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Abstract

The identification of the effects of climate shocks on economic growth is central

to design effective policies aiming at managing the future global climate change

challenge. In this study, we investigate the effects of temperature and precipitation

shocks on economic growth across different countries by means of a new methodol-

ogy, namely a Bayesian Structural Global VARX model. This setup accommodates

economic interpretation of the shocks and accounts for cross-sectional spillovers

among countries, as well as endogeneity of the climate variables with respect to

the economy. Results show a high degree of heterogeneity, with some economies

positively and some others negatively affected by climate shocks. In contrast with

a consistent strand of the literature, according to which hot and poor countries

bear the heaviest burden, we show that climate shocks may have severe effects for

the economic growth of rich and cold countries as well. Furthermore, account-

ing for trade interdependence across countries, we document that, in response to

unexpected temperature and precipitation shocks, some economies benefit from in-

terconnections, while some others are damaged, depending on some key structural

characteristics as the import-export mix, the relevant trade partners network and

the level of economic development.

Keywords: Climate econometrics; Bayesian Structural VARs; Identification theory;
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1 Introduction

Earth’s climate is rapidly changing and its impact on the economic environment is indis-

putable. Nevertheless, the measurement of losses and benefits triggered by climate shocks

in terms of real economic activity is not a simple endeavor. The interpretation of the link

between climate conditions and economic growth is crucial for designing effective policy

responses to one of the biggest challenges of the century: climate change.

In recent years, many econometric analyses have focused on the estimation of this

effect, aimed at assessing the relationship between climate variables and economic output.

Subsequent to the introduction of Integrated Assessment Models, empirical studies on the

economics of climate change have been growing in number. However, the different setups

and methodologies adopted within this literature have led to very heterogeneous results,

so that it is hard to establish a clear picture of how climate variables affect economic

activity in different geographical regions and at different time periods (see Dell et al.,

2014; Tol, 2018; Kolstad and Moore, 2020, for recent surveys on the topic).

A large part of the literature on climate econometrics is based on regression models,

where the outcome variable of interest is a proxy of economic activity, chosen in general

among GDP, in levels or growth rates (Dell et al., 2012; Burke et al., 2015; Adom and

Amoani, 2021; Newell et al., 2021), Total Factor Productivity (Letta and Tol, 2019) or

agricultural output (Deschênes and Greenstone, 2007; Auffhammer and Schlenker, 2014;

Blanc and Schlenker, 2020; Olper et al., 2021). Irrespective of the selected proxy, the

debate on whether to estimate climate impacts on economic activity measured in levels

or growth rates is still open, as pointed out by Newell et al. (2021). On the one hand,

estimating the effects in levels leads to an overall reduction of uncertainty (Newell et al.,

2021). On the other hand, models of GDP growth allow to overcome possible nonstation-
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arity issues and provide estimates that reflect permanent and irreversible effects, whereas

the effects estimated in levels reflect most likely a temporary phenomenon and therefore

should be considered as ”static” (Letta and Tol, 2019).

In the choice of climate variables, a key issue is the distinction between ”climate change”

and ”weather variations”. As pointed out by Hsiang (2016), climate concerns some deep

characteristics that hardly and only in very long time spans change; on the contrary,

weather variations we observe are simply realizations drawn from the climate distribution.

The majority of studies focuses on variables such as temperature and rainfall (and possibly

some nonlinear transformations of them). However, short-run weather fluctuations can not

be a proxy of climate change, because they provide a conceptually different information.

Long-run changes in the climate conditions should rather be captured by weather variables

measured over long time horizons (e.g., ”long” differences).

As for the geographical focus, the literature can be split between cross-country analy-

ses (Cashin et al., 2017; Pretis et al., 2018; Acevedo et al., 2020; Alessandri and Mumtaz,

2021; Kahn et al., 2021) and country-specific studies (Deschênes and Greenstone, 2007;

Sheng et al., 2022). Since climate change impacts on different economies are expected

to vary across space and to exacerbate the already existing income disparities, we find it

crucial to focus on a multi-country setup. For the same reason, a large number of studies

rely on panel data models. Although panel regressions lead to several advantages, such as

the possibility to control for omitted variables bias and the relatively easy way to include

non-linearities in the model, nevertheless the specifications adopted in climate economet-

rics literature suffer from several limitations. First, panel data models as proposed in the

studies on this topic, lack of proper structural dynamics to observe the propagation of

climate shocks through time.1 On the contrary, a structural model would allow for an

1See Pesaran and Smith (1995) for a discussion on dynamic analysis drawbacks in panel models.
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explicit identification of the shocks and provide a very useful tool to study climate effects

dynamically. Second, climate variables which enter in the panel specifications as regres-

sors, are considered fully exogenous with respect to the dependent variable. As pointed

out by Pretis (2020, 2021), economic and environmental systems are determined with a

feedback in both directions, so we believe it is essential to endogenize climate variables

within the adopted model.2 Third, the heterogeneity among different countries in their

net responses to structural climate shocks is hard to capture via panel data regressions,

apart from considering the estimated country-specific fixed effects. A common finding is

that weather effects are unequally distributed in space, with hot and poor countries being

the most adversely affected. In contrast, there is no consensus for the effects regarding

rich and cold countries.3 Some studies suggest that climate change may be beneficial for

countries located in colder regions (Mendelsohn et al., 2006; Acevedo et al., 2020), some

others find an overall negative effect for both rich and poor countries, regardless of the

geographical area (Burke et al., 2015; Alessandri and Mumtaz, 2021; Kahn et al., 2021)

and a third group of studies does not find a statistically significant effect apart for hot and

poor countries (Dell et al., 2012; Newell et al., 2021).4 Fourth, another important aspect

which is not properly considered within the panel data literature is the economic interde-

pendence between countries. As argued in Di Mauro and Pesaran (2013), macroeconomic

policy analysis requires taking into account the interconnections across different economic

systems, with trade as one of the main channels driving the spillover effects. Countries

2Consistent with this, Acevedo et al. (2020) find that the median temperature over the first 15 years of
this century, compared with the first 15 years of the past century, was 1.4°C higher in advanced economies,
1.3°C higher in emerging market economies, and only 0.7°C higher in low-income countries, meaning that
most of the warming happened in advanced economies.

3Note that, in general, rich economies are also those located in colder regions; the debate on whether
poor countries are less developed because they are hot, suggesting economic output is pre-determined by
geographical starting endowment, is still ongoing.

4The relationship between climate and economic activity is stronger in the case of temperature, whereas
the effect of precipitation is less clear and seldom investigated.
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cannot be considered as isolated since shocks occurring to some particular region could

spill over and affect other regions through their economic interdependence.

Our study contributes to the literature by overcoming these limitations. Accounting

for endogeneity of climate, identifying structural climate and economic shocks within

a dynamic context and, at the same time, considering economic interdependence across

countries are demanding tasks from a methodological point of view. We face this challange

by introducing a new model, in the vein of the Global VAR (GVAR) proposed by Pesaran

et al. (2004), that allows us to take into account all these elements. The GVAR model

represents an approach to describe the country-specific economic systems accounting for

interconnections in a global perspective. Climate change represents a global phenomenon.

However, several features are related to country-specific dynamics because the intrinsic

climate conditions and their effects on economic output are different according to the

geographical region. The standard GVAR model is designed specifically to capture the

domestic characteristics of different economies and to simultaneously include interlinkages

among the countries under scrutiny. Hence, a similar setup represents the natural way

of modelling the climate-economy relationship. The model is based on two steps. The

first step deals with the estimation of separate, country-specific VARX models where the

interlinkages are expressed via the so-called foreign variables, which are treated as weakly

exogenous. In the second step, the estimated country-specific models are stacked to form

one single large global model and to obtain the global solution. It is worth noting that

the canonical GVAR is a reduced form specification, that is, there is no a structural

estimation in the second step. Given that formal identification is not contemplated,

the dynamic analysis is usually performed through the Generalized Impulse Response

Functions (GIRFs).5

5The GIRF approach does not aim at identifying the shocks according to some canonical system or a
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We propose a Bayesian Structural Global VARX (BS-GVARX) model based on the

algorithm developed by Baumeister and Hamilton (2015), to identify the effects of cli-

mate shocks on economic growth. Our approach is novel in several respects. We perform

a structural analysis where the country-specific VAR models are nested in a single global

specification where the identification of the structural parameters involves interdepen-

dence across countries by including joint prior information derived through the equilib-

rium impact of the structural shocks. This explicitly allows for spillover effects without

the use of any data-shrinkage approach and solves the dimensionality issue of large VARs.

Furthermore, identification via equilibrium impacts allows us to preserve a mapping be-

tween the reduced form and the structural form of the model. To our knowledge, this

paper is the first embedding a Bayesian structural dynamic analysis in a GVAR and,

besides Cashin et al. (2017), there are no other examples of a GVAR model employed to

study the climate-economy relationship.6

Our main findings can be summarized as follows. First, there is a feedback effect that

goes in both directions, from the economy to the environment and viceversa suggesting

the importance of endogenizing climate variables in modelling the climate-economy rela-

tionship. Second, although the impact effects of climate shocks on economic growth in

different countries are mixed, for most of the countries the responses become negative in

the subsequent periods. More interestingly, we find no precise regularities in the differ-

ences of this effect between poor, rich, hot and cold countries. Third, the trade linkage

priori economic theory, but considers a counterfactual exercise where the historical correlations of shocks
are assumed as given. GIRFs are independent of the variables order, because they integrate the effects
of other shocks out of the response. This tool is very useful in the case of large systems, where structural
relationships are hard to identify. However, these cannot really be interpreted as structural impulse
responses, even if providing an accurate depiction of the historic development of the variables (Pesaran
and Shin, 1998).

6There are other articles proposing structural analyses in a GVAR framework: Mohaddes and Pesaran
(2016), for instance, focus on the identification of country-specific oil supply shocks; however, their results
are still based on GIRFs.
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between countries plays a role in amplifying or dampening their responses to the climate

shocks, depending on the country-specific trade structure and trade partners network, as

well as on its level of development.

The rest of the paper is structured as follows. Section 2 describes the data and the

countries included in the analysis. Section 3 explains the methodology and introduces the

BS-GVARX model. Section 4 presents and discusses the results and Section 6 concludes.

2 Data description

We perform our analysis relying on macroeconomic and climate data for 33 countries.

Specifically, we focus on the economies included in the classic GVAR framework, as il-

lustrated in Mohaddes and Raissi (2020), which account for more than 90% of world

GDP and cover all the regions of the world from a geographical perspective. The sample

includes economies at different stages of development and with heterogeneous climatic

conditions (see Table 1). Since most of the relevant studies agree on the negative effects

of rising temperatures on economic performance in poor and hot regions, whereas impacts

are less clear for the rich and cold areas, the focus on this particular sample of countries,

including several developed economies, is of paramount interest.

For each country, we consider three endogenous domestic variables, specifically tem-

perature, precipitations and real GDP growth (Tit, Pit and Yit), at annual frequency. To

take into consideration the difference between climate change and simple weather real-

izations, the two climate variables are expressed in the deviations from their historical

norms. As argued in Kahn et al. (2021) and Tol (2021), this way of measuring allows

for estimation of unbiased weather effects, introduces an interaction between weather and

climate and, crucially, represents an implicit way of including adaptation in the model.
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The vector of the endogenous country-specific variables is defined as yit = [Tit,Pit,Yit]
′,

where i = 1, . . . , N is the country index and t = 1, . . . , T is the time index. We collect

climate data, provided by the World Bank Climate Knowledge Portal, from 1960 to 2019,

and compute their respective deviations from the norm defined as the moving average of

the past 30 years.7 We then compute Tit and Pit as the difference between the observed

temperature and precipitations at time t and the respective 30-years moving average

at time t − 1. Real GDP growth rates are computed as the logarithmic differences of

constant-prices GDP in levels obtained from Penn World Tables for the same time span.8.

One intrinsic feature of the GVAR model is the inclusion of the so-called foreign

variables, capturing the interconnections between each country and the rest of the world.

Foreign variables, considered as weakly exogenous, are constructed as weighted averages

of all the other countries’ variables. We define weights via a N × N trade matrix, as

proposed in Dees et al. (2007) and Chudik and Pesaran (2016). Each element of the trade

matrix is defined as wij =
Tij

Ti
, where Tij is the bilateral trade of country i with country j,

computed as the sum of exports and imports, and Ti is the total trade of country i. All

weights are constructed for each year of the selected period and then the simple average

of all weights is computed. Since real GDP growth is the only economic variable in our

model, we compute one foreign exogenous variable, defined as x∗
it = WiYit. Including

non-granular (local) cross-sectional weighted averages of Yit helps to deal with omitted

variable bias in the form of unobserved common shocks that may affect the set of the

endogenous variables of the GVAR model (see Chudik and Pesaran, 2011; Chudik et al.,

2021). Note that, as in Chudik et al. (2021), the foreign variable enters in our model with

one lag. This relaxes the potential problem of high correlation between the domestic real

7https://climateknowledgeportal.worldbank.org/download-data
8https://www.rug.nl/ggdc/productivity/pwt/
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GDP growth variable, Yit, and the foreign variable, x∗
it.

Table 1: Countries in the BS-GVARX model

Income classification Structure of output Climate conditions

Income Agriculture Industry Services Mean annual Mean annual
(% of GDP) (% of GDP) (% of GDP) temperature precipitation

(1991-2020) (1991-2020)
Asia and Pacific
Australia High 2 25.5 72.5 22.14 °C 482.33 mm
China Upper-Middle 7.7 37.8 54.5 7.43 °C 610.67 mm
India Lower-Middle 18.3 23.5 58.2
Indonesia Lower-Middle 13.7 38.3 48 26.14 °C 2857.01 mm
Japan High 1 28.7 70.3 11.31 °C 1658.05 mm
Korea High 1.8 32.6 65.6 11.41 °C 1394.50 mm
Malaysia Upper-Middle 8.2 35.9 55.9 25.74 °C 3135.52 mm
New Zealand High 5.7 20.4 73.9 10.21 °C 1770.29 mm
Philippines Lower-Middle 10.2 28.4 61.4 25.83 °C 2461.35 mm
Singapore High 0 24.4 75.6 27.60 °C 2254.07 mm
Thailand Upper-Middle 8.6 33.1 58.3 26.80 °C 1549.85 mm
North America
Canada High 1.7 24.6 73.7 -4.23 °C 532.87 mm
Mexico Upper-Middle 3.8 29.7 66.5 21.36 °C 758.59 mm
United States High 0.9 18.2 80.9 9.47 °C 722.19 mm
South America
Argentina Upper-Middle 5.9 23.3 70.8 14.88 °C 590.11 mm
Brazil Upper-Middle 5.9 17.7 76.4 25.58 °C 1755.82 mm
Chile High 3.9 31.4 64.7 8.99 °C 530.14 mm
Peru Upper-Middle 7.5 30.5 62 19.77 °C 1542.43 mm
Middle East and Africa
Saudi Arabia High 2.6 41.4 56 25.50 °C 75.67 mm
South Africa Upper-Middle 2.5 23.4 74.1 18.32 °C 455.96 mm
Europe
Austria High 1.1 25.5 73.4 7.23 °C 1210.84 mm
Belgium High 0.6 19.5 79.9 10.67 °C 885.45 mm
Finland High 2.5 24 73.5 2.72 °C 558.75 mm
France High 1.6 16.4 82 11.70 °C 838.18 mm
Germany High 0.7 26.5 72.8 9.62 °C 711.41 mm
Italy High 2 21.6 76.4 12.94 °C 879.10 mm
Netherlands High 1.6 17.8 80.6 10.40 °C 790.94 mm
Norway High 1.8 26 72.2 2.11 °C 1152.66 mm
Spain High 3.1 20.4 76.5 13.98 °C 596.29 mm
Sweden High 1.4 21.1 77.5 2.99 °C 663.81 mm
Switzerland High 0.7 25.2 74.1 6.06 °C 1631.54 mm
Turkey Upper-Middle 6.7 28 65.3 11.69 °C 576.82 mm
United Kingdom High 0.6 17 82.4 9.13 °C 1198.08 mm

Sources: World Bank’s World Development Indicators and Climate Knowledge Portal. Notes: country classification by
income refers to 2022. Low-income economies are defined as those with a per capita Gross National Income (GNI) of
$1,045 or less; lower middle-income economies are those with a GNI per capita of $1,046 to $4,095; upper middle-income
economies are in the range $4,096 to $12,695; high-income economies are those with a value higher than $12,696. GDP
shares by sectors refer to 2020. Services as a share of GDP are computed as difference between the total and the combined
share of Agriculture and Industry.

3 Methodology

We propose a Bayesian Structural Global VARX (BS-GVARX) model that encompasses

in a standard GVAR framework a Bayesian identification structure. The GVAR model,
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originally proposed by Pesaran et al. (2004), provides an attractive way of modeling the

dynamic relationship between the variables and the interconnections across countries in

a high-dimensional system. However, this methodology is not designed to perform struc-

tural analysis for two reasons. First, global reduced-form parameters are not estimated,

but derived from a re-parametrization of the first-step estimated coefficients, using the

link matrix defined in terms of the country-specific weights. Second, this solution of the

global model depends on the way that static and dynamic interdependencies are taken

into account in the country-specific analysis. It is worth noting that, in case of static

interdependence, the global vector of reduced-form solution residuals are obtained from

a linear combination of the residuals coming from the estimation of the country-specific

VARX models and the measure of interlinkage.9 Instead, assuming only dynamic inter-

dependence, the stacked country-specific residuals and those obtained from the solution

coincide. However, there is an implicit assumption that the estimated VARX and a model

with only endogenous variables are coincident. Thus, the main contribution of our work

on the GVAR literature is that we draw structural interpretation from the correlations we

observe in the data without imposing a data-shrinkage approach. Moreover, we apply a

Bayesian perspective, which consists in a statistical method of combining prior probability

distribution, that describes our degree of beliefs about the structural parameters, with the

probability distribution of the sample, that is the likelihood function of the observed data.

In this way, it is possible to solve the problem of identification by bringing in additional

information from multiple sources, for instance relying on the literature, and contribute

to form the identifying assumptions of the structural model.

9The interlinkages are measured by the product of the trade weights and the coefficients associated
with the foreign variables. The former are deterministic components, which are designed to capture
political and cultural interconnections across countries (see Gross, 2019; Chudik and Pesaran, 2016). The
latter represent stochastic components, which are estimated in the first-stage.
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Our structural analysis nests country-specific models in a single global specification,

by performing the algorithm proposed by Baumeister and Hamilton (2015). For what

concerns country-specific analysis, the VAR model of each country, augmented by the

exogenous (foreign) variable, is straightforwardly estimated. Then, all individual country

Structural VARX models are stacked to form one large global system. At this point, the

identification of the structural shocks are no longer independent across countries, since it

accounts for some joint prior information about the interaction of the responses of country-

specific economic activity to climate shocks. Thus, the idea of modelling the economic

spillovers between different countries through the equilibrium impacts of structural shocks

allows us to deal with the curse of dimensionality without the help of data-shrinkage

methods and to preserve a clear mapping from structural to reduced-form parameters of

the BS-GVARX model.

3.1 Country-specific climate-economy relationship

The endogenous variables of each country-specific Structural VARX models, collected in

the vector yit, are temperature (Tit), precipitations (Pit) and real GDP growth (Yit).

The exogenous foreign variable, x∗
it, captures the role of the global economy. The nested

SVARX model for a generic country i is:

Aiyit = Bixit−1 + uit (1)

where Ai is a ki × ki matrix of simultaneous structural coefficients, yit is a ki × 1 vector

of endogenous variables, xit−1 is a (lki + 2) × 1 vector containing a constant, the lags

of the country and foreign variables, that is x′
it−1 ≡

[
y′
it−1,y

′
it−2, · · · ,y′

it−l, 1, x
∗
it−1

]′
and
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Bi ≡ [Bi1,Bi2,bi0, ci] a ki × (lki + 2) matrix of structural coefficients.10 Specifically, bi0

is a ki×1 vector of intercepts, Bi1, Bi2 are ki×ki matrices of lagged structural coefficients

and ci is a ki×k∗
i vector that governs the relationship between the foreign and the country

variables. The vector of structural shocks uit ≡ [ui,1t, ui,2t, ui,3t]
′ is assumed to be normally

distributed with zero mean and diagonal variance-covariance matrix Di ≡ E [uitu
′
it]. Con-

sequently, the likelihood of the observed data Yi,T = (y′
i,T−1,y

′
i,T−2, · · · ,y′

i,1)
′ conditional

on the pre-sample observations xi0 is given by:

p (YiT |θi,xi0) = (2π)−Tki/2 |det (Ai)|T |Di|−T/2×

exp

[
−(1/2)

T∑
t=1

(Aiyit −Bixit−1)
′D−1

i (Aiyit −Bixit−1)

] (2)

where |det (Ai)| denotes the absolute value of the determinant of Ai and θi is a vector

collecting the unknown structural coefficients in Ai, Bi and Di. We use the following

specification for Ai to set-identify the structural shocks of interest:

Ai =


1 0 −ai,T Y

0 1 −ai,PY

−ai,YT −ai,YP 1

 (3)

The structural matrix Ai implies that temperature and precipitation variables are endoge-

nous to the economic system, via the parameters ai,T Y and ai,PY . Moreover, real economic

activity is simultaneously affected by both temperature and precipitation through the pa-

rameters ai,YT and ai,YP . We use two exclusion restrictions on the elements of matrix (3),

that are, ai,T P = 0 and ai,PT = 0. These restrictions imply that climate variables affect

10We set the number of lags l = 2 for each country. This choice takes into account both the Information
Criteria selected lag order, equal to 1 for all countries according to the HQN and BIC IC, and the 2-year
duration of a global business cycle (see Kilian and Lütkepohl, 2017; Hamilton, 2021).
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each other only after one period. Literature has not identified a scheme of transmission

from one ”most exogenous” to another ”more endogenous” weather variable; rather, cli-

mate is a complex system resulting from the combination of different contemporaneous

conditions. The two zero-restrictions are further motivated by the fact that both temper-

ature and precipitation are expressed as long-term deviations in the model, rather than

being sudden weather shocks. The structural representations of (1) can be written as:



Tit = ai,T YYit + b′
i1xit−1 + ui,1t

Pit = ai,PYYit + b′
i2xit−1 + ui,2t

Yit = ai,YT Tit + ai,YPPit + b′
i3xit−1 + ui,3t

(4a)

(4b)

(4c)

where b′
ij contains all structural coefficients on the lagged variables of the jth equation

and corresponds to the jth row of Bi. The vector uit consists of three different country-

specific structural shocks, namely a temperature shock u1,it, a precipitation shock u2,it

and an economic activity shock u3,it.

The reduced form of the SVARX model for each country is given by:

yit = Πixit−1 + εit (5)

where Πi ≡ [Φi1,Φi2,ϕi,λi], is a ki×(kil + 2) matrix of the reduced-form coefficients and

εit is a vector of zero-mean white noise process with variance-covariance matrix E [εitε
′
it] ≡

Ωi, such that εit ∼ N (0,Ωi).

The Maximum Likelihood estimators of Πi and Ωi are given by:

Π̂i =

(
T∑
t=1

yitx
′
it−1

)(
T∑
t=1

xitx
′
it−1

)−1

. (6)
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Ω̂i =
1

T

T∑
t=1

ε̂itε̂
′
it (7)

where ε̂it = yit−Π̂ixit−1 denotes a (ki × 1) vector of country-specific reduced-form errors.

3.2 The global climate-economy relationship

At this point, all single-country SVARX specifications are stacked to form one large global

structural model. Using the ki×k and (kil+2)×N(kil+2) dimensional selection matrices

that select yit and xit, equation (1) can be re-written as:

AiE
′
iyt = BiẼ

′
ixt−1 + uit (8)

where yt = (y
′
1t, y

′
2t, · · · , y

′
Nt)

′ is a (k × 1) vector containing all the endogenous country-

specific variables, with k =
∑N

i=1 ki and xt−1 =
[
x′
1,t−1,x

′
2,t−1, · · · ,x′

N,t−1

]′
is a N(kil +

2)× 1 vector consisting of all country-specific variables. If we stack these models for each

country, we will end up with the BS-GVARX model:

Ayt = Bxt−1 + ut (9)

where A is a k × k contemporaneous structural matrix and B is a k ×N(kil + 2) matrix

of lagged parameters, that is:

A ≡



A1E
′
1

A2E
′
2

...

ANE
′
N


,B ≡



B1Ẽ
′
1

B2Ẽ
′
2

...

BN Ẽ
′
N


=



B1

[
I(k1l+2),0(k1l+2), · · · ,0(k1l+2)

]
B2

[
0(k2l+2), I(k2l+2), · · · ,0(k2l+2)

]
...

BN

[
0(kN l+2),0(kN l+2), · · · , I(kN l+2)

]


.
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Let ut = (u′
1t,u

′
2t, · · · ,u′

Nt)
′ denote a k × 1 vector of the stacked country-specific struc-

tural innovations, assumed to be normally distributed with zero mean and a k×k diagonal

covariance matrix E [utu
′
t] = D. It is worth noting that the structural innovations ac-

count for the interdependence across countries.11 If we assume that the likelihoods of the

observed data are independent for each county, then the likelihood function of the global

model is given by:

p (YT |θ,x0) = p (Y1,T |θ1,x1,0)× p (Y2,T |θ2,x2,0)× · · · × p (YN,T |θN ,xN,0) (10)

where YT is a vector of stacked country-specific observed data, x0 is a vector collecting

the pre-sample observations for each country and θ is a vector containing all the unknown

parameters of A, D and B. If the block-diagonal matrix A is non-singular, the reduced

form of the BS-GVARX model can be obtained, multiplying equation (9) by A−1, that is:

yt = Πxt−1 + εt (11)

where Π = A−1B is a (k × N(kil + 2)) matrix of reduced-form coefficients and εt =

(ε′1t, ε
′
2t, · · · , ε′Nt)

′ is a (k × 1) vector of the stacked country-specific reduced-form errors,

with a (k × k) variance-covariance matrix E [εtε
′
t] ≡ Ω = A−1D(A−1)′, such that εit ∼

N (0,Ω). The Maximum Likelihood estimates for this representation are given by:

Π̂ =

(
T∑
t=1

ytx
′
t−1

)(
T∑
t=1

xtx
′
t−1

)−1

. (12)

Ω̂ = T−1

T∑
t=1

ε̂tε̂
′
t (13)

11The interdependence is modelled through equilibrium impact of the structural shocks, as we explain
later.
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where ε̂t = yt − Π̂xt−1 denotes a (k × 1) vector of stacked country-specific residuals. In

order to obtain a positive definite matrix Ω̂, we adopt the naive shrinkage approach, which

considers all the cross-country covariances equal to zero. This is not an issue since we do

not consider static interdependence in the reduced-form GVAR model, and we expect the

cross-country covariances to be reduced by including the foreign variables.

We estimate model (9) using the methodology proposed by Baumeister and Hamilton

(2015), which relies on Bayesian inference for set-identified structural VAR models. The

identification of the structural parameters is based on two steps. In the first step, priors

are assigned to the contemporaneous structural coefficients A, the equilibrium impacts

of structural shocks H ≡ A−1, the lagged structural coefficients B and the variances

of the structural shocks D. The identification algorithm discussed in Baumeister and

Hamilton (2015) and extended in Baumeister and Hamilton (2019) allows for any type of

distribution that represents adequately the existing knowledge on the contemporaneous

structural parameters. Therefore, the functional form of the probability density function

for A, denoted by p(A), is not restricted. The priors information for the other coefficients,

denoted by p(D|A) and p(B|A,D), are selected from natural conjugate families in order

to ensure a closed-form analytic expression for the Bayesian posterior distribution and

thus reducing the computational effort. The second step relies on sampling S=3 million

draws {A,D,B}Ss=1 from the posterior distribution of the unknown structural coefficients

p(A,D,B|YT), with 2 million draws of burn-in. Specifically, we generate draws from

the posterior distribution p(A|YT ) using a random walk Metropolis-Hastings algorithm

and next we revise A to taking into account the information we set on H. Finally, we

make draws of the structural shocks and the lagged structural parameters from posterior

distributions p(D|A,YT ) and p(B|A,D,YT ).
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3.2.1 Prior information about the structural parameters

The overall prior is given by:

p(A,D,B) = p(A)
N∏
i=1

p(di|A)
N∏
i=1

ki∏
j=1

p(bij|A,D) (14)

whose components are discussed below.

Prior for the contemporaneous structural coefficients. Let θAi
be the vector of the free pa-

rameters in matrix Ai. Assuming independence across countries and structural equations,

the unconditional prior distribution of A, denoted by p(A), is:

p(A) =
N∏
i=1

p(θAi
) (15)

where p(θAi
) = p(ai,T Y)p(ai,PY)p(ai,YT )p(ai,YP)p(θHi

). It is worth noting that, the re-

sulting prior p(A) takes into account the prior information about the general equilibrium

impacts of the structural shocks within and across countries, via p(θHi
). The priors for

the unknown elements of matrix Ai are Student t distributions, with mode, scale param-

eters and degrees of freedom as reported in Table 2.12 The priors for the parameters ai,T Y

and ai,PY , corresponding to the economic effects on climate, are imposed equal across

all countries, whereas for ai,YT and ai,YP , denoting how climate affects the economy, we

differentiate the priors by considering groups of countries with similar features. The first

choice is consistent with the view that it is reasonable to expect that, on impact, climate is

mildly affected by real economic activity. Beware of this, we opt for an informative prior,

12Here ϕ̃ν (x) denotes the probability density function of a standard Student t variable with location
parameter c, scale parameter σ and ν degrees of freedom evaluated at the point x, that is:

ϕ̃ν (x) =
Γ [(ν + 1) /2]

(νπ)
1/2

Γ (ν/2)

(
1 +

x2

ν

)−(ν+1)/2

.
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with mode cai,T Y = cai,PY = 0, standard deviation σai,T Y = σai,PY = 0.01 and 3 degrees of

freedom. Instead, since the two parameters capturing the effects of climate shocks on real

GDP growth are the main focus of the analysis, we opt for different settings considering

three groups of countries. We divide countries combining the information we have about

multi-country empirical studies, country-specific analyses and descriptive statistics about

weather conditions and income levels. The priors are reported in Table 2. The prior

modes of ai,YT are equal to those for ai,YP within the country groups. This choice is de-

termined by two main motivations. First, whereas there is plenty of analyses focusing on

the temperature effect on economic performance, there are less considering the effects of

precipitation, and still if both variables are included, there is greater uncertainty in esti-

mating the effects of rainfall at country-level (Damania et al., 2020). Second, we make the

assumption that both climate variables have the same importance in explaining economic

activity, so we opt for the same magnitude.

The groups of countries we define are split in order to identify regions with different on-

impact effects of climate shocks according to the disposable prior knowledge. Bearing in

mind that colder countries, such as Canada, Finland, Norway and Sweden, are associated

with positive temperature effects in terms of economic growth in the majority of empirical

literature (see, among others Acevedo et al., 2020), we set for this group the mode at

cai,YT = cai,YP = 0.005. The second and third groups are defined as one containing poor

and hot countries and the other containing all the rich economies which are not part of

the first group. There are however some exceptions: when detailed analyses about one

particular country are available, we rely on them and privilege that information with

respect to multi-country set ups. Due to this, the second group, in the bottom panel

of Table 2, consists in a mix of poor and hot countries, found to be the more damaged

18



Table 2: Prior distributions specifications for the structural parameters in Ai

Student t

List of countries Parameter mode (c) scale (σ) d.o.f.

Canada, Finland, Norway, ai,YT 0.005 0.01 3
Sweden ai,YP 0.005 0.01 3

Austria, Belgium, China, France
ai,YT 0.001 0.01 3Germany, Italy, Netherlands,

New Zealand, Spain, Switzerland,
ai,YP 0.001 0.01 3Turkey, United Kingdom

Argentina, Australia, Brazil,

ai,YT -0.005 0.01 3Chile, India, Indonesia, Japan,
Korea, Malaysia, Mexico,
Peru, Philippines, Saudi Arabia,

ai,YP -0.005 0.01 3Singapore, South Africa,
Thailand, USA

Notes: ai,YT and ai,YP denote the effect of temperature and precipitation, respectively,
on economic growth in country i. The location and scale parameters of the t distribution
are the mode and its standard deviation; d.o.f. denotes the degrees of freedom.

ones in economic terms, and a small set of countries which, even if rich, are expected

to be negativelly affected by climate shocks: Australia, Japan and the United States.A

work by Acevedo et al. (2020) finds that the Austrialian economy is strongly negatively

affected by increasing temperature. They do not find statistically significant effects for

the cases of the USA and Japan. However, US is too big and characterized by a variety

of climatic conditions across the different regions. Since data for the US is available in a

very disaggregated detail, estimating several models in which within-country data are used

leads to the conclusion that the effects are negative and significant, as discussed by Kahn

et al. (2021). The same disaggregated analysis is performed for Japan by Kurachi et al.

(2022), who conclude that rising temperature has a detrimental effect in economic outcome

over the long run. Thus, our prior for the parameter’s mode is cai,YT = cai,YP = −0.005.

The third group, in the middle panel of Table 2, is composed by those cold-rich countries
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in which the effect of climate variations is still unclear, often statistically not significant

and for which the evidence is mixed (see Dell et al., 2012; Burke et al., 2015; Acevedo et al.,

2020). We put in this group the European countries, New Zealand, China and Turkey.We

consider China too big and heterogeneous to put it in the former group; indeed, evidence

considering micro data of Chinese firms performance conclude that the effect of rising

temperature is U-shaped (Zhang et al., 2018). Turkey is included here as part of Europe

from a geographical and climatic point of view, and because Acevedo et al. (2020) find

statistically not signficant effects of temperature on its economic activity. In this case, we

set cai,YT = cai,YP = 0.001, slightly positive but very close to zero, considering the effect

of climate change on economic growth rather marginal.

Prior information about impacts of structural shocks. Given the impact multiplier matrix

H, define with θHi
the vector collecting the elements of H for country i. The resulting

prior is:

p(H) =
N∏
i=1

p(θHi
) (16)

where p(θHi
) = p(θHD

i
)p(θHF

i
). Note thatH = 1

det(G0)
H̃, where H̃, asA, is block-diagonal,

with each block equal to:

H̃i =


1− ai,PYai,YP ai,T Yai,YP ai,T Y

ai,PYai,YT 1− ai,T Yai,YT ai,PY

ai,YT ai,YP 1

 . (17)

Thus, p(θHD
i
) collects the prior information about the domestic impacts of the structural

shocks on the economic growth and it is defined as p(θHD
i
) = p(hD

i,YT )p(h
D
i,YP), where

hD
i,YT =

ai,YT
det(Ai)

and hD
i,YP =

ai,YP
det(Ai)

. Specifically, we incorporate prior information on the

country-specific response of GDP growth to temperature and precipitation shocks using
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Student t variables with location, scale parameters and degrees of freedom identical to

those imposed on A.

Moreover, in our identification strategy interdependence is considered via θHF
i
, a (2× 1)

vector collecting the spillover effects from foreign countries to country i, which is defined as

hF
i,YT =

∑N
j=1 h

D
i,YT ωij for temperature shocks and hF

i,YP =
∑N

j=1 h
D
i,YPωij for precipitation

shocks, where ωij is the trade weight relating country i and j, with j ̸= i. For these

priors we employ Student t distributions with location parameter equals to the weighted

average of the country specific priors as reported in table 2, scale parameters set at

0.01 and degrees of freedom set at 3. This implies relatively informative priors over the

response of GDP growth to climate shocks that are perfectly consistent with values set

for A. It also implies that the direct (i.e., domestic) prior on A is combined with the

instantaneous spillover effects, which are weighted by the correspondent trade weights,

consistently with the study of De Santis and Zimic (2018), using absolute magnitude

restrictions to identify the shocks in presence of spillovers. These assumptions account

for the importance of trade and of spillover effects, both exhaustively documented in the

literature. As argued in Chudik and Pesaran (2016), when the number of countries is

moderate, spillover effects are important and it is advisable to use trade weights that also

capture political and cultural interlinkages across countries. Dellink et al. (2017) also

find that in response to climate shocks, the trade linkage between regions is an important

source of spillover. When studying climate change effects on agricultural yields, Gouel

and Laborde (2021) find a strong role of international trade in balancing the new domestic

supply and demand schedules and consequently in responding to climate shocks. Finally,

Dall’Erba et al. (2021) investigate the role of U.S. interstate trade in the response of U.S.

crop profit to climate shocks and find that crop growers’ profits depend on both local and
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trade partners’ weather conditions.

Prior for the structural variances conditional on A. Let d−1
i,jj denote the reciprocal of the

jth element on the diagonal of D, the variance-covariance matrix of the structural shocks.

We assume that, conditional on A, the priors for the structural variances of country i

follow an inverse-Gamma distribution and are independent across countries and equations,

so that:

p(D|A) =
N∏
i=1

p(di|A) (18)

where di =
∏ki

j=1 p(di,jj).
13

Prior for the lagged structural coefficients conditional on A and D. These priors are as-

sumed to be independent across countries and structural equations:

p(B|A,D) =
N∏
i=1

ki∏
j=1

p(bij|A,D). (19)

where b′
ij is a row vector of Bi, collecting the random parameters which follow a multi-

variate Normal distribution with mean mij and variance di,jjMij.
14 Consistent with the

fact that climatic and economic variables are not easy to predict, we set prior expected

values for all parameters equal to zero, m′
ij = a′

ij (0ki×1 0ki×kili+2), where aij denotes the

13We can write the conditional prior distribution for d−1
i,jj as:

p
(
d−1
i,jj |A

)
=

τ
κj

j

Γ(κj)

(
d−1
i,jj

)κj−1
exp

(
−τjd

−1
i,jj

)
, for d−1

i,jj ≥ 0

where κ/τj and κ/τ2j represent the first and second moments of d−1
i,jj , respectively. Following Baumeister

and Hamilton (2015, 2019), we set the prior mean for d−1
i,jj equal to the reciprocal of the diagonal element

of matrix AiΣiA
′
i, where Σi represents the sample variance-covariance matrix of the residuals, from

univariate first-order autoregressive models estimated on each endogenous variable. Moreover, we set
κ = 0.5, which weights the prior as identical to the information that would come from a single observation.

14The conditional prior distribution for the lagged structural coefficients can be expressed as follows:

p (bij |A,H,D) = (2π)
−k/2 |di,jjMij |−1/2 × exp

[
−(1/2) (bi,j −mi,j)

′
(di,jjMij)

−1
(bij −mij)

]
where mij is the best guess about bij before looking at the data and Mij is our confidence in this prior
information.
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j-th row of Ai. We define:

vi1 ≡
(
1−2λ1 · · · l−2λ1

)′
vi2 ≡

(
s−1
11 s−1

22 s−1
33

)′

vi3 ≡ λ2
0


vi1 ⊗ vi2

λ2
i3

λ2
i4


where s11, s22 and s33 denote the diagonal elements of matrix Σi and λs are the hyper-

parameters about the prior coefficients of the lagged structural coefficients as reported

in note 15. Then the variance-covariance matrix Mij is diagonal, whose r-th diagonal

element is the r-th element of vi3. For Mij, we set a standard Minnesota prior assigning

large confidence that coefficients related to higher lags are zero (see Doan et al. (1984)).15

3.2.2 Posterior distributions of the structural parameters

We adapt the closed-form analytical expression for the marginal posterior distribution

of the contemporaneous structural parameters Ai in the context of the BS-GVARX, as

follows:

p(A|YT ) =
κTp (A) [det (AΩTA

′)]T/2∏N
i=1

∏ki
j=1

[
(2/T ) τ ∗ij

]κ∗
ij

N∏
i=1

ki∏
j=1

τ
kij
ij (20)

with: κ∗
ij = κi + (T/2) , τ ∗ij = τi + (ξ∗ij/2). and κT is a constant term for which (20) inte-

grates to unity. Note that, p (A) is the prior density for the contemporaneous structural

parameters and ΩT denotes the sample variance-covariance matrix for the reduced-from

15According to Baumeister and Hamilton (2015), four values for the hyper-parameters of the prior for
Mij are chosen. First, a parameter controlling the overall tightness of the prior, λ0, which is set to 0.5.
Second, a parameter governing how quickly the prior of the past coefficients tightens to zero as the lags
increase, λ1 which is set to 1. Finally, the parameters governing the tightness of the prior for the constant
term λ3 and the exogenous variable λ4, are both set to 100. The latter imply uninformative priors over
the exogenous variable and the constant term.
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residuals in the global system. Analogously to Baumeister and Hamilton (2019), we use a

random-walk Metropolis Hastings algorithm to generate different draws of the unknown

elements of the contemporaneous structural matrix Ai. Specifically, for each draw, Ai is

numerically revised to account for the spillover effects to country i. This can be easily

calculated in three steps. First, we compute the impact multiplier matrix implied by Ai,

which is denoted by Hi. Second, we add to Hi the foreign effects of climate shocks on

GDP growth rate of country i, namely Hi = Hi + µHF
i , where µ denotes the relative

importance of trade and HF
i is a (3× 3) matrix, defined as follows:

HF
i =


0 0 0

0 0 0

hF
i,YT hF

i,YP 0

 .

Third, defining Ai = H−1
i , we show how information about the equilibrium impacts can

be used to generate draws for Ai that are consistent with domestic and foreign impact

responses.16 From now on, the Baumeister and Hamilton’s approach allows us to de-

rive the posterior distributions of D and B using well known formulas (see Baumeis-

ter and Hamilton (2022)). Specifically, let ξ∗ij be the sum of squared residuals of a

regression of Ỹij on X̃ij, where Ỹij and X̃ij represent augmented vectors defined as

Ỹij ≡
[
y′
i1aij · · · y′

iTaij m
′
ijPij

]′
and X̃ij ≡

[
x′
i0 · · · x′

i,T−1 Pij

]′
, with Pij denoting the

Cholesky factor of M−1
ij . Then, the posterior distribution of diagonal elements of D

given A turns out to be IG (κ∗
ij, τ

∗
ij). Finally, the posterior distribution for the jth row

of Bi conditional on D is normal with mean and variance-covariance matrix equal to

m∗
i,j = (X̃ijX̃ij)

−1(X̃′
ijỸij) and M∗

ij = (X̃ijX̃ij)
−1 respectively.

16In our application, the scalar parameter µ takes value on 1, consistent with the idea that foreign
impact response is equally important to domestic impact response. In contrast, if we set µ = 0, we will
end up with a global model that provides same results of country-specific SVAR modes.
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4 Empirical results

Although our empirical approach produces two set of results, coming from the estimation

of the country-specific models and of the single global specification, we will mainly focus

on the latter, as it includes all the information embedded into the former models, but also

add role for interdependence. The difference between the two sets is given by the way

interactions among countries are modeled. Since we model interdependence via trade, we

can analyze how imports and exports act to mitigate or amplify the effects of climate

shocks. In the rest of this Section we will focus on the impact and dynamic effects of

temperature and precipitation shocks on economic activity growth.

4.1 Economic effects of climate shocks

4.1.1 Priors and posterior distributions of the contemporaneous structural parameters

Figure 1 and 2 show the prior and posterior distributions of the estimated model, refer-

ring to the parameter ai,YT . Whereas Figure 1 reports the countries for which we get

a negative median, Figure 2 focuses on economies positively responding on impact to a

temperature shock (in median). In all panels, the prior distribution we set are repre-

sented by the blue lines. The green, pink and orange histograms show different posterior

distributions, specifically the green ones refer to the estimation of the global model in

which interdependence is included (µ = 1) and the Ai matrix is updated with informa-

tion of the equilibrium impacts, as explained in Section 3.2, the pink one come instead

from estimating the global model with µ = 1 but without updating of Ai and the orange

ones are associated to country-specific models, or equivalently to a global model in which

we set µ = 0. We report also the three median values for the posterior distributions,

denoted with ”Median 1”, ”Median 2” and ”Median 3”, representing the median values for

25



Figure 1: Prior and posterior distribution for the ai,YT structural parameters: negative
median responses

Figure 2: Prior and posterior distribution for the ai,YT structural parameters: positive
median responses

the green, orange and pink distributions, respectively. Figures 4 and 3 show the equivalent

comparison between the prior and posterior distributions in different setups, but focusing

on the instantaneous effect of precipitation on real GDP growth, captured by ai,YP .
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Figure 3: Prior and posterior distribution for the ai,YP structural parameters: negative
median responses

Figure 4: Prior and posterior distribution for the ai,YP structural parameters: positive
median responses

As shown by Figures 1, 2, 3 and 4, we get more countries overall negatively affected

than positively from climate shocks, both in the case of a positive temperature or a positive

precipitation shocks. Interestingly, by comparing the median value of the green posterior

distributions with the medians for the orange distribution (that is, the model with µ = 1

to the one with µ = 0) we notice that trade may act as an amplifier of the climate
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effects in some countries, specifically those exhibiting the higher effects in magnitude, in

absolute terms. This suggests that the trade openness is additionally detrimental because

it helps spreading the adverse effects on the economies of climate shocks, whereas the

(fewer) positively affected countries strengthen the benefic effects they get from increases

in temperature and precipitation with import and export. We will further discuss the role

of trade in the climate-economy relationship in Section 5. The remainder of this Section

focuses on the results obtained via estimating the global model in which we allow for full

interdependence setting µ = 1.

4.1.2 Dynamic responses

Our estimation procedure allows to perform a structural dynamic analysis in a very natural

way, to assess how climate affects economic activity through time. Figures 5 and 6 analyze

the dynamic responses of GDP growth to temperature shocks at different time horizons,

with countries divided among those reporting negative and positive effects on impact. The

red lines and shaded areas represent the medians of the responses from the estimation

of the global model and the credible regions comprehending the 68% of the distribution,

respectively.

Conversely, Figures 7 and 8 focus on the impulse responses of countries’ real GDP to

a positive precipitation shock, again split between those exhibiting negative and positive

impact responses.

The picture emerging from the analysis of the impulse responses splits countries for

which the effect is rather uncertain or disappear rather quickly with those exhibiting a

persistent significant effect that does not vanish after 5 years. One of the most important

result we get is that countries with economic growth negatively affected by a temperature

shock on impact also tend to be associated with a negative effect in the dynamics, whereas
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Figure 5: IRFs of real GDP growth to temperature shocks: on impact negatively affected
countries

Figure 6: IRFs of real GDP growth to temperature shocks: on impact positively affected
countries

on the contrary most countries whose economic growth contemporaneously benefit from a

temperature shock are then exhibiting a negative effect in the long-run.17 This finding is

17Some economies show a short-term ”rebound effect”, meaning they show a negative impact effect,
then becoming positive after one year, and thereafter it dampens.

29



Figure 7: IRFs of real GDP growth to precipitation shocks: on impact negatively affected
countries

Figure 8: IRFs of real GDP growth to precipitation shocks: on impact positively affected
countries

of paramount importance because it reveals that all economies are going to be negatively

exposed to temperature increases, no matter what happens in the short-run: sooner or

later, the detrimental effects of climate change hit the economic growth for the majority of
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the countries in our sample. By looking at the responses of GDP growth to precipitation

shocks, the picture is similar, but the effects tend to be on average more stable in the

dynamics (there is less evidence for rebound effects), and overall the shocks revert to

zero after 5 years, suggesting rainfall shocks are more easily absorbed by economies than

temperature increments.

Finally, uncertainty of the estimated effects needs to be considered. Whereas for some

countries the responses of economic activity to climate shocks are estimated with small

variability, for some others the mass of the distributions is much concentrated on the tails,

suggesting the effect is estimated with more uncertainty. This could reflect the different

characteristics of specific countries, as for example the multiple geographic conditions that

may coexist in a single very extended country, as well as other considerations associated

with the quality of data.

5 Discussion of the empirical evidence

In this Section we make some comparisons with the results obtained in the empirical

studies on the climate-economy relationship, and we discuss our findings in order to draw

a schematic picture of how climate effects are distributed among countries. Since our

results can mostly be interpreted in relation to geographical and income dissimilarities

among different economies and to the role of trade spillovers, we will focus on these two

aspects.

5.1 Disentangling geographical and income heterogeneity

Both in case of temperature and precipitation shocks, as well as in terms of on impact

and dynamic effects, it is not an easy task to identify regular patterns with respect to
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geographical or climate areas. The on impact responses to climate shocks are negative

for the majority of countries, and the number of negatively affected economies is greater

in the case of precipitation shocks. Following the literature, we have tried to identify

some similar patterns by grouping countries according to the effects we have estimated.

According to the majority of the empirical studies, temperature is expected to negatively

affect economic performance at least in less developed countries and in hotter areas of the

world. Our results, however, are mixed in both dimensions, that is hot vs cold regions and

rich vs poor countries.18 In our setup, clustering countries in specific groups, for instance

using criteria such as geographical homogeneity or level of development, requires greater

care and comes after estimation of the model.

Figure 9 reports the same information of the impulse responses at horizon 0, but allows

to see in a more intuitive way how the effects we estimate are distributed in space. Figure

(a) Temperature shocks (b) Precipitation shocks

Figure 9: Percentage effects at horizon 0 of climate shocks to real GDP growth from the
global model

9a, interestingly, groups the positive impact effects of temperature shocks on economic

growth only between part of Europe, Canada and New Zealand. The rest of the world is

associated with economic losses from temperature shocks, or with effects indistinguishable

from zero. Thus, not all the richer economies are positively affected by temperature

18We remind that in panel regression specifications, the overall effect regarding poor or rich (hot or
cold) countries is obtained by splitting the sample among richer and poorer economies (hotter or colder
areas) before the estimation.
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shocks, but all the positively affected countries are, in facts, rich. The most adversely

affected countries are Mexico and Brazil, located in the American continent. Conversely,

the highest effects in magnitude are associated with cold European countries. Figure 9b

shows that the most adverse effect of precipitation shocks is registered in Saudi Arabia,

whose economic growth loss is estimated at -1.28%. Interestingly, Saudi Arabia is also

the less rainy country of the sample (see Table 1). In general, we note that the starting

rainfall conditions matter, in the sense that countries less exposed to rainfall are more

adversely impacted by precipitation shocks. We explain this empirical evidence with the

fact that countries with lower levels of rainfall have less capacity to face and to absorb

unexpected precipitation shocks. On the opposite, we find Canada, with a +1.21% effect

on real GDP growth. Interestingly, moreover, some countries are negatively (or positively)

affected by both climate shocks, whereas some others are positively affected by one of the

two shocks and negatively by the other, adding another difficulty in our clustering.

Nevertheless, some similarities between our results and the findings of other studies

with a multi-country focus do emerge. Kahn et al. (2021) find an adverse effect of tem-

perature shock on output growth in most of the countries, albeit to different degrees,

without distinction between poor, rich, hot and cold countries. They argue that economic

growth is affected not only by persistent increases in temperatures but also by the degree

of climate variability. They point out the faster pace with which temperatures are rising

in colder regions and argue that not only the temperature, but also its deviation from the

historical norm, together with the climate conditions to which countries are accustomed,

determine the size of income loss. Colacito et al. (2018), examining the US economy, find

that the economic effects of rising temperature differs across states and highly depend on

the industrial composition of each area. Therefore, the negative effect of higher temper-
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atures is not necessarily linked with the predominance of the agricultural sector or with

a lower level of income, as instead is generally suggested by the literature. Importantly,

they find that the negative impact of temperature on GDP growth is more pronounced in

the recent period, despite the advances in measures for adaptation.

As far as precipitations are concerned, it is well estabilished in the literature that low

income countries are facing sharper effects with respect to rich countries,19 and that the

key channel for the transmission of the shock is agriculture. Our results are mixed in this

respect, as there is no clear distinction in terms of income or agriculture shares.

5.2 The role of trade

To disentangle the role that trade plays in our results, we report the ”foreign” posterior

distribution of the model, that is, the posterior distribution associated with HF
i . These

distributions are reported in Figures 10 and 11, in which we split countries associated

with a negative or positive traded spillover for the temperature effect on economic growth.

Figures 12 and 13 focus instead on trade spillover posterior distributions associated to a

precipitation shock on economic activity.

In Figures 10, 11, 12 and 13 the blue lines represent the ”prior” distributions and the

green histograms the corresponding posterior distributions.20

By construction, the medians of these distributions represent the pure effect of trade

spillovers, and we can order countries from the most negatively affected to the most

19See, for example, Damania et al. (2020), who explains, among other things, that the reason for which
many studies fail to detect a significant role for precipitation in explaining economic output is given by
the aggregation at a country level, since rainfall is much more heterogeneous from a spatial point of view
with respect to temperature. However, it is worth noting that the relationship between rainfall and GDP
is found to be concave, which may explain why for developed countries an additional unit of precipitation
may be associated with negative economic growth.

20Notice that we do not impose a prior associated with spillovers in a proper sense. Conversely, the
prior distribution of Hi is given by the sum of two components, namely the domestic and the foreign
part for each country i. The prior for the trade spillover is simply obtained as the weighted average of
domestic priors in all the other countries with the exception of the ith one.
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Figure 10: Impact of temperature shocks on real GDP growth coming from the foreign
component; negative spillovers

Figure 11: Impact of temperature shocks on real GDP growth coming from the foreign
component; positive spillovers

positively affected by the inclusion of trade interdependence. For the majority of countries,

namely 24 in the case of temperature shocks, and 31 in the case of precipitation ones,

trade as a detrimental effect, whereas only few countries benefit from the inclusion of
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Figure 12: Impact of precipitation shocks on real GDP growth coming from the foreign
component; positive spillovers

Figure 13: Impact of precipitation shocks on real GDP growth coming from the foreign
component; negative spillovers

interdependence.

Focusing on the temperature shocks trade spillover, it is interesting to note that the

few countries gaining from trade are located in Europe. However, not all the EU countries
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are associated with a positive trade spillover, so that this result must be handled with

care and in order to make further considerations, additional analyses on this respect are

necessary. Curiously, the spillover associated with precipitation shocks is always negative,

apart for the two cases of Argentina and the United States. Finding regularities in the

geographical distribution of the trade effects and understanding the different results we

get is of paramount usefulness. Thus, these will be the focus of our forthcoming analyses.

6 Concluding remarks

We have studied the effects of climate shocks on real economic activity, both at country

level and global setup. To perform our analysis, we have employed the BS-GVARX model

to disentangle the net effect of temperature and precipitation shocks to real GDP growth,

as well as the role of economic interdependence between countries.

Three are the novelties of our paper. First, the inclusion of a formal identification

structure in a GVAR model. Second, the endogenization of the climate variables, temper-

ature and precipitations. Third, the incorporation of economic interdependencies among

countries.

Three main conclusions emerge from our analysis. First, we find evidence that climate

and economic growth are mutually influenced, suggesting the importance of fully endo-

genizing of the system. Second, climate change plays a role both from local and global

perspectives. Whereas the local aspects are usually highlighted by the literature, the focus

on a global system, where climatic and economic interconnection is explicitly modeled, is

a novelty. Third, accounting for the economic interdependence across countries, we find

that, in response to the temperature and precipitation shocks, the majority of countries

are overall negatively exposed to trade, suggesting that even if climate change may have
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different effects on economic growth at a local level, in a global perpective the interconnec-

tion among all the economies exacerbates the impacts of temperature and precipitation

shocks.

Finally, we remark that the majority of countries are negatively affected in terms of

economic growth when exposed to climatic shocks, if not immediately when the shock

occurs, at least at a higher horizon. Climate change consequences may be severe and the

effects of temperature and precipitation anomalies should be handled with care.
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