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1 Introduction

How and how much information is revealed when two equally informed senders with
conflicting interests provide advice to a decision maker? When senders are well informed
and misreporting is prohibitively expensive, the decision maker can “rely on the information
of the interested parties” to always make the right choice.1 However, there are many
situations where information is not fully verifiable and it is possible to misreport it at a
reasonable cost.2 Intuition would suggest that, in these cases, the decision maker might
obtain conflicting advice and make wrong choices as a result of being poorly informed.

This type of interaction is at the core of a large number of real-world scenarios:
candidates competing for consensus during an electoral campaign may provide voters with
different accounts of the same events; newspapers with opposed political leanings may
deliver conflicting and inaccurate news; prosecutors and defendants trying to persuade a
jury may tamper with evidence; co-workers competing for a promotion may exaggerate
their contributions to a team project; advocacy groups trying to influence court cases
may use amicus curiae briefs; and methods used in lobbying against public health may
include “industry-funded research that confuses the evidence and keeps the public in
doubt” (Chan, 2013).

I address the above questions with a costly signaling game between an uninformed
decision maker and two senders with common information and conflicting interests.
The two senders observe the realization of a random variable—the state—and then
simultaneously or privately deliver a report to the decision maker. These reports are
literal statements about the realized state. Senders can misreport such information, but
incur “misreporting costs” that are increasing in the magnitude of misrepresentation.
By contrast, reporting truthfully is costless. After observing the reports, the decision
maker must select one of two alternatives. At the end of the game, each player obtains a
payoff that depends on the realized state and on the alternative selected by the decision
maker. I assume that the payoff players receive from the selection of the first alternative
is increasing with the state, while the payoff players receive from the selection of the
other alternative is normalized to zero in every state. Players prefer the first alternative
in relatively higher states, whereas they prefer the second alternative in relatively lower
states. Therefore, the state is a valence parameter, and it can be thought of as representing
the relative quality of the two alternatives.3

1See, e.g., Milgrom and Roberts (1986b).
2Misreporting information is a costly activity due to the time and effort that is required to misrepresent

the information, or due to the expected loss in reputation, credibility, and future influence, and more.
Moreover, misreporting is more difficult, and hence more costly, when information is harder.

3For example, the state can represent the leadership or competence of politicians, the durability or
product quality of commercial goods, and the fitness with the state of the world of policies.
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Throughout the paper, I restrict attention to equilibria where the decision maker’s
posterior beliefs satisfy a first-order stochastic dominance condition with respect to the
senders’ reports. Under this condition, the decision maker’s expected payoff from selecting
the first alternative does not decrease when senders announce that the state takes higher
values. This condition is natural given that reports are literal, misreporting is costly, and
the decision maker’s payoff from selecting the first alternative is increasing in the state. It
imposes some sort of monotonicity on the senders’ reporting strategies, and thus it is akin
to restrictions that are widely used in many economic applications, such as in auction
theory and in models of communication with lying costs.

The main results of this paper concern the amount of information that can be plausibly
transmitted in equilibrium and the “language” used by senders to deliver such information.
I first show that misreporting occurs in every equilibrium. Yet, there are “receiver-efficient”
equilibria where the decision maker obtains enough information to always select her
preferred alternative as if she were fully informed. In spite of the senders’ misreporting
behavior, the decision maker might even end up obtaining more information than she needs.
However, these equilibria, while important for our analysis, turn out to be implausible.
Specifically, I show that all receiver-efficient—and hence all fully revealing—equilibria rely
on an ad-hoc choice of beliefs that have implausible discontinuities to discourage deviations.
I identify two well-known refinements that eliminate such equilibria: unprejudiced beliefs
(Bagwell & Ramey, 1991) and ε-robsutness (Battaglini, 2002).4 Similarly, I show that all
pure-strategy equilibria are receiver-efficient and hence implausible. This result motivates
the search for mixed-strategy equilibria that are robust to such refinements. However,
this analysis is difficult in signaling games due to the fact that they typically yield a
wealth of equilibria and, in this setting, the difficulty is compounded by the presence
of multiple senders and rich state and signal spaces. Canonical refinements based on
the notion of strategic stability (Kohlberg & Mertens, 1986) are of little help, as they
are developed for settings with a single sender. I overcome this difficulty by imposing
reasonable restrictions on the decision maker’s posterior beliefs. More specifically, I focus
the subsequent analysis on equilibria that satisfy two additional conditions on the posterior
beliefs of the decision maker: the first condition is a strong form of first-order stochastic
dominance that requires that conflicting reports announcing a strictly higher state must
signal that the expected payoff of the first alternative is also strictly higher; the second
condition is a dominance argument under which the decision maker excludes the possibility
that senders may deliver reports that are equilibrium-dominated.5 I refer to equilibria
satisfying these two conditions as “direct equilibria,” as they may feature reports that are

4See Section 4 for a formal definition of unprejudiced beliefs and ε-robustness. I show that in this
model these two refinements are tightly connected: equilibria that are ε-robust must be supported by
unprejudiced beliefs (Lemma 3). This result suggests a novel rationale for the use of ε-robustness in
multi-sender communication games.

5See Definition 4 in Section 5 for a complete and formal statement of these two conditions.
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direct signals of the realized state.

I then provide a complete characterization of direct equilibria, and show that in
the game considered here they possess desirable properties: they always exist, they are
essentially unique, and they withstand the refinement criteria that break down fully
revealing, receiver-efficient, and pure-strategy equilibria. The two conditions imposed on
direct equilibria, even though relatively natural and mild, are therefore sufficient to ensure
robustness and uniqueness while preserving existence.

In this model, the transmission of information takes place in a qualitatively different
way than in comparable models of strategic communication: differently than models of
cheap talk, here there are no “babbling” equilibria; differently than models of verifiable
disclosure, here misreporting occurs in every equilibrium, and full revelation is not a
plausible equilibrium outcome. By contrast, in direct equilibria of this model “revelation”
is a probabilistic phenomenon in the sense that the decision maker fully learns almost
every state with some positive probability. This probabilistic revelation of the state is
more likely to occur in relatively extreme states, where the decision maker obtains a
substantially different payoff from selecting the first alternative rather than the second one.
In sufficiently extreme states, senders always truthfully reveal the state to the decision
maker even though they have conflicting interests.

The senders’ equilibrium behavior is mixed, as they report the truth with some positive
probability, and they misreport otherwise. Therefore, in every state the two senders may
deliver exactly the same truthful report even though they have conflicting interests.6

They might also end up delivering different reports that nevertheless propose the same
recommended action to the decision maker. Whenever one of these two events takes place,
the decision maker fully learns the realized state. In the former case, revelation of the
state occurs without wasteful signaling expenditures. In the latter case, revelation of
the state requires a sender to engage in wasteful misreporting. This result highlights a
difference with previous results in multi-sender signaling games, where full revelation is
either always inefficient (Emons & Fluet, 2009) or always efficient (Bagwell & Ramey,
1991).7

Conditional on misreporting, senders deliver reports in a convex set, and no particular
misrepresentation in such a set is delivered with strictly positive probability. The misre-
porting behavior of each sender is directly determined by the individual characteristics
of his opponent, such as the opponent’s cost structure and payoff function, and it is
determined only indirectly by his own characteristics. Upon observing two conflicting
reports recommending different actions, the decision maker understands that “the truth

6More precisely, this occurs in almost every state.
7Signaling games with a single sender typically have inefficient separating equilibria. See, e.g., Spence

(1973), Milgrom and Roberts (1982, 1986a), Kartik (2009), Kartik, Ottaviani, and Squintani (2007).
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is somewhere in between” and that at least one of the two senders is misreporting. The
decision maker cross-validates reports and allocates the burden of proof between the
senders by taking into account their characteristics.

The setting studied in the main part of the paper allows for a large number of
asymmetries. I also analyze the specific case where senders have a similar payoff and
cost structure, and where the distribution of the state is such that no sender has an
ex-ante advantage of any kind. In this “symmetric environment,” I provide a closed-form
solution to direct equilibria and show that they naturally display symmetric strategies.
The decision maker equally allocates the burden of proof between the senders by following
the recommendation of the sender delivering the most extreme report. The senders’
misreporting behavior depends on the shape of the common cost function: with convex
costs, senders are more likely to convey large misrepresentations of the state rather than
small lies, while the opposite is true for concave misreporting costs.

As a brief application, I use insights from the analysis of direct equilibria to study the
informational value of different judicial systems. Shin (1998) shows that, when information
is fully verifiable, the adversarial judicial procedure is always superior to the inquisitorial
procedure. However, Shin (1998) also conjectures that such a sharp result may crucially
depend on the assumption of verifiability. I show that, when information is not fully
verifiable, then the inquisitorial procedure may indeed be superior to the adversarial
procedure, thus proving Shin’s conjecture to be correct.

The remainder of this article is organized as follows. In Section 2, I discuss the related
literature. Section 3 introduces the model, which I solve in Sections 4 and 5. In Section 6,
I provide an example and an application. Finally, Section 7 concludes. Formal proofs are
relegated to Appendix A.

2 Related Literature

This paper contributes to different strands of literature. First, it relates to models of
strategic communication with multiple senders. This line of work shows several channels
through which full information revelation can be obtained (Battaglini, 2002; Krishna &
Morgan, 2001; Milgrom & Roberts, 1986b). Papers in this literature typically assume
that misreporting is either costless (cheap talk) or impossible (verifiable disclosure). By
contrast, in this article misreporting is possible at a cost that depends on the magnitude of
misrepresentation. Under this modeling specification, I show that fully revealing equilibria
exist but are not plausible.

Therefore, this paper relates to models of strategic communication with misreporting
costs (Chen, 2011; Chen, Kartik, & Sobel, 2008; Kartik, 2009; Kartik et al., 2007; Ottaviani
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& Squintani, 2006). All these papers are concerned with the single-sender case, while I
consider a multi-sender setting. An exception is Dziuda and Salas (2018), who study a
communication game with endogenous lying costs and consider a case with two senders.

The introduction of misreporting costs makes this a costly signaling model. Therefore,
this paper relates to extant models of multi-sender signaling with perfectly correlated
types, but it differs from these models in a number of ways. First, in my model the
messages or signals of senders are used only to transmit information, and thus do not
directly affect how players value each alternative. This is not the case, e.g., in related
models of limit entry (Bagwell & Ramey, 1991; Schultz, 1996), price competition (Bester
& Demuth, 2015; Fluet & Garella, 2002; Hertzendorf & Overgaard, 2001; Yehezkel, 2008),
and public good provision (Schultz, 1996).8 Second, I model a setting where the signals of
senders are fully observable.9 By contrast, in the entry deterrence models of Harrington
(1987) and Orzach and Tauman (1996), incumbent firms simultaneously select their own
pre-entry output, but the entrant can observe only the resulting market price.

A key feature of the model analyzed in this paper is that both senders pay their
own signaling costs independently of the decision maker’s choice. This all-pay feature is
missing in related multi-sender signaling models of electoral competition (Banks, 1990;
Callander & Wilkie, 2007), where only the elected candidate incurs the signaling cost.10

The type of strategic interaction and competition analyzed in this model is closely
related to that analyzed in all-pay contest models, where contestants compete for a prize
by simultaneously submitting costly bids (Baye, Kovenock, & De Vries, 1996; Siegel,
2009). In these papers, the mapping from signals or bids to outcomes is exogenously
determined by a contest success function. For example, Skaperdas and Vaidya (2012)
study persuasion by contending parties as an all-pay contest. The model studied here
differs from these models in that the decision maker is a strategic actor whose choice
is endogenously determined as part of the equilibrium. Similarly, Gul and Pesendorfer
(2012) study political contests where two parties with conflicting interests provide costly
payoff-relevant signals to a strategic voter. However, in their model only one party incurs
a cost at each moment, and parties cannot distort information.

Finally, this paper contributes to the literature on adversarial judicial procedures
(Dewatripont & Tirole, 1999; Shin, 1998). However, it differs from this line of work by
considering a model where information is not fully verifiable. In this regard, Emons and

8For example, in these models firms may signal quality through prices, which affect market demand
and hence profits. Some of these papers also study signaling via a combination of pricing and advertising.

9Signals are not fully observable if, e.g., they are aggregated into a single score and the receiver can
observe only that score, but cannot observe each individual signal.

10These models also differ from my model in that they consider settings where senders do not have
common information. Similarly, Mailath (1989) and Daughety and Reinganum (2007) study price signaling
and Honryo (2018) studies risk shifts in settings with imperfectly correlated types. My model should be
seen as complementary to this line of work.
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Fluet (2009) constitute an exception. However, they consider a setting with a continuum
of types, signals, and receiver’s actions, which yields only fully revealing equilibria.

3 The Model

Setup and timeline. There are three players: two informed senders (1 and 2) and one
uninformed decision maker (dm). Let θ ∈ Θ ⊆ R be the underlying state, distributed
according to the full support probability density function f . After observing the realized
state θ, two senders simultaneously or privately deliver to the decision maker a report
rj ∈ Rj, where rj is the report of sender j and Rj is the report space of sender j (he).
The decision maker (she), after observing the pair of reports (r1, r2) but not the state θ,
selects an alternative a ∈ {+©, -©}.

Payoffs. Player i ∈ {1, 2, dm} obtains a payoff of ui(a, θ) if the decision maker selects
alternative a in state θ. I normalize ui ( -©, θ) = 0 for all θ ∈ Θ and let ui(θ) ≡ ui(+©, θ),
where ui(θ) is weakly increasing in θ. Thus, the state θ is a valence or vertical differentiation
score over which players share a common preference, and it is interpreted as the relative
quality of alternative +© with respect to alternative -©. The decision maker’s expected
utility from selecting +© given the senders’ reports is Udm(r1, r2).

Misreporting costs. Sender j bears a cost kjCj(rj, θ) for delivering report rj when the
state is θ. The cost function Cj(rj, θ) ≥ 0 is continuous and such that, for every θ ∈ Θ
and j ∈ {1, 2}, we have that Cj(θ, θ) = 0 and

if rj ≷ θ, then dCj(rj, θ)
drj

≷ 0 ≷
dCj(rj, θ)

dθ
.

The scalar kj > 0 is a finite parameter measuring the intensity of misreporting costs.
Therefore, misreporting is increasingly costly in the magnitude of misrepresentation, while
truthful reporting is always costless. Sender j’s total utility is

wj(rj, a, θ) = 1{a = +©}uj(θ)− kjCj(rj, θ),

where 1{·} is the indicator function. It follows that, conditional on the decision maker’s
eventual choice, both senders prefer to deliver reports that are closer to the truth.

Definitions and assumptions. I assume that the state space and the report spaces
are the same, i.e., R1 = R2 = Θ. Thus, a generic report r has the literal or exogenous
meaning of “The state is θ = r.” I say that sender j reports truthfully when rj = θ, and
misreports otherwise. I sometimes use −j to denote the sender who is not sender j.

I define the “threshold” τi as the state in which player i is indifferent between the two
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alternatives. Formally, τi := {θ ∈ Θ|ui(θ) = 0}. I assume that utilities ui(θ) are such that
τi exists and is unique11 for every i ∈ {1, 2, dm}. The threshold τi tells us that player i
prefers +© to -© when the state θ is greater than τi. Throughout the paper, I consider
the case where senders have opposing biases, i.e., τ1 < τdm < τ2. To make the problem
non-trivial I let τdm ∈ Θ, and I normalize τdm = 0. Therefore, the decision maker prefers
to select the positive alternative +© when the state θ takes positive values, and prefers
to select the negative alternative -© when the state is negative. I assume that when the
decision maker is indifferent between the two alternatives at given beliefs, she selects +©.

I define the “reach” of sender j in state θ as the report whose associated misreporting
costs offset j’s gains from having his own preferred alternative eventually selected. Formally,
the “upper reach” r̄j(θ) ≥ θ of sender j in state θ is defined as

r̄j(θ) := max
{
r ∈ R | (−1)1{θ<τj}uj (θ) = kjCj (r, θ)

}
. (1)

Similarly, the “lower reach” r
¯j

(θ) ≤ θ of sender j in state θ is defined as

r
¯j

(θ) := min
{
r ∈ R | (−1)1{θ<τj}uj (θ) = kjCj (r, θ)

}
. (2)

I will sometimes use the “inverse reaches” r̄−1
1 (r1) and r

¯
−1
2 (r2), where r̄−1

j (·) and r
¯
−1
j (·)

map from Rj to Θ and are defined as the inverse functions of r̄j(θ) and r
¯j

(θ), respectively.

I assume that the state and report spaces are large enough, that is,

Θ ⊇ R̂ := [r
¯2(0), r̄1(0)] .

This assumption ensures that the information senders can transmit is not artificially
bounded by restrictions in the reports that they can deliver.12

Strategies. A pure strategy for sender j is a function ρj : Θ → Rj such that ρj(θ) is
the report delivered by sender j in state θ. A mixed strategy for sender j is a mixed
probability measure φj : Θ→ ∆(Rj), where φj(rj, θ) is the mixed probability density that
φj(θ) assigns to a report rj ∈ Rj. I denote by Sj(θ) the support of sender j’s strategy in
state θ. Section 5 introduces additional notation that is required to study equilibria in
mixed strategies.

I say that a pair of reports (r1, r2) is off path if, given the senders’ strategies, (r1, r2)
will never be observed by the decision maker. Otherwise, I say that the pair (r1, r2) is on
path. A posterior belief function for the decision maker is a mapping p : R1 ×R2 → ∆(Θ)

11These assumptions are for notational convenience. The model can accommodate for senders that
always strictly prefer one alternative over the other and for utility functions such that ui(θ) 6= 0 for every
θ ∈ Θ, including step utility functions.

12For example, if max Θ < r̄1(0), then sender 1 cannot deliver reports that are strictly dominated by
truthful reporting when the realized state is strictly negative.
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that, given any pair of reports (r1, r2), generates posterior beliefs p(θ|r1, r2) with CDF
P (θ|r1, r2). Given a pair of reports (r1, r2) and posterior beliefs p(θ|r1, r2), the decision
maker selects an alternative in the sequentially rational set β(r1, r2), where

β(r1, r2) = arg max
a∈{+©, -©}

Ep [udm(a, θ)|r1, r2] .

As mentioned above, if p(θ|r1, r2) is such that Udm(r1, r2) = 0, then β(r1, r2) = +©.

Solution concept. The solution concept used in this paper is perfect Bayesian equilibrium
(PBE).13 Throughout the paper, I restrict attention to equilibria where posterior beliefs
p satisfy the following first-order stochastic dominance condition: for every rj ≥ r′j and
j ∈ {1, 2},

Udm(r1, r2) ≥ Udm(r′1, r′2). (FOSD)

The (FOSD) condition14 says that a higher report cannot signal to the decision maker a
lower expected utility from selecting alternative +©. Focusing on these equilibria is natural
given that the value of +© is increasing in the state, reports are literal, and misreporting is
costly.

Since in equilibrium the decision maker has correct beliefs, imposing conditions on p has
consequences on the senders’ equilibrium reporting behavior. An immediate implication
of (FOSD) is that senders play strategies that satisfy some sort of monotonicity condition:
in every equilibrium, a sender that prefers alternative +© to -© is never going to deliver a
report that is strictly lower than the actual realized value of θ. The next lemma formalizes
this result.

Lemma 1. In every perfect Bayesian equilibrium satisfying (FOSD) we have that, for
j ∈ {1, 2}, minSj(θ) ≥ θ for θ ≥ τj and max Sj(θ) ≤ θ otherwise.

Lemma 1 shows how (FOSD) is akin to assumptions that are widely used in many
economic applications, such as monotone bidding strategies in auction theory (e.g., Wilson,
1977), monotone likelihood ratio property in signal distributions (e.g., Milgrom, 1981),
and message monotonicity in related communication games (e.g., Kartik, 2009). To
study mixed-strategy equilibria, I will use a stronger version of (FOSD) coupled with an
additional condition that draws on a dominance argument. Section 5 introduces these
conditions together with additional notation that is required in order to describe mixed
strategies. Hereafter, I refer to perfect Bayesian equilibria of the game described in this
section where the condition (FOSD) is satisfied simply as “equilibria.”

13For a textbook definition of a perfect Bayesian equilibrium, see Fudenberg and Tirole (1991).
14Posterior beliefs p(θ|r1, r2) first-order stochastically dominate p(θ|r′1, r′2) for rj ≥ r′j , j ∈ {1, 2}, if and

only if
∫
u(θ)p(θ|r1, r2)dθ ≥

∫
u(θ)p(θ|r′1, r′2)dθ for every weakly increasing utility function u(θ). Thus,

the (FOSD) condition is even weaker than that in this definition as it applies only to u(θ) ≡ udm(θ).
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3.1 Benchmark

Before solving for the equilibria of the model, I briefly consider a number of benchmark
cases that are useful for interpreting the results in the next sections.

Full information. Under full information about the state θ, the decision maker selects +©

when θ ≥ 0 and selects -© otherwise. Both senders always report truthfully. The ex-ante
full information welfare obtained by the decision maker in this scenario is

Wfi =
∫ max Θ

0
f(θ)udm(θ)dθ. (3)

Perfect alignment. Sender j is perfectly aligned with the decision maker when τj = τdm.
There is an equilibrium where the perfectly aligned sender j always reports truthfully
and the decision maker blindly trusts j’s reports. The other sender, even if not perfectly
aligned, can do no better than reporting truthfully as well. In this case, the decision
maker gets her full information welfare Wfi, and no misreporting takes place.

Verifiable information. Consider the case where information about the state is fully
verifiable, that is, kj =∞ for j ∈ {1, 2}. Senders cannot profitably withhold information,
but even if they could we would obtain an equilibrium where in every state at least one of
the two senders discloses truthfully (Milgrom & Roberts, 1986b).15 As before, the decision
maker gets the full information welfare Wfi.

Cheap talk. Suppose that k1 = k2 = 0; then there exists a babbling equilibrium where
the decision maker adjudicates according to her prior f only, while the senders deliver
uninformative messages. There is no equilibrium where the decision maker obtains enough
information to always select her preferred alternative.16 In an informative equilibrium,
the decision maker can only learn that the state is between the senders’ thresholds τj.
Therefore, when misreporting is “cheap,” the decision maker obtains an ex-ante welfare
that is strictly lower than Wfi.

Competition in signaling. Consider the model described in Section 3, where the
decision maker is uninformed, senders are not perfectly aligned, and misreporting is
possible but costly. The following observation points out that, differently than cheap talk
games, the game considered here does not have babbling equilibria.

Observation 1. There is no babbling equilibrium.
15If withholding information is not possible or is prohibitively costly, then this result holds even when

only one of the two senders has verifiable information, i.e., 0 ≤ kj < ki =∞ for i 6= j: in equilibrium, the
decision maker pays attention only to sender i and disregards every report delivered by sender j, who
cannot do better than reporting truthfully as well.

16This is because, in this model with a binary action space, the decision maker cannot take extreme
actions that punish both senders after observing conflicting reports (cfr. Battaglini, 2002).
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To see why, suppose that there is a babbling equilibrium in which there is no commu-
nication. The decision maker’s choice is unaffected by the senders’ reports. Given that
misreporting is useless, the senders always report truthfully to economize on misreporting
costs. Since the senders’ reports are fully revealing, it is not sequentially rational for the
decision maker to ignore them, contradicting that this is an equilibrium. In the next
section, I show that in this case there are equilibria where the decision maker gets the full
information welfare Wfi, but also that these equilibria are not plausible.

4 Receiver-efficient and Pure-strategy Equilibria

The goal of this section is to analyze the existence and plausibility of equilibria where
the decision maker always obtains the information she needs to select her preferred
alternative. This class of equilibria is important because it is believed that competition
in “the marketplace of ideas” may result in the truth becoming known (Gentzkow &
Shapiro, 2008). Competing forces may indeed yield full information revelation in cheap
talk settings (Battaglini, 2002) as well as in models of verifiable disclosure (Milgrom &
Roberts, 1986b).

In the setting studied here, the combination of a rich state space together with a
binary action space implies that the decision maker does not need to know the realized
state θ in order to find her favorite alternative. All she needs to know is whether the
state is positive or negative. For the purposes of this section, an analysis of fully revealing
equilibria would therefore be too restrictive. The following definition gives a weaker notion
of revelation that will prove useful for the analysis that follows.

Definition 1. A “fully revealing equilibrium” (FRE) is an equilibrium where for every
θ′ ∈ Θ, rj ∈ Sj(θ′), and j ∈ {1, 2}, we have P (θ|r1, r2) = 1 if and only if θ ≥ θ′. A
“receiver-efficient equilibrium” (REE) is an equilibrium where for every θ ∈ Θ, rj ∈ Sj(θ),
and j ∈ {1, 2}, we have β(r1, r2) = +© if θ ≥ 0, and β(r1, r2) = -© otherwise.

A fully revealing equilibrium is also receiver-efficient, but a receiver-efficient equilibrium
is not necessarily fully revealing. If competing forces could discipline senders into always
reporting truthfully their private information about the state, then full revelation would
naturally occur. However, the following observation points out that, in the game considered
here and described in Section 3, misreporting occurs in every equilibrium.

Observation 2. Misreporting occurs in every equilibrium.

To see why, suppose by way of contradiction that there exists an equilibrium17 where
17Observations 1 and 2 apply to all perfect Bayesian equilibria of the game described in Section 3, and

not only to those satisfying (FOSD).
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θ

ρj(θ)

τ1 0 τ2

r̄1(0)

Figure 1: Senders’ strategies in a receiver-efficient and fully revealing equilibrium. The
reporting rules of senders 1 and 2 are indicated by black and dashed gray lines, respectively.

misreporting never occurs, that is, where ρ1(θ) = ρ2(θ) = θ for every θ ∈ Θ. Consider
such a truthful equilibrium and a state θ = ε > 0, where ε is small enough. To discourage
deviations, off path beliefs must be such that β(ε,−ε) = +©. However, there always exists
an ε > 0 such that, when the state is θ = −ε, sender 1 can profitably deviate from the
prescribed truthful strategy by reporting r1 = ε, as u1(−ε) > k1C1(ε,−ε). This contradicts
our supposition that there exists an equilibrium where misreporting never occurs.

The question is: if senders misreport in every equilibrium, do receiver-efficient equilibria
exist? Figure 1 provides a positive graphical answer by showing reporting strategies that
not only constitute a receiver-efficent equilibrium, but are also fully revealing.18 To verify
that Figure 1 depicts an equilibrium, consider the following strategies: sender 1 delivers
ρ1(θ) = r̄1(0) for every θ ∈ [0, r̄1(0)], where for simplicity we assume that r̄1(0) < τ2.
Otherwise, sender 1 reports truthfully. By contrast, sender 2 always reports truthfully,
i.e., ρ2(θ) = θ for all θ ∈ Θ. Given any on path pair of reports, posterior beliefs are such
that P (θ|r1, r2) = 0 for every θ < r2 and P (θ|r1, r2) = 1 otherwise, which is consistent
with sender 2 playing a separating strategy. off path beliefs are such that Udm(r1, r2) < 0
if r1 < r̄1(0), and P (θ|r1, r2) = 1 if and only if θ ≥ r1 ≥ r̄1(0). By the definition of reach,
sender 1 would never find it profitable to deliver a report r1 ≥ r̄1(0) when θ < 0. Sender 2
cannot deviate from his truthful strategy by delivering a negative report when the state is
positive: since ρ1(θ) ≥ r̄1(0) for every θ ≥ 0, such a deviation would induce β(·) = +©. No
sender has a profitable individual deviation from the prescribed equilibrium strategies.
Therefore, there exist equilibria where senders always fully reveal the state to the decision

18Kartik et al. (2007) study a fully revealing equilibrium where misreporting occurs in every state in a
single-sender setting with an unbounded state space.
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maker, even though full revelation involves misreporting.19

Notably, Figure 1 also illustrates the existence of equilibria in pure strategies. Intu-
itively, when senders play pure strategies and in each state at least one of the two senders
plays a separating strategy, then the decision maker can always “reverse” their reports to
recover the underlying truth. This argument suggests that all pure-strategy equilibria are
receiver-efficient. The next lemma shows that such an intuition is correct and, in addition,
that all receiver-efficient equilibria are in pure strategies.

Lemma 2. An equilibrium is receiver-efficient if and only if it is in pure strategies.

The receiver-efficient and fully revealing equilibrium strategies discussed above are,
however, problematic. To see what the problem is, consider again the strategies depicted
in Figure 1 and a state θ′ ∈ (0, r̄1(0)). Suppose that in state θ′ sender 1 deviates from the
prescribed equilibrium by reporting the truth instead of ρ1(θ′) = r̄1(0), whereas sender 2
sticks to his separating reporting rule. Notice that, in the equilibrium under consideration,
sender 1 never delivers r1 = θ′. Once the decision maker receives the off path pair of
reports (θ′, θ′), her posterior beliefs p induce an expected payoff of Udm(θ′, θ′) < 0, and
hence lead to β(θ′, θ′) = -©. These off path beliefs require the decision maker to conjecture
that the state is likely to be negative. However, this means that the decision maker must
entertain the possibility that (i) both senders simultaneously deviated from the prescribed
equilibrium strategies, and (ii) sender 2 delivered a strictly dominated report.

In addition, the receiver-efficient equilibrium in Figure 1 is supported by posterior beliefs
that are discontinuous in the senders’ reports: for every on path pair of reports (r̄1(0), r2)
such that r2 ∈ (0, r̄1(0)), posterior beliefs are such that Udm(r̄1(0), r2) = udm(r2) > 0; by
contrast, Udm(r̄1(0) − ε, r2) < 0 for every arbitrarily small ε > 0. This discontinuity is
crucial to discourage deviations, but it does not seem plausible especially in light of its
problematic implications discussed above. In the remaining part of this section, I test
for receiver-efficient equilibria using two well-known refinements that apply to games
with multiple senders: unprejudiced beliefs (Bagwell & Ramey, 1991) and ε-robustness
(Battaglini, 2002).

Unprejudiced beliefs. Consider again a deviation from the equilibrium depicted in
Figure 1 where both senders report truthfully in some state θ′ ∈ (0, r̄1(0)). If, whenever
possible, the decision maker conjectures deviations as individual and thus as originating
from one sender only, then she should infer that sender 1 performed the deviation: sender 1
never reports r1 = θ′ on the equilibrium path, whereas sender 2 truthfully reports r2 = θ′

only when the state is indeed θ′. Since sender 2 is following his separating strategy, the
19Battaglini (2002) uses an argument similar to the revelation principle to show that, in a multi-sender

cheap talk model, if there exists a fully revealing equilibrium then there exists a fully revealing equilibrium
in truthful strategies. Such an argument cannot be applied here because of the presence of misreporting
costs. In this model there are fully revealing equilibria, but there are no equilibria in truthful strategies.
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decision maker should infer that the state is θ′ > 0. According to this line of reasoning, off
path beliefs must be such that P (θ|θ′, θ′) = 1 if and only if θ ≥ θ′, and thus β(θ′, θ′) = +©.
Therefore, such a deviation becomes profitable for sender 1 because it saves on misreporting
costs without affecting the outcome.

Bagwell and Ramey (1991) introduce the concept of “unprejudiced beliefs,” which
formalize the idea that the decision maker should rule out the possibility that multiple
senders are deviating at the same time whenever it is possible that only a single sender is
deviating. Vida and Honryo (2019) show that, in generic multi-sender signaling games,
strategic stability (Kohlberg & Mertens, 1986) implies unprejudiced beliefs. Apart from
their association with the notion of strategic stability, unprejudiced beliefs are intuitive,
easily applicable, and consistent with the notion of Nash equilibrium and, as such,
constitute a sensible way to refine equilibria in multi-sender signaling games when other
criteria fail to do so. The following definition formalizes unprejudiced beliefs.20

Definition 2 (Vida & Honryo, 2019). Given senders’ strategies ρj, the decision maker’s
posterior beliefs p are unprejudiced if, for every pair of reports (r1, r2) such that ρj(θ′) = rj

for some θ′ ∈ Θ and j ∈ {1, 2}, we have that p(θ′′|r1, r2) > 0 only if there is a sender
i ∈ {1, 2} such that ρi(θ′′) = ri.

We have seen how the above “informational free-riding” argument breaks down the
receiver-efficient equilibrium depicted in Figure 1. A natural question is whether such an
argument applies only in that particular case or if instead it rules out other equilibria.
The next proposition tells us that in fact there is no receiver-efficient equilibrium that
supports unprejudiced beliefs.

Proposition 1. There are no receiver-efficient equilibria with unprejudiced beliefs.

ε-robustness. In the model described in Section 3, senders are perfectly informed and
the receiver can perfectly observe the senders’ reports. In other words, there are no
perturbations, or “noise,” in the senders’ report or the decision maker’s observations. This
modeling strategy allows me to isolate the effects of strategic interactions from the effects
of statistical information aggregation. At the same time, however, it allows for excessive
freedom to pick ad-hoc beliefs that would not survive the presence of even arbitrarily
small perturbations in the transmission of information.

I follow Battaglini (2002) and define an ε-perturbed game as the game described in
Section 3, in which the decision maker perfectly observes the report of sender j with
probability 1 − εj and with probability εj observes a random report r̃j, where r̃j is a
random variable with continuous distribution Gj, density gj, and support in Θ. This

20Definition 2 is weaker than the definition originally introduced by Bagwell and Ramey (1991), and
therefore it is useful to test for equilibria that do not support unprejudiced beliefs.
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may correspond to a situation where with some probability the decision maker misreads
reports; or, alternatively, where with some probability senders deliver a wrong report by
mistake.21 As before, senders incur misreporting costs that depend only on the realized
state θ and on their “intended” report rj , and not on the wrongly observed or delivered r̃j .
The introduction of noise makes any pair of reports possible on the equilibrium path. The
decision maker’s posterior beliefs depend on ε = (ε1, ε2), G = (G1, G2), and the senders’
reporting strategies ρj(θ).

Definition 3 (Battaglini, 2002). An equilibrium is ε-robust if there exist a pair of
distributions G = (G1, G2) and a sequence εn = (εn1 , εn2 ) converging to zero such that the
off path beliefs of the equilibrium are the limit of the beliefs that the equilibrium strategies
would induce in an ε-perturbed game as εn → 0+.

Intuitively, as the noise ε fades away, the event in which the decision maker misreads
both reports becomes negligible. At the limit as ε→ 0+, the decision maker infers that she
is correctly observing at least one of the two reports. Therefore, once she observes an off
path pair of reports in an ε-robust equilibrium, the decision maker conjectures—whenever
possible—that one sender is following his prescribed reporting strategy while the other is
not. This last implication of ε-robustness suggests that there might be a tight connection
between the refinement criteria of ε-robustness and unprejudiced beliefs. The next lemma
confirms the existence of such a relationship.22

Lemma 3. If an equilibrium is ε-robust, then it has unprejudiced beliefs.

A straightforward implication of Lemma 3 and Proposition 1 is that no receiver-efficient
or fully revealing equilibrium is ε-robust. By Lemma 2, we obtain that also pure-strategy
equilibria are not supported by unprejudiced beliefs and are not ε-robust. These results
suggest that mixed-strategy equilibria are qualitatively important, whereas they are
unexplored in related work.23 The next section is dedicated to finding equilibria that are
robust in the sense that they are ε-robust and supported by unprejudiced beliefs.

5 Direct Equilibria

Findings in the previous section show that pure-strategy equilibria exist and are receiver-
efficient, but are supported by off path beliefs that are not plausible. Such results motivate

21Battaglini (2002) perturbs the senders’ observation of the realized state, whereas I perturb the
decision maker’s observed reports. My perturbation is qualitatively similar to Battaglini’s.

22Lemma 3 applies to perfect Bayesian equilibria of the game described in Section 3 with n ≥ 2 senders.
23Most research on single-sender signaling focuses only on pure-strategy equilibria. For example, Kartik

et al. (2007), Kartik (2009), and Chen (2011) consider pure strategies only. Most research on multi-sender
signaling also focuses only on pure-strategy equilibria (see Section 2).
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the quest for “robust” equilibria in mixed strategies. The two main goals of this section
are to provide sufficient conditions under which equilibria are robust and to characterize
such robust equilibria.

Since (FOSD) is not enough to rule out implausible equilibria, I impose a different set
of restrictions to obtain robust mixed-strategy equilibria. However, classic refinements for
signaling games such as the “intuitive criterion” (Cho & Kreps, 1987) and the “universal
divinity criterion” (Banks & Sobel, 1987) have little bite here, as they are developed for
single-sender settings. To date, there is no large consensus on how to extend these criteria
to multi-sender settings. By contrast, the ε-robustness and unprejudiced beliefs criteria
proved to be useful in testing pure-strategy equilibria of multi-sender signaling games,
but cannot be easily applied to finding non-separating equilibria in mixed strategies.

Given the implausibility of receiver-efficient equilibria, I impose two conditions on how
the decision maker interprets the senders’ reports. I refer to equilibria satisfying these
conditions as “direct equilibria.”

Definition 4. A “direct equilibrium” (DE) is a perfect Bayesian equilibrium of the game
described in Section 3 where the decision maker’s posterior beliefs p satisfy the following
conditions:

i) The (FOSD) condition holds, and for every pair of reports (r1, r2) such that r
¯ 2(0) <

r2 ≤ 0 ≤ r1 < r̄1(0), and for j ∈ {1, 2}, we have

dUdm(r1, r2)
drj

> 0; (D)

ii) Once the decision maker observes the pairs of reports (r̄1(0), r
¯ 2(0)) and (0, 0), her

posterior beliefs p are such that she is indifferent between the two alternatives, i.e.,

Udm (r̄1(0), r
¯ 2(0)) = Udm (0, 0) = 0. (C)

The first condition, (D), imposes a “strict” first-order stochastic dominance condition on
posterior beliefs p, but only for pairs of reports consisting of conflicting recommendations.
Otherwise, (FOSD) applies. Since (D) implies (FOSD), Lemma 1 applies also to direct
equilibria. Intuitively, (D) means that strictly higher conflicting reports inform the decision
maker that the expected value of selecting alternative +© is strictly higher. Similarly to
(FOSD), condition (D) is natural and consistent with the idea that reports are literal
statements about the state and that misreporting is costly.

Condition (C) draws on a simple argument of equilibrium dominance. To see how,
consider a report rj ∈ R̂, and denote by Qj(rj) the set of states for which delivering
report rj is potentially profitable for sender j given that posterior beliefs p satisfy (D).
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By Lemma 1 and the definition of inverse reach, we obtain that Q1(r1) = [r̄−1
1 (r1), r1] ∩Θ

and Q2(r2) = [r2, r¯
−1
2 (r2)] ∩Θ. Denote the intersection of these two sets by Q(r1, r2) =

Q1(r1) ∩ Q2(r2). If Q(r1, r2) 6= ∅, then the decision maker will rule out the possibility
that the realized state lies outside Q(r1, r2), i.e., p(θ|r1, r2) = 0 for all θ /∈ Q(r1, r2). Since
Q(r̄1(0), r

¯2(0)) = Q(0, 0) = {0}, upon receiving the pairs of reports (r̄1(0), r
¯2(0)) or (0, 0),

the decision maker will believe that the realized state24 is for sure θ = 0. Otherwise, the
decision maker will believe that at least one of the two senders delivered a report that is
equilibrium-dominated. Condition (C) is even less stringent than this argument suggests,
as it does not require that the decision maker’s posterior beliefs be degenerate at 0, and
does not impose conditions over pairs of reports25 other than (r̄1(0), r

¯2(0)) and (0, 0).

As an immediate application of direct equilibria, let’s revisit the fully revealing and
voter-efficient equilibrium in Figure 1 discussed in Section 4. To prevent a deviation by
sender 1, the decision maker’s posterior beliefs p are such that Udm(θ′, θ′) < 0 for any
θ′ ∈ (0, r̄1(0)), and thus β(θ′, θ′) = -©. This cannot be a direct equilibrium: by (C) we
have that Udm(0, 0) = 0, and by (D) we have that Udm(θ′, θ′) ≥ 0, leading to β(θ′, θ′) = +©

and thus to a profitable deviation by sender 1. Therefore, conditions (C) and (D) rule
out at least some equilibria that are not plausible.

In the rest of this section I will show that direct equilibria have a number of remarkable
properties: they always exist, they are essentially unique, and there are direct equilibria
that are ε-robust and hence with unprejudiced beliefs.

5.1 Notation for Mixed Strategies

Before analyzing direct equilibria, I first introduce some useful notation. To describe
mixed strategies, I use a “mixed” probability distribution φj(rj, θ) that, for every state θ,
assigns a mixed probability density to report rj by sender j. This specification allows me
to describe the senders’ reporting strategies as mixed random variables whose distribution
can be partly continuous and partly discrete.26

Formally, I partition the support Sj(θ) of each sender in two subsets, Cj(θ) and Dj(θ).
To represent atoms in φj(θ), I define a partial probability density function αj(·, θ) on Dj(θ)
such that 0 ≤ αj(rj, θ) ≤ 1 for all rj ∈ Dj(θ), and α̂j(θ) = ∑

rj∈Dj(θ) αj(rj, θ). By contrast,
the continuous part of the distribution φj(θ) is described by a partial probability density

24From P (θ|r̄1(0), r
¯2(0)) = P (θ|0, 0) = 1 iff θ ≥ 0 we get Udm (r̄1(0), r

¯2(0)) = Udm (0, 0) = udm(0) = 0.
25As we shall see, in every direct equilibrium the pair (r̄1(0), r

¯2(0)) is on path only for θ = 0, and thus
it fully reveals that the state is indeed zero. By contrast, no sender ever delivers rj = 0, and thus the
pair of reports (0, 0) is not only off path, but it must constitute a double deviation.

26Mixed-type distributions that have both a continuous and a discrete component to their probability
distributions are widely used to model zero-inflated data such as queuing times. For example, the “rectified
Gaussian” is a mixed discrete-continuous distribution.
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function ψj(·, θ) on Cj(θ) such that
∫
rj∈Cj(θ) ψj(rj, θ)dθ = 1− α̂j(θ). I set αj(r′, θ) = 0 for

all r′ /∈ Dj(θ) and ψj(r′′, θ) = 0 for all r′′ /∈ Cj(θ).

As we shall see (Lemma 7 and Proposition 4), in every direct equilibrium Dj(θ) = {θ}
for all θ ∈ Θ and j ∈ {1, 2}. Therefore, for ease of notation, I set αj(θ) ≡ αj(θ, θ) = α̂j(θ).
The score αj(θ) thus represents the probability that sender j reports truthfully in state
θ ∈ Θ. The partial probability density functions27 αj(θ) and ψj(·, θ) determine the
“generalized” density function φj(θ) through the well-defined mixed distribution

φj(x, θ) = δ(x− θ)αj(θ) + ψj(x, θ),

where δ(·) is the Dirac delta “generalized” function.28

A mixed-strategy for sender j is a mixed probability measure φj(θ) : Θ→ ∆(Rj) with
support Sj(θ). I indicate with φj(rj, θ) the mixed probability assigned by φj(θ) to a report
rj in state θ that satisfies

∫
rj∈Sj(θ)

φj(rj, θ)drj = αj(θ) +
∫
rj∈Cj(θ)

ψj(rj, θ)drj = 1.

I denote by Φj(rj, θ) and Ψj(rj, θ) the CDFs of φj and ψj , respectively. Sender j’s expected
utility from delivering rj when the state is θ in a direct equilibrium ω is W ω

j (rj, θ).

5.2 Solving for Direct Equilibria

In the remaining parts of this section, I characterize direct equilibria and show their
properties. All proofs and a number of intermediate results are relegated to Appendix A.2.

Given a pair of reports (r1, r2) the decision maker forms posterior beliefs p(θ|r1, r2),
which determine whether she selects +© or -©. Consider a direct equilibrium and a pair
of reports (r1, r2) such that r2 < 0 and Udm(r1, r2) < 0, and suppose that there exists a
report r′1 ∈ R1 such that Udm(r′1, r2) > 0. By conditions (C) and (D), it must be29 that
there exists a report r′′1 ∈ (r1, r

′
1) such that Udm(r′′1 , r2) = 0. In this case, r′′1 “swings” the

decision maker’s choice as β(r, r2) = +© for all r ≥ r′′1 and β(r, r2) = -© otherwise. Let
r′′1 denote the “swing report” of r2. The notion of swing report is key for the analysis of
direct equilibria, and the following definition formalizes the concept.

27Under this specification, even the “mass” αj(·) is a partial probability “density.”
28The Dirac delta δ(x) is a generalized function such that δ(x) = 0 for all x 6= 0, δ(0) = ∞, and∫ ε
−ε δ(x)dx = 1 for all ε > 0.

29By (C) we have Udm(0, 0) = 0, and by (D) we have Udm(0, r2) < 0 and r′1 > r1. Since the
differentiability of Udm for conflicting reports implies its continuity, and since Udm(r′1, r2) > 0, it follows
from the intermediate value theorem that there must be r′′1 ∈ (0, r′1) such that Udm(r′′1 , r2) = 0.
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Definition 5. Given a report r, the “swing report” s(r) is defined as

s(r) =

{r2 ∈ R2 | Udm(r, r2) = 0} if r ≥ 0

{r1 ∈ R1 | Udm(r1, r) = 0} otherwise.

If s(r) = ∅, then I set s(r) = −∞ for r ≥ 0, and s(r) =∞ otherwise.

With a slight abuse of language, I hereafter say that sender j “swings” the report of
his opponent −j whenever the pair of reports (r1, r2) induce the selection of sender j’s
preferred alternative. When there is a conflict of interest between senders, i.e., for some
θ ∈ (τ1, τ2), sender 1 swings the report of sender 2 when r1 ≥ s(r2). Similarly, sender 2
swings the report of sender 1 when r2 < s(r1).

In a direct equilibrium, the swing report s(r) has a number of intuitive properties: first,
condition (D) ensures that the swing report, if it exists, is unique; second, condition (C)
pins down the swing report for s(r̄1(0)) = r

¯2(0), s(r
¯2(0)) = r̄1(0), and s(0) = 0. From the

interaction of conditions (C) and (D), it follows that every report r ∈ R̂ = [r
¯2(0), r̄1(0)]

has a unique swing report s(r) ∈ R̂ such that if r > 0 then s(r) < 0. Moreover, for
all r ∈ R̂, the swing report of a swing report is the report itself, i.e., s(s(r)) = r, and
strictly higher reports have strictly lower swing reports. Importantly, s(r) is endogenously
determined in equilibrium through the posterior beliefs p. The following lemma formalizes
these equilibrium features of the swing report function.

Lemma 4. In a direct equilibrium, every report r ∈ R̂ has a swing report s(r) ∈ R̂ such
that: (i) if r ≷ 0 then s(r) ≶ 0 and s(0) = 0; (ii) s(s(r)) = r; (iii) for every r ∈ R̂,
ds(r)
dr

< 0; (iv) s (r̄1(0)) = r
¯ 2(0).

Therefore, s(r) is effectively a strictly decreasing function of r in the set [r
¯2(0), r̄1(0)],

and in such a domain I refer to s(r) as the “swing report function.” When the state takes
extreme values, a sender may not be able to profitably swing the report of his opponent
even when the opponent reports truthfully. This happens when s(θ) is beyond a sender’s
reach. In such cases, we should expect both senders to always report truthfully, and
therefore to deliver matching reports that reveal the state. It is therefore useful to define
cutoffs in the state space that help determine when truthful reporting always occurs in
direct equilibria.

Definition 6. The “truthful cutoffs” are defined as

θ1 := {θ ∈ Θ | s(θ) = r̄1(θ)} ,

θ2 := {θ ∈ Θ | s(θ) = r
¯ 2(θ)} .
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The truthful cutoffs are also determined in equilibrium, as they depend on s(r). Recall
that by condition (C) we have that s(r

¯2(0)) = r̄1(0) and s(0) = 0. Since r̄1(θ) is increasing
in θ and r̄1(τ1) = τ1 < 0 < s(τ1), it follows that 0 > θ1 > max{τ1, r¯2(0)}. Similarly,
we obtain that 0 < θ2 < min{τ2, r̄1(0)}. Therefore, in any direct equilibrium the set
of states that lie within the truthful cutoffs (θ1, θ2) is also a strict subset of [τ1, τ2] and
of [r

¯2(0), r̄1(0)]. This equilibrium feature of the truthful cutoffs is convenient because
it implies that for every state θ ∈ (θ1, θ2) there is always a conflict of interest between
senders, and that the swing report function s(θ) exists and is well defined in such a set.30

In a direct equilibrium, we expect both senders to always report truthfully—and
therefore to play pure strategies—when the state lies outside the truthful cutoffs. By
contrast, when the state takes values within the truthful cutoffs, we expect senders to
play mixed strategies and to engage in some misreporting. As the following lemma shows,
these two expectations turn out to be correct in every direct equilibrium.

Lemma 5. In a direct equilibrium, Sj(θ) = {θ} for all θ /∈ (θ1, θ2), and |Sj(θ)|> 1 for
every θ ∈ (θ1, θ2), j ∈ {1, 2}.

This result, together with the previous observation that (θ1, θ2) ⊂ [τ1, τ2], shows an
interesting characteristic of direct equilibria: in relatively extreme states, both senders
always deliver matching and truthful reports even though they have conflicting interests.
Since the senders’ reports coincide, it follows from Lemma 1 that in these cases the
decision maker learns the underlying state. Therefore, full information revelation always
occurs in extreme states that lie outside the truthful cutoffs.

Given the results outlined above, from now on I focus on the senders’ behavior when
the state takes values within the truthful cutoffs. I proceed by first studying the reporting
strategies when senders misreport their private information. Conditional on misreporting
in state θ, sender j’s strategy φj(θ) has support in the set Sj(θ) \ {θ}. To describe and
study equilibrium supports and strategies, it is useful to understand whether such a set is
convex or not. The next lemma tells us that Sj(θ) \ {θ} is always convex.

Lemma 6. In a direct equilibrium, Sj(θ)\{θ} is convex for all θ ∈ (θ1, θ2) and j ∈ {1, 2}.

The intuition for Lemma 6 is the following: in equilibrium, the presence of a “gap”
in the set Sj(θ) \ {θ} must imply that j’s opponent never wastes resources on swinging
reports that are in such a gap, as they are never delivered. However, this means that in
Sj(θ) \ {θ} there are two different reports that yield approximately the same probability
of inducing the selection of j’s preferred alternative but have different costs. This would
not be possible in an equilibrium, and therefore the set Sj(θ) \ {θ} must be convex.

30These results are formalized in Lemma A.1 in Appendix A.2.
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While senders may misrepresent the same state in a number of ways, the above
argument also suggests that, conditional on misreporting, there is no report that they
deliver with strictly positive probability. To see why, suppose by way of contradiction that
sender j misreports some state θ by delivering rj ∈ Sj(θ) \ {θ} with some strictly positive
“mass” probability αj(rj, θ) > 0. That is, j’s strategy φj(θ) has an atom in rj. It follows
that sender −j’s expected payoff is discontinuous around r−j = s(rj), and therefore s(rj)
cannot be in the interior31 of S−j(θ). If s(rj) /∈ S−j(θ), then j can profitably deviate from
φj(θ) by “moving” mass probability from the atom to some cheaper report that ensures
the selection of his own favorite alternative. If instead s(rj) is on the boundary of S−j(θ),
then one of the two senders would have a profitable deviation: either there are reports
outside S−j(θ) that yield a higher expected payoff than reports inside the support, or
there is some report that dominates rj. In both cases, we obtain a contradiction to the
supposition that j’s strategy is part of an equilibrium. The following lemma formalizes
the idea that the equilibrium reporting strategies are non-atomic when senders misreport
their private information.32

Lemma 7. In a direct equilibrium, the strategies φj(θ) have no atoms in Sj(θ) \ {θ} for
every θ ∈ (θ1, θ2) and j ∈ {1, 2}.

5.2.1 Strategies, Supports, and Beliefs

I am now ready to state the main results of this section. Lemmata 6 and 7 tell us that,
conditional on misreporting, senders play an atomless reporting strategy with support in
a convex set. In equilibrium, all reports in the support of a sender’s strategy must yield
him the same expected payoff. By setting the derivative of the expected payoff sender
−j gets from delivering reports in S−j(θ) \ {θ} to zero, I obtain the partial probability
density ψj(rj, θ). The next proposition establishes senders’ misreporting behavior.

Proposition 2. In a direct equilibrium, for every θ ∈ (θ1, θ2) and i, j ∈ {1, 2} with i 6= j,
sender j delivers report rj ∈ Sj(θ) \ {θ} according to

ψj(rj, θ) = ki
−ui(θ)

dCi(s(rj), θ)
drj

.

Each sender’s misreporting behavior depends directly on his opponent’s utility and
costs, and indirectly on his own characteristics through the swing report function s(r).
Whether a sender is more likely to deliver small lies or large misrepresentations depends
on the shape of his opponent’s misreporting cost function together with the shape of the

31Recall that every report in the equilibrium support must yield the same expected payoff.
32The intuition for the results provided in this section omits a number of additional steps that are

necessary to prove Lemmata 6 and 7. See Lemmata A.2 to A.7 in Appendix A.2.
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swing report function, where the latter is determined in equilibrium. In Section 6.1 I
discuss in detail the senders’ misreporting behavior for the particular case where senders
have symmetric features.

Since the sets Sj(θ)\{θ} are convex and the strategies φj(θ) are atomless on Sj(θ)\{θ},
I can integrate the partial probability densities ψj to pin down the senders’ equilibrium
supports. This procedure allows me to prove the following proposition.

Proposition 3. In a direct equilibrium, for every state θ ∈ (θ1, θ2), supports Sj(θ) are

S1(θ) = {θ} ∪ [max {s(θ), θ} ,min {r̄1(θ), s (r
¯ 2(θ))}] ,

S2(θ) = {θ} ∪ [max {r
¯ 2(θ), s (r̄1(θ))} ,min {s(θ), θ}] .

So far, I have focused the analysis on the senders’ misreporting behavior. However,
the above proposition shows that “the truth” is always in the support of the senders’
equilibrium strategies. Having fully characterized the senders’ misreporting strategies
ψj(·, θ) and supports Sj(θ), I am now in a position to establish the senders’ truthful
reporting behavior.

Proposition 4. In a direct equilibrium, for every state θ ∈ (θ1, θ2), strategies φj(θ) have
an atom at rj = θ of size αj(θ), where

α1(θ) =


k2

−u2(θ)C2 (s(θ), θ) if θ ∈ [0, θ2)

1− k2
−u2(θ)C2 (s(r̄1(θ)), θ) if θ ∈ (θ1, 0],

α2(θ) =

1− k1
u1(θ)C1 (s(r

¯ 2(θ)), θ) if θ ∈ [0, θ2)
k1

u1(θ)C1 (s(θ), θ) if θ ∈ (θ1, 0].

Both senders report truthfully with strictly positive probability in almost every state.
The only exception is θ = 0, where the truth is never reported as α1(0) = α2(0) = 0. With
probability α1(θ)α2(θ) both senders deliver the truth, and by Lemma 1 we obtain that
whenever this event occurs the decision maker fully learns the realized state. Moreover,
by Proposition 3 we get that the decision maker may learn the realized state even when
only one of the two senders reports truthfully: if the realized state is positive, then full
revelation occurs when sender 2 reports truthfully; if the state is negative, then full
revelation occurs when sender 1 reports truthfully. In these cases, the senders deliver
different reports that nevertheless recommend to the decision maker to select the same
alternative.

The probability of full revelation and the probability of observing matching reports
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Figure 2: The probability that the decision maker fully learns the state (dashed black line)
and the probability that senders deliver matching reports (solid black line) as functions of
the realized state in a direct equilibrium of a symmetric environment with linear utilities
and quadratic loss misreporting costs.

are both increasing as the realized state moves further away from zero.33 Therefore, we
obtain that in direct equilibria the revelation of the state and the congruence of reports
are phenomena that are more likely to occur in extreme states than in intermediate states.
To see this, note that

dα1(θ)
dθ

=


k2

u2(θ)2
du2(θ)
dθ

C2 (s(θ), θ) + k2
−u2(θ)

dC2(s(θ),θ)
dθ

> 0 if θ ∈ [0, θ2)

− k2
u2(θ)2

du2(θ)
dθ

C2 (s(r̄1(θ)), θ)− k2
−u2(θ)

dC2(s(r̄1(θ)),θ)
dθ

< 0 if θ ∈ (θ1, 0),

dα2(θ)
dθ

=


k1

u1(θ)2
du1(θ)
dθ

C1 (s(r
¯2(θ)), θ)− k1

u1(θ)
dC1(s(r

¯2(θ)),θ)
dθ

> 0 if θ ∈ [0, θ2)

− k1
u1(θ)2

du1(θ)
dθ

C1 (s(θ), θ) + k1
u1(θ)

dC1(s(θ),θ)
dθ

< 0 if θ ∈ (θ1, 0).

Figure 2 depicts both the probability that senders deliver the same report and the
probability that the decision maker fully learns the realized state.

After establishing the senders’ equilibrium supports and strategies, I can now proceed
to study the decision maker’s posterior beliefs. It is key to this analysis to understand how
posterior beliefs p determine the decision maker’s choice given any pair of reports. To this
end, it is sufficient to examine how posterior beliefs p shape the swing report function s(r).
By Lemma 4, we have that s(r) ∈ R̂ for every r ∈ R̂, with s(r) < 0 if r > 0, s(r) > 0 if
r < 0, and s(0) = 0. Given the supports and the strategies as in Propositions 2, 3, and 4,
we obtain that every pair of reports (r1, r2) such that r

¯2(0) ≤ r2 < 0 < r1 ≤ r̄1(0) is on
path. By Definition 5 and Lemma 4 we have that, for a pair of reports (r1, r2 = s(r1)),

Udm(r1, s(r1)) = Udm(s(r2), r2) =
∫

Θ
udm(θ)p(θ|r1, s(r1))dθ = 0.

33This is because the decision maker’s threshold τdm is normalized to zero.
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Therefore, I can use p(r1, s(r1)|θ) = φ1(r1, θ) · φ2(s(r1), θ) and previous results to show
how posterior beliefs p pin down the swing report function s(r) in a direct equilibrium.
The next proposition shows how the swing report depends on the model’s parameters.

Proposition 5. In a direct equilibrium, the swing report function s(ri) is implicitly defined
for i, j ∈ {1, 2}, i 6= j, and ri ∈ R̂, as

s(ri) =
{
rj ∈ Rj

∣∣∣∣ ∫ min{r1,r¯
−1
2 (r2)}

max{r2,r̄
−1
1 (r1)}

f(θ) udm(θ)
u1(θ)u2(θ)

dCj(rj, θ)
drj

dCi(ri, θ)
dri

dθ = 0
}
. (4)

5.2.2 Uniqueness, Robustness, and Existence

Propositions 2 to 5 complete the characterization of direct equilibria. However, there
are three potential issues that must be addressed: first, there may be multiple direct
equilibria that yield different solutions; second, direct equilibria may not be robust to the
refinements discussed in Section 4, and therefore they may be implausible; third, direct
equilibria may not exist. I conclude this section by showing that direct equilibria of the
game described in Section 3 are essentially unique, robust, and always exist.

The issue of multiplicity is resolved by the observation that equation (4), which
implicitly determines the swing report function s(r), depends only on the primitives of
the model. In particular, the swing report function depends on the decision maker’s
prior beliefs, the players’ utilities, and the senders’ costs. Given these primitives, the
swing report function is the same in every direct equilibrium, and therefore the senders’
reporting strategies and supports are the same in all direct equilibria. Conditions (C) and
(D) are thus sufficient to ensure that all equilibria are essentially unique in the sense that
they are all strategy- and outcome-equivalent.

Corollary 1. Direct equilibria are essentially unique.

In Section 4, I find that all pure-strategy and all receiver-efficient equilibria are not
plausible for two different reasons: they feature informational free-riding opportunities
that generate individual profitable deviations, and they are not robust to the presence of
even arbitrarily small noise in communication. Robustness to informational free-riding
opportunities and to noise requires equilibria to support unprejudiced beliefs (Bagwell
& Ramey, 1991) and to be ε-robust (Battaglini, 2002), respectively. I also show that
these two different criteria are tightly connected, as ε-robust equilibria are supported by
unprejudiced beliefs. The question is: can direct equilibria be ε-robust?

To study whether there exist direct equilibria with unprejudiced beliefs I apply the
following definition, which is adapted from Bagwell and Ramey (1991) to accommodate
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non-degenerate mixed strategies.34

Definition 7. Given senders’ strategies φj, the decision maker’s posterior beliefs p are
unprejudiced if, for every off path pair of reports (r1, r2) such that φj(rj, θ′) > 0 for some
j ∈ {1, 2} and θ′ ∈ Θ, we have that p(θ′′|r1, r2) > 0 if and only if there is a sender
i ∈ {1, 2} such that φi(ri, θ′′) > 0.

The next corollary confirms that there exist direct equilibria supported by unprejudiced
beliefs (as in both Definition 2 and 7) that are also ε-robust.35

Corollary 2. There are direct equilibria with unprejudiced beliefs that are also ε-robust.

Even well-behaved signaling games may have no equilibria (Manelli, 1996). However,
given posterior beliefs p, the equilibrium reporting strategies and supports in Propositions 2
to 4 are by construction such that no sender has individual profitable deviations. Moreover,
given such strategies, the decision maker choice is sequentially rational. Therefore, as
long as the assumptions established in Section 3 are satisfied, a direct equilibrium always
exists.

Corollary 3. A direct equilibrium always exists.

6 An Example and Application

6.1 Example: Symmetric Environments

In what follows, I provide an example where senders have similar characteristics and the
state is symmetrically distributed. This environment is an important benchmark because
it deals with situations where no sender has an ex-ante advantage. In addition, it gives
us a closed-form solution for senders’ equilibrium strategies and supports. The following
definition formalizes what is meant by a “symmetric environment.”

Definition 8. In a symmetric environment,

i) the state is symmetrically distributed around zero, i.e., f(θ) = f(−θ) for all θ ∈ Θ;

ii) kjCj(r, θ) = kC(r, θ) for j ∈ {1, 2}, where k > 0 and C(·) satisfies C(θ + x, θ) =
C(θ − x, θ) for every θ ∈ Θ and x ∈ R; and

34Definition 2, introduced by Vida and Honryo (2019) and used in Section 4, is a weaker version of
Definition 7. Lemma 3 applies to unprejudiced beliefs as in both definitions.

35Since ε-robustness implies unprejudiced beliefs, it would be sufficient to show that there exist direct
equilibria that are ε-robust. Corollary 2 simply remarks that the two refinements are different.
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iii) payoffs satisfy36 udm(θ) = −udm(−θ) and u1(θ) = −u2(−θ) for all θ ∈ Θ.

Conditions i) to iii) are in addition to the assumptions in Section 3.

In symmetric environments the two senders differ only because they have conflicting
interests. In other words, there is no particular reason why the decision maker should give
more importance to the report of one sender than to that of the other. Intuition would
suggest that, in a symmetric environment, the decision maker should assign the “burden
of proof” equally between the senders. The next corollary confirms that this intuition is
indeed correct in a direct equilibrium.

Corollary 4. In a direct equilibrium of a symmetric environment, s(r) = −r for every
r ∈ R̂.

In a symmetric environment, the decision maker follows the recommendation of the
sender that delivers the most extreme report. The burden of proof is equally distributed
between the senders, as Corollary 4 shows. Moreover, the swing report function is linear
even though some fundamentals, e.g., the cost functions, may be non-linear. Remarkably,
in symmetric environments direct equilibria naturally have symmetric strategies.37

With an explicit solution to the swing report function, we obtain a natural closed-
form solution to the senders’ equilibrium strategies and supports. In applications this is
particularly useful because in similar environments, such as in contests, typically little
is known about mixed-strategy equilibria except in some special cases (see Levine &
Mattozzi, 2019; Siegel, 2009).

I can now use this closed-form solution to examine the determinants and the char-
acteristics of the senders’ misreporting behavior. I show that the shape of the cost
function, in particular its convexity/concavity, determines whether senders are more likely
to deliver small lies or large misrepresentation or the other way around. By Proposition 2
and Corollary 4 we obtain that, in a symmetric environment, misreporting behavior is
described by the following partial density, for j ∈ {1, 2} and j 6= i,

ψj(rj, θ) = k

−ui(θ)
dC(−rj, θ)

drj
.

Therefore, if C(·) is strictly convex, we have that dψ1(r1, θ)/dr1 > 0 for all θ ∈
S1(θ) \ {θ} and dψ2(r2, θ)/dr2 < 0 for all θ ∈ S2(θ) \ {θ}. This means that, conditional on
misreporting, senders are more likely to deliver large misrepresentations of the state than
small lies. By contrast, when senders have concave costs, misreports that are closer to

36By definition of threshold τj (see Section 3), this last condition implies that τ2 = −τ1.
37Corollary 4 is reminiscent of results in all-pay auctions with complete information, where it is shown

that with two bidders only symmetric solutions exist (Baye et al., 1996).
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Figure 3: The partial probability density ψ as a function of the shape of misreporting costs
and of the extent of misreporting, in a symmetric environment where C(r, θ) = |(r− θ)exp|
and θ = 0. With quadratic loss costs, exp = 2, the density ψ grows linearly as reports get
further away from the truth. With absolute value linear costs, exp = 1, every misreport
in the support has the same partial density. With concave costs, exp ∈ (0, 1), small
misrepresentations are more likely than large lies, and when exp > 1 the opposite is true.

the truth are more likely to be delivered than large misrepresentations. The type of the
senders’ misreporting behavior is entirely driven by the shape of the cost function C, and
not by k or by utilities uj. Figure 3 shows senders’ misreporting behavior for different
concavities of the misreporting cost function.

6.2 Application: Judicial Procedures

In a seminal paper, Shin (1998) compares the informative value of adversarial and
inquisitorial procedures. Under the adversarial procedure, two parties with conflicting
interests make their case to an uninformed decision maker. By contrast, the inquisitorial
procedure requires the decision maker to adjudicate based only on her own acquired
information. The question of which procedure allows the decision maker to take more
informed decisions is of interest in a host of applications.

To answer this question, Shin (1998) studies a model of verifiable disclosure, where
parties can either disclose or withhold information, but they cannot misrepresent it because
the information is fully verifiable. In the adversarial procedure, the decision maker cannot
rely on the information of the interested parties to secure full revelation because the two
parties may be uninformed. In the inquisitorial procedure, the decision maker obtains with
some probability an informative signal of the underlying evidence. In choosing between
the two procedures, the decision maker must choose whether to obtain two pieces of biased
information or one piece of unbiased information. Within this framework, Shin (1998)
finds that the adversarial procedure is always superior to the inquisitorial procedure.
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This sharp result raises a natural question: why are inquisitorial procedures so are
often used in practice? On this point, Shin (1998) argues that the assumption of full
verifiability might play a key role in determining the superiority of adversarial procedures,
and that “potential violations of the verifiability assumption will be an important limiting
factor in qualifying our findings in favor of the adversarial procedure” (Shin, 1998, p. 403).

In this section, I analyze the validity of this conjecture by using results derived in
this paper. The framework introduced in Section 3 allows me to model the adversarial
procedure for when information is not fully verifiable and parties can thus misrepresent
it. The results derived in Section 4 suggest that under this procedure the decision maker
cannot plausibly achieve receiver-efficiency and obtain the full information welfare Wfi.
Moreover, if we accept that conditions (C) and (D) are plausible modeling assumptions,
then the results in Section 5 indicate that the ex-ante equilibrium welfare of the decision
maker is also strictly lower and bounded away from Wfi. To see this, notice that the
expected payoff obtained by the decision maker in direct equilibria is bounded above by
W̄dm, where38

W̄dm =
∫ max Θ

0
f(θ)udm(θ)dθ︸ ︷︷ ︸
=Wfi

+
∫ 0

θ1
f(θ)udm(θ)(1− α1(θ))α2(θ)dθ︸ ︷︷ ︸

<0

< Wfi.

To model the inquisitorial procedure, I follow Shin (1998) in assuming that the decision
maker obtains with probability q a potentially noisy signal σ of the realized state θ. It
is straightforward to see that, under the inquisitorial procedure, the decision maker can
obtain an expected payoff that, for high q and sufficiently precise σ, is arbitrarily close to
Wfi and thus higher than W̄dm. Therefore, there is always a combination of parameters
under which the inquisitorial procedure is superior to the adversarial procedure in that
it yields more information to the decision maker. The conjecture of Shin (1998) is thus
proved correct for any finite intensity of misreporting costs kj > 0.

It is worth pointing out that, in addition to the verifiability assumption, there are
other modeling differences between my setting and that of Shin (1998): first, I assume
that the two senders are always perfectly informed about the realized state, while in Shin
(1998) they may be uninformed or observe a noisy signal of the realized state; second, I
consider a decision maker that is less informed than the two parties, while in Shin (1998)
every player is, on average, equally informed.39 These two differences give in my setting a

38The upper bound W̄dm is obtained by assuming that the decision maker makes fewer mistakes than
she would in a direct equilibrium: she mistakenly selects +© only when θ ∈ (θ1, 0) and sender 2 reports
truthfully while sender 1 misreports. Otherwise, she chooses the correct alternative. Therefore, W̄dm is a
strict upper bound of the ex-ante welfare obtained by the decision maker in direct equilibria.

39In Shin’s model, the decision maker’s ability to gather precise information in the inquisitorial system
increases in the information possessed in expectation by the contending parties. This is because all players
are assumed to be equally informed on average.
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relative advantage to the adversarial procedure, and therefore add further force to the
potential superiority of the inquisitorial procedure.40

7 Concluding Remarks

This article studies a multi-sender signaling model with two informed senders and one
uninformed decision maker. Senders have perfectly correlated information, which they
can misreport at a cost that is tied to the magnitude of misrepresentation. This setting
covers a number of applications in economics and politics, including electoral campaigns,
contested takeovers, lobbying, informative advertising, and judicial decision making.

I restrict attention to equilibria of this model where the decision maker’s posterior
beliefs satisfy a first-order stochastic dominance condition. Fully revealing, receiver-
efficient, and pure-strategy equilibria exist, but they are not robust. I identify two natural
restrictions on the decision maker’s posterior beliefs under which equilibria are essentially
unique, robust, and always exist. I dub equilibria that satisfy these two conditions as
“direct equilibria.”

Therefore, this paper provides a tractable and appealing approach to studying strategic
communication from multiple senders with common information that is neither fully
verifiable nor totally “cheap.” As an application of direct equilibria, I study the informative
value of judicial procedures and show that, when information is not fully verifiable, then
inquisitorial systems may be superior to adversarial systems.

The transmission of information takes place in a qualitatively different way in direct
equilibria of this model than in equilibria of related models of strategic communication. I
conclude that the introduction of misreporting costs is not just a technical twist that adds
an element of realism to the model; rather, it is an essential component to understanding
how and how much information can be plausibly transmitted in this setting.41

40Moreover, in my model “withholding” information is not possible. In Shin’s model, if parties are
perfectly informed but cannot withhold information, then the decision maker can obtain full revelation
under the adversarial procedure, making it superior to the inquisitorial procedure.

41Accounting for misreporting costs also allows one to perform comparative statics on such costs. For
example, it allows one to study the effects of “fake news laws” or of technological advancements such as
“deepfake videos” that affect senders’ misreporting costs. This is left for future research.
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A Appendix

Lemma 1. In every perfect Bayesian equilibrium satisfying (FOSD) we have that, for
j ∈ {1, 2}, minSj(θ) ≥ θ for θ ≥ τj and max Sj(θ) ≤ θ otherwise.

Proof of Lemma 1. Consider a PBE satisfying (FOSD) and consider a state θ ≥ τ1. For
sender 1, every report r1 < θ is dominated by truthful reporting because C1(r1, θ) > 0 =
C1(θ, θ) and (by (FOSD)) Udm(θ, r2) ≥ Udm(r1, r2) for every r2 ∈ R2. Therefore, it must
be that r1 /∈ S1(θ) for all r1 < θ and θ ≥ τ1. A similar argument applies to sender 2 and
to states θ ≤ τj, j ∈ {1, 2}.

A.1 Receiver-efficient and Pure-strategy Equilibria

Lemma 2. An equilibrium is receiver-efficient if and only if it is in pure strategies.

Proof of Lemma 2. Consider a pure-strategy equilibrium and suppose that it is not
receiver-efficient, e.g., because β(ρ1(θ′), ρ2(θ′)) = -© for some θ′ ≥ 0. In equilibrium,
senders never engage in misreporting to implement their less preferred alternative with
certainty, and therefore it must be that ρ1(θ′) = θ′. Posterior beliefs p must be such that
β(r1, ρ2(θ′)) = -© for all r1 ∈ (r

¯1(θ′), r̄1(θ′)), as otherwise sender 1 would have a profitable
deviation. The pair of reports (θ′, ρ2(θ′)) can induce -© only if (ρ1(θ′′), ρ2(θ′′)) = (θ′, ρ2(θ′))
for some θ′′ < 0. There is no θ ∈ [τ1, 0) such that sender 1 would misreport by delivering
r1 = θ′ ≥ 0 to implement -©, and therefore it must be that θ′′ < τ1. Since there is always
r′1 ∈ (r

¯1(θ′), θ′) such that C1(r′1, θ′′) < C1(θ′, θ′′) and β(r′1, ρ2(θ′′)) = -©, sender 1 has a
profitable deviation in state θ′′, contradicting that there exists a pure-strategy equilibrium
that is not receiver-efficient.

Now consider a REE and suppose that it is not in pure strategies, but that there is a
state θ′ ∈ Θ and a sender j ∈ {1, 2} such that Sj(θ′) ⊇ {r′j, r′′j }, with r′j 6= r′′j . Since in a
REE we have that β(r′1, r′2) = β(r′′1 , r′′2) for every r′i, r′′i ∈ Si(θ), i ∈ {1, 2}, it must be that
Cj(r′j, θ′) = Cj(r′′j , θ′). By Lemma 1, this is possible only if r′j = r′′j , contradicting that
there exists a REE that is not in pure strategies.

Proposition 1. There are no receiver-efficient equilibria with unprejudiced beliefs.

Proof of Proposition 1. In a REE, senders play pure strategies (Lemma 2) and the decision
maker always selects her preferred alternative as if she has complete information, that is,
β(ρ1(θ), ρ2(θ)) = +© for all θ ≥ 0 and β(ρ1(θ), ρ2(θ)) = -© otherwise. Since misreporting
is costly, senders report truthfully in states where their least preferred alternative is
implemented: ρ2(θ) = θ for all θ ∈ [0, τ2] and ρ1(θ) = θ for all θ ∈ [τ1, 0). However, there
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are no REE where ρj(θ) = θ for all θ ∈ [τ1, τ2] and j ∈ {1, 2}; for otherwise, there would
always be a state θ ∈ (τ1, τ2) and an off path pair of reports (r1, r2), r1 6= r2, such that a
sender can profitably deviate from truthful reporting (see also Observation 2). Therefore,
in every REE either sender 1 misreports in some state θ ∈ [0, τ2), or sender 2 misreports
in some θ ∈ (τ1, 0], or both.

Consider now a REE where ρ1(θ′) 6= θ′ for some θ′ ∈ [0, τ2). By Lemma 1, we
have that ρ1(θ′) > θ′. To support the equilibrium, off path beliefs p must be such that
β(r1, θ

′) = -© for all r1 ∈ [θ′, ρ1(θ′)) and β(ρ1(θ′′), r2) = +© for all r2 ∈ (r
¯2(θ′′), θ′′] and

θ′′ ∈ [θ′, τ2). This implies that there must be an open set S of non-negative states
such that ρ1(θ′′′) ≥ ρ1(θ′) > θ′′′ = ρ2(θ′′′) for all θ′′′ ∈ S. It follows that, for every
θ′′′ ∈ S, the pair of reports (θ′′′, θ′′′) is off path. By Lemma 1, and since ρ2(θ) = θ for all
θ ∈ [0, τ2] and ρ1(θ) = θ for all θ ∈ [τ1, 0), we have that posterior beliefs p are unprejudiced
(Definition 2) only if p(θ|θ′′′, θ′′′) = 0 for all θ < 0. Therefore, unprejudiced beliefs imply
that β(θ′′′, θ′′′) = +©, and therefore sender 1 can profitably deviate by reporting the
truth in state θ′′′ ∈ S. A similar argument applies to REE where ρ2(θ′) 6= θ′ for some
θ′ ∈ (τ1, 0]. Therefore, there are no REE (and, by Lemma 2, no pure-strategy equilibria)
with unprejudiced beliefs.

Lemma 3. If an equilibrium is ε-robust, then it has unprejudiced beliefs.

Proof. Consider the posterior beliefs pG,ε that the strategies φj of a PBE (see Section 5
for the notation used to describe mixed strategies) induce in an ε-perturbed game for
some distribution G and sequence εn, i.e.,

pG,ε(θ|r1, r2) = f(θ)pG,ε(r1, r2|θ)
pG,ε(r1, r2)

= f(θ) [ε1ε2g1(r1)g2(r2) + ε1(1− ε2)g1(r1)φ2(r2, θ) + (1− ε1)ε2g2(r2)φ1(r1, θ)]
ε1ε2g1(r1)g2(r2) + ε1(1− ε2)g1(r1)

∫
Θ f(θ)φ2(r2, θ)dθ + (1− ε1)ε2g2(r2)

∫
Θ f(θ)φ1(r1, θ)dθ

.

As εn → 0+ the event in which both reports are wrongly delivered or observed becomes
negligible, and thus we have that pG,ε → pG,0+ , where

pG,0+(θ|r1, r2) = f(θ) [ε1g1(r1)φ2(r2, θ) + ε2g2(r2)φ1(r1, θ)]
ε1g1(r1)

∫
Θ f(θ)φ2(r2, θ)dθ + ε2g2(r2)

∫
Θ f(θ)φ1(r1, θ)dθ

. (5)

By (5) we obtain that, for any distribution G with full support and any sequence εn → 0+,
pG,0+(θ|r1, r2) > 0 if and only if φj(rj, θ) > 0 for some j ∈ {1, 2}. By Definition 7 (and
hence even by Definition 2) we get that the limit beliefs pG,0+ are unprejudiced, and
therefore every PBE of the game described in Section 3 (and hence every equilibrium)
that is ε-robust is supported by unprejudiced beliefs.42

42Notice that the proof of Lemma 3 readily extends to an n-sender version of the game, for any finite
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A.2 Direct Equilibria

Lemma 4. In a direct equilibrium, every report r ∈ R̂ has a swing report s(r) ∈ R̂ such
that: (i) if r ≷ 0 then s(r) ≶ 0 and s(0) = 0; (ii) s(s(r)) = r; (iii) for every r ∈ R̂,
ds(r)
dr

< 0; (iv) s (r̄1(0)) = r
¯ 2(0).

Proof. Consider a report r1 by sender 1 such that r1 ∈ (0, r̄1(0)]. By (C) and (D) we
obtain that Udm(r1, r¯2(0)) < 0 < Udm(r1, 0), and therefore there exists r2 ∈ [r

¯2(0), 0)
such that Udm(r1, r2) = 0. Thus, r2 = s(r1). A similar argument holds for a report
r2 ∈ [r

¯2(0), 0). It follows that, for every r ∈ R̂, there exists s(r) ∈ R̂ such that if r > 0
then s(r) < 0, and if r < 0 then s(r) > 0. From (C) and Definition 5 we obtain that
s(0) = 0 and s (r̄1(0)) = r

¯2(0). From Definition 5 and point (i) we get that if r′ = s(r)
then r = s(r′), and therefore s(s(r)) = r. By applying the implicit function theorem and
(D) to s(r), we obtain that for every r ∈ R̂, ds(r)

dr
< 0.

Lemma A.1. In a direct equilibrium, truthful cutoffs are such that θ1 < 0 < θ2 and
(θ1, θ2) ⊂ [τ1, τ2] ∩ R̂.

Proof. By Lemma 4 we have that s (r̄1(0)) = r
¯2(0) < 0 and, for every r ∈ R̂, ds(r)/dr < 0.

Moreover, dr
¯2(θ)/dθ > 0 and thus r

¯2(θ) > r
¯2(0) for every θ > 0. Since s(0) = 0, there

is a state θ′ ∈ (0, r̄1(0)) such that s(θ′) = r
¯2(θ′). From Definition 5, we obtain that

θ′ = θ2 ∈ (0, r̄1(0)). Similarly, we get that θ1 ∈ (r
¯2(0), 0). Since r̄1(τ1) = τ1 < 0 and

r
¯2(τ2) = τ2 > 0, it follows from Definition 6 that (θ1, θ2) ⊂ [τ1, τ2].

Lemma 5. In a direct equilibrium, Sj(θ) = {θ} for all θ /∈ (θ1, θ2), and |Sj(θ)|> 1 for
every θ ∈ (θ1, θ2), j ∈ {1, 2}.

Proof. I begin by proving that Sj(θ) = {θ} for all θ /∈ (θ1, θ2). Consider a DE and a state
θ ≥ θ2. Since by Lemma 1 we have that minS1(θ) ≥ θ ≥ θ2, it must be that S2(θ) = {θ}
as s(r1) ≤ r

¯2(θ) for every r1 ∈ S1(θ). Since β(θ, θ) = +©, sender 1 best replies to r2 = θ

with r1 = θ and therefore S1(θ) = {θ} as well. A similar argument applies to states
θ ≤ θ1, completing the first part of the proof. Note that when θ = θ1, sender 1 is actually
indifferent between reporting θ1 and r̄1(θ1). Since this is a measure zero event, which is
irrelevant to the analysis that follows, I will consider only the case where S1(θ1) = {θ1},
without any loss of generality.

I turn now to prove that Sj(θ) contains more than one element for every θ ∈ (θ1, θ2).
Suppose by way of contradiction that S1(θ) = {r1} for some θ ∈ (θ1, θ2). By Lemma 1, we
have that r1 ≥ θ. Consider first the case where θ ≤ r1 < 0. In a DE, sender 2 best replies

n ≥ 2. In particular, given a profile of reports (r1, . . . , rn) and a set of senders N = {1, . . . , n}, we have
that pG,0+(θ|r1, . . . , rn) > 0 if and only if φj(rj , θ) > 0 for n− 1 senders. This is consistent with the idea
behind unprejudiced beliefs, where the decision maker conjectures that deviations are individual.
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to r1 ∈ [θ, 0) with r2 = θ = S2(θ) because, by (C) and (D), we get β(r1, θ) = -©. However,
sender 1 can profitably deviate from the prescribed strategy by delivering r′1 = s(θ), where
0 < s(θ) < r̄1(θ) (Lemmata 4 and A.1), contradicting that S1(θ) = {r1}. Consider next
the case where r1 ≥ 0 and r1 ≥ θ. If s(r1) ≤ r

¯2(θ), then it must be that S2(θ) = {θ}.
By Definition 6 and Lemma 4 we have that r

¯2(θ) < 0 and r1 ≥ s(r
¯2(θ)) > 0. Since

r
¯2(θ) < θ, sender 1 can profitably deviate from the prescribed strategy by reporting either
r′1 = s(θ) ∈ (0, r1) if θ < 0, or r′1 = θ if θ ≥ 0, as in both cases we get that β(r′1, θ) = +©

and C1(r′1, θ) < C1(r1, θ). If instead s(r1) > r
¯2(θ), then sender 2 must be delivering some

report r′2 ∈ (r
¯2(θ), s(r1)). Therefore, if r1 > θ, then sender 1 is strictly better off reporting

θ rather than r1 because β(θ, r′2) = β(r1, r
′
2) = -© and C1(r1, θ) > 0 = C1(θ, θ). If instead

r1 = θ, then θ ≥ 0 and since r
¯2(θ) ≥ r

¯2(0) we have that s(r′2) ≤ r̄1(θ) (Lemma 4). In this
case, sender 1 can profitably deviate from the prescribed strategy by reporting r′1 = s(r′2).
Similar arguments apply to S2(θ) = {r2}, completing the proof.

Lemma A.2. In a direct equilibrium, for every θ ∈ (θ1, θ2), supports Sj(θ) are such that

max S1(θ) ≤ min {r̄1(0), r̄1(θ), s (r
¯ 2(θ))} ,

minS2(θ) ≥ max {r
¯ 2(0), r

¯ 2(θ), s (r̄1(θ))} .

Proof. Consider a DE and a θ ∈ (θ1, θ2). By the definition of reach (equations (1) and (2))
every r1 > r̄1(θ) is strictly dominated by truthful reporting, and thus max S1(θ) ≤ r̄1(θ).
Similarly, we obtain that minS2(θ) ≥ r

¯2(θ) and therefore by (D) and by Definition 5
every r1 > s(r

¯2(θ)) is dominated by r′1 = s(r
¯2(θ)) and every r2 < s(r̄1(θ)) is dominated

by r′2 = s(r̄1(θ)). Thus, max S1(θ) ≤ s(r
¯2(θ)) and minS2(θ) ≥ s(r̄1(θ)). For every

θ ∈ [0, θ2) we have r̄1(θ) ≥ r̄1(0) and r
¯2(θ) ≥ r

¯2(0), and therefore minS2(θ) ≥ r
¯2(0). Since

s(r
¯2(0)) = r̄1(0) (Lemma 4), it follows from (D) and Definition 5 that s(r2) ≤ r̄1(0) for every

r2 ∈ S2(θ), and therefore max S1(θ) ≤ r̄1(0). Similarly, we obtain that minS2(θ) ≥ s(r̄1(0))
for every θ ∈ (θ1, 0).

Lemma A.3. In a direct equilibrium, r2 /∈ S2(θ) for every r2 ∈ (s(minS1(θ)), θ) and
θ > 0, and r1 /∈ S1(θ) for every r1 ∈ (θ, s(max S2(θ))) and θ < 0.

Proof. Consider θ ∈ (0, θ2). By Lemmata 1 and 4 we have that s(minS1(θ)) < 0, and by
Definition 5 we have that β(r1, r2) = +© for every r1 ∈ S1(θ) and r2 ∈ (s (minS1(θ)) , θ).
Therefore, for sender 2 every r2 ∈ (s (minS1(θ)) , θ) is strictly dominated by truthful
reporting, and therefore r2 /∈ S2(θ). A similar argument applies to sender 1 for θ ∈ (θ1, 0)
and Lemma 5 proves the case of θ /∈ (θ1, θ2), completing the proof.

Lemma A.4. In a direct equilibrium, for every θ ∈ (θ1, θ2), reports r1 ∈ (minS1(θ),max S1(θ))
have s(r1) > r

¯ 2(θ), and reports r2 ∈ (minS2(θ),max S2(θ)) have s(r2) < r̄1(θ).
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Proof. Suppose not, and consider r′1 ∈ (minS1(θ),max S1(θ)) for some θ ∈ (θ1, θ2) such
that s(r′1) < r

¯2(θ). By Definition 6 we have that r
¯2(θ) < 0 and by Lemma 4 we

have that s(r
¯2(θ)) < r′1. This is in contradiction to Lemma A.2, which states that

max S1(θ) ≤ s(r
¯2(θ)). A similar argument holds for reports r2 ∈ (minS2(θ),max S2(θ)),

completing the proof.

Lemma A.5. In a direct equilibrium, αj(rj, θ) = 0 for all rj ∈ (minSj(θ),max Sj(θ)),
j ∈ {1, 2}, and θ ∈ (θ1, θ2).

Proof. Consider θ ∈ (θ1, θ2) and suppose that there is a DE ω where sender 1’s strategy
φ1(θ) has an atom α1(r′1, θ) > 0 in some report r′1 ∈ (minS1(θ),max S1(θ)). By Lemma A.4
we have that s(r′1) > r

¯2(θ). The expected payoff of sender 2, W ω
2 (·, θ), is discontinuous

around r2 = s(r′1) and therefore it must be that, for some ε > 0 small enough, (s(r′1), s(r′1)+
ε) ∩ S2(θ) = ∅. Therefore, there exists an ε′ > 0 small enough such that W ω

1 (r′′1 , θ) >
W ω

1 (r′1, θ) for some r′′1 ∈ (s (s(r′1) + ε′) , r′1), where by Lemma 4 we have that s (s(r′1) + ε′) <
r′1, thus contradicting that this is an equilibrium. A similar argument applies to atoms in
sender 2’s strategy, completing the proof.

Lemma A.6. In a direct equilibrium, minS1(θ) = θ for all θ ≥ 0, and max S2(θ) = θ for
all θ ≤ 0.

Proof. Consider a DE ω and θ ≥ 0. By Lemma 1, it must be that minS1(θ) ≥ θ. Sup-
pose by way of contradiction that minS1(θ) > θ. By Lemma 5 it has to be that
θ < θ2 and by Lemma A.3 we obtain that S2(θ) ∩ (s(minS1(θ)), θ) = ∅. There-
fore, unless sender 2’s strategy has an atom α2(s(minS1(θ)), θ) > 0, we have that
Φ2(s(minS1(θ)), θ) = Φ2(s(θ), θ). However, since β(r1, s(minS1(θ))) = +© for all r1 ∈ S1(θ)
and C2(s(minS1(θ)), θ) > 0, it must be that α2(s(minS1(θ)), θ) = 0 as s(minS1(θ)) is
strictly dominated by r2 = θ. Hence we have that, for some ε > 0, W ω

1 (θ, θ) > W ω
1 (r1, θ)

for every r1 ∈ [minS1(θ),minS1(θ)+ ε)∩S1(θ), contradicting that there can be a DE with
minS1(θ) > θ for a θ ≥ 0. A similar argument holds for sender 2 and θ ≤ 0, completing
the proof.

Lemma A.7. In a direct equilibrium, |Sj(θ)\{θ}|> 1 for every θ ∈ (θ1, θ2) and j ∈ {1, 2}.

Proof. Consider a DE ω and a state θ ∈ [0, θ2). By Lemma A.6 we have that minS1(θ) =
θ, and by Lemma 5 we have that |S1(θ)|> 1. Suppose by way of contradiction that
S1(θ) \ {θ} = {r1} for some r1 > 0. Since C1(r1, θ) > 0, it must be that, in equilibrium,
r1 induces +© with strictly higher probability than truthful reporting. This implies that
there is some r2 ∈ [s(r1), s(θ)) in the support of sender 2’s strategy, r2 ∈ S2(θ). Since
reports that are further away from the realized state are more costly, it must be that
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α2(r′2, θ) > 0 for some r′2 ∈ [s(r1), s(θ)), and φ2(r2, θ) = 0 for all r2 ∈ [s(r1), r′2). But then
W ω

1 (s(r′2), θ) > W ω
1 (r1, θ), contradicting that this is an equilibrium.

Consider now the case where θ ∈ (θ1, 0) and suppose again that S1(θ) \ {θ} = {r1}.
By Lemma 5, we have that |Sj(θ)|> 1 for j ∈ {1, 2}, and therefore minS1(θ) = θ. By
Lemmata A.2 and A.3 we have that r1 ≥ s(θ) > 0 and max S2(θ) = θ. If r1 = s(θ), then
sender 2 can profitably deviate from the prescribed strategy by always reporting θ − ε for
some ε > 0 small enough. If instead r1 > s(θ), then it must be that S2(θ) ∩ [s(r1), θ) = ∅
as every r2 ∈ [s(r1), θ) would be strictly dominated by truthful reporting. Since |S2(θ)|> 1,
there must be some r2 < s(r1) such that r2 ∈ S2(θ). Therefore, W ω

1 (s(θ), θ) > W ω
1 (r1, θ),

contradicting that this is an equilibrium. A similar argument applies to S2(θ) \ {θ},
completing the proof.

Lemma 6. In a direct equilibrium, Sj(θ)\{θ} is convex for all θ ∈ (θ1, θ2) and j ∈ {1, 2}.

Proof. Consider a DE ω and a state θ ∈ (θ1, θ2). By Lemma A.7 we have that |Sj(θ)\{θ}|>
1, j ∈ {1, 2}. Suppose by way of contradiction that S1(θ) \ {θ} is not convex, but instead
there are two reports r′1, r′′1 ∈ S1(θ) \ {θ} with r′1 < r′′1 , such that r1 /∈ S1(θ) \ {θ} for
every r1 ∈ (r′1, r′′1). By Lemmata 1, 4, and A.3 we have that r′1 > 0, r′1 ≥ s(θ), and
s(r′′1) < s(r′1) < 0. Since C1(r′′1 , θ) > C1(r′1, θ) and dCj(r,θ)

dr
> 0 for every r > θ, it must be

that every report r1 ≥ r′′1 such that φ1(r1, θ) > 0 induces the implementation of alternative
+© with strictly higher probability than every report r′′′1 ≤ r′1 such that φ1(r′′′1 , θ) > 0. This
is possible only if r2 ∈ S2(θ) for some r2 ∈ [s(r′′1), s(r′1)]. Since Φ1(r1, θ) is constant for
all r1 ∈ (r′1, r′′1), it must be that sender 2’s strategy has an atom α2(r2, θ) > 0 in some
r2 ∈ (s(r′′1), s(r′1)], and φ2(r′2, θ) = 0 for all r′2 ∈ [s(r′′1), s(r′1)] such that r′2 6= r2. However,
for some ε > 0 small enough we have that W ω

1 (s(r2), θ) > W ω
1 (r1, θ) for all r1 ∈ [r′′1 , r′′1 + ε)

such that r1 ∈ S1(θ), where s(r2) < r′′1 , contradicting that this is an equilibrium. A similar
argument applies to S2(θ) \ {θ}, completing the proof.

Lemma 7. In a direct equilibrium, the strategies φj(θ) have no atoms in Sj(θ) \ {θ} for
every θ ∈ (θ1, θ2) and j ∈ {1, 2}.

Proof. Consider a DE ω. Lemma 5 shows that |Sj(θ)|> 1 for all θ ∈ (θ1, θ2) and
Lemma A.5 shows that φj(θ) has no atoms in (minSj(θ),max Sj(θ)). Consider a state
θ ∈ (θ1, θ2), and suppose that φ1(θ) has an atom in max S1(θ), i.e., α1(max S1(θ), θ) >
0. By Lemma A.2, we have that max S1(θ) ≤ min{s(r

¯2(θ)), r̄1(θ)} and minS2(θ) ≥
max{r

¯2(θ), s(r̄1(θ))}. If minS2(θ) > s(max S1(θ)), then W ω
1 (r1, θ) > W ω

1 (max S1(θ), θ)
for any r1 ∈ [s(minS2(θ)),max S1(θ)). If minS2(θ) = s(max S1(θ)), then, since sender 2’s
expected payoff W ω

2 (·, θ) is discontinuous at r2 = s(max S1(θ)), it must be that r′2 /∈ S2(θ)
for all r′2 ∈ (s(max S1(θ)), s(max S1(θ)) + ε) and some small ε > 0. Otherwise, for some
ε′ > 0, W ω

2 (s(max S2(θ))− ε′, θ) > W ω
2 (r′2, θ) for any r′2 ∈ [s(max S1(θ)), s(max S1(θ)) + ε].
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However, this would contradict either Lemma A.7 or Lemma 6, and therefore it would
not be possible in a DE.

Suppose now that φ1(θ) has an atom in minS1(θ), i.e., α1(minS1(θ), θ) > 0. By
Lemma A.6, if θ ≥ 0 then minS1(θ) = θ, and therefore let us suppose that θ ∈ (θ1, 0)
and that minS1(θ) > θ when θ < 0. By Lemmata 4, A.3, and A.6 we have that
minS1(θ) ≥ s(θ) > 0. If minS1(θ) = s(θ), then it must be that φ2(θ, θ) = 0, as
W ω

2 (θ − ε, θ) > W ω
2 (θ, θ) for some ε > 0 small enough. But then the atom in minS1(θ)

would be strictly dominated by truthful reporting as C1(s(θ), θ) > 0 and β(s(θ), r2) = -©

for every r2 ∈ S2(θ), contradicting that this is an equilibrium. Consider now the case
where minS1(θ) > s(θ). We have that Φ1(r1, θ) = 0 for every r1 < minS1(θ), and by
Lemma 4 we have that s(minS1(θ)) < θ. Therefore, it must be that φ2(r2, θ) = 0 for every
r2 ∈ [s(minS1(θ)), θ). However this implies that, for sender 1, minS1(θ) is dominated by
s(θ), contradicting that this can be an equilibrium. Similar arguments hold for atoms
α2(r2, θ) for r2 ∈ S2(θ) \ {θ}, completing the proof.

Proposition 2. In a direct equilibrium, for every θ ∈ (θ1, θ2) and i, j ∈ {1, 2} with i 6= j,
sender j delivers report rj ∈ Sj(θ) \ {θ} according to

ψj(rj, θ) = ki
−ui(θ)

dCi(s(rj), θ)
drj

.

Proof. Consider a DE and a state θ ∈ (θ1, θ2). Given strategy φ1(θ), sender 2 gets
an expected utility of W ω

2 (r2, θ) = (1 − Φ1(s(r2), θ))u2(θ) − k2C2(r2, θ) from delivering
r2 ∈ S2(θ) \ {θ}. By Lemmata 6 and 7 we have that Sj(θ) \ {θ} is convex and atom-
less. By Lemmata 1, A.1, and A.2, we have that Sj(θ) ⊂ R̂ for all θ ∈ (θ1, θ2), and
therefore by Lemma 4 we have that ds(r)

dr
< 0 for all rj ∈ Sj(θ). Therefore, we can set

dWω
2 (r2,θ)
dr2

|r2∈S2(θ)\{θ} = 0, and since φj(rj, θ) = ψj(rj, θ) for all rj ∈ Sj(θ) \ {θ} (Lemma 7),
we obtain the partial pdf ψ1(s(r2), θ) = k2

−u2(θ)
dC2(r2,θ)

dr2
dr2
ds(r2) = k2

−u2(θ)
dC2(r2,θ)
ds(r2) . By replacing

r1 = s(r2) we obtain that ψ1(r1, θ) = k2
−u2(θ)

dC2(s(r1),θ)
dr1

for r1 ∈ S1(θ) \ {θ}. Similarly, we
obtain that for r2 ∈ S2(θ) \ {θ}, ψ2(r2, θ) = k1

−u1(θ)
dC1(s(r2),θ)

dr2
.

Lemma A.8. In a direct equilibrium, S1(θ) is convex for all θ ≥ 0 and S2(θ) is convex
for all θ ≤ 0.

Proof. Consider a DE ω and suppose by way of contradiction that S1(θ) is not convex
for some θ ∈ [0, θ2). By Lemma A.6 we have that minS1(θ) = θ, and by Lemma 6 we
have that S1(θ) \ {θ} is convex. Therefore, it must be that minS1(θ) \ {θ} > θ and
φ1(r1, θ) = 0 for every r1 ∈ (θ,minS1(θ) \ {θ}). In equilibrium, every r1 > minS1(θ)\{θ}
such that φ1(r1, θ) > 0 must yield the implementation of alternative +© with strictly
higher probability than truthful reporting, as C1(r1, θ) > 0. This is possible only if
φ2(r2, θ) > 0 for some r2 ∈ [s (minS1(θ) \ {θ}) , s(θ)). However, for some ε > 0 small
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enough, it must be that φ2(r′2, θ) = 0 for every r′2 ∈ [s (minS1(θ) \ {θ}) , s(θ)− ε), as
every such report r′2 is dominated by reporting s(θ)− ε. Therefore, there exists an ε′ > 0
such that W ω

1 (s(s(θ)− ε), θ) > W ω
1 (r′1, θ) for all r′1 ∈ [minS1(θ)\{θ},minS1(θ)\{θ}+ ε′),

contradicting that this is an equilibrium. Lemma 5 considers the case where θ /∈ (θ1, θ2),
and a similar argument applies to states θ ≤ 0 and support S2(θ).

Proposition 3. In a direct equilibrium, for every state θ ∈ (θ1, θ2), supports Sj(θ) are

S1(θ) = {θ} ∪ [max {s(θ), θ} ,min {r̄1(θ), s (r
¯ 2(θ))}] ,

S2(θ) = {θ} ∪ [max {r
¯ 2(θ), s (r̄1(θ))} ,min {s(θ), θ}] .

Proof. Consider a direct equilibrium and a state θ ∈ [0, θ2). Since for every θ ≥ 0 we have
that θ ∈ S1(θ) (Lemma A.6) and both sets S1(θ) and S1(θ)\{θ} are convex (Lemmata A.8
and 6), it follows that S1(θ) = [θ,max S1(θ)].

Lemma 6 shows that also S2(θ) \ {θ} is convex. Since minS1(θ) = θ, Lemma A.3
says that when θ > 0 we have that φ2(r2, θ) = 0 for all r2 ∈ (s(θ), θ), and therefore
max S2(θ) \ {θ} ≤ s(θ) for all θ ∈ (0, θ2). Suppose that max S2(θ) \ {θ} < s(θ). In this
case, it must be that φ1(r1, θ) = 0 for every r1 ∈ (θ, s(max S2(θ) \ {θ})), as for sender 1
every such a report r1 would be dominated by truthful reporting. This is in contradiction
to Lemma A.8, and therefore it must be that max S2(θ) \ {θ} = s(θ) for every θ ∈ (0, θ2).
When θ = 0, we have that max S2(0) = 0 (Lemma A.6).

Lemma 7 shows that φ2(r2, θ) is atomless in S2(θ)\{θ}. Therefore, for r2 ∈ S2(θ)\{θ}
we have that Φ2(r2, θ) = Ψ2(r2, θ), and therefore by using Proposition 2 we can write

Φ2(r2, θ)|r2∈S2(θ)\{θ}=
∫ r2

minS2(θ)
ψ2(r, θ)dr = k1

u1(θ) [C1(s(minS2(θ)), θ)− C1(s(r2), θ)] .

The probability that sender 2 misreports information in state θ ∈ (0, θ2) is therefore

Φ2(s(θ), θ) = k1

u1(θ)C1(s(minS2(θ)), θ). (6)

Since minS2(θ) ≥ r
¯2(θ) (Lemma A.2), it follows from Lemma 4 that, for every θ ∈ (0, θ2),

s(minS2(θ)) < r̄1(θ). Lemma A.7 shows that the set S2(θ) \ {θ} is not a singleton, and
since max S2(θ) \ {θ} ≤ s(θ) it must be that minS2(θ) < s(θ). Therefore by Lemma 4 we
have that s(minS2(θ)) ∈ (θ, r̄1(θ)) for θ ∈ (0, θ2). Finally, by the definition of upper reach
we get that C1(r̄1(θ), θ) = u1(θ)/k1, and C1(r1, θ) < u1(θ)/k1 for every r1 ∈ [θ, r̄1(θ)).
Therefore, it follows that Φ2(s(θ), θ) ∈ (0, 1) for every θ ∈ (0, θ2). By using s(s(r)) = r and
s(0) = 0 (Lemma 4), when θ = 0 we obtain that Φ2(s(0), 0) = 1 only if minS2(0) = r

¯2(0).

The above argument shows that θ ∈ S2(θ) and that φ2(θ) has an atom in r2 = θ
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of size α2(θ) = 1 − Φ2(s(θ), θ). Lemma 1 implies that every pair of on path reports
(r1, r2) such that rj ≥ 0, j ∈ {1, 2}, must yield β(r1, r2) = +©. Therefore, by reporting
truthfully when θ ≥ 0, sender 2 obtains a payoff of W ω

2 (θ, θ) = u2(θ). It must be
that max S1(θ) ≤ s(minS2(θ)), as otherwise every report r1 > s(minS2(θ)) would be
dominated by s(minS2(θ)). Since φ1(θ) has no atom in s(minS2(θ)) > θ (Lemma 7), by
reporting r2 = minS2(θ) sender 2 (almost) always induces the selection of his preferred
alternative -©, and gets an expected payoff of W ω

2 (minS2(θ), θ) = −k2C2(minS2(θ), θ).

In equilibrium, each sender must receive the same expected payoff from delivering any
report that is in the support of its own strategy. Since by the definition of lower reach we
obtain C2(r

¯2(θ), θ) = −u2(θ)/k2, it follows thatW ω
2 (minS2(θ), θ) = u2(θ) = W ω

2 (θ, θ) only
if minS2(θ) = r

¯2(θ). Therefore, for a θ ∈ [0, θ2), we have that S2(θ) = [r
¯2(θ), s(θ)]∪{θ}. It

also follows that max S1(θ) = s(r
¯2(θ)): if max S1(θ) < s(r

¯2(θ)), then r
¯2(θ) < s(max S1(θ))

and every r2 < s(max S1(θ)) would be strictly dominated by s(max S1(θ)). Thus, S1(θ) =
[θ, s(r

¯2(θ))]. Similar arguments apply to the case where θ ∈ (θ1, 0), completing the
proof.

Proposition 4. In a direct equilibrium, for every state θ ∈ (θ1, θ2), strategies φj(θ) have
an atom at rj = θ of size αj(θ), where

α1(θ) =


k2

−u2(θ)C2 (s(θ), θ) if θ ∈ [0, θ2)

1− k2
−u2(θ)C2 (s(r̄1(θ)), θ) if θ ∈ (θ1, 0],

α2(θ) =

1− k1
u1(θ)C1 (s(r

¯ 2(θ)), θ) if θ ∈ [0, θ2)
k1

u1(θ)C1 (s(θ), θ) if θ ∈ (θ1, 0].

Proof. Consider a direct equilibrium and a state θ ∈ [0, θ2). The proof of Proposition 3
shows that φ2(θ) has an atom in r2 = θ of size α2(θ) = 1−Φ2(s(θ), θ). From equation (6)
and given minS2(θ) = r

¯2(θ), we obtain that

α2(θ) = 1− k1

u1(θ)C1(s(r
¯2(θ)), θ).

By Lemma 7, sender 1’s strategy φ1(θ) admits an atom only in minS1(θ) = θ. Therefore,
we can use Proposition 2 to write

Φ1(r1, θ)|r1∈S1(θ) = α1(θ) +
∫ r1

θ
ψ1(r, θ)dr

= α1(θ) + k2

−u2(θ) [C2(s(r1), θ)− C2(s(θ), θ)] .

Since max S1(θ) = s(r
¯2(θ)), it must be that Φ1(s(r¯2(θ)), θ) = 1. By using s(s(r

¯2(θ))) =
r
¯2(θ) (Lemma 4) and given that from the definition of lower reach we obtain C2(r

¯2(θ), θ) =
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−u2(θ)/k2, we have that

Φ1(s(r
¯2(θ)), θ) = α1(θ) + k2

−u2(θ) [C2(s(s(r
¯2(θ))), θ)− C2(s(θ), θ)]

= α1(θ) + 1− k2

−u2(θ)C2(s(θ), θ) = 1,

from which we obtain that

α1(θ) = k2

−u2(θ)C2(s(θ), θ).

A similar procedure can be used for θ ∈ (θ1, 0), completing the proof.

Lemma A.9. In a direct equilibrium, for every (on path) pair of reports (r1, r2) such that
r2 = s(r1), the decision maker’s posterior beliefs are

p(θ|r1, r2) > 0 if and only if θ ∈ [max{r2, r̄
−1
1 (r1)},min{r1, r¯

−1
2 (r2)}].

Proof. Consider a DE and a pair of reports (r1, r2) such that r̄1(0) ≥ r1 > 0 > r2 ≥ r
¯2(0).

Given equilibrium supports in Proposition 3, all such pairs are on path (e.g., for θ = 0).
Upon observing (r1, r2), the decision maker forms posterior beliefs p(θ|r1, r2). By Lemma 1,
it must be that p(θ|r1, r2) = 0 for every θ /∈ [r2, r1]. By Lemma 5, it must be that
p(θ|r1, r2) = 0 for every θ /∈ [θ1, θ2]. By Proposition 3 we have that minS2(θ) ≥ r

¯2(θ) and
max S1(θ) ≤ r̄1(θ), and therefore p(θ|r1, r2) = 0 for every θ /∈

[
r̄−1

1 (r1), r
¯
−1
2 (r2)

]
, where

from equations (1) and (2) we obtain that

r̄−1
1 (r1) = min {θ ∈ Θ|u1(θ) = k1C1(r1, θ)} ,

r
¯
−1
2 (r2) = max {θ ∈ Θ|−u2(θ) = k2C2(r2, θ)} .

From Proposition 3 we also have that, for every θ ∈ [0, θ2), max S1(θ) = s(r
¯2(θ)) ≤ r1(θ).

Therefore, given the report r1 ∈ (0, r̄1(0)], it must be that p(θ|r1, r2) = 0 for all θ such
that s(r

¯2(θ)) < r1. By Lemma 4 and since dr
¯2(θ)/dθ > 0, there is a state θ′ such that

s(r
¯2(θ′)) = r1. Denote such a state by t1(r1) := {θ ∈ Θ|s(r

¯2(θ)) = r1}, where t1(r1) > 0
and dt1(r1)/dr1 > 0. Similarly, denote t2(r2) := {θ ∈ Θ|s(r̄1(θ)) = r2}. Given equilibrium
supports, it must be that p(θ|r1, r2) = 0 for all θ /∈ [t2(r2), t1(r1)].

By Lemma 4 and since s(r
¯2(θ2)) = θ2 (Definition 6), we obtain that t1(r1) ≤ θ2 for

every r1 ∈ [θ2, r̄1(0)], and therefore min{r1, t1(r1)} ≤ θ2 for all r1 ∈ (0, r̄1(0)]. Similarly, we
get that max{r2, t2(r2)} ≥ θ1 for all r2 ∈ [r

¯2(0), 0). Therefore, we have that p(θ|r1, r2) = 0
for every θ /∈ [max{r2, r̄

−1
1 (r1), t2(r2)},min{r1, r¯

−1
2 (r2), t1(r1)}], and by Proposition 3 we

obtain that p(θ|r1, r2) ∝ f(θ) · φ1(r1, θ) · φ2(r2, θ) > 0 otherwise.

Consider now the case where r2 = s(r1) (or, by Lemma 4, r1 = s(r2)). By definition,
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in state θ′ = t1(r1) we have that s(r
¯2(θ′)) = r1. Therefore, we get that s(r1) = r

¯2(θ′) = r2

and r
¯
−1
2 (r2) = θ′ = t1(r1). Similarly, we obtain that r̄−1

1 (r1) = t2(r2). Therefore,
for every pair of reports (r1, s(r1)) we have that p(θ|r1, s(r1)) > 0 if and only if θ ∈[
max

{
r2, r̄

−1
1 (r1)

}
,min

{
r1, r¯

−1
2 (r2)

}]
.

Proposition 5. In a direct equilibrium, the swing report function s(ri) is implicitly defined
for i, j ∈ {1, 2}, i 6= j, and ri ∈ R̂, as

s(ri) =
{
rj ∈ Rj

∣∣∣∣ ∫ min{r1,r¯
−1
2 (r2)}

max{r2,r̄
−1
1 (r1)}

f(θ) udm(θ)
u1(θ)u2(θ)

dCj(rj, θ)
drj

dCi(ri, θ)
dri

dθ = 0
}
. (4)

Proof. Given the equilibrium reporting strategies φj(rj|θ) = δ(rj − θ)αj(θ) + ψj(rj|θ),
j ∈ {1, 2} (Propositions 2, 3, and 4), the mixed probability distribution p(r1, r2|θ) =
φ1(r1, θ)φ2(r2, θ) is

p(r1, r2|θ) = δ(r1 − θ)δ(r2 − θ)α1(θ)α2(θ) + δ(r1 − θ)α1(θ)ψ2(r2, θ)

+ δ(r2 − θ)ψ1(r1, θ)α2(θ) + ψ1(r1, θ)ψ2(r2, θ).

Consider a pair of reports (r1, r2) such that r̄1(0) ≥ r1 > 0 > r2 ≥ r
¯2(0) and r2 = s(r1)

(as by Lemma 4 we have that if r > 0, then s(r) < 0). Since dCj(rj ,θ)
drj

∣∣∣
rj=θ

= 0 for
every θ ∈ Θ, we obtain that ψj(s(θ), θ) = 0 for i, j ∈ {1, 2}, i 6= j, and therefore
p(r1, s(r1)|θ) = ψ1(r1, θ)ψ2(s(r1), θ).

The swing report s(r1) is defined in Definition 5 to be the report r2 ∈ R2 such that
Udm(r1, r2) =

∫
Θ udm(θ)p(θ|r1, r2)dθ = 0, and by Lemma 4 we know that s(r1) ∈ [r

¯2(0), 0).
By Lemma A.9 we have that p(θ|r1, s(r1)) > 0 if and only if θ ∈ [max{r2, r̄

−1
1 (r1)},min{r1, r¯

−1
2 (r2)}],

and therefore by using Bayes’ rule we can rewrite the condition Udm(r1, s(r1)) = 0 as
Gs(r1, s(r1)) = 0, where

Gs(r1, r2) = 1
p(r1, r2)

∫ min{r1,r¯
−1
2 (r2)}

max{r2,r̄
−1
1 (r1)}

udm(θ)f(θ)ψ1(r1, θ)ψ2(r2, θ)dθ.

By substituting for the equilibrium strategies ψj(rj, θ) as described in Proposition 2, we
obtain the implicit definition of the swing report given in equation (4).

Corollary 1. Direct equilibria are essentially unique.

Proof. The solution of equation (4) is unique and depends only on the model’s primitives
udm(θ), f(θ), ui(θ), τi, ki, Ci(ri, θ), for i ∈ {1, 2}. Therefore, for every r ∈ [r

¯2(0), r̄1(0)],
the swing report s(r) is the same in every DE. It follows that the truthful cutoffs θ1 and
θ2, and the senders’ reporting strategies φj(θ) and supports Sj(θ), j ∈ {1, 2}, are also the
same in all DE. Thus, all DE are strategy- and outcome-equivalent.

Lemma A.10. There exist direct equilibria with unprejudiced beliefs.
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Proof. Consider a DE and an off path pair of reports (r1, r2). By Propositions 2, 3, and
4, and by Lemma 5, we obtain that the only pair of reports such that φj(rj, θ) = 0 for all
θ ∈ Θ and j ∈ {1, 2} is (0, 0). For every other off path pair of reports, there is always a
sender i such that φi(ri, θ) > 0 for some θ ∈ Θ. There are three types of off path pairs of
reports that need to be considered: those that violate Lemma 1, such as when r1 > r2;
those that violate Proposition 3, such as when r1 > s(r

¯2(r2)); those that violate Lemma 5,
such as when r1 6= r2 for some (r1, r2) /∈ (θ1, θ2)2.

For beliefs to be unprejudiced, Definition 7 requires that for every such off path pair
of reports we have that p(θ′′|r1, r2) > 0 if and only if there is a sender i ∈ {1, 2} such
that φi(ri, θ′′) > 0. Since p(θ′′|r1, r2) can be arbitrarily small, I can focus on the decision
maker’s beliefs that only one sender is deviating. Specifically, I will consider some posterior
beliefs p′ which, given an off path pair of reports (r1, r2) and provided that φj(rj, θ) > 0
for some θ ∈ Θ and j ∈ {1, 2}, rationalize deviations as originating with certainty from
one specific sender i. If there is a DE with such posterior beliefs p′, then there exists a
DE with posterior beliefs p′′ (e.g., a small perturbation of p′) that satisfy Definition 7
(and hence also Definition 2).

First, if 0 ≤ r1 < r2 (resp. r1 < r2 ≤ 0), then set p′ such that the decision maker
believes that sender 1 (resp. 2) is the deviator. Given the equilibrium strategies, it must
be that sender 2 (1) is reporting truthfully, and therefore p′ leads to β(r1, r2) = +© ( -©).
Consider now the case where r1 < 0 < r2, and set p′ such that the decision maker believes
that only sender 1 (or 2) is deviating. Therefore, it must be that sender 2 (1) is reporting
truthfully, and therefore β(r1, r2) = +© ( -©). Second, consider an off path pair of reports
such that, for x ≥ 0, we have that r2 > x and r1 ≥ s(r

¯2(x)) (resp. r1 < y ≤ 0 and
r2 ≤ s(r̄1(y))). If the decision maker believes that sender 1 (2) is the deviator, then it
must be that θ = r2 (θ = r1) and therefore β(r1, r2) = +© ( -©). Finally, consider an off
path pair (r1, r2) /∈ (θ1, θ2)2 with r1 6= r2. If both r1, r2 ≥ θ2 (resp. r1, r2 ≤ θ1), then, by
inferring that only one sender is deviating, the decision maker believes that θ ≥ θ2 > 0
(θ ≤ θ1 < 0) and selects β(r1, r2) = +© ( -©).

Since p′ is consistent with conditions (C) and (D), and since given p′ no sender is
better off deviating from the prescribed equilibrium strategies, it follows that there are
DE with unprejudiced beliefs as defined in Definitions 2 and 7.

Corollary 2. There are direct equilibria with unprejudiced beliefs that are also ε-robust.

Proof. Consider an ε-perturbed game with sequence εn and full support distributions
Ĝ = (Ĝ1, Ĝ2) such that ĝ1(r1) ≈ 0 for all r1 < 0 and ĝ2(r2) ≈ 0 for all r2 > 0. This means
that it is relatively unlikely that the decision maker will misinterpret the report of sender
1 (resp. 2) to be negative (resp. positive). By equation (5), the limit beliefs p̂0+ induced
by the strategies of a DE after the decision maker observes a pair of reports (r1, r2) such

42



that 0 ≤ r1 < r2 are

p̂0+(θ|r1 ≥ 0, r2 > 0) ≈ f(θ)δ(r2 − θ)α2(θ)
f(r2)α2(r2) .

Therefore, the CDF P̂0+ =
∫
p0+(θ|r1, r2)dθ is such that

P̂0+(θ|r1 ≥ 0, r2 > 0) ≈

0 if θ < r2

1 if θ ≥ r2.

As εn → 0+ and for every off path pair of reports that are both positive, the decision
maker is almost sure that the realized state coincides with the report of sender 2. Similarly,
we obtain that P̂0+(r1 < 0, r2 ≤ 0) ≈ 0 for all θ < r1 and ≈ 1 otherwise, and by Lemma 3
we have that p̂0+(θ|r1 < 0, r2 > 0) > 0 only for θ ∈ {r1, r2}. Therefore, the limit beliefs p̂0+

are arbitrarily close to the posterior beliefs p′ in the proof of Lemma A.10, and therefore
can support a DE. Since a DE is also a PBE, by Lemma 3 we obtain that some direct
equilibria with unprejudiced beliefs are ε-robust.

Corollary 3. A direct equilibrium always exists.

Proof. Given strategies φj(rj, θ) = δ(rj − θ)αj(θ) + ψj(rj, θ) as in Propositions 2 and
4, with support Sj(θ) as in Proposition 3, posterior beliefs p(θ|r1, r2) are such that the
swing report function s(r) is as in Proposition 5. Given s(r), strategies φj(rj, θ) are
optimal by construction, and therefore no sender j ∈ {1, 2} is better off deviating from
φj(rj, θ). Therefore, for every primitive of the model that satisfies the conditions outlined
in Section 3, there must exist a direct equilibrium as defined by Definition 4.

A.3 Example: Symmetric Environments

Corollary 4. In a direct equilibrium of a symmetric environment, s(r) = −r for every
r ∈ R̂.

Proof. The proof follows directly from Proposition 5: consider a symmetric environment
and suppose that s(r) = −r. Given a report r ∈ (0, r̄1(0)), the interval of integration
in (4) has max{−r, r̄−1

1 (r)} = −min{r, r
¯
−1
2 (−r)}. Since the integrand in (4) is symmetric

around zero, we obtain that Gs(r,−r) = 0, confirming that indeed s(r) = −r.
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