f 's, the latter are then smoothly
adjusted towards them. Otherwise, the �rm f explores a neighborhood of its current strat-
egy, {Q̂f,t, P̂f,t}, by drawing a random number from a uniform distribution, the sign of which
being positive (negative) in case of excess demand (supply).

16The permanent income is set as a weighted average of current net income and past permanent income
levels, updated by expected in�ation.

17This is determined through a logit model computed as the di�erence between �rms' relative production:

df,s,t = |ŷf,t − ŷs,t|, where ŷf,t ≡ Pf,tQf,t−min (Pf,tQf,t)
max (Pf,tQf,t)−min (Pf,tQf,t)

.
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Given Q∗
f,t+1, the desired production, and {Ef,t [Pj,t+1]}nj=1, the expected input prices,

each �rm f sets the conditional input demand that minimizes its expected direct costs
Ef,t [DCf,t+1]. The production technology is subject to a Constant Elasticity of Substitu-
tion (CES) and irreversible investments. Therefore, the cost minimization problem reads
as:

min
{Xf,j,t+1;∆Xf,j,t+1}Jj=1

Ef,t [DCf,t+1] =
n∑
j=1

Ef,t [Pj,t+1] ∆Xj,f,t+1 (21)

s.t. Q∗
f,t+1 =

[
J∑
j=1

Aj,f,t+1 (Xj,f,t+1)
ρf

] 1
ρf

, (22)

Xj,f,t+1 = ∆Xj,f,t+1 + (1− δj)Xj,f,t, (23)

∆Xj,f,t+1 ≥ 0 when j indicates physical capital, (24)

where ∆Xj,f,t+1, δj, and Aj,f,t+1 are the additional input demand, the depreciation rate, and
the factor share of input j, while ρf is the inputs substitution parameter. Following this
problem, the nominal demand for an additional input is:

Hd
j,f,t+1 = Ef,t [Pj,t+1]

[(
Aj,f,t+1ψf,t+1

Ef,t[Pj,t+1]

)σf
Q∗
f,t+1 − (1− δj)Xj,f,t

]
∀j = 1, . . . , J , (25)

where

ψf,t+1 =

[
n∑
j=1

(Ef,t [Pj,t+1])
1−σf (Aj,f,t+1)

σf

] 1
1−σf

, (26)

are the expected marginal costs.
If the expected direct costs are higher than internal liquidity, the �rms try to borrow in a

decentralized credit market. If credit rationing is present, �rms set instead the optimal input
demand that maximizes the attainable production. The �rms seek then to satisfy their input
demand in the di�erent decentralized markets.

A.5 Banking sector

The banking sector provides credit to �rms that need additional resources to purchase produc-
tion inputs. The price of the loan depends upon the �nancial situation of the borrower-lender
and on a systemic risk component, while its quantity on capital requirements. The interest
rate ib,f,t on loans charged by bank b to the borrowing �rm f at the time t is given by:

ib,f,t = iCBt + ρB
Lf,t
NWf,t

+ ϱB

1− NWb,t

max
s=1,...,NB

NWs,t

+ ιB
NPLt−1

Lt−1

, (27)

where ρB, ϱB, ιB > 0 are interest rate-related parameters. The cost of external �nance is
then increasing with the risk-free policy rate iCBt , the �rm's leverage ratio, Lf,t/NWf,t, and
the non-performing loans ratio, NPLt−1/Lt−1, while decreasing with the bank's net worth,
NWb,t.

32



In line with the Basel III international regulatory framework, banks must comply with
macro-prudential capital requirements that de�ne (i) the total amount of credit that they can
extend and (ii) the maximum exposure to a single counterpart. That implies that borrowing
�rms might be unable to fully satisfy their �nancing needs, in which case they are forced to
scale down the desired production and, subsequently, their input demand.

Banks must conform to macroprudential capital requirements, such as those under the
Basel III international regulatory framework. That de�nes two constraints: �rst, the total
amount of credit; second, the maximum exposure to a single counterpart. Borrowing �rms
may then be unable to fully satisfy their desired input demand and, thus, output level.

A.6 Central bank

The central bank sets the risk-free policy rate, iCBt , following a Taylor rule of the inertial
type, that is:

iCBt = ρCBiCBt−1 + (1− ρCB)max [0, r∗ + p∗ + λy(u∗ − ut−1) + λp(pC,t−1 − p∗)] . (28)

The central bank reacts to deviations in in�ation and unemployment rates from their target
levels, respectively p∗ and u∗, given the steady-state interest rate r∗. The interest rate is
slowly adjusted to avoid abrupt changes in �rms' �nancing conditions, with ρCB de�ning the
speed of adjustment (Castelnuovo, 2003).

A.7 Government

The government collects taxes (TAXt) from the agents' income, distributes transfers (TRAt)
to low-income households, and provides liquidity of last resort (EXPt) to failed banks. If
in need, the government can issue additional bonds bought by the banking sector, and on
which pays the risk-free policy rate (iCBt ). Hence, public debt (Bt) evolves according to:

Bt = (1 + iCBt−1)Bt−1 + TRAt + EXPt − TAXt. (29)

The debt-to-GDP ratio dynamics can be written as:

bt+1 =
1 + iCBt
1 + gt

bt − ft+1, (30)

where bt is debt-to-GDP ratio, ft ≡ (TAXt − TRAt −EXPt)/GDPt is the primary budget-
to-GDP, and gt is the expected nominal growth rate of GDP. The government complies with
a �scal sustainability rule that prevents public debt from increasing inde�nitely. Thus, the
government adjusts gradually the current debt-to-GPD ratio to a target value b∗ at a rate
ρG:

bt+1 = bt + ρG(b∗ − bt). (31)

(31) and (30) obtains the expected primary balance, that is:

−ft+1 = ρGb∗ + (1− ρG)

[
1− 1 + iCBt

(1 + gt)(1− ρG)

]
bt,. (32)
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To comply with the expected primary balance, the government sets the tax rate, τ taxt .
The share of social transfer over GDP, τ trat , is �xed at a rate ψG. The latter can be increased
only if:

τ trat = max
(
ψG,−ft+1

)
, (33)

where τ trat represents the share of social expenditures and ψG is the constant benchmark
value, meaning that the expected primary balance guarantees enough �scal space. The tax
rate for the current period is then:

τ taxt = max
(
0, ft+1 + τ trat

)
. (34)

If negative, the tax rate is set equal to zero, as consumer and �rm subsidies are not considered
in this version.
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A.8 MATRIX model parameters

Table 8: MATRIX model: economy parameters
Variable Description Value Source

NW Number of workers 1000

Ciola et al. (2023); Turco et al. (2023)

βC Households discount rate 0.996
ε Households memory parameter βC

χ Marginal propensity to consume out of wealth 1− βC

βF Firms discount rate 0.980
µF Firms dividend payout ratio 1− βF

ρW Wage stickiness 0.56
θW Insider-outsider bargaining power 0.51
ιW In�ation anchoring 0.67
δN labor depreciation rate 1
NC Number of C-�rms 100
AN,C Factor share capital (C-�rms) 0.25
AK,C Factor share labor (C-�rms) 0.69
AE,C Factor share energy (C-�rms) 0.03
AO,C Factor share natural resource (C-�rms) 0.03
δC Consumption goods depreciation rate 1
σC Elasticity of substitution (C-�rms) 0.25
NE Number of E-�rms 15
AN,E Factor share capital (E-�rms) 0.28
AK,E Factor share labor (E-�rms) 0.33
AO,E Factor share natural resource (E-�rms) 0.39
δE Energy services depreciation rate 1
σE Elasticity of substitution (E-�rms) 0.25
NK Number of K-�rms 60
AN,K Factor share labor (K-�rms) 0.91
AE,K Factor share energy (K-�rms) 0.04
AO,K Factor share natural resource (K-�rms) 0.05
δK Depreciation rate of physical capital 0.05/4
σK Elasticity of substitution (K-�rms) 0.25
γPQ Maximum size of price-quantity exploration 0.05
ζQ Speed of adjustment: quantity 0.75
ζP Speed of adjustment: price 0.75
ω Intensity of choice 10
νO Foreign natural resource expenditure over GDP 0.021
δO Foreign natural resource depreciation rate 1
ηO Share of foreign natural resource going to E-�rms 0.09
NB Number of banks 10
γB Capital adequacy ratio 0.08
ωB Risk weighting 1
κB Maximum single exposure to borrowers 0.25
ϱB Interest rate setting parameter: bank �nancial soundness 0.029/4
ρB Interest rate setting parameter: �rm leverage 0.017/4
ιB Interest rate setting parameter: share of aggregate NPL 0.001/4
θB Share of loans repaid at each time-step 0.0125
p∗ In�ation target 0.02/4
u∗ Target unemployment rate 0.087
r∗ Steady state real interest rate 1/βC − 1
λp Monetary policy rule weights: in�ation 1.41
λu Monetary policy rule weights: unemployment 0.11
ρCB Speed of adjustment of the monetary policy rule 0.85
b∗ Target debt-GDP ratio 0.75
ρG Speed of adjustment to target debt-GDP ratio 0.007
ψG Share of social expenditures 0.094
ZC Maximum number of new partners (C-market) 0.25
ZE Maximum number of new partners (E-market) 4
ZK Maximum number of new partners (K-market) 4
ZN Maximum number of new partners (labor market) 10
ZB Maximum number of new partners (credit market) 0.2
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B Climate boxes

This section presents in details the alternative climate boxes tested in the paper.

B.1 Transient Carbon Response to cumulative Emissions model �

TCRE

Climate literature identi�es a direct linear relationship between emissions and temperature,
often referred to as Transient Carbon Response to cumulative Emissions (TCRE) (Econo-
mides et al., 2018; Dietz and Venmans, 2019). This model simpli�es the analysis in economic
models but discounts eventual nonlinearities in climate change and is highly in�uenced by
the parametrization value. In this version, the temperature anomaly evolves according to the
following equation:

δTt = δTt−1 + ηtcre ∗ ζtcre ∗ EW
t , (35)

with ηtcre being the initial pulse-adjustment timescale parameter, ζtcre the TCRE parameter,
and EW

t global CO2 emissions.

B.1.1 Transient Carbon Response to cumulative Emissions model - TCRE -
Parameters

Table 9: Climate Box Parameters, TCRE

Variable Description Value Source

ηtcre Transient Carbon Response to Emissions 0.0025 Allan et al. (2021)
ζtcre Initial pulse-adjustment timescale 1 ""
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B.2 Dynamic Integrated Climate-Economy model � DICE

We also consider a carbon cycle akin to the ones employed in the DICE 2013R model. That
includes an ocean box and captures the interrelationships between the carbon concentrations
and temperatures on the lower and upper parts of the ocean. The carbon stocks of the three
reservoirs (atmosphere Catm,t, upper ocean Cuo,t and deep ocean Clo,t) are updated by the
exchanges between the three pools:

Catm,t = faaCatm,t−1 + fuaCuo,t−1 + EW
t−1, (36)

Cuo,t = fauCatm,t−1 + fuuCuo,t−1 + fluClo,t−1, (37)

Clo,t = fulCuo,t−1 + fllClo,t−1, (38)

for fxy with x, y ∈ [a, u, l] denoting the share of the carbon in pool x �owing to the target
pool y. The global temperature anomaly at the atmospheric level (∆Tt) and the ocean one
(∆To,t) are calculated as follows. First the radiative forcing (RFt) is de�ned as:

RFt = η
log

[
Catm,t−1

Catm,0

]
log(2)

, (39)

with η being the forcing of equilibrium CO2 doubling (Wm−2). Then,

∆Tt = ∆Tt−1 + c1

[
RFt −

η

λ
∆Tt−1 − c3 (∆Tt−1 −∆To,t−1)

]
, (40)

with c1 being the climate equation coe�cient for the upper-level ocean, λ the equilibrium
temperature impact (°C per doubling CO2), and c3 the transfer coe�cient from the upper
to lower stratum. ∆To,t is de�ned as

∆To,t = ∆To,t−1 + c4 (∆Tt−1 −∆To,t−1) , (41)

with c4 being the transfer coe�cient for the lower level.
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B.2.1 DICE model parameters

Table 10: Climate box parameters: DICE

Variable Description Value Source

fua Fraction of upper ocean carbon to atmosphere 0.267 Nordhaus (1993a)
faa Fraction of staying atmosphere carbon 0.666 ""
fuu Fraction of staying upper ocean carbon 0.610 ""
fns Fraction of atmosphere to upper ocean carbon 0.333 ""
flu Fraction of lower ocean carbon to upper ocean carbon 0.004 ""
fll Fraction of staying lower ocean carbon 0.995 ""
ful Fraction of upper ocean carbon to lower ocean 0.114 ""
c1 Lag parameter 0.226 ""
η Climate feedback parameter 2.9 ""
c2 Atmosphere ocean exchange-coe�cient 0.44 ""
c4 Ocean heat capacity 0.02 ""
λ Scaling parameter 5.35 ""

Catm,0 Initial value CO2 atmosphere GtC 588 ""
Cuo,0 Initial value CO2 upper ocean GtC 1350 ""
Clo,0 Initial value CO2 lower ocean GtC 10000 ""
Tuo,0 Initial value average temperature upper ocean ◦C 0.43 ""
Tlo,0 Initial value average temperature lower ocean ◦C 0.06 ""
T0 Average temperature preindustrial level ◦C 14 ""
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B.3 World Induced Technical Change Hybrid model � WITCH

The World Induced Technical Change Hybrid (WITCH) model employs a carbon cycle de-
rived from the DICE family of carbon cycles (Emmerling et al., 2016). Although similar to
the one in the previous subsection, it is still included to test a di�erent parametrization. The
carbon atmosphere is set as:

Catm,t = faaCatm,t−1 + fuaCuo,t−1 + EW
t−1, (42)

with fxy and x, y ∈ [a, u, l] denoting the share of the carbon in pool x �owing to the target
pool y. The upper ocean carbon pool is de�ned as:

Cuo,t = fauCatm,t−1 + fuuCuo,t−1 + fluCuo,t−1, (43)

whereas the lower ocean carbon is equal to:

Clo,t = fulCuo,t−1 + fllClo,t−1. (44)

The di�erence in GHG concentrations a�ects the change in the radiating factor:

RFt = η
log

[
Catm,t−1

Catm,0

]
log(2)

, (45)

The atmosphere and ocean temperatures are updated accordingly:

∆Tt = ∆Tt−1 + ξ1 [RFt−1 − ξ2∆Tt−1 − ξ3 (∆Tt−1 −∆To,t−1)] , (46)

∆To,t = ∆To,t−1 + ξ4 (∆Tt−1 −∆To,t−1) , (47)

with ξ1 being the lag parameter, ξ2 the climate feedback parameter, ξ3 the atmosphere-ocean
exchange coe�cient, and ξ4 the ocean heat capacity.
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B.3.1 WITCH model parameters

Table 11: Climate box parameters: WITCH

Variable Description Value Source

fua Fraction of upper ocean carbon to atmosphere 0.04 Emmerling et al. (2016)
faa Fraction of staying atmosphere carbon 0.88 ""
fuu Fraction of staying upper ocean carbon 0.95 ""
fns Fraction of atmosphere to upper ocean carbon 0.12 ""
flu Fraction of lower ocean carbon to upper ocean carbon 0.00075 ""
fll Fraction of staying lower ocean carbon 0.999 ""
ful Fraction of upper ocean carbon to lower ocean 0.005 ""
ξ1 Lag parameter 0.226 ""
ξ2 Climate feedback parameter 1.36 ""
ξ3 Atmosphere ocean exchange-coe�cient 0.31 ""
ξ4 Ocean heat capacity 0.05 ""
λ Scaling parameter 5.35 ""

Catm,0 Initial value CO2 atmosphere GtC 735 ""
Cuo,0 Initial value CO2 upper ocean GtC 1000 ""
Clo,0 Initial value CO2 lower ocean GtC 10000 ""
T o0 Initial value average temperature upper ocean ◦C 1 ""
T0 Average temperature preindustrial level ◦C 14 ""
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B.4 Climate Rapid Overview And Decision Support model � C-

ROADS

We now describe a climate module inspired by the Climate Rapid Overview And Decision
Support (C-ROADS) model (Sterman et al., 2012). In this module, CO2 in the atmosphere
is determined by the interrelation between anthropogenic emissions and exchanges between
an ocean and a land box.

B.4.1 Land

The Net Primary Production (NPPt) absorbs carbon from the atmosphere:

NPPt = NPP0

[
1 + β log

(
Catm,t−1

Catm,0

)]
(1− βT1∆Tt−1) , (48)

where βT1 is a coe�cient capturing the e�ect of the increase in mean surface temperature
from the preindustrial level (∆Tt) on NPP, and NPP0 coincides with the preindustrial NPP.
Part of the carbon can be stored or released from other stocks, namely the biosphere stock
Cb,t and the soil humus Ch,t. Therefore, other �uxes should be considered. These include the
ones from the biosphere to the atmosphere, Fba:

Fba =
Cb,t−1

brt
(1− hum), (49)

where brt is the retention rate of carbon in the biosphere, and hum is the humi�cation factor.
Next is the �ux from the soil to the atmosphere Fha:

Fha =
Ch,t−1

hrt
, (50)

with hrt being the retention rate for carbon into soil. Lastly, humi�cation captures the �ux
from the biosphere to the soil layer through the �ux Fbh:

Fbh =
Cb,t−1

brt
hum. (51)

These �uxes a�ect the next period's atmospheric carbon stocks such that:

Catm,t = Catm,t−1 + Fba + Fha − Fab, (52)

as well as the other stocks:

Cb,t = Cb,t−1 + Fab − Fba − Fbh, (53)

Ch,t = Ch,t−1 + Fbh − Fha. (54)
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B.4.2 Ocean

The carbon concentration in the atmosphere also depends b the exchanges with the oceans.
These are modeled by a two-layer eddy di�usion box. The net carbon �ux from mixed to
deep ocean (∆Cmd,t) depends on the di�erence in the carbon concentration in the two layers:

∆Cmd,t = κeddy

Cm,t−1

dm
− Cd,t−1

dd

d̄md
, (55)

where Cmd,t is the mixed layer carbon concentration, dx represent the thickness of the layer,
d̄md is the average thickness and κeddy is a eddy di�usion parameter. The mixed layer car-
bon concentration depends on the change both in atmospheric carbon concentration and
temperature with respect to their preindustrial levels, and the Revelle factor ξt:

Cm,t = Cm,0(1− βT2Tm,t−1)

(
Catm,t
Catm,0

)1/ξt

, (56)

The Revelle parameter (ξt) evolves over time following the atmospheric CO2:

ξt = ξ0 + δ log

(
Catm,t
Catm,0

)
. (57)
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B.4.3 C-ROADS model parameters

Table 12: Climate box parameters: C-ROADS

Variable Description Value Source

Co CO2 ocean preindustrial level 10.237 Sterman et al. (2012)
NPP0 Net primary production preindustrial level 85.177 ""
βc Response of NPP to carbon 0.42 ""
brt Years carbon in bio retention 10.6 ""
hrt Years carbon in humus retention 27.8 ""
hum Humi�cation factor 0.428 ""
ξ0 Revelle reference bu�er factor 0.97 ""
δc Index for response of bu�er to carbon concentration 3.92 ""
κeddy Eddy di�usion coe�cient for circulation in ocean 4400 ""
dmix Mixed ocean depth 100 ""
ddeep Deep ocean depth 3500 ""
βT1 Sensitivity of carbon uptake to temperature by land −0.01 ""
βT2 Sensitivity of carbon uptake to temperature by ocean 0.003 ""
c1 Di�usion for atmospheric temperature 0.098 ""
λc Equilibrium climate sensitivity 2.9 ""
c3 Di�usion in deep oceans temperature equation 0.088 ""
c4 Sensitivity of atmospheric to deep ocean temperature 0.025 ""
γrf Radiative forcing coe�cient 5.35 ""
σuplo Ocean heat capacity 11 ""
Catm,0 Initial value CO2 atmosphere GtC 590 ""
Cuo,0 Initial value CO2 upper ocean GtC 1023.73 ""
Clo,0 Initial value CO2 lower ocean GtC 35830 ""
Cbio,0 Initial value CO2 biosphere GtC 902.87 ""
Chum,0 Initial value CO2 humus GtC 1013.5 ""
Tuo,0 Initial value average temperature upper ocean 0.43 ""
Tlo,0 Initial value average temperature lower ocean 0.06 ""
Tt,0 Average temperature preindustrial level 14 ""
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B.5 HECTOR model

In this section, we present a climate box inspired by the HECTOR model. This includes
a three-modules carbon cycle, i.e., atmosphere, land, and ocean (Hartin et al., 2015). In
the climate box, any change in the atmospheric carbon depends on anthropogenic emissions
(FA), atmosphere-land carbon �uxes (FL), and atmosphere-ocean carbon �uxes (FO):

Catm,t = Catm,t−1 + FA,t − FL,t − FO,t. (58)

As the emissions �ux is such that FA,t = EW
t , we proceed now to describe the two other ones.

B.5.1 Land

The land box is divided into three land layers (terrestrial vegetation, detritus, and soil),
linked with each other and the atmosphere. The CO2 absorption from the land layer FL,t
depends on the di�erence between the net primary production (NPP ) and the heterotrophic
respiration of soil and detritus layers (RHx, with x ∈ [d, s]:

FL,t = NPPt −RHd,t −RHs,t. (59)

NPPt is the net primary production representing how much carbon dioxide vegetation takes
in during photosynthesis minus how much carbon dioxide the plants release during respira-
tion:

NPPt = NPP0

[
1 + βnpplog

(
Catm,t−1

Catm,0

)]
. (60)

According to equation 60, the net primary production depends on a carbon fertilization
parameter βnpp and the change of the carbon stock in the atmosphere with respect to the
preindustrial level. RHy,t denotes the heterotrophic respiration summed over user-speci�ed
boxes y (y ∈ [s, d] meaning soil and detritus) and evolves as follows:

RHy,t = Cy,tfryQ
Tt−1/10
10 . (61)

The heterotrophic respiration in the two layers is a function of the carbon stock in detritus
and soil (Cd,t and Cs,t respectively), the annual fraction of respiration carbon transferred to
the detritus and soil layer (frd and frs), Q10 which represents the terrestrial respiration
temperature response. Hence, the land carbon absorption is negatively a�ected by global
warming, producing positive feedback dynamics between climate and carbon cycle (Sterman
et al., 2012). The land carbon stocks dynamics are the result of changes in the �uxes between
the three carbon land pools as follows:

Cv,t = NPPtfnv + Cv,t−1(1− fvd − fvs), (62)

Cd,t = Cd,t−1(1− fds) +NPPt−1fnd + Cv,t−1fvd −RHd,t, (63)

Cs,t = Cs,t−1 +NPPt−1fns + Cv,t−1fvs + Cd,t−1fds −RHs,t, (64)

where Cv represents the carbon stock in the vegetations and fxy is the annual fraction of
carbon trasferred from upper layer x to lower layer y, with x = v, d and y = d, s.
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B.5.2 Ocean

The ocean carbon cycle model extends the traditional box structure of Knox and McElroy
(1984) following Lenton (2000). The ocean-atmosphere carbon �ux is the sum of the ocean
surface �uxes which depend upon the solubility of carbon within the two surface ocean
boxes. According to Takahashi et al. (2009), each surface ocean box exchanges CO2 emissions
according to the atmosphere-ocean gradient of the partial pressure pCO2:

Fi,t = ΦKhi,tAriSc
−1/2
i,t U2

10∆pCO2, (65)

where Φ is a unit conversion parameter (Hartin et al., 2016), Khi,t represents the Henry's
Law constant, Ari is the area of the surface layer i (i = HL,LL, meaning high and low
latitude), whereas U10 and Sci,t are the average wind speed and the Schmidt number. The
surface box temperatures are linearly dependent on the global atmospheric temperature and
are initially set at 2°C in the high latitudes and 22°C in the low latitudes. This gradient in
the ocean water temperature produces a �ux of carbon into the cold high-latitude sea and a
�ow of carbon from the warm low-latitude sea.

To initialize the ocean component of the model, we take as �xed the physical �ows of
water between the ocean boxes, and we derive the initial level of carbon stocks consistent to
reach a steady state. Following Lenton (2000), we assume a preindustrial atmosphere-ocean
�ow equal to 1 GtC per year that nets out in the steady state, with a positive outgassing from
the waters at lower latitude (+1) and a negative one for the higher latitudes (−1). Alkaline
levels alki in the two surface boxes are set to compel this assumption about �ows. Alkaline
levels, as well as the dissolved inorganic carbon (DICi,t), calculated from the atmospheric
carbon, concur to solve the ocean chemistry subsystem (see Hartin et al., 2016, for the
detailed carbonate chemistry equations), which de�nes the partial pressure pCO2i,t, the
Schmidt parameter Sci,t, and Henry's constant solubility parameter Khi,t. At every turn,
these are set to re�ect the change in carbon di�erentials between the atmosphere and the
ocean, a�ecting the �ux FO,t.

Within the ocean, the thermohaline circulation of water mass in the ocean generates a
�ux of carbon between the ocean boxes. This carbon �ux from layer x to layer y in the ocean
is positively a�ected by the mass water exchanged (Trx−>y), the carbon stock in the two
layers, and their volume (V ) as follows:

Fx−>y,t = Trx−>y

(
Ci,t
Vi

− Cj,t
Vj

)
. (66)

B.5.3 Global atmospheric temperature

The change in the surface global atmospheric mean temperature is calculated by:

∆Tt =
λ

1 + kh
RFt, (67)

where λ is a climate feedback parameter, κh representing the ocean heat uptake e�ciency
and RFt represents the total radiative forcing:

RFt = γRF log

(
Catm,t
Catm,0

)
, (68)

where γRF is a scaling parameter (Hartin et al., 2015).
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B.5.4 HECTOR model parameters

Table 13: Climate box parameters: HECTOR
Variable Description Value Source

fds Fraction of detritus carbon transferred to soil 0.6 Hartin et al. (2015)
fvs Fraction of vegetation carbon transferred to soil 0.001 ""
fnd Fraction of NPP carbon transferred to detritus 0.6 ""
fns Fraction of NPP carbon transferred to soil 0.05 ""
fnv Fraction of NPP carbon transferred to vegetation 0.35 ""
frd Fraction of respiration carbon transferred to detritus 0.25 ""
frs Fraction of respiration carbon transferred to soil 0.02 ""
fvd Fraction of vegetation carbon transferred to detritus 0.034 ""
Q10 Terrestrial respiration temperature response 2.45 ""
βnpp Carbon fertilization parameter 0.36 ""
Φ Unit conversion parameter 0.585 ""
αh Henry constant solubility parameter of CO2 0.727 ""
Aohs Fraction area of high latitude ocean 0.15 Sarmiento and Toggweiler (1984)
Aols Fraction area of low latitude ocean 0.85 Sarmiento and Toggweiler (1984)
Uh Wind speed in ocean surface 6.7 Takahashi et al. (2009)
alkhl Alkalinity levels high latitude ocean box µmol/kg 2291× 10−6 Calibration
alkll Alkalinity levels low latitude ocean box µmol/kg 2246× 10−6 Calibration
S Ocean average salinity 34.5 Hartin et al. (2015)

ELIkid Water mass exchange (low latitude to intermediate) m3s−1 2.08× 108 Lenton (2000); Knox and McElroy (1984)
EIDkwi Water mass exchange (intermediate to deep) m3s−1 1.25× 107 Lenton (2000); Knox and McElroy (1984)
κols Thermohaline circulation m3s−1 7.2× 107 Hartin et al. (2015)
κohs High-latitude circulation m3s−1 4.9× 107 ""
spy Seconds per year 31557600 ""
Vohs Volume of High latitude surface m3 5.4× 1015 ""
Vols Volume of Low latitude surface m3 3.6× 1016 ""
Vode Volume of intermediate ocean m3 9.64× 1017 ""
Voin Volume of deep ocean m3 3.24× 1017 ""
Catm,0 Atmospheric carbon GtC 588.1 ""
CD,0 Initial Detritus carbon GtC 55.2941 Calibration
CS,0 Initial Soil carbon GtC 1808.8235 Calibration
CV,0 Initial Vegetation carbon GtC 500 Calibration
CHL,0 Initial Surface high latitude ocean carbon GtC 138.72 Calibration
CLL,0 Initial Surface low latitude ocean carbon GtC 723.15 Calibration
CIO,0 Initial Intermediate ocean carbon GtC 8309.75 Calibration
CDO,0 Initial Deep ocean carbon GtC 26383.65 Calibration
NPP0 Initial Net primary production GtC 50.0 Hartin et al. (2015)
FL,0 Atmosphere-land steady state carbon �ux GtC/y 0.0 Hartin et al. (2015)
FO,0 Atmosphere-ocean steady state carbon �ux GtC/y 0.0 Lenton (2000)
THL,0 High latitude surface ocean temperature ◦C 2.0 Lenton (2000)
TLL,0 Low latitude surface ocean temperature ◦C 22.0 Lenton (2000)
λC Equilibrium climate sensitivity 2.9 ""
γRF Radiative forcing coe�cient 5.35 ""
kh Ocean heat uptake e�ciency 1.16 Hartin et al. (2015)
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