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1 Introduction

Outsourcing of traditionally public sector activities has become a common

practice in several countries. This has occurred in various ways and with dif-

ferent results, impacted by the governments’ ability to transform themselves

from direct providers into effective regulators (OECD, 2012; European Com-

mission, 2017).

The increased use of public-private partnerships (PPPs) for infrastructure

services somehow symbolizes the wave that started in the 1980s. As it is

currently used, the term PPP covers a wide spectrum of contractual arrange-

ments, which can be classified with different criteria (Delmon, 2010), such as

the tasks assigned (e.g. financing, building and operating new infrastructures,

or simply operating existing public facilities) and the source of private cash-

flows (drawing revenues from taxpayers or from service users), as well as the

kind of risks projects are exposed to and the way in which they are distributed

between the contracting parties.

Risks identification and allocation are indeed at the heart of PPP projects

(Yescombe and Farquharson, 2018) which, because of their usually long-term

horizons, are almost inevitably exposed to more or less severe stressors. This

calls for well defined risk sharing rules, enabling the parties to rapidly react

to changing circumstances while keeping the partnership alive (Demirel et al.,

2017; Beuve et al., 2019). At the same time, another policy challenge emerges

from the exclusivity granted to “concessionaires”, which requires appropriate

measures to avoid potential inefficiencies due to market power and information

imbalances.

In the economic literature, monopoly regulation under adverse selection

was first addressed by using static models where private information param-

eters (e.g. production costs) are assumed not to vary over time (Baron and

Myerson, 1982; Laffont and Tirole, 1986; Riordan and Sappington, 1987). Fur-

ther contributions introduced some dynamics, mostly using two-period models

(Baron and Besanko, 1984; Laffont and Tirole, 1993).

Assuming perfect commitment, there are three possible environments for
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such a discrete-time setup (Laffont and Martimort, 2002). First, if private

information parameters change with time but are perfectly correlated between

the periods, it is optimal for the government to commit to the repetition of

the static contract. Second, if the realizations in each period are completely

independent, the parties sign a long-term contract before the second-period in-

formation is disclosed, thus only the first-period private information is costly

to the principal. Finally, if private information parameters are weakly corre-

lated, the government uses the first report to update his beliefs on the agent’s

second-period type. In this case, an intertemporal incentive-compatibility con-

straint needs to be added to the principal’s maximization problem, such that

the agent has no incentives to misreport his type in both periods.

However, when moving from the two-period to a multiperiod-time setting,

things become more difficult. Indeed, while the first and the second cases are

still solved as described above1, when private information parameters are more

realistically modelled as subject to imperfectly correlated shocks, the solution

is not anymore straightforward, because, since the space for deviations by the

agent could be very rich, the standard incentive-compatible mechanism is in

general hard to be implemented (Pavan et al., 2014; Bergemann and Valimaki,

2018). Yet, this intertemporal adverse selection problem has been technically

overcome by Bergemann and Strack (2015) who derive, in a continuous-time

setting, necessary conditions for a direct incentive-compatible mechanism and

use their findings to obtain a close form solution for a dynamic contract be-

tween a revenue-maximizing seller and a privately informed buyer.

Building on Bergemann and Strack (2015), in this paper we study the opti-

mal design of a contract wherein a private entity is granted with the exclusive

right to supply a good or service and to collect all revenues thereof, by op-

erating an existing public facility.2 In exchange, the awarding authority shall

1See, for instance, Auriol and Picard (2013) who study in a continuous-time model the
optimal regulation of a monopoly firm holding private information on production costs which
are assumed not to vary over time.

2Our results can be generalized to other types of PPPs, namely to greenfield projects
involving investment obligations, where the design features and the timing of investment are
predetermined and enforceable by contract. On endogeneous investment timing in PPPs,
see for instance, Dosi and Moretto (2015) and Buso et al. (2021).
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receive continued compensation. For instance, public franchises of this kind,

in some legal system referred to as “lease contracts”,3 generally provide for the

payment of a “rental price”, which often takes on the form a flat fee (World

Bank, 2022).

Uncertainty in our model comes from the demand side, as we assume that

revenues from sales depends on the firm’s ability to seize market opportunities,

which is private information, as well as on exogeneous changes in consumers’

preferences evolving as a Brownian motion.

As our main result, we derive conditions under which both risk sharing

and monopoly regulation issues, which are often treated separately in the PPP

literature, can be dealt with together within a dynamic contract. Specifically,

we find that optimal regulation requires an appropriate combination of fixed

and variable transfers between the parties, with the latter linked to both the

predicted revenue potential and the actual sales. Moreover, we study how

each component of the two-part schedule can be affected by the firm’s type,

the expected volatility of private revenues and the importance attached by the

awarding authority to public income. In so doing, we show that the use of flat

fees, rather than time-adjusted transfers, that is, the repetition of a standard

static contract, may find justification only where there is little uncertainty

about future private benefits or, alternatively, when the contracting authority

gives higher priority to public income relative to other welfare concerns.

The remainder is organized as follows. In the next Section we set up the

model and assumptions. In Section 3 we derive the optimal regulatory scheme,

whose main features are illustrated in Section 4 through numerical examples.

Section 5 concludes. The proofs are presented in the appendices.

3Although they are not completely overlapping, in the literature on PPPs the terms
lease contracts, affermages and management contracts -which share the feature of not pro-
viding for substantial investment obligations- are sometimes used interchangeably. On the
differences between these contract types, see World Bank (2022).
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2 Set up

Consider a public authority (henceforth, “the government”, he) offering a pri-

vate firm (she) a take-it-or-leave-it contract that gives her the exclusive right to

supply a specific good or service (“good”) by operating an existing government-

owned facility.

Under the contract, signed at t = 0, the firm commits to pay a sum of

money (a “tax”) for using the asset and for cashing monopolistic revenues.

For the sake of simplicity, we assume that the firm will not bear any additional

costs and that the franchise term is sufficiently long to be approximated as

infinite.4

The firm’s activity generates in every period t ≥ 0 a consumer surplus

denoted by S(Qt, xt), where Qt is the output level and xt is the “demand

shifter” (Auriol and Picard, 2013).

S(Qt, xt) has the standard properties, namely: SQ > 0, SQQ < 0, and

Sx > 0, SQx > 0. The willingness to pay for an extra unit of the good and,

therefore, the per-unit-of-time (henceforth, the “instantaneous” or “current”)

surplus increases with xt.

Consumers cannot store and transfer goods to the next time periods and the

whole production is sold at the market equilibrium price P (Qt, xt) ≡ SQ(Qt, xt)

that defines the inverse demand function.

In order to highlight the characteristics of the regulatory scheme and with-

out loosing in generality, we shape the surplus S(Qt, xt) as a quadratic func-

tion, with a linear demand shifter: S(Qt, xt) = Qt(xt − Qt

2
). Therefore,

SQ(Qt, xt) ≡ P (Qt, xt) = xt −Qt > 0 > SQQ(Qt, xt) = −1.

The demand shifter is assumed to evolve stochastically according to the

following trendless geometric Brownian process:5

4The inclusion of operating costs, minimized for all production levels, would not qualita-
tively alter our results and conclusions. The same applies to the assumption of an infinitely
long contract period, which allows us to get a closed form solution for the optimal regulation
problem.

5The assumption of a trendless random walk allows us to focus on the pure effect of the
uncertainty. Notice, however, that by the Markov property of Eq. (1), our general results
would not be altered by using a non-zero trend for xt.
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dxt = σxtdZt xt=0 = x0 (1)

where σ > 0 is the constant instantaneous volatility and Zt ∼ N(0, t) is a

standard Wiener process having a normal distribution with zero mean and

variance t.

By solving (1), the demand shifter can be written as follows:

xt ≡ ϕ(t, x0, Zt) = x0 exp

(
−σ2

2
t+ σZt

)
(2)

Eq. (2), which highlights that xt depends on the initial value x0, on the

uncertainty parameter σ and on the contemporaneous shock Zt, has several

interesting properties.6

First, the higher is x0 the higher will, ceteris paribus, be the future demand

of the good, i.e. ∂ϕ(t,x0,Zt)
∂x0

> 0. Second, the relative impact of x0 versus the

Zt,, i.e.
∂ϕ(t,x0,Zt)

∂x0
/∂ϕ(t,x0,Zt)

∂Zt
= 1

σx0
, is decreasing in x0.

7

In short, Eq. (2) says that a high (low) value of x0 is less (more) infor-

mative for predicting the future values of xt, because future demands will be

more (less) subject to contemporaneous shocks Zt. Similarly, the information

potential of x0 decreases as the uncertainty parameter σ increases.

We assume that while σ is public knowledge, the firm is better informed

than the government about xt (t ≥ 0). The initial value x0, reflecting the

firm’s innate ability to seize market opportunities (“the firm’s type”)8, is dis-

6For a trendless process like (1), the autocorrelation between two values of the willingness-
to-pay is given by:

ρs,t =
cov(xs, xt)√
V (xs)

√
V (xt)

=

(
eσ

2s − 1

eσ2t − 1

)1/2

< 1

where s < t. Notice that, for any given s, ρt,s → 0 either when t → ∞ or when σ → ∞. In all
other cases we get a partial autocorrelation. In other words, the values of xt at neighboring
time points are more and more strongly and positively correlated as time goes by. On the
other hand, the values of xt at distant time points are less and less correlated.

7Although the impact of x0 on xt reduces over time, it never fades. See Bergemann and
Strack (2015) for a more in-depth discussion of these properties.

8In a standard (static) adverse selection problem, or in a dynamic model with perfectly
correlated shocks, this would actually be the only private information parameter of interest.
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tributed on [xl, xh], according to the cumulative distribution function G(x0),

with density g(x0) ≥ 0 and g(xl), g(xh) > 0, which is common knowledge.9

The function G(x0) is such that 1−G(x0)
g(x0)x0

is monotone and decreasing, with

xlg(xl) ≥ k > 0.10

Since the tax that she has committed to pay is the only cost incurred by

the firm, her instantaneous utility function can be written as:

ut = π(Qt, xt)− Tt, (3)

where π(Qt, xt) = P (Qt, xt)Qt are the firm’s gross profits and Tt is the current

tax.

Thus, the firm’s expected intertemporal utility at t = 0 is given by:

U = E0

[∫ ∞

0

e−rtu(Qt, xt)dt

]
(4)

where r is the discount rate.

The government is assumed to be benevolent and utilitarian, in the sense

that he maximizes the sum of the expected present value of the intertempo-

ral consumer and producer surpluses, plus the welfare gains arising from tax

receipts:

W = E0

[∫ ∞

0

e−rt(S(Qt, xt)− π(Qt, xt) + (1 + λ)Tt)dt

]
+ U(x0) (5)

= E0

[∫ ∞

0

e−rt(S(Qt, xt) + λTt)dt

]
where λ > 0 indicates that a unit of tax revenue from the firm yields a net

welfare gain, by saving an excess burden of taxation in other markets.

See, for instance, Baron and Besanko (1984), Auriol and Picard (2009; 2013).
9As in Arve and Zwart (2014), Skrzypacz and Toikka (2015) and Buso et al. (2021),

this is equivalent to assuming that the firm’s private information is represented by two
stochastic processes, where the one representing the initial value is constant after time zero,
but influences the transitions of the second one.

10Note that this condition is strictly weaker than the standard increasing hazard rate
assumption (see, e.g., Guesnerie and Laffont 1984; Jullien 2000).
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We assume that government and the firm share the same time preferences,

i.e. the same discount rate r.

3 The optimal contract

3.1 Incentive-compatibility conditions

The initial value x0 is private information. Moreover, Eq. (1) implies that,

even if the government could get x0 revealed, this information would not be

sufficient to infer the ex-post values of xt. Hence, the government’s problem

consists of finding a mechanism capable of inducing the firm to truthfully

report xt (t ≥ 0).

This intertemporal adverse selection problem can be addressed by restrict-

ing attention to a smaller class of deviations called “consistent deviations”(Bergemann

and Strack, 2015).11

Borrowing this approach, the government’s problem can be solved in two

steps.

1. For any given initial value x0, the government will find it optimal to

commit himself to the repetition of a standard static regulatory contract

where, at each t > 0, the firm reports xt truthfully.

2. Since each future realization xt depends on the initial value x0 and the

contemporaneous shock Zt, i.e. xt = ϕ(x0, Zt), the government’s problem

reduces to induce the firm to report x0 truthfully.12

11The concept of “consistent deviations” can be summarized as follows. If a firm, whose
true initial type is x0, misreports by reporting x̂0, then she will continue to misreport, by
reporting x̂t = ϕ(x̂0, Zt) instead of the true value xt = ϕ(x0, Zt) in all t > 0. In other
words, since xt (t > 0) depends on x0, a firm misreporting with a “consistent deviation”,
continues to misreport her type xt in all future periods. This means that the type reported
at time t, x̂t, would have been be the true type if the initial value was x̂0, given the actual
contemporaneous shock, Zt. Notice that this definition is well suitable with Eq. (2): each
new realization of Zt determines a new realization of xt which depends only on time and
x0.

12Thereafter, we drop the direct dependence on time in ϕ(x0, Zt) for simplicity of the
notation.
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Thus, by the separability of the problem, the optimal tax schedule com-

prises two components. First, an annuitized fixed tax F (x0) for the revelation

of x0.
13 Second, a time-varying transfer TV (x0, xt) for the revelation of xt

(t > 0).

As usual, it is convenient to work backward, starting from t > 0. Assuming

that the government has already obtained a truthful report of x0, the firm’s

intertemporal utility at t > 0 becomes the sum over time of single standard

problems.

Specifically, by (3) and (4) , we get:

U(x0, x̂t, xt) = E0

[∫ ∞

0

e−rt(π(Q(x0, x̂t), xt)− TV (x0, x̂t)︸ ︷︷ ︸−F (x0))dt

]
(6)

where TV (x0, x̂t) is such that the firm truthfully reports x̂t = xt, for all t > 0.

Defining ũ(x0, x̂t, xt) = π(Q(x0, x̂t), xt) − TV (x0, x̂t), the necessary and

sufficient conditions for incentive-compatibility are the following:14

dũ(Q(x0, xt), xt))

dxt

= Q(x0, xt) for all t > 0 (7)

dQ(x0, xt)

dxt

> 0 for all t > 0 (8)

Q(x0, xt) ≥ 0 for all t > 0 (9)

Once TV (x0, xt) has been determined, it remains to determine the fixed

part F (x0), that is, the government’s problem reduces to a new single standard

adverse selection problem.

The firm’s utility becomes:

U(x0, x̂0) = E0

[∫ ∞

0

e−rt(π(Q(x̂0, ϕ(x0, Zt)), ϕ(x0, Zt)))− TV (x̂0, ϕ(x0, Zt)− F (x̂0))dt

]
,

(10)

13Alternatively, the fixed part could be charged up front, instead of being annuitized.
14The SOC for the problem is presented in Appendix A.
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where F (x̂0) is determined in such a way so as to induce the firm to report

truthfully the initial value x0.

As xt = ϕ(x0, Zt), the necessary and sufficient condition for incentive-

compatibility is now:

dU(x0)

dx0

= E0

[∫ ∞

0

e−rtQ(x0, ϕ(x0, Zt))
∂ϕ(x0, Zt)

∂x0

dt

]
(11)

whereas the second order sufficient condition is:

dQ(x0, xt)

dx0

≥ 0 (12)

with ∂(πQ(x0,ϕ(x0,Zt)),ϕ(x0,Zt))
∂ϕ(x0,Zt)

= Q(x0, ϕ(x0, Zt)).
15

3.2 The two-part tax

Let’s consider the first step. If x0 has already been revealed by the firm, the

government can determine the quantity to be produced at each time t and the

optimal variable tax amount by maximizing the following function:

max
Q(x0,xt),TV (x0,xt)

∫ xh

xl

{
E0

[∫ ∞

0

e−rt(S(Q(x0, xt), xt) + λT (x0, xt))dt

]}
g(x0)dx0,

(13)

where T (x0, xt) = F (x0)+TV (x0, xt), subject to (7) and (8) and the following

intertemporal participation constraint:

U(x0) ≥ 0 (14)

The participation constraint (14) stipulates that the total utility, and not,

therefore, necessarily the instantaneous utility, must be positive. That is, we

assume that the firm commits to stay in the contract, even if, in some phases

of the project, her instantaneous (after tax) profits turn out to be negative.16

15The SOC for the problem is presented in Appendix A.
16Indeed, as in Martimort and Straub (2016), we assume that profits in each period are

redistributed as dividends to the firm’s owners in the same period. However, unlike them,
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Since F (x0) does not depend on xt, we have a standard adverse selection

problem of regulation under asymmetric information (Baron and Myerson,

1982; Laffont and Tirole, 1993).

The general solutions for Q∗
t and TV ∗

t are (see Appendix B):

SQ(Q
∗(x0, xt), xt)+λπQ(Q

∗(x0, xt), xt))−λ
(1−G(x0))

g(x0)

∂ϕ(x0, Zt)

∂x0

= 0 for all t > 0

(15)

TV ∗(x0, xt) = π(Q∗(x0, xt), xt))−
∫ xt

0

Q(x0, z)dz for all t > 0 (16)

Given the optimal values of TV ∗(x0, xt) and Q∗(x0, xt), substituting (16)

into (6) gives:

U(x0) = E0

[∫ ∞

0

e−rt[

∫ xt

0

Q∗(x0, z)dz − F (x0)]dt

]
(17)

Since TV ∗(x0, xt) is such that the firm, given her initial report x0, will

reveal xt truthfully, the government’s problem reduces to a static design prob-

lem where (11)-(12) are the first and second order conditions for incentive-

compatibility.

By the Envelope theorem, Eq. (11) implies that:

U(x0) =

∫ x0

xl

E0

[∫ ∞

0

e−rtQ∗(y, xt)
∂ϕ(y, Zt)

∂y
dt

]
dy (18)

Using (17) and (18), we get the general solution for F ∗(x0):

F ∗(x0) = r

{
E0

[∫ ∞

0

e−rt[

∫ xt

0

Q∗(x0, z)dz]dt

]
−
∫ x0

xl

E0

[∫ ∞

0

e−rtQ∗(y, xt)
∂ϕ(y, Zt)

∂y
dt

]
dy

}
(19)

The following proposition characterizes the optimal contract, under the

assumptions presented in Section 2.

Proposition 1 For any given x0, the quantity supplied at each time t that

we assume that any current losses are covered via new equity. This simplifying assumption
implies that the firm does not need to build a liquidity buffer to maintain the firm afloat.
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solves problem (13) is given by:

Q∗(x0, xt) =
1 + λ

1 + 2λ

[
x0 −

λ

1 + λ

(1−G(x0))

g(x0)

]
xt

x0

for all t > 0 (20)

where ∂ϕ(x0,Zt)
∂x0

= xt

x0
.

The time-dependent variable tax (16) becomes:

TV ∗(x0, xt) = (xt −Q∗(x0, xt))Q
∗(x0, xt)−Q∗(x0, xt)

xt

2
for all t > 0 (21)

while the fixed tax (19) is:

F ∗(x0) = rE0

{∫ ∞

0

e−rt[Q∗(x0, xt)
xt

2
−
∫ x0

xl

Q∗(y, xt)
xt

y
dy]dt

}
(22)

Proof. Proof: See Appendix B

The LHS of (20) includes the information rents, 1−G(x0)
g(x0)

, which depend on

the initial value x0. As usual, there is no output distortion for the highest

type firm, i.e. Q∗(xh, xt) =
1+λ
1+2λ

xt, t > 0.

Notice that Eq. (20) can be written as:

Q∗(x0, xt) = Q∗(x0)
xt

x0

, (23)

where Q∗(x0) =
1+λ
1+2λ

[
x0 − λ

1+λ
1−G(x0)
g(x0)

]
is the optimal quantity at time zero.17

Eq. (23) indicates that the optimal quantity supplied at each time t > 0 is

given by the time zero quantity multiplied by an impulse response function, i.e.
∂ϕ(x0,Zt)

∂x0
= xt

x0
, capturing the effect of a small change of x0 on xt.

18 In addition,

both ∂Q∗∗(x0,xt)
xt

and ∂Q∗(x0,xt)
∂x0

= ∂Q∗(x0,xt)
x0

+ ∂Q∗(x0,xt)
xt

∂ϕ(x0,Zt)
∂x0

are positive.

To avoid corner solutions we make the following assumption, stating that

17Notice that Q∗(x0) can be written as x0

2 + 1
1+2λ

[
x0 − λ 1−G(x0)

g(x0)

]
, where x0

2 is the

profit-maximizing quantity and 1
1+2λ

[
x0 − λ 1−G(x0)

g(x0)

]
is the adjustment due to regulation.

18On the “impulse response function” see Pavan et al. (2014).
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the consumers’ willingness-to-pay for the first unit of the good is sufficiently

large so as to allow even the lowest type firm to earn a non-negative revenue.19

Assumption 1. k ≥ λ
1+λ

Let’s look more in detail at the instantaneous total tax payments:

T ∗(x0, xt) = F ∗(x0) + TV ∗(x0, xt) (24)

= rE0

[∫ ∞

0

e−rt[Q∗(x0, xt)
xt

2
−
∫ x0

xl

Q∗(y, xt)
xt

y
dy]dt

]
+(xt −Q∗(x0, xt))Q

∗(x0, xt)−Q∗(x0, xt)
xt

2

The third line of Eq. (24) indicates that, like in any standard adverse

selection problem, the variable component is given by the firm’s revenues, i.e.

(xt −Q∗(x0, xt))Q
∗(x0, xt), minus the information rents, Q∗(x0, xt)

xt

2
, paid to

the firm to reveal xt.

Notice, however, that the same rents also appear, with positive sign, in

the fixed component (first term in the second line). This means that the

government determines the fixed tax by anticipating the amount of information

rents that he will have to pay to induce the firm to disclose xt. However,

since the information initially obtained about x0 provides some elements for

predicting xt, that amount is reduced by the second term, which represents

the rents that the government expects to save in the future.

Using (23), F ∗(x0) can be simplified as follows (see Appendix B):

F ∗(x0) =
r

r − σ2

[
Q∗(x0)x0

2
−
∫ x0

xl

Q∗(y)dy

]
> 0 (25)

Eq. (25) indicates that the fixed tax is always positive and increasing

with x0, (
∂F ∗(x0)

∂x0
> 0). The reason is that, being a high value of x0 not so

informative about future demand levels, the higher is the revealed value of

19Since x0g(x0)
1−G(x0)

is increasing in x0, the quantity of the lowest type is Q∗(xl) =

1+λ
1+2λ

[
k − λ

1+λ

]
xl

k , which is always positive if k > λ
1+λ and null in the case of equality.
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x0, the greater the information rents the government expects to pay over the

contract term and, therefore, the higher is the fixed tax amount.

For the same reason, all other things being equal, the fixed tax increases

with the uncertainty parameter σ, i.e. ∂F ∗(x0)
∂σ

> 0.

From (24), it is easy to show that the discounted value at time zero of the

intertemporal public revenues is given by:

TT ∗(x0) = E0

[∫ ∞

0

e−rtT ∗(x0, xt)

]
dt (26)

=
(x0 −Q∗(x0))Q

∗(x0)

r − σ2
−
∫ x0

xl Q∗(y)dy

r − σ2

where the second term on the RHS indicates the discounted value of the in-

formation rents paid to a firm of type x0. As Q∗(x0) is lower then the time

zero profit-maximizing quantity x0

2
, the intertemporal revenues TT ∗(x0) are

decreasing in x0.

By substituting (26) into (4), we obtain the firm’s intertemporal utility:

U∗(x0) =

∫ x0

xl

Q∗(y)

r − σ2
dy (27)

with U∗(xl) = 0.

Finally, from (5) and (26), we obtain the government’s expected payoff:

W ∗(x0) =
S(Q∗

0, x0)

r − σ2
+ λE0

[∫ ∞

0

e−rtT ∗(x0, xt)

]
dt (28)

=
S(Q∗

0, x0) + λπ(Q∗
0, x0)

r − σ2
− λU∗(x0)

3.3 Permanent shocks

The tax schedule presented above is derived in a continuous-time setting where

private revenues are driven by demand conditions which are private informa-

tion to the firm.

In the traditional regulatory literature, a simplifying solution of this model
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is derived by assuming that the realizations of the state variable are perfectly

correlated over time.20 For instance, this is the framework used by Auriol and

Picard (2013), who argue that the optimal regulatory process consists of the

repetition of a static contract with time-independent transfers.

Indeed, the same result can be replicated in our model by assuming that

there is no uncertainty. Defining Tσ=0(x0) as the instantaneous tax pay-

ments under σ = 0, from (26) it is easy to get the Auriol and Picard’s time-

independent transfer:

T ∗
σ=0(x0) = rTTσ=0(x0) = (x0 −Q∗(x0)Q

∗(x0)−
∫ x0

xl

Q∗(y)dy (29)

Eq. (29) implies that the firm’s intertemporal utility is given by:

Uσ=0(x0) =

∫ x0

xl Q∗(y)dy

r
(30)

while the government’s payoff is:

Wσ=0(x0) =
S(Q∗

0, x0) + λπ(Q∗
0, x0)

r
− λUσ=0(x0) (31)

Notice, however, that if, despite σ > 0, the government used only fixed

levies, without subsequent adjustments, both sides would be worse off, that is:

U∗(x0) > Uσ=0(x0)

W ∗(x0) > Wσ=0(x0)

The reason is that, when the signals that the firm observes are imperfectly

correlated over time, the repetition of a static contract, only based on the initial

report x0, would lead to persistent and potentially increasing distortions.

20An exception is Baron and Besanko (1985), who analyze a continuing relationship be-
tween a regulator and a firm, where costs are private information and change over time
following an AR(1) process. In this case, they show that the distortions from the efficient
allocation vanish as t → ∞.
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4 A numerical example

4.1 Tax payments

For illustration purposes, we assume a uniform distribution G(x0) = x0−xl

xh−xl ,

with g(x0) =
1

xh−xl , which implies that 1−G(x0)
g(x0)

= xh−x0. Moreover, we assume

(unless otherwise indicated) that xl = 1, xh = 3, λ = 0.5, r = 0.05 and

σ = 0.20.

Figure 1 shows that the annuitized fixed tax F ∗(x0) monotonically increases

with the firm’s type x0. The reason is that, as already pointed out, the fixed-

tax amount positively depends on the information rents that the government

expects to pay over the franchise term. Since the higher is x0 the lower is its

informational value, the higher is x0 the greater is F ∗(x0).

Fig. 1: Change of F ∗(x0) with x0

Let’s now consider the instantaneous variable tax TV ∗(x0, xt), which can

be rewritten as a levy linked to the quantity supplied in each period:

TV ∗(x0, xt) = β(x0, xt)Q
∗(x0, xt), (32)

where β(x0, xt) = xt

2
− Q∗(x0, xt) = xt

1+2λ

[
λ1−G(x0)

g(x0)x0
− 1

2

]
xt is the excise tax

rate.

Figure 2a (where black xt = 1, red xt = 3, blue xt = 5; this legend

will remain the same in all following figures) shows that the tax base Q∗
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monotonically increases with the firm’s type and, for any given x0, with the

current realization xt . Regarding the tax rate, Figure 2b shows how β varies

with x0 and, for any given x0, with xt.

Three comments are in order. First, for any given realization xt, the higher

is x0, the lower will be the excise tax rate. Second, beyond a threshold value

of x0 (in our example, x0 = 1.5), β turns out to be negative, i.e. the excise tax

becomes a subsidy. Third, beyond the threshold, the higher is xt the greater

will be the subsidy rate.

Fig. 2a: Change of Q∗ with x0 and
xt

Fig. 2b: Change of β with x0 and xt

Taken together, Figure 1 and Figure 2b indicate that the two-part tax

schedule can be regarded as a risk sharing device whereby firms with a greater

revenue potential assume a risk, by signing a contract that involves high fixed

payments, in exchange of the government’s commitment to subsequently ad-

justing the variable tax rate. Indeed, when x0 is high, subsequent upward

demand shifts require a benevolent government to pay more information rents,

by reducing the tax rate β so that the firm will have no incentives to misreport

xt and to reduce the output at the detriment of the consumer surplus.

Notice that, as shown by Figure 3, the instantaneous net total amount of

government revenue T ∗ can turn out to be negative. For instance, this could

occur at values of xt significantly higher than the initial value x0 (e.g., x0 = 2.3

and xt = 5), in which case the subsidies received by the firm would be greater

than the fixed fee.
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Fig. 3: Change of T ∗ with x0 and xt

This highlights how the project’s riskiness is shared between the parties.

For instance, from the firm’s point of view, the worst scenario is that in which,

although market expectations were very promizing at the time of contracting

(high x0), the firm is subsequently hit by demand shocks that significantly

reduces profit margins (very low xt). Conversely, the impact of a negative

shock is relatively less significant for firms with lower profit expectations.

4.2 The effect of λ

The regulatory scheme, and thus the tax schedule, is affected among other by

the parameter λ that captures the weight attached by the government to public

revenues. For instance, an increase in λ causes the government to prioritize

budgetary issues at the expense of the output level, in so doing sacrificing part

of the consumer surplus. That said, it is worth analysing the effect of λ on

the composition of tax receipts, namely on the optimal amount of fixed and

variable transfers.

From (24) and (26), the present value of total expected variable payments

is given by:

TTV ∗(λ, x0) =
1

r − σ2

[
(x0 −Q∗(λ, x0))Q

∗(λ, x0)−
Q∗(λ, x0)x0

2

]
(33)
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while, from (25), the present value of total fixed payments is given by:21

TF ∗(λ, x0) =
1

r − σ2

[
Q∗(λ, x0)x0

2
−
∫ x0

xl

Q∗(λ, y)dy

]
(34)

Figures 4a and 4b describe the effect of λ ∈ [0.4, 1] for a “high-type”

(x0 = 2.2) firm (red line) and a “low-type” firm (x0 = 1.2) (black line) on (33)

and on (34) respectively.

The effect of an increase of λ on the variable component is similar for both

types (Figure 4a), insofar as an increase of the shadow cost of public funds

leads to a reduction of the intertemporal subsidies received by the high-type

firm or, equivalently, to an increase of tax payments for a low-type firm. The

simple intuition is that a government attaching more weight to budgetary

aspects will find it convenient to reduce the information rents paid during the

franchise period.

On the contrary, the effect of an increase λ on the fixed payments is not

univocal (Figure 4b): while they always increase with λ for the high-type firm,

they decrease for the low-type firm.22 The reason is that the fixed tax must be

calibrated against the rents that the government expects to save in the future

by inducing the firm to reveal her type x0.

As a low value of x0 is relatively more informative about future demand

levels, a government attaching more importance to budgetary issues can find

it more “productive” to gain information on x0 when it is low (i.e. to reduce

the fixed tax) instead of adjusting (i.e. lowering) later the variable tax rate to

gain information on the current demand levels.

21In the formulas we add λ to highlight how this parameter impacts on the optimal tax
payments.

22This result is analytically proven in the Appendix C, where it is shown that, when x0 is
low, the derivative of TF with respect to λ can be negative if the rents that the government
expects to pay in the future (first term in square brackets of Eq. (34) decreases more with λ
than the rents paid to induce the firm to truthfully reveal x0 (second term in square brackets
of Eq. (34)).
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Fig. 4a: Change of TTV ∗ with λ and
x0

Fig. 4b: Change of TF ∗ with λ and
x0

4.3 Implementing the contract

Instead of using a truthful direct mechanism, the government can use an in-

direct mechanism which does not require exchange of information between

the parties (Laffont and Tirole, 1993). Specifically, in our model, an indirect

mechanism would involve letting the firm to decide the production level and

determining the tax payments on the basis of the observable output.

As under our assumptions all functions are invertible, i.e. x0 = Q−1(Q0)

and xt = Q−1(Q0)Qt

2
, substituting in Eq. (24) and rearranging we get the

optimal tax schedule as a function of the time zero and the current production

level, which replicates the same choice of output as with the direct revelation

mechanism:

T ∗(Q0, Qt) = F ∗(Q−1(Q0)) + TV ∗(Q−1(Q0),
Q−1(Q0)Qt

2
), for t ≥ 0.(35)

= F ∗(Q−1(Q0)) + γ(Q0)Q
2
t

with γ(Q0) =
Q−1(Q0)

2Q0
− 1.

Notice that Eq. (35) can be reformulated as an equivalent adaptive regu-

latory mechanism capable of adjusting the levies that the firm will bear over

time in response to (and to be suitable for) new situations of demand. Indeed,

after some algebraic steps and approximating the tax schedule in discrete time,
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we get:

T ∗
t = T ∗

t−1 + γ(Q0)
(
Q2

t −Q2
t−1

)
for t ≥ 0 (36)

with T ∗
0 = F ∗(Q0) +

(
Q−1(Q0)

2
−Q0

)
Q0, and where γ(Q0) now represents an

adjustment coefficient that applies to the difference between time t and time

t− 1 production.

The firm chooses at time zero the adjustment coefficient γ(Q0) and, con-

sequently, the payment T ∗
0 , and then the adaptive regulatory policy can start.

For instance, using the same parameters and the uniform distribution as in

section 4.1, if Q0 =
9
8
(i.e. the firm’s type is x0 = 1.5), Eq. (36) becomes:

T ∗
t = T ∗

t−1 −
1

3

(
Q2

t −Q2
t−1

)
, with γ = −1

3
and T ∗

0 = 1.56

Instead, if Q0 = 3 (i.e. x0 = 3), the adaptive mechanism becomes:

T ∗
t = T ∗

t−1 −
1

2

(
Q2

t −Q2
t−1

)
, with γ = −1

2
and T ∗

0 = 4. 38

Eq. (36) also allows to further highlight the impact of the government’s

objectives, namely the effect of the parameter λ on the optimal tax schedule.

As already pointed out, an increase of λ brings about a reduction of the role

that time-adjusted transfers play within the regulatory mechanism. Indeed,

Eq. (36) implies that it would be optimal to simply use a flat tax if γ(Q0) = 0,

which happens only when x0 =
3λ
1+λ

.

Thus, whereas it would never be optimal to use a flat tax if λ < 0.5, it is

always possible to find a firm’s type such that γ = 0 if λ ≥ 0.5. For instance,

if λ = 0.5, as assumed in our numerical example, it would be optimal to use

a flat tax only if the firm happened to be the one with the lowest possible

revenue potential, i.e. x0 = 1.

5 Final remarks

An important issue when designing PPPs is the correct assignment of risks.

Moreover, as these contracts often consist of exclusive right-to-sell agreements,

21



public authorities need to take into account potential inefficiencies arising from

market power and information imbalances.

In this paper we have addressed these related issues, by focusing on con-

tracts under which a private firm agrees to pay a sum of money for the right

to sell a good or service, within an exclusive market, by managing an existing

public asset.

As a main result of our analysis, we have shown that when contracting

authorities face agents holding private information on the project’s returns,

evolving in such a way that the information obtained at the award stage is

not fully informative about future earnings, optimal regulation requires an

appropriate combination of fixed and variable payments to the government.

For instance, firms with a greater revenue potential should be charged with

relatively high fixed fees. However, incentive-compatibility requires subsequent

downward adjustments of the variable pay, namely in the case where revenues

perform beyond expectations. Indeed we find that it might be optimal, in

some circumstances, to subsidize the firm. On the other hand, agents with

lower potential must be charged with low fixed payments, in exchange of the

commitment to pay a greater share of their proceeds, should revenues increase

during the contract period.

It is not unusual to observe public franchises where concessionaires are

charged with flat fees. However, when private returns are affected by im-

perfectly correlated shocks, this leads to inefficient outcomes, as both parties

would be better off under a well calibrated two-part schedule. Indeed, a flat

pay system could be justified only when there is little uncertainty about private

proceeds. Alternatively, a system tending to favor the fixed component over

the variable one could find justification in the importance attributed by the

government to public revenues, in which case the adaptive function of time-

dependent transfers would be sacrificed, favoring instead the receipts provided

by fixed charges.

22



Appendix A

Neglecting to indicate the dependence on x0, we can write:

ũ(xt, x̂t) = (xt −Q(x̂t))Q(x̂t)− TV (x̂t) (A.1)

where x̂t is the report by the firm’s type xt

The FOC with respect to x̂t is:

∂ũ(xt, x̂t)

∂x̂t

= (xt −Q(x̂t))
dQ(x̂t)

dx̂t

−Q(x̂t)
dQ(x̂t)

dx̂t

− dTV (x̂t)

dx̂t

= 0 (A.2)

A truthful report is optimal if, at x̂t = xt:

∂ũ(xt, x̂t)

∂x̂t

∣∣∣∣
x̂t=xt

= 0

Further, the local SOC is:

∂2ũ(xt, x̂t)

∂x̂2
t

= (xt−Q(x̂t))
d2Q(x̂t)

dx̂2
t

−2(
dQ(x̂t)

dx̂t

)2−Q(x̂t)
d2Q(x̂t)

dx̂2
t

−d2TV (x̂t)

dx̂2
t

|x̂t=xt≤ 0

(A.3)

Since, when x̂t = xt, Eq. (A.2) is an identity, the derivative is zero, i.e.:

dQ(x̂t)

dx̂t

+(xt−Q(x̂t))
d2Q(x̂t)

dx̂2
t

−2(
dQ(x̂t)

dx̂t

)2−Q(x̂t)
d2Q(x̂t)

dx̂2
t

−d2TV (x̂t)

dx̂2
t

|x̂t=xt= 0

(A.4)

By replacing (A.4) in (A.3), we obtain:

∂2ũ(xt, x̂t)

∂x̂2
t

∣∣∣∣
x̂t=xt

=
dQ(x̂t)

dx̂t

=
dQ(xt)

dxt

≥ 0 (A.5)

that is condition (8) in the text.

Once xt > 0 is known, the firm’s intertemporal utility becomes:
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U(x0, x̂0) = E0

[∫ ∞

0

e−rt(π(Q(x̂0, ϕ(x̂0,Wt)), ϕ(x̂0,Wt)))− TV (x̂0, ϕ(x̂0,Wt)− F (x̂0))dt

]
(A.6)

where x̂0 is the report by the firm’s type x0 and the time-varying xt depends

on x̂0 through the function xt = ϕ(x̂0,Wt).

Therefore, by using Eq. (A.3), the FOC with respect to x̂0 is:

∂U(x0, x̂0)

∂x̂0

= E0

[∫ ∞

0

e−rt(
∂πt

∂Qt

dQt

dx̂0

− dTVt

dx̂0

− dF

dx̂0

)dt

]
= 0 (A.7)

while the local SOC is:

∂2U(x0, x̂0)

∂x̂2
0

= E0

[∫ ∞

0

e−rt(
∂2πt

∂Q2
t

dQt

dx̂0

+
∂πt

∂Qt

d2Qt

dx̂2
0

− d2TVt

dx̂2
0

− d2F

dx̂2
0

)dt

]
≤ 0

(A.8)

A truthful report is optimal if at x̂0 = x0:

∂U(x0, x̂0)

∂x̂0

∣∣∣∣
x̂0=x0

= 0

and:
∂2U(x0, x̂0)

∂x̂2
0

∣∣∣∣
x̂0=x0

≤ 0

Totally differentiating Eq. (A.7), we get:

E0

[∫ ∞

0

e−rt

(
∂2πt

∂Q2
t

dQt

dx̂0

+
∂πt

∂Qt

d2Qt

dx̂2
0

+
dxt

dx̂0

dQt

∂x̂0

− d2TVt

dx̂2
0

− d2F

dx̂2
0

)
dt

]
|x̂0=x0= 0

(A.9)

Finally, by replacing Eq. (A.9) in Eq. (A.8), we obtain:

∂2U(x0, x̂0)

∂x̂2
0

= −E0

[∫ ∞

0

e−rt

(
dxt

dx̂0

dQt

∂x̂0

)
dt

]
|x̂0=x0≤ 0
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A sufficient condition for the previous equation to hold is:

dQt

dx̂0

=
dQt

dx0

≥ 0 (A.10)

that is condition (12) in the text.

Appendix B

Proof of Proposition 1

The standard approach to solve Eq. (13) is to ignore, for the moment, the

the second order conditions, Eqs. (8) and (12), and to solve the relaxed prob-

lem. By the Envelope theorem (see Milgrom and Segal, 2002, Theorem 1 and

Theorem 2), Eq. (11) implies that:

U(x0) =

∫ x0

xl

E0

[∫ ∞

0

e−rtQ(y, xt)
∂ϕ(y, Zt)

∂y
dt

]
dy (B.1)

where the lowest demand gets zero utility, i.e. U(xl) = 0 . Integrating B.1 by

part we get:∫ xh

xl

U(x0)g(x0)dx

=

∫ xh

xl

E0

[∫ ∞

0

e−rtQ(x0, xt)
∂ϕ(x0, Zt)

∂x0

dt

]
(1−G(x0))

g(x0)
g(x0)dx0 (B.2)

From Eq. (4) we get:

∫ xh

xl

{
E0

[∫ ∞

0

e−rtT (x0, xt)dt

]}
g(x0)dx0 (B.3)

= −
∫ xh

xl

U(x0)g(x0)dx+

∫ xh

xl

{
E0

[∫ ∞

0

e−rt(π(Q(x0, xt), xt))dt

]}
g(x0)dx0

= −
∫ xh

xl

{
E0

∫ ∞

0

e−rt[Q(x0, xt)
(1−G(x0))

g(x0)

∂ϕ(x0, Zt)

∂x0

+ π(Q(x0, xt), xt))]dt

}
g(x0)dx0
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Substituting (B.3) in the objective function (13), we obtain:

max
Q(x0,xt)

∫ xh

xl

{
E0

[ ∫∞
0 e−rt[S(Q(x0, xt), xt) + λπ(Q(x0, xt), xt))

−λQ(x0, xt)
(1−G(x0))

g(x0)
∂ϕ(x0,Zt)

∂x0
]dt

]}
g(x0)dx0

(B.4)

Differentiating Eq. (B.4) with respect to Qt we obtain the first order

condition for the optimal output:

SQ(Q
∗∗(x0, xt), xt) + λuQ(Q

∗∗(x0, xt), xt))− λ
(1−G(x0))

g(x0)

∂ϕ(x0, Zt)

∂x0

= 0

(B.5)

Since ∂ϕ(x0,Zt)
∂x0

= xt

x0
and given the the assumption on (1−G(x0))

g(x0)
, both the second

order conditions, Eqs. (8) and (12), are satisfied, i.e.:

dQ∗(x0, xt)

dxt

> 0 and
dQ∗(x0, xt)

dx0

> 0 (B.6)

Let’s now derive the time-variant payment contract TV ∗(x0, xt). For each

time t > 0, integrating Eq. (7), we obtain:

ũ(Q∗(x0, xt), xt)) =

∫ xt

0

Q(x0, z)dz (B.7)

where ũ(Q∗(x0, 0), 0)) = 0. Substituting Eq. (B.7) into Eq. (A.1) we obtain:

TV ∗(x0, xt) = π(Q∗(x0, xt), xt))−
∫ xt

0

Q∗(x0, z)dz, (B.8)

while substituting (B.8) in (6) we get:

U(x0, xt) = E0

[∫ ∞

0

e−rt[

∫ xt

0

Q∗(x0, z)dz − F (x0)]dt

]
(B.9)

We now turn to the second problem (10)-(12). Since by construction of

TV ∗(x0, xt), independently of his initial report x0, the firm finds it optimal to
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report xt truthfully, the firm’s value can be rewritten as:

U(x0, x̂0) = E0

[∫ ∞

0

e−rt((π(Q∗(x̂0, xt), ϕ(x0, Zt))− TV ∗(x̂0, xt))− F (x̂0))dt

]
(B.10)

where x0 is the true initial shock and x̂0 is the one reported. In addition, as it is

optimal to report xt truthfully for all t, we have that
∂

∂xt
(π(Q∗(x̂0, xt), xt)− TV ∗(x̂0, xt)) =

Q∗(x0, xt). Thus, as xt = ϕ(x0, Zt), the derivative of Eq. (B.10) with respect

to the initial shock x0 reduces to Eq. (11), while the integral of Eq. (11) with

respect to x0 is simply Eq. (B.1):

U(x0) =

∫ x0

xl

E0

[∫ ∞

0

e−rtQ∗(y, xt)
∂ϕ(y, Zt)

∂y
dt

]
dy

Finally, equalizing (B.1) and (B.9) we obtain:

U(x0) =

∫ x0

xl

E0

[∫ ∞

0

e−rtQ∗(y, xt)
∂ϕ(y, Zt)

∂y
dt

]
dy

= E0

[∫ ∞

0

e−rt[

∫ xt

0

Q∗(x0, z)dz − F (x0)]dt

]
= U(x0, xt)

and solving for F ∗(x0), we get:

F ∗(x0) = r

{
E0

[∫ ∞

0
e−rt

[∫ xt

0
Q∗(x0, z)dz

]
dt

]
−
∫ x0

xl

E0

[∫ ∞

0
e−rtQ∗(y, xt)

∂ϕ(y,Wt)

∂y
dt

]
dy

}
(B.11)

Proof of formula (25)

Recalling that Q∗(y, xt) = Q∗(y)xt

y
and ∂ϕ(y,Wt)

∂y
= xt

y
, we get:

E0

[
Q∗(y, xt)

xt

y

]
= Q∗(y)

1

y2
E0

[
x2
t

]
= Q∗(y)eσ

2t
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where E0(x
2
t ) = y2eσ

2t. Therefore, the second term on the R.H.S. of Eq, (B.11)

reduces to:

∫ x0

xl

E0

[∫ ∞

0

e−rtQ∗(y, xt)
∂ϕ(y, Zt)

∂y
dt

]
dy

=

∫ x0

xl

[∫ ∞

0

e−rtE0[Q
∗(y, xt)

xt

y
]dt

]
dy (B.12)

=
1

r − σ2

∫ x0

xl

Q∗(y)dy

Let consider now the first term of Eq. (B.11). Applying the same approach

as before, we can write:

E0

∫ xt

0

Q∗(x0, z)dz =
Q∗(x0)

x0

E0

∫ xt

0

zdz (B.13)

= Q∗(x0)
x0e

σ2t

2

Therefore, the first term on the R.H.S. of Eq. (B.11) reduces to:

E0

[∫ ∞

0

e−rt[

∫ xt

0

Q∗(x0, z)dz]dt

]
(B.14)

=
x0

2(r − σ2)
Q∗(x0)

Putting together (B.12) and (B.14) we obtain:

F ∗(x0) =
r

(r − σ2)

[
Q∗(x0)x0

2
−
∫ x0

xl

Q∗(y)dy

]
(B.15)

In addition, since dQ∗(x0)
dx0

> 0, the fixed part F ∗(x0) is always positive.
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Appendix C

By some algebra, we can write TF ∗(x0) as:

TF ∗(x0) =
1

(r − σ2)

[
Q∗(x0)x

l

2
+

1

2

(∫ x0

xl

(Q∗(x0)− 2Q∗(y))dy

)]
(C.1)

where Q∗(x0) =
x0

2
+ 1

1+2λ

[
x0 − λ1−G(x0)

g(x0)

]
.

Thus, substituting Q∗(x0) in (C.1), the sign of ∂F ∗

∂λ
is driven by the sign of

the following term:

sign
∂F ∗

∂λ
= sign

{[
x2
0 − (xl)2 − 1

2

1−G(x0)

g(x0)
x0

]
+

∫ x0

xl

1−G(y)

g(y)
dy

}
The second term of the previous equation is always positive, while the first

term is negative when x0 is sufficiently low.
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