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Thanks to storage and P2P, households can strategically decide their optimal course of
action and their optimal energy production/consumption patterns and can actively offer
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1 Introduction

The need for deep decarbonization of the energy sector has become a primary objective in the
European political and economic debate (European Commission, 2014; European Commission,
2019). The challenge to reach zero-carbon emissions, while enhancing energy system secu-
rity and energy affordability represents nowadays the fundamental trilemma of power networks
(Morstyn et al., 2018).
Among various action plans (e.g., increase in energy efficiency, expansion of renewable energy
supply, etc.), the deployment of distributed renewable energy resources (DERs) and the adoption
of consumer-level communication and control systems (e.g., smart meters, demand-side man-
agement, etc.) are the most important technology trends adopted to address this issue (Morstyn
et al., 2018; Dato et al., 2020). DERs, specifically photovoltaic (PV) plants, have been largely
adopted worldwide in the last decade thanks to technological innovation, economies of scale
effects, and policy incentives.
The global capacity of PV plants reached about 580 GW at the end of 2019, of which about
98 GW were commissioned during 2019 (IRENA, 2019). These new capacity additions demon-
strate the major role of PV technologies in the transition to a cleaner electricity sector (Roberts
et al., 2019; IRENA, 2021).
Early investments in PV systems used to be driven by government incentives, such as Feed-
inTariffs (FiTs). These incentives have now been diminished or eliminated across the world,
as PV plants are almost profitable due to sole market remuneration and grid parity has been
reached in Europe, the USA, and many other Countries worldwide (Radl et al., 2020; IRENA,
2021). As a result, the focus is no longer on maximizing PV generation, but on maximizing
self-consumption to reduce energy costs (Radl et al., 2020).
Due to the increase in DERs market supply, in many EU Countries, self-consumption has been
promoted to alleviate the pressure placed by distributed power plants on utility grids (Rodrigues
et al., 2020). An increase in self-consumption can be indeed beneficial for (i) energy users to
reduce energy costs and (ii) for grid managers to reduce management costs of power networks
(Roberts et al., 2019; Koskela et al.,2019; Castellini et al. 2021a; Andreolli et al., 2022).
In this regard, battery energy storage systems represent useful technologies to significantly
increase self-consumption and, in turn, reduce supply-demand mismatches. Indeed, surplus
energy caused by mismatches between the load demand and the PV generation during peak
solar irradiance hours could be curtailed, stored in a battery, or exchanged with other users
(Madlener and Specht, 2019; Rodrigues et al., 2020).
It is worth noting that the rapid and continuous deployment of DERs has given rise to the need
for the design of a new power system, decentralized and digitalized (Castellini et al., 2021a).
In this context, traditional passive consumers become “prosumers” (i.e., agents who produce,
consume, and eventually store and share energy locally) and can actively manage their patterns
of consumption, generation, storage, and energy sharing (Parag and Sovacool, 2016; Morstyn
et al., 2018; Azim et al., 2020; Castellini et al., 2021b).
The new role of prosumers and the paradigm shift in the energy sector have increased the de-
mand for flexibility of energy consumption by end-users (An et al., 2020; Bertolini et al., 2018a;
Madlener and Specht, 2019; Dato et al., 2020). To address this issue, Peer-to-Peer (P2P) trad-
ing and energy communities (ECs) have emerged as a potential solution to integrate small-scale
consumers into energy markets. Directives 2018/2001/EU and 2019/944/EU marked a mile-
stone in the recognition of the centrality of consumers and prosumers in the energy transition
and the creation of “integrated competitive, consumer-centered, flexible, fair and transparent
electricity markets in the EU” (EC, 2019-Directive 2019/944/EU).
Prosumers and consumers can aggregate in ECs, which can potentially act as nodes in a decen-
tralized, polycentric system of energy production, management, and consumption (Gui et al.,
2017; Moroni and Tricarico, 2017), in which they can dynamically trade energy via P2P trading,
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thus encouraging a sustainable and reliable generation and consumption of energy within the
EC (Azim et al., 2020; D’Alpaos and Andreolli, 2021). P2P trading permits not only prosumers
to obtain benefits from exchanging surplus energy locally, but also to minimize transmission
losses and preserve the stability of the grid and energy supply (Zhang et al., 2018; An et al.,
2020; Karami and Madlener, 2022; Wu et al., 2022).
Battery storage and P2P trading provide, therefore, valuable opportunities to improve self-
consumption in PV generation, reduce energy costs and decrease peak demand. Furthermore,
these technologies give prosumers additional operational flexibility (e.g., active management
of self-consumption patterns, energy exchanges with other agents and the grid, etc.) thanks
to which they can strategically optimize their production/consumption patterns and increase
investment value (Bertolini et al., 2018a; Castellini et al., 2021a; Andreolli et al., 2022) by
exercising operating options embedded in the investment and deciding the optimal investment
timing and size. This in turn increases investments attractiveness and contributes to the hedg-
ing of investment risks. Traditional capital budgeting techniques, which are grounded in the
Net Present Value (NPV) rule, such as discounted cash flow analysis, have been largely adopted
in the literature to assess the value of investments in DERs, nonetheless, it is widely recognized
that they do not model uncertainty properly and fail to capture the value of operating options,
i.e. the value of flexibility to adapt and revise later decisions in response to unexpected market
events (Dixit and Pindyck, 1994; Trigeorgis, 1996). Indeed, the high uncertainty and irre-
versibility which characterize investments in DERs make prosumers’ strategic decision-making
extremely difficult (Martinez Ceseña et al. 2013; Bigerna et al., 2016; Schachter and Mancar-
ella, 2016; Cambini et al., 2016). Although there is flourishing literature on the value of energy
storage and the effects of P2P trading on prosumers’ behavior and investment decisions, as
recently reported by Andreolli et al. (2022) and Castellini et al. (2021a), respectively, there is
still some room for unexplored issues related to the combined effects of flexibility generated by
energy storage and P2P trading within EC members on the value of investments in PV plants
coupled with battery storage, namely PV-battery systems (PVBs).
In this paper, we complement the existing literature and investigate whether P2P trading can
add to PVBs value and affect the decision on the optimal investment timing and size. In detail,
we provide a theoretical and methodological framework to model the decision of two households
to invest in a PVB in a P2P trading scenario. We investigate whether the combined adoption of
battery storage systems and the participation in P2P markets can effectively increase the prof-
itability of PVBs and affect the decisions on optimal investment timing and the plant optimal
size. To capture the value of managerial and operational flexibilities we develop a real options
model to mimic a household investment decision to adopt a PVB plant when P2P trading is
admitted. In our setting households are integrated into an EC and can satisfy their energy de-
mand by a) self-consuming PV production, b) storing excess PV production in a battery, and c)
exchanging PV production both with the grid and other households who participate in the EC
via P2P trading. In a two-agent context, we determine the size of the plant which maximizes
the households’ net benefit (i.e., minimizes energy costs), and the threshold which triggers the
investment. We calibrated and tested our model in the Italian context according to data from
the Italian electricity market. We show that P2P trading increases the investment value and
encourages households to invest in larger PVBs compared to the size of PVBs that they adopt
when P2P trading is not admitted. We prove that the households’ flexibility to strategically
decide their investment timing and their production/consumption patterns and in addition the
possibility they are guaranteed to switch from self-consumption to production permits to in-
crease the PVB investment value. In contrast to standard results in the real options literature,
our findings reveal that an increase in the volatility of energy prices accelerates the investment
and, in turn, reduces the PVB size. According to our results, it emerges a trade-off between
the value of the option to defer the investment and the value of the option to switch which is
embedded in the project.
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The remainder of the paper is organized as follows. Section 2 briefly presents the relevant
related literature; Section 3 discusses the model set-up; Section 4 and 5 present the real options
model and investigate the investment value and the optimal investment strategy, respectively;
Section 6 provides parameter estimates and illustrates the model calibration; Section 7 describes
numerical simulations and discusses main results; Section 8 concludes.

2 Related Literature

We investigate households’ decisions to invest in PVBs and exchange energy quotas via P2P
trading. By combining investment decisions under uncertainty with optimal investment timing
and size we contribute both to the existing literature on the real options approach to investment
decisions in the energy sector and the existing literature on investments in PVBs and P2P
trading. In detail, we complement the literature that investigates the profitability of investments
in PVBs and participation in P2P ECs by residential end-users (Long et al., 2018; Nguyen et al.,
2018; Baez-Gonzalez et al., 2019; Zepter et al., 2019). As reported in two recent contributions
by Castellini et al. (2021a), D’Alpaos and Andreolli (2020a) and Andreolli et al. (2022),
who provide an up-to-date state of the art on this issues, most of the contributions in this
research domain combine optimization models with traditional capital budgeting techniques
to firstly determine the optimal operation strategy and system size and secondly evaluate the
investment’s profitability. Nonetheless, the number of contributions in the literature to the
optimal investment timing and the value of flexibility of the operating options embedded in
investments in PVBs is still limited, specifically for market and regulatory settings where P2P
trading is admitted. This paper aims to analyze whether the additional flexibility generated by
P2P trading can increase the value of investments in PVBs, thus affecting households’ strategic
decision-making. Our contribution stems from the seminal piece of work by Bertolini et al.
(2018a) and those by Castellini et al. (2021b) and Andreolli et al. (2022) and we complement
and extend them, by combining the investigation of the effect on the investment strategy of the
managerial flexibility generated by energy storage coupled with PV plants to the investigation
on the effect of the managerial flexibility which arises from P2P trading among EC members.

Bertolini et al. (2018a) analyze in a real options framework the decision to invest in a
PV plant of households connected to both a smart grid and the national grid. According
to their findings, the opportunity of selling energy to the national grid via the smart grid
increases the value of investments in domestic PV plants as the households (i.e., prosumers)
can optimally exercise the option to decide prosumption quotas and the switching switch from
prosumption to pure production according to market conditions. This opportunity, in turn,
encourages households to invest in larger PV plants compared with those designed for pure
self-consumption when the households are not connected to a smart grid. In line with Bertolini
et al. (2018a), Castellini et al. (2021a) develop a real options model to investigate the optimal
investment strategy of households that undertake investments in PV plants when P2P trading
is admitted. They determine the optimal PV plant size based on the effect of households’ self-
consumption profiles on P2P trading and show that the shape of households’ energy demand
and supply curves is crucial to the efficiency of P2P trading.

By contrast, Andreolli et al. (2022) model the decision of households connected exclusively to
the national grid to invest in domestic PVBs and capture the value of the embedded managerial
flexibility. According to their findings, the opportunity of storing energy via batteries increases
the PV investment value and encourages households to invest in larger PV plants compared to
those not paired with batteries.

Although it is grounded in traditional capital budgeting techniques and does not capture the
value of flexibility, the contribution by Luth et al. (2018) deserves a mention. Luth et al. (2018)
investigate the contribution of batteries placed at the end-user level (i.e., individually owned
batteries) vs batteries shared among community members (i.e., community-owned batteries)
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who can benefit from P2P trading. Their results show that batteries and P2P trading contribute
to reducing households (i.e., prosumers) energy costs.

The novelty of our contribution resides in the assessment of the value of flexibility induced
by energy storage and P2P trading. The value of this flexibility is strongly related to the un-
certainty over energy prices. In addition, by developing and implementing a dynamic stochastic
optimization model, we determine the PVB optimal investment timing and size. Our objective
is twofold: determine whether and to which extent storage and P2P affect the optimal invest-
ment strategy and, in turn, to verify whether and to which extent managerial flexibilities that
are generated by coupling PV plants and storage in a P2P trading regulatory framework can
effectively encourage investments in RES and ECs.

3 Model set up

We investigate the case of household i, currently connected to a national grid under a flat
contract, who has to decide whether and when to invest in a PVB to cover part of its energy
demand. The adoption of a battery guarantees the storage of surpluses in PV generation and,
in turn, the increase in self-consumption quotas. In addition, the household can also decide
to create a local EC by connecting its PVB plant to another household j’s PVB plant and
exchange excess energy production via P2P trading. Consequently, via the increase in self-
consumption and energy P2P trading within the local EC, household i can reduce energy quotas
purchased from the grid, which are necessary to satisfy its total energy demand. Although
households’ primary target aims at electricity consumption, P2P trading permits households
i and j to interact within the EC and with the grid, thus reducing operational issues related
to grid management (e.g., network imbalances, congestions, etc.), and coordinate their actions
efficiently.
Our model grounds in the following simplifying assumptions:

Assumption 1

Household i energy demand. Energy demand of household i per unit of time t is
normalized to 1 (i.e., 1 Mwh):

1Mwh = ξiαi + ρi(αj − ξjαj − s(αj)) + s(αi) + γi, (1)

where αi is the expected PV production per unit of time and represents the control variable of
household i, ξi ∈ [0, 1] identifies self-consumed PV production, s(αi) is PV production stored
in the battery, γi is grid-purchased energy and, consequently, ρi(αj − ξjαj − s(αj)) is energy
purchased from household j to satisfy energy demand. In detail, ρi ∈ [0, ρi] represents energy
quotas supplied by household j, which household i is willing to buy, whereas ρi represent the
maximum of energy quotas, which households can reasonably exchange (Castellini et al., 2021b).

Assumption 2

Energy stored in the battery. Batteries permit to increase self-consumption, by storing
excess in PV production during the day-time and discharging it during night-time, when there
is no PV generation. Household i’s energy quota discharged by the battery is described as
follows:

s(αi) = θiαi (2)

where θi ∈ (0, 1− ξi) is the quota of αi stored and consumed during night-time to satisfy night
demand, and 1− ξi is the maximum PV production quota, which can be stored in the battery.
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In other words, θi represents the increase in self-consumption of household i thanks to the
adoption of battery storage1.

According to literature, battery size in kWh per installed kWp PV power is assumed constant
and falls into the range [0.5; 1:5] to guarantee that self-consumption is cost-effective (Luthander
et al., 2015; Cucchiella et al., 2016; Quoilin et al., 2016). The adoption of batteries sized larger
than 1.5 kWh per installed kWp PV power does not increase significantly self-consumption,
as batteries can not discharge completely during night-time, thus limiting storage potential the
next day (Weniger et al., 2014a; Weniger et al., 2014b; D’Alpaos and Andreolli, 2020b; Andreolli
et al., 2022).

It is worth noting that battery storage is meant to increase solely the self-consumption of
household i, regardless of its participation in P2P trading. Indeed, the use of batteries is justified
by savings due to its use and not by revenues due to selling to neighbors, as the household having
high storage capacity and high excess generation during certain hours can influence the market
in other hours, which discourages other households to participate in the P2P market (Paudel
et al., 2019).

Assumption 3

Households management of energy exchange. Most of the contributions in literature
analyze the profitability of P2P trading by considering an EC constituted by multiple partic-
ipants, who are connected via bidirectional power and communication flows (Luo et al., 2014;
Zhang et al., 2018; Gonzalez-Romera et al., 2019; Paudel et al. 2019). By assuming that P2P
markets are active during the daytime when the PV plant is in operation (i.e., between 9.00
a.m. and 6.00 p.m.), they propose a trading scheme, in which a single household at a time has
availability of excess energy when the other requires energy. In other words, by acting cooper-
atively, when households cannot satisfy their demand via their own supply, they can purchase
energy from other households that have excess energy to sell (Luo et al., 2014).

For the sake of simplification, we analyze the case of two households i and j which exhibit
asymmetric load curves. This assumption is in line with existing literature on local P2P energy
markets. As in Castellini et al. (2021a), households i and j behave complementarily in demand
and supply of exchanged energy, and, in addition, the quota of energy bought from household i
cannot be greater than the excess energy quota of household j. Figure 1 illustrates in its upper
side an example of daily load and PV production curves of households i and j, respectively,
whereas in its lower side it depicts energy purchased from the grid, energy stored in the battery,
energy exchanged, the quota of energy stored and the energy exchanges between households
can be satisfied. From this simplification, it is possible to observe that for household i the total
energy demand (1MWh) is satisfied via energy self-consumption (ξiαi), energy stored in the
battery (s(αi)), energy purchased from household j (ρi(αj−ξjαj−s(αj))) and energy purchased
from the grid (γi).

1The increase in households’ self-consumption due to the use of storage technologies varies depending on their
individual load curve, the type, and the size of the technologies applied (Weniger et al., 2014a; Cucchiella et al.,
2016; Quoilin et al., 2016; Truong et al., 2016; Kappner et al., 2019).
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Figure 1: An example of households’ daily load demand and PV production curves
(Source: our elaboration)
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Assumption 4

Energy selling price to the national grid. We assume that the price of grid-purchased
energy p is constant over time, whereas the price of energy sold to the national grid v is stochastic
and driven by the following Geometric Brownian Motion (GBM):

dv(t) = φv(t)dt+ σv(t)dz(t) with v(t = 0) = ν0, (3)

where dz(t) is the increment of a Wiener process, σ is the instantaneous volatility and φ is the
drift term, which is lower than the risk-adjusted discount rate r, i.e. φ ≤ r2. According to (3),
starting from v0, the random position of the selling price v(t) for any t > 0 has a lognormal
distribution, with mean ln v0 + (φ − 1

2σ
2)t, and variance σ2t that increases as we look further

into the future.

Assumption 5

Price of exchange energy. To participate in a local EC, households i and j agree on the
quotas and price w of exchange energy via P2P trading. As in Castellini et al. (2021a; 2021b),
we assume that price w is equal to v(t), i.e. the energy selling price to the national grid3.

As households i and j aim at minimizing energy costs, their investment decisions depend
on their energy demand, self-consumption, and the tradeoff between the buying price p and the
selling price v (Bertolini et al., 2018a). By considering assumptions 1-5, the net cost of energy
paid by household i is:

Ci(ξi, θi, ρi, αi) = aαi + pγi + wρi(αj − ξjαj − θjαj)

−wρj(αi − ξiαi − θiαi)− v(t)(1− ρj)(αi − ξiαi − θiαi), (4)

where:

� ai is the unit maintenance cost of household i’s PV plant;

� aiαi represents PV plant maintenance costs;

� pγi is the cost paid for grid-purchased energy;

� wρi(αj − ξjαj − θjαj) is the cost paid for energy purchased from the household j;

� wρj(αi − ξiαi − θiαi) is the revenues on the energy sold to the other household j;

� v(t)(1− ρj)(αi − ξiαi − θiαi) is the revenues on the energy sold to the national grid.

According to Assumption 5 and by substituting γi = 1− ξiαi − θiαi − ρi(αj − ξjαj − θjαj)
from (1) in (4), we can write Ci(ξi, θi, ρi, αi) as follows:

Ci(ξi, θi, ρi, αi) = aαi + p [1− ξiαi − θiαi − ρi(αj − ξjαj − θjαj)]

+v(t)ρi(αj − ξjαj − θjαj)− v(t)ρj(αi − ξiαi − θiαi)

−v(t)(1− ρj)(αi − ξiαi − θiαi). (5)

2This assumption is necessary to guarantee convergence (Dixit and Pindyck, 1994).
3Alam et al. (2013) suggest that the price of exchange energy ranges from 0 to grid-purchased energy price.

According to Mengelkamp et al. (2017), under perfect information, the price of traded energy converges towards
the energy selling price to the national grid.
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The net cost of energy Ci(ξi, θi, ρi, αi) is decreasing in ξi, θi and ρi iff v(t) < p4. Therefore,
thanks to self-consumption and P2P trading, energy costs can be minimized iff v(t) < p. Conse-
quently, optimal (i.e., cost minimizing) self-consumption and trading choices are the following:{

p > v(t) −→ ξi ∈ (0, 1] , θi ∈ (0, 1− ξi] , ρi ∈ (0, ρi]
p < v(t) −→ ξi = θi = ρi = 0.

(6)

According to (6), Ci(ξi, θi, ρi, αi) becomes:{
aαi + p− v(t)αi − [ξiαi + θiαi + ρi(αj − ξjαj − θjαj)] (p− v(t)) if p > v(t)
aαi + p− v(t)αi if p < v(t).

(7)

As in Castellini et al. (2021a; 2021b), the following conditions must hold simultaneously
to guarantee that the investment minimizes the net cost of energy at the optimal investment
timing: 

Ci(ξi, θi, ρi, αi) > p
Ci(ξi, θi, ρi, αi) > Ci(ξi, θi, 0, αi), iff p > v(t)
Ci(ξi, θi, ρi, αi) > Ci(0, 0, 0, αi), iff p ≤ v(t).

(8)

The first inequality is always satisfied whenever v(t) > 0. The second inequality, which
holds when p > v(t), assures that both energy storage and energy P2P trading minimize the
net energy costs when self-consumption occurs, that is precisely when p > v(t). Finally, when
p ≤ v(t), the last inequality assures that the net cost of energy is minimized when there is no
self-consumption and produced energy is not P2P traded (i.e., ξi = θi = ρi = 0).

Assumption 6

Total self-consumption quota of household i . In line with Uddin et al. (2017),
Bertolini et al. (2018a), D’Alpaos and Andreolli (2020b), it is reasonable to assume that the
quota of energy demand that households i can satisfy via a PVB is equal to αi = ξiαi+θiαi < 1.
This simplifies the analysis and does not seem excessively restrictive. Since nowadays energy
consumption is particularly high in the evening, when PV plants are inactive, battery storage
systems are usually adopted to satisfy night-time energy demand and, in turn, reduce energy
cost savings (D’Alpaos and Andreolli, 2020b)5. As in Bertolini et al. (2018a), by fixing αi the
quota of energy demand that household i can satisfy (i.e., total self-consumption quota) via a
PVB is endogenously determined once the PV plant and battery size are identified6.

4In fact ∂C(ξi,θi,ρi,αi)
∂ξi

= (p− v)αi,
∂C(ξi,θi,ρi,αi)

∂θi
= (p− v)αi and

C(ξi,θi,ρi,αi)
∂ρi

= (p− vt)(αj − ξjαj − θjαj).
5During the day-time, PV production is instantaneously consumed on-site in order to satisfy straightforward

energy demand. Consequently, battery storage is adopted to reduce grid-purchased energy. When excess PV
production occurs, batteries are charged until the maximum State Of Charge (SOC) is reached. When load
increases and cannot be offset by PV production, batteries are discharged until the maximum State Of Discharge
(SOD) is reached, afterward and energy quotas are purchased from the grid to satisfy completely energy demand
(Colmenar-Santos et al., 2012; Hoppmann et al., 2014; Luthander et al., 2015; Moshovel et al., 2015; Khalilpour
and Vassallo, 2016; Hassan et al., 2017; Linssen et al., 2017).

6According to many contributions in literature (e.g., Ciabattoni et al., 2014; Kastel and Gilroy-Scott, 2015),
PV plants not coupled with storage guarantee a self-consumption quota equal to 30%− 40% of PV production.
Thanks to battery storage, this self-consumption quota can be increased to 60% − 70% (Weniger et al., 2014b;
Luthander et al., 2015; Cucchiella et al., 2017; Andreolli et al., 2022).
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Assumption 7

Investment cost. Investment costs paid by household i are described as follows:

Ii(αi) =
k1
2
α2
i +

k2
2
(θiαi)

2 + P, (9)

where k1
2 α

2
i represents PV plant costs, k2

2 (θiαi)
2 represents battery storage costs and P is

a fixed cost that represents the sunk cost that households have to pay to exchange energy via
P2P trading7.

Assumption 8

PVB maintenance cost. In line with Bertolini et al. (2018a), Barbose and Darghouth
(2019), D’Alpaos and Andreolli (2020b), and Andreolli et al. (2022) PVB maintenance costs
are set equal to zero (i.e., a = 0).

4 PVB value in a P2P trading scenario

According to the above considerations, when the PVB is operating and connected to the national
grid, the PVB allows for flexible choices between two polar cases. Whenever p < v(t), household
i minimizes energy costs by selling entirely PV generation to the national grid, i.e. ξi = θi =
ρi = 0, and it satisfies entirely energy demand via grid-purchased energy at price p. By contrast,
whenever p > v(t), to minimize energy costs household i self-consumes, stores, and exchanges
excess PV production quotas (i.e., ξi, θi, ρi > 0).
If we denote by C0

i (v(t), ξi, θi, ρi, αi) the present value of the net cost of energy for any p > v(t),
C0
i is the sum of the energy costs over the time interval (t + dt) and the continuation value

beyond (t+ dt). In other words, we define C0
i as follows:

C0
i (v(t)) = [p− v(t)αi − (ξiαi + θiαi + ρi(αj − ξjαj − θjαj))(p− v(t))] dt

+E
[
e−rdtC0

i (v(t+ dt))
]
. (10)

We can expand the second term on the right side of (10) by using Ito’s Lemma, dividing by dt,
and finally simplifying the notation to obtain the following second-order differential equation
(Dixit and Pindyck, 1994):

1

2
σ2v2

∂2C0
i

∂v2
+φv

∂C0
i

∂v
−rC0

i +[p− v(t)αi − (ξiαi + θiαi + ρi(αj − ξjαj − θjαj))(p− v(t))] = 0 for p > v(t).

(11)
If we denote by C1

i (v(t), ξi, θi, ρi, αi) the present value of the net cost of energy for any p < v(t),
we define as C1

i as follows:

C1
i (v(t)) = [p− v(t)αi] dt+ E

[
e−rdtC1

i (v(t+ dt))
]
. (12)

In this latter case, we obtain the following second-order differential equation:

1

2
σ2v2

∂2C1
i

∂v2
+ φv

∂C1
i

∂v
− rC1

i + [p− v(t)αi] = 0 for p < v(t). (13)

To solve (11) and (13) we need to introduce the following boundary conditions:

7None of the results would change if investment costs were represented by a more general function: I(αi) = kαδ
i

where δ > 1.
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lim
v→0

{
C0
i (v(t), ξi, θi, ρi, αi)−

(1− ξiαi − θiαi − ρi(αj − ξjαj − θjαj))p

r
+ (14)

+
(αi − ξiαi − θiαi − ρi(αj − ξjαj − θjαj))v(t)

r − φ

}
= 0,

and

lim
v→∞

{
C1
i (v(t), ξi, θi, ρi, αi)−

p

r
+
αiv(t)

r − φ

}
= 0. (15)

According to (14) and (15) and by eliminating the negative and positive roots of the general
solution Π = Dvβ1 + Evβ2 + ψ, respectively (i.e., E = 0 for p > v(t) and D = 0 for p < v(t)),
we obtain:

Ci(v(t), ξi, θi, ρi, αi) =

{
C0
i (v(t), ξi, θi, ρi, αi)

C1
i (v(t), ξi, θi, ρi, αi)

= (16)

=

{
− (1−ξiαi−θiαi−ρi(αj−ξjαj−θjαj))p

r +
(αi−ξiαi−θiαi−ρi(αj−ξjαj−θjαj))v(t)

r−φ +Av(t)β1 if p > v(t)

−p
r +

αiv(t)
r−φ +Bv(t)β2 if p < v(t)

where β1 > 1 and β2 > 0 are the positive and negative roots of the characteristic equation
Φ(β) = 1

2σ
2β(β − 1) + φβ − r, respectively. The terms Av(t)β1 and Bv(t)β2 in (16) represent,

respectively, the value of the option to switch from self-consumption and P2P trading to PV
production selling to the national grid if v(t) increases, and vice versa, if v(t) decreases. Con-
stants A and B are obtained by imposing the value-matching and the smooth-pasting conditions
at v(t) = p:

{
A = [αiξi + θiαi + ρi(αj − ξjαj − θjαj)]

1
r−φ

β2φ−r
r(β2−β1)

p1−β1 = [αiξi + θiαi + ρi(αj − ξjαj − θjαj)] Â

B = [αiξi + θiαi + ρi(αj − ξjαj − θjαj)]
1

r−φ
β1φ−r

r(β2−β1)
p1−β2 = [αiξi + θiαi + ρi(αj − ξjαj − θjαj)] B̂

(17)

which are both linear in αiξi + θiαi + ρi(αj − ξjαj − θjαj).

5 Optimal investment strategy

We can now turn to investigate the optimal investment strategy (i.e., the optimal PV size and
the optimal investment timing) and calculate the value of the option to invest.
In line with the above-mentioned assumptions 1-8, we must take into consideration the starting
situation, in which household i satisfies its energy demand by purchasing energy from the
national grid at a fixed cost p (i.e., idle state), to determine the option value to invest in a
PVB. Households will decide to invest in a PVB and P2P trade energy if the PVB adoption
assures a positive pay-off (i.e., energy savings) compared to the idle state. Energy savings
generated can be described as follows:

πi(v(t), ξi, θi, ρi, αi) ≡
p

r
+ Ci(v(t), ξi, θi, ρi, αi) = (18)

=

{
(ξiαi+θiαi+ρi(αj−ξjαj−θjαj))p

r +
(αi−ξiαi−θiαi−ρi(αj−ξjαj−θjαj))v(t)

r−φ +Av(t)β1 if p > v(t)
αiv(t)
r−φ +Bv(t)β2 if p < v(t).

Similiarly to Bertolini et al. (2018a), we obtain that, for any p > v(t),
(ξiαi+θiαi+ρi(αj−ξjαj−θjαj))p

r

represents energy savings due to self-consumption,
(αi−ξiαi−θiαi−ρi(αj−ξjαj−θjαj))v(t)

r−φ the ex-

pected revenues from selling the remaining quota of PV generation, whereas Av(t)β1 represents

11



revenues generated by the option to sell entire PV production to the national grid. For any
p < v(t), instead, αiv(t)

r−φ represents the expected revenues from selling entire PV production to

the national grid and Bv(t)β2 the option value to switch back to self-consumption joint to P2P
trading.
In order to determine the optimal investment size α∗

i at a given current price v(t), household i
maximizes (18) with respect to αi, net of investment costs I(αi). In other words, household i
has to solve the following maximization problem, in which NPV (v(t)) represents the investment
Net Present Value, i.e. NPV = π(v(t), ξi, θi, ρi, αi)− I(αi):

α∗
i (v(t)) = argmax [NPV (v(t))] . (19)

According to Assumption 6, by substituting (18) and (9) in (19) and solving the first-order
conditon, the optimal PV size is given by:

α∗
i (v(t)) = max

 v(t)
r−φ

k1 + k2θ2
, αi

 . (20)

In other words, the optimal PV size is represented by the expected discounted flow of rev-
enues generated by an additional unit of capacity v(t)

r−φ , divided by investment costs incurred to

produce this unit (i.e., k1 + k2θ
2). It is worth noting that, if price v(t) is very low, household i

will decide to invest in a PVB that guarantees exclusively the coverage of the PVB-generated
self-consumption quota. Similarly to Bertolini et al. (2018a), in this latter case, the optimal
investment strategy is to set ξ + θ such that α∗

i = αi
8.

Let us now turn to the optimal investment timing. We denote by F (v) the value of the op-
tion to invest in a PVB connected to a local EC that allows P2P trading. Consequently the
maximization problem of household i can be written as follows:

F (v) = sup
t
E
[
e−rtNPV (v)

]
, (21)

where NPV (v) ≡ NPV (v, α∗
i ) is given by (18) and (20). By assuming that F (v) is a twice-

differentiable function with respect to v, and by implementing Ito’s Lemma to expand dF (v),
the solution of (21) is given by the following differential equation (Dixit and Pindyck, 1994, p.
179-180):

1

2
σ2v2

∂2F

∂v2
+ φv

∂F

∂v
− rF = 0 for v < v∗. (22)

where v∗ is the selling price that triggers the investment. The general solution of (22) is
F (v) = Mvβ, where β > 1 is the positive root of the characteristic equation Φ(β) and M is a
constant. When the selling price of energy v is lower than the optimal trigger v∗, it is never
optimal to invest. By contrast, as soon as the selling price of energy v hits for the first time
v∗, it is optimal to invest and the PV plant’s optimal size is α∗

i (v
∗). It is worth noting that,

whenever v∗ < v0, household i will invest immediately and adopt a plant of capacity α∗
i (v0).

As explained in the previous section, by imposing the value-matching and the smooth-pasting
conditions at v∗, we derive that:

8In line with Bertolini et al. (2018a), by imposing αi, we implicitly assume that the minimum PVB
plant size is αi. Namely, when v(t) → 0, the Net Present Value of the PVB is given by NPV (αi) =
p(αi(ξ+θ)+ρi(αj−ξjαj−θjαj))

r
− ( k1+k2θ

2

2
)α2

i and ξ + θ = r(k1+k2θ
2)αi

p
≤ 1 to ensure investment profitability.
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Proposition 1 (i) If the optimal trigger v∗ exists and is lower than p, it is obtained as the
numerical solution of the following implicit equation:

v(t)

r − φ

[
1

k1 + k2θ2
ρi
p

r
(β1 − 1)− αi(1− ρi)(β1 − 1)− ρi

v(t)

r − φ

1

k1 + k2θ2
(β1 − 2)+ (23)

−Âv(t)β1ρi
1

k1 + k2θ2
+

v(t)

r − φ

1

k1 + k2θ2
(β1 − 2)

2

]
− Pβ1 +

p

r
αi(1− ρi)β1 = 0

(ii) Whereas, if the optimal trigger v∗ exists and is higher than p, it is obtained as the
numerical solution of the following implicit equation:

(β1 − 2)

2

(
v(t)

r − φ

)2 1

k1 + k2θ2
+ B̂v(t)β2 [αi(1− ρi)(β1 − β2)+ (24)

+ρi
v(t)

r − φ

1

k1 + k2θ2
(β1 − β2 − 1)

]
− Pβ1 = 0

Proof. See Appendix A.

It is worth noting that boundary conditions account for both the marginal cost and the
marginal revenue to defer the investment decision. The optimal investment strategy is strongly
affected by the value of β. The greater the value of β, the larger the option value to postpone
the investment.

6 Model calibration

To test the above theoretical results and analyze in detail the decision to invest in a PVB in
a P2P trading scenario, as well as to investigate the relationship between the value of being
connected to the national grid (which permits households to sell PV production totally or
partially) and the optimal investment timing and size, in the following section we provide an
empirical application. To calibrate the model we use data from the Italian electricity market over
the time interval from 2004 to 2019. According to Assumption 1 households’ energy demand is
constant over time and normalized to 1MWh/year9 and, in addition, according to Assumption
3, households are asymmetric in load curves and symmetric in P2P trading, i.e. αi = αj and
ρi = ρj .

� v(t) is the price of both energy P2P traded and sold to the national grid. It corresponds
to the price paid to households by the Italian Transmission System Operator (TSO) to
procure resources needed for the management of the power system (Bertolini et al., 2018a).
This selling price is indexed to the Single National Price (PUN), which is established in
the Italian Power Exchange (IPEX)10 and made available on the website of the Italian
independent system operator (Gestore dei Mercati Energetici - GME). Based on Biondi
and Moretto (2015), Bertolini et al. (2018b), and Andreolli et al. (2022), to estimate the
stochastic process underlying energy price evolution over time, we consider PUN hourly
prices recorded in the period from April 2004 to December 2019 and in the time interval
from 8 a.m. to 7 p.m. We compute average monthly seasonally adjusted prices according
to daily averages. Using R software, we tested both the independence assumption (by

plotting the autocorrelations of log return rt = ln pt+1

ln pt
) and the normality (by plotting

9The per-period energy demand is the average of per-period demands registered over a year and accounts for
seasonality, atmospheric and climate conditions. In other words d =

∑365
i=1

∫ 24

0
li(s)ds, where li(s) represents the

average hourly load curve.

10The Italian Power Exchange (IPEX), managed by GME, is the exchange for electricity (and natural gas)
spot trading in Italy. For details, see https://www.mercatoelettrico.org.
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the sample data of log returns against the standard normal distribution). Subsequently,
the non-stationarity assumption for GBM is verified by implementing the Dickey-Fuller
test11. Energy price at the beginning of the period, i.e. at time t = 0, is v(t = 0) = 55
e/MWh12. The estimated price annual drift and volatility are φ = 0.8% and σ = 42.32%,
respectively13.

� p is the grid-purchased energy price. It is set equal to 143e/MWh, which corresponds to
the maximum electricity price paid by domestic users in the European Market14.

� PVB investment costs k1
2 α

2
i +

k2
2 (θiαi)

2 take into consideration construction and installa-
tion costs (e.g., panel costs, battery costs, inverters, cables), maintenance and operating
costs, integration costs, and indirect costs related to efficiency losses in energy production
or storage capacity (Bertolini et al., 2018a; D’Alpaos and Andreolli, 2020b; Andreolli et
al. 2022). Parameters k1 and k2 are estimated according to the approach presented by
Bertolini et al. (2018a)15. In detail, the average PVB lifetime T is set equal to 25 years
(Zucker and Hinchliffe, 2014; Kastel and Gilroy-Scott, 2015; Linssen et al., 2017; Schopfer
et al., 2018), whereas LCOE is equal to 90 e/MWh and 110 e/MWh, respectively (IEA,
2019; LAZARD, 2019a), and LCOS is equal to 290 e/MWh and 315 e/MWh, respec-
tively (Julch, 2016; Schmidt et al., 2017; Few et al., 2018; Schopfer et al., 2018; Comello
and Reichelstein, 2019; LAZARD, 2019b). As in Castellini et al. (2021b), the access fee
P that households have to pay for participating in the EC amounts to 0.1k1.

� r represents the risk-adjusted discount rate that is set equal to 4% and 6%, respectively
(Bertolini et al., 2018a; Castellini et al., 2021b; Andreolli et al., 2022).

� As to energy demand quotas, which households can satisfy by PVBs, we assume that
αi is equal to 60% − 70% (Cucchiella et al., 2016; Cucchiella et al., 2017; D’Alpaos and
Andreolli, 2020b).

� Finally, the parameter ρi, which represents the energy quota that household i wants to
exchange with household j via P2P trading, is set equal to 0.10 (Zhang et al., 2018; Sousa
et al., 2019; Castellini et al., 2021b).

Table 6.1 summarizes parameter estimates.

11Augmented Dickey-Fuller test, in which the alternative hypothesis is stationarity, was performed in R soft-
ware. The test result is -0,2510 and the p − value is equal to 0.8021. Therefore we failed to reject the null
hypothesis.

12v(t = 0) is assumed as the average of yearly PUN prices recorded in the time interval from January 2016 to
December 2019 by GME.

13As in Andreolli et al. (2022), volatility is given by: σ =
∑ (ri−m̂)2

n
, where m̂ is the sample mean of rt, and

the drift term is estimated by running the linear regression rt = µt+ εt, where µ = α− σ2

2
and εt = σ(zt+1 − zt).

Finally, monthly data are transfomed into annual data as follows: σyearly =
√

12σ2
monthly.

14The data are in Euro currency and refer to an annual consumption between 2 500 and 5 000 kWh (Band-DC,
Medium), excluding taxes and levies.

15According to Bertolini et al. (2018a), k1 = 2LCOE
r

(1 − e−rT ) and k2 = 2LCOS
r

(1 − e−rT ), where LCOE is
the Levelized Cost Of Energy and LCOS is the Levelized Cost Of Storage.
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Parameter Description Value Source/Reference
φ drift 0.08% Calibrated on PUN, TSO GME
σ volatility 42.32% Calibrated on PUN, TSO GME
v0 price v(t) at the biginning of time

period (e/MWh)
54 Calibrated on PUN, TSO GME

p the fixed buying price of energy 143 Eurostat
T SHS plant lifetime (years) 25 Kastel and Gilroy-Scott, 2015
r risk-adjusted discount rate 4− 6% Bertolini et al., 2018; Andreolli

et al., 2022; Castellini et al.,
2021b

LCOE LCOE for PV plants (e/MWh) 90− 110 Andreolli et al., 2022
k1 PV plant cost of capital see Appendix B Computed, Bertolini et al., 2018

LCOS LCOS for battery (e/MWh) 290− 315 Andreolli et al., 2022
k2 battery cost of capital see Appendix B Computed, Bertolini et al., 2018
P cost to access to the local energy

community
0.1k1 Castellini et al., 2021b

αi household’s energy demand sat-
isfied by the SHS

60%− 70% Ciabattoni et al., 2014; Kas-
tel and Gilroy-Scott, 2015; Cuc-
chiella et al., 2016; Cucchiella et
al., 2017; Bertolini et al., 2018

ρi households’ exchange energy
quota

0.10 Zhang et al., 2018; Sousa et al.,
2019; Castellini et al., 2021b

Table 6.1: Parameter estimates

7 Results and comparative statics

In what follows, we present the main results and comparative statics performed with respect to
LCOE, LCOS, φ, σ, αi and ρi. Table 7.1 and Table 7.2 shows the optimal selling price v∗ that
triggers the investment, PVB optimal size α∗

i , P2P traded energy ρi(α
∗
i − αi) and energy sold

to the national grid (1− ρi)(α
∗
i −αi), obtained by implementing parameters estimates in Table

6.1 (i.e., benchmark case), different LCOE − LCOS combinations and r equal to 4% and 6%,
respectively.
In the benchmark case, for each LCOE − LCOS combination, the optimal trigger v∗ is al-
ways greater than the current selling price of energy v0, therefore it is never optimal to invest
immediately and the option value to defer investment is positive. Furthermore, thanks to the
opportunity of exchanging energy quotas via P2P trading, households will invest in larger plants
compared to those adopted in a scenario where P2P trading is not admitted, i.e., α∗

i > αi.
It is worth noting that when r = 6% the optimal trigger v∗ is higher than p in all scenarios

(Table 7.2) Consequently, households’ optimal strategy is to sell entirely PV production to the
national grid: the greater the r, the greater the β and, in turn, the greater the option value
to postpone the investment. By contrast, when r = 4%, v∗ is greater than the buying price
of energy p exclusively when LCOE = 110 e/MWh and LCOS = 315 e/MWh. The reason
resides in that when investment costs are large, households wait longer for the investment to be
profitable. Consequently, the selling price that triggers the investment turns to exceed p.
Compared to previous studies on prosumers’ investment decisions in residential PV plants, which
do not consider PV plants coupled with storage in a P2P trading scenario (Bertolini et al., 2018a;
Andreolli et al., 2020b; Castellini et al., 2021b; Andreolli et al., 2022), our results show that
batteries can accelerate investments in PV plants by ensuring higher self-consumption shares
and, in turn, larger energy savings. Simultaneously, high investment costs paid for battery
adoption are counterbalanced by net benefits deriving from P2P traded energy. By preventing
losses in energy quotas not self-consumed, P2P trading permits households to install larger
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α

LCOS = 290

LCOE = 90 LCOE = 110

v∗ α∗ ρ (α∗ − α) (1− ρ) (α∗ − α) v∗ α∗ ρ (α∗ − α) (1− ρ) (α∗ − α)

0.60 120.77 1.10 0.05 0.45 125.97 0.98 0.04 0.39

0.70 138.91 1.07 0.04 0.34 143.89 0.97 - 0.97

αi

LCOS = 315

LCOE = 90 LCOE = 110

v∗ α∗
i ρi (α

∗
i − αi) (1− ρi) (α

∗
i − αi) v∗ α∗

i ρi (α
∗
i − αi) (1− ρi) (α

∗
i − αi)

0.60 121.71 1.08 0.05 0.44 126.78 0.97 0.04 0.33

0.70 140.50 1.05 0.03 0.32 145.32 0.95 - 0.95

Table 7.1: v∗ [e/MWh], α∗
i [MWh], ρi(α

∗
i −αi) and (1−ρi)(α∗

i −αi) when r = 4%, T = 25 years,
LCOE = 90, 110 e/MWh, LCOS = 290, 315 e/MWh, σ = 42.32%, α = 0.008, αi = 0.6, 0.7
and ρi = 0.1.

α

LCOS = 290

LCOE = 90 LCOE = 110

v∗ α∗
i ρi (α

∗
i − αi) (1− ρi) (α

∗
i − αi) v∗ α∗

i ρi (α
∗
i − αi) (1− ρi) (α

∗
i − αi)

0.60 150.73 1.00 - 1.00 154.37 0.87 - 0.87

0.70 171.83 0.97 - 0.97 175.37 0.86 - 0.86

α

LCOS = 315

LCOE = 90 LCOE = 110

v∗ α∗
i ρi (α

∗
i − αi) (1− ρi) (α

∗
i − αi) v∗ α∗

i ρi (α
∗
i − αi) (1− ρi) (α

∗
i − αi)

0.60 151.74 0.99 - 0.99 155.23 0.87 - 0.87

0.70 173.61 0.95 - 0.95 176.92 0.85 - 0.85

Table 7.2: v∗ [e/MWh], α∗
i [MWh], ρi(α

∗
i −αi) and (1−ρi)(α∗

i −αi) when r = 6%, T = 25 years,
LCOE = 90, 110 e/MWh, LCOS = 290, 315 e/MWh, σ = 42.32%, α = 0.008, αi = 0.6, 0.7
and ρi = 0.1.

plants and reduce the optimal investment threshold.
It is noteworthy that investment costs affect α∗

i and v∗ differently. An increase in both LCOE
and LCOS generates, on the one hand, a delay in investment timing, and, on the other hand,
a decrease in investment size. In other words, the lower LCOE and LCOS, the shorter the
deferral and the larger the PVB size. This result is rather intuitive: whenever investment costs
are large, households decide to invest at a later time, which, nonetheless can be shortened by
reducing investment size. Self-consumption αi affects results analogously: the higher the αi, the
longer the deferral, and the smaller the optimal investment size. Nonetheless, α∗

i is always larger
than αi

16, i.e. the minimum plant size that can only cover self-consumption when v(t) → 0.
Table 7.3 shows some comparative statics performed by varying energy price volatility σ. Two
important results emerge: (i) there is a positive relation between α∗

i and v∗; (ii) an increase in
uncertainty generates a decrease in both the optimal selling price v∗ and investment size α∗

i . The
last result is apparently in contrast with findings in the Real Options literature on investment
timing flexibility, according to which the higher the uncertainty, the greater the option value of
waiting to invest. Nonetheless, when volatility increases, the option to switch, embedded in the
investment, makes the investment more beneficial and, consequently, the investment accelerates.
In other words, households invest earlier and in smaller plants, thanks to the positive value of
the option to switch, which increases the investment value. As in Bertolini et al. (2018a),

16We observe the same effect by varying T . Nonetheless, as its effect is negligible, results for different plant
lifetimes are not presented.
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there is a trade-off between the option value to defer and the option value to switch. There is
also a balancing effect of the positive relationship between α∗

i and v∗. Although an increase in
uncertainty causes an increase in the option of waiting to invest and, in turn, an increase in
investment costs contingent on the plant’s size, households may decide to reduce the investment
delay by adopting a smaller plant, which entails lower investment costs.
We performed additional comparative statics analyses by varying drift φ (Table 7.4). As φ
increases, households accelerate investment (i.e., invest earlier) and install smaller plants. A
remarkable exception is when the drift is large enough that the trigger v∗ is lower than v0, and
consequently, the investment turns out to be currently profitable. In this scenario, expected
energy savings are high enough to induce households to adopt larger plants. When φ = 3%
households decide to invest immediately (i.e., v∗ = v0 = 55).
Finally, we varied P2P traded energy quotas ρi. In detail, whenever ρi is low, households
invest in a PVB to sell excess energy to the national grid, thus gaining from the mark-up
between the buying and the selling price of energy. The effects of changes in ρi are clear-cut:
by decreasing ρi households decide to adopt bigger plants; consequently, there is a delay in the
optimal investment timing. This delay is particularly evident for higher αi, where the optimal
investment scenario is generally v∗ > p = 143 (Table 7.5), e.g. when αi = 0.7, LCOE = 90/110
e/MWh and LCOS = 315 e/MWh, households prefer to sell their entire PV production to
the national grid. On the other hand, an high value of ρi characterizes those households whose
demand curves enable them to trade a greater quota of PV production. As they aim to lower
energy costs, by increasing quotas exchange, households decide to accelerate their investment
and install lower plants. This finding is consisent with results in Table 7.6, where the optimal
investment strategy is always v∗ < p.
Our results may have interesting policy implications: as investment costs are still relatively high,
incentives on investment costs are needed, but they should be combined to policy instruments
designed to promote an increase in both self-consumption and P2P traded energy. By looking
to the forth (i.e., ρi(α

∗
i −αi)) and fifth column (i.e., (1−ρi)(α∗

i −αi)) respectively, it is, in fact,
worth noting that quotas of P2P traded energy is very low (between 2% to 9% of households’
energy demand), whereas quotas of energy sold to the national grid remains relatively high
(between 20% to 50% of PV production).
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αi

LCOS = 290

LCOE = 90 LCOE = 110

v∗ α∗
i ρi (α

∗
i − αi) (1− ρi) (α

∗
i − αi) v∗ α∗

i ρi (α
∗
i − αi) (1− ρi) (α

∗
i − αi)

0.60 122.76 1.11 0.05 0.46 128.64 0.99 0.03 0.35

0.70 141.84 1.10 0.03 0.36 147.47 0.99 - 0.99

αi

LCOS = 315

LCOE = 90 LCOE = 110

v∗ α∗
i ρi (α

∗
i − αi) (1− ρi) (α

∗
i − αi) v∗ α∗

i ρi (α
∗
i − αi) (1− ρi) (α

∗
i − αi)

0.60 123.76 1.10 0.05 0.45 129.52 0.98 0.03 0.35

0.70 143.54 1.07 - 1.07 149.00 0.98 - 0.98

Table 7.5: v∗ [e/MWh], α∗
i [MWh], ρi(α

∗
i −αi) and (1−ρi)(α∗

i −αi) when r = 4%, T = 25 years,
LCOE = 90, 110 e/MWh, LCOS = 290, 315 e/MWh, σ = 42.32%, α = 0.008, αi = 0.6, 0.7
and ρi = 0.0.

αi

LCOS = 290

LCOE = 90 LCOE = 110

v∗ α∗
i ρi (α

∗
i − αi) (1− ρi) (α

∗
i − αi) v∗ α∗

i ρi (α
∗
i − αi) (1− ρi) (α

∗
i − αi)

0.60 118.55 1.07 0.05 0.42 122.99 0.95 0.04 0.31

0.70 135.67 1.05 0.04 0.31 139.95 0.94 0.02 0.22

αi

LCOS = 315

LCOE = 90 LCOE = 110

v∗ α∗
i ρi (α

∗
i − αi) (1− ρi) (α

∗
i − αi) v∗ α∗

i ρi (α
∗
i − αi) (1− ρi) (α

∗
i − αi)

0.60 119.43 1.06 0.05 0.41 123.76 0.94 0.03 0.30

0.70 137.15 1.03 0.03 0.29 141.27 0.93 0.02 0.20

Table 7.6: v∗ [e/MWh], α∗
i [MWh], ρi(α

∗
i −αi) and (1−ρi)(α∗

i −αi) when r = 4%, T = 25 years,
LCOE = 90, 110 e/MWh, LCOS = 290, 315 e/MWh, σ = 42.32%, α = 0.008, αi = 0.6, 0.7
and ρi = 0.2.
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8 Conclusions

This paper investigates households’ decisions to invest in a domestic PVB and to participate
in a local EC. In our setting, households can satisfy their energy demand by a) self-consuming
PV production instantly, b) storing excess PV generation in a battery, c) selling energy to the
national grid, and/or d) exchanging energy within EC participants via P2P trading. We dif-
ferentiate between (1) households who are likely to invest in a PVB for selling energy to the
national grid and (2) households whose objective is to reduce energy costs by increasing quotas
of P2P traded energy.
According to our results, (i) at current market prices, it is never optimal to invest immediately;
(ii) the opportunity provided by P2P trading is valuable and thus increases PVB value; (iii) P2P
trading encourages investment in larger plants compared to those designed for self-consumption
in a scenario which does not admit P2P trading; (iv) as P2P traded energy increases, both
the investment timing and size decrease (i.e., households invest earlier and in smaller plants).
Whenever self-consumption and P2P traded energy increase, energy sold to the national grid
decreases and, consequently, households’ self-sufficiency increases. The increase in the self-
sufficiency of ECs can positively affect the management of the national grid and future energy
systems: if energy fed into the grid from distributed power plants reduces, the system stability
increases, and grid management costs decrease.
Our findings show that the greater the volatility of energy prices, the shorter the investment
and, in addition, the smaller the PVB size. This result is counterintuitive with respect to stan-
dard results in Real Options literature, according to which the greater the volatility, the longer
the deferral. The opportunities provided by P2P trading and the related option value to switch
from self-consumption to P2P trading and/or sell energy to the national grid, induce households
to accelarate investments but reduce the PVB size. Indeed, thanks to the participation in a
local EC and P2P trading, househoulds can optimally exercise their option to switch from sole
self-consumption to sole production, and thus to increase the PVB investment value.
It is worth noting that batteries permit to increase self-consumption of PV generation and, in
turn, guarantee an increase in energy savings. Although currently batteries are still relatively
costly, the increase in investment costs due to battery storage adoption offsets the additional
managerial flexibility provided by P2P trading. In other words, P2P trading permits house-
holds to adopt larger plants and decrease the optimal investment timing. Nevertheless, the PV
generation fed into the national grid continues to be very high. This result, in turn, requires
the implementation of additional policies to improve system efficiency. Policy supports have to
push for technologies that increase both self-consumed and traded energy, and, in turn, improve
plant efficiency (e.g., DSM).
Finally, future research will be devoted to including in modeling: (i) different assumptions on
households’ load demand and (ii) an increase in the number of EC members.

21



A - Appendix

A) Let us assume that the optimal trigger exists and is lower than p. From (9), (17) and (18)
and by substituting α∗

i = α∗
j > αi = αj in (17) and (18), the project NPV is given by:

NPV (v(t)) =
(αi + ρi(α

∗
j − αj))p

r
+

(α∗
i − αi − ρi(α

∗
j − αj))v(t)

r − φ
+

+(αi + ρi(α
∗
j − αj))Âv(t)

β1 − (
k1 + k2θ

2

2
)α∗2

i − P =

αi(1− ρi)
p

r
+ ρi

v(t)
r−φ

k1 + k2θ2
p

r
− ρi

(
v(t)
r−φ

)2

k1 + k2θ2
− αi(1− ρi)

v(t)

r − φ
+

+

αi(1− ρi) + ρi

v(t)
r−φ

k1 + k2θ2

 Âv(t)β1 +
1

2

(
v(t)
r−φ

)2

k1 + k2θ2
− P, (A.1)

with NPV (0) = αi(1− ρi)
p
r − P > 0 and NPV ′(0) = −αi(1− ρi)

1
r−φ + 1

r−φρi
1

k1+k2θ2
p
r < 0.

In order to determine the optimal trigger v∗, we impose the following matching-value and
smooth-pasting conditions:

Mv(t)β1 = αi(1− ρi)
p

r
+ ρi

v(t)
r−φ

k1 + k2θ2
p

r
− ρi

(
v(t)
r−φ

)2

k1 + k2θ2
− αi(1− ρi)

v(t)

r − φ
+

+

αi(1− ρi) + ρi

v(t)
r−φ

k1 + k2θ2

 Âv(t)β1 +
1

2

(
v(t)
r−φ

)2

k1 + k2θ2
− P, (A.2)

β1Mv(t)β1−1 =
1

r − φ
ρi

1

k1 + k2θ2
p

r
− 2ρi

v(t)

(r − φ)2
1

k1 + k2θ2
− αi(1− ρi)

1

r − φ
+ (A.3)

+αi(1− ρi)β1Âv(t)
β1−1 + (β1 + 1)

1

r − φ
ρi

1

k1 + k2θ2
Âv(t)β1 +

v(t)

(r − φ)2
1

k1 + k2θ2
.

(A.3) can be rearranged and substituted into (A.2) as follows:

Mv(t)β1 =
1

β1

v(t)

r − φ
ρi

1

k1 + k2θ2
p

r
− 2

β1

(
v(t)

r − φ

)2

ρi
1

k1 + k2θ2
− 1

β1
αi(1− ρi)

v(t)

r − φ
+

+αi(1− ρi)Âv(t)
β1 +

β1 + 1

β1

v(t)

r − φ
ρi

1

k1 + k2θ2
Âv(t)β1 +

1

β1

(
v(t)

r − φ

)2 1

k1 + k2θ2
,

(β1 − 1)ρi

v(t)
r−φ

k1 + k2θ2
p

r
− (β1 − 2)ρi

(
v(t)
r−φ

)2

k1 + k2θ2
− (β1 − 1)αi(1− ρi)

v(t)

r − φ
+ (A.4)

−ρi
v(t)
r−φ

k1 + k2θ2
Âv(t)β1 +

β1 − 2

2

(
v(t)
r−φ

)2

k1 + k2θ2
= Pβ1 − β1αi(1− ρi)

p

r
.

By rearranging (A.4), we obtain the following equation to be solved numerically in order to
determine the optimal trigger v∗:
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v(t)

r − φ

(β1 − 1)ρi
1

k1 + k2θ2
p

r
− (β1 − 2)ρi

v(t)
r−φ

k1 + k2θ2
− (β1 − 1)αi(1− ρi)+ (A.5)

−ρi
1

k1 + k2θ2
Âv(t)β1 +

β1 − 2

2

v(t)
r−φ

k1 + k2θ2

 = Pβ1 − β1αi(1− ρi)
p

r
.

B) Let us now assume that the optimal trigger v∗ exists and is higher than p. As previously,
from (9), (17) and (18) and by substituting α∗

i = α∗
j > αi = αj in (17) and (18), the project

NPV can be described as follows:

NPV (v(t)) =
α∗
i v(t)

r − φ
+ (αi + ρi(α

∗
j − αj))B̂v(t)

β2 − (
k1 + k2θ

2

2
)α∗2

i − P

=
1

2

(
v(t)
r−φ

)2

k1 + k2θ2
+

αi(1− ρi) + ρi

v(t)
r−φ

k1 + k2θ2

 B̂v(t)β2 − P, (A.6)

where the first term 1
2

(
v(t)
r−φ

)2

k1+k2θ2
dominates as v(t) → ∞. Then, we impose the matching-value and

the smooth-pasting conditions as follows:

Mv(t)β1 =
1

2

(
v(t)
r−φ

)2

k1 + k2θ2
+

αi(1− ρi) + ρi

v(t)
r−φ

k1 + k2θ2

 B̂v(t)β2 − P (A.7)

β1Mv(t)β1−1 =
v(t)

(r − φ)2
1

k1 + k2θ2
+ αi(1− ρi)β2B̂v(t)

β2−1 + (β2 + 1)ρi
1

r − φ

1

k1 + k2θ2
B̂v(t)β2

(A.8)
By rearranging (A.8) and substituting it into (A.7), we obtain the following eqaution:

β2 − 1

2

(
v(t)
r−φ

)2

k1 + k2θ2
+

αi(1− ρi) (β1 − β2) + (β1 − β2 − 1)ρi

v(t)
r−φ

k1 + k2θ2

 B̂v(t)β2 = Pβ1. (A.9)
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B - Appendix

Table B.1 shows investment costs k1 and k2 for different LCOE − LCOS combinations and
r = 4%.6%.

T(year) k1
r = 4% r = 6%

LCOE = 90 e//MWh 25 2844 2330
LCOE = 110e/MWh 25 3476 2848

T(year) k2
r = 4% r = 6%

LCOS = 290 e/MWh 25 9165 7509
LCOS = 315 e/MWh 25 9955 8157

Table B.1: Investment costs k1 and k2 for r = 4, 6%, T = 25 years, LCOE = 90, 110 e/MWh
and LCOS = 290, 315 e/MWh.
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