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“If you want to know what will bring down this bull market, look at factors beyond old age. … Think too about what 
economists like to call “exogenous shocks”. Coronavirus may fit into that category. It is easy to overreact, and markets tend 
to, but they can also be remarkably resilient and more often than not bounce back strongly.”  
 (Simon Edelsten, February 26, 2020, Financial Times) 

1 Introduction 

The COVID-19 pandemic has had such an unprecedented large-scale impact on stock markets as to 

represent a natural experiment to explore how economic agents react to unknown events without any 

historical episode providing useful insights. Recent papers show how stock market dynamics followed 

pandemic evolution and government restriction measures were implemented to counteract COVID-19. 

Ramelli and Wagner (2020) identify phases of investor behavior along “incubation” (early January 2020 

after cases of pneumonia detected in Wuhan, China, reported to the World Health Organization  [WHO]) 

with no substantial stock price moves, “outbreak” (after January 20, when the WHO issued the first 

situation report) when stocks began suffering strongly, and “fever” (after February 24, when Italy 

implemented a strict lockdown) in which panic selling materialized, moving stock markets to one of the 

most dramatic crashes in history. Kumer Dey et al. (2020) find that COVID-19 cases and deaths made 

US investors panic and increased their anxiety, as reflected in Google search intensity for COVID-19, 

and Alfaro et al. (2020) show that unexpected changes in the trajectory of COVID-19 infections predict 

US stock returns. Baker et al. (2020) provide evidence that the unprecedented stock market reaction is 

much explained by the role of government restrictions imposed on social mobility and commercial 

activities.  

The literature on the economic understanding of tail events enriched by research on the probability 

weighting function suggests that people tend to overestimate the likelihood of these events, also tending 

to overweight their decision-making process. As Barberis (2013) clarifies, such a decision-making process 

comprises a first step in which an individual assesses the probability of a tail event, and a second step, 

where a decision is made conditional on the probability the individual assigns to that event.  
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Tversky and Kahneman (1973) posit that a person evaluates probability by availability, i.e. by the ease with 

which relevant instances come to mind. The challenging question COVID-19 has brought to the fore is 

how people react to unprecedented and unknown tail events. Availability heuristic judgments should 

suggest a first underestimation of the likelihood of the event, until the point in which the worst-case 

scenario becomes vivid and easy to visualize, to then reflect on the decision-making process. This is 

consistent with experimental works indicating that people act in a bimodal setting (McClelland et al., 

1993), paying little or no attention to events when the risk probability is below a certain threshold, while 

risks that suddenly come “on screen” produce significant changes in behavior. This is a judgmental 

decision-making process that also relates to conservatism, a psychological phenomenon defined as the slow 

updating of models in the face of new evidence (Edwards, 1968).   

Recent anecdotal evidence on belief dynamics and trading activity on the stock market during the 

COVID-19 market crash seems to confirm such a psychological scheme in which behavioral reactions 

to risky situations are driven by emotions experienced at the moment of decision-making, together with 

cognitive evaluations which rely on probabilities and expected outcomes. Giglio et al. (2020) surveyed 

retail investors during February-March 2020, documenting a substantial increase during the crash in the 

dispersion of beliefs across investors, who turned more pessimistic and increased their perceived 

probabilities of catastrophic events in terms of real economic outcomes and further stock market 

declines. Interestingly, the authors document the largest decline in the expectations of the most optimistic 

investors in February, who then went on to sell the most equity in March; instead, respondents who were 

the most pessimistic in February largely left their portfolios unchanged during and after the crash.  

From a psychological perspective, the time-varying risk perception of COVID-19 as measured by stock 

market dynamics seems consistent with the characterization of the dual risk perception proposed by 

Peters and Slovic (1996) along unknown risk, referring to a hazard which is judged to be unobservable, 

unknown, new, and delayed in producing perceptions of harmful impacts, and dread risk, as defined by 

the extent of perceived lack of control, feelings of dread, and perceived catastrophic potential. Indeed, 
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the risk perception of COVID-19 showed up, at first, as an unknown risk with uncertain economic 

impacts5 qualifying, in a next phase, as dread risk, with extreme perceived catastrophic perspectives that 

were reflected in a substantial stock market decline.   

In this paper, we introduce an agent-based model (ABM) for the learning and decision-making process 

of stock market traders when catastrophic and unprecedented events materialize within a behavioral 

heterogeneous agents’ context with bounded rationality. We model a market for one risky asset paying 

dividends and one risk-free asset with a fixed interest rate (Chiarella et al., 2008; Kaizoji et al. 2015, 

Westphal and Sornette, 2020), in which a population of traders, grouped within four styles of investing 

and adopting different price expectation rules (naïve, biased, weak and strong chartists), receive market-

based and public information news every period and subsequently reallocate their wealth between risk-

free and risky assets, as in Chiarella and He (2001, 2003) and Hommes (2006). Agents process news 

according to the Bayesian posterior correction mechanism through the representativeness introduced in 

Gennaioli et al. (2015). Bordalo et al. (2018) describe how representativeness impacts on making 

judgments about the probability of an event under uncertainty: “agents overweight those future states 

whose likelihood increases the most in light of current news relative to what they know already. Thus, 

just as doctors overestimate the probability of sickness after a positive test result, agents overestimate the 

probability of a good future state when the current news is good” (p. 200). As the authors note, the 

approach has significant implications in terms of excessive optimism/pessimism based on the path of 

good/bad news processed by the agent: (1) excessive optimism is a path of good news leading an agent 

to focus on positive future outcomes while neglecting the bad ones, while (2) excessive pessimism results 

in a path of bad news leading the agent to focus on negative future outcomes and neglecting the good 

ones.  

In our setting, agents rectify Bayesian posterior probabilities based on the amount of good and bad news 

they receive over time and the weight they attach to it, as we assume that some news is more important 

                                                 
5 As we emphasize in the opening quotation to the paper (Simon Edelsten, February 26, 2020, Financial Times). 
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than others and receives a higher weight. When good news exceeds bad news in value, the likelihood of 

excessive optimism (representative state) is inflated, while the likelihood of bad news (non-representative 

state) is deflated. Symmetrically, when excessive pessimism is the representative state, bad news has more 

weight than good news. The severity of the probability deflation is modulated by a parameter 𝛿𝛿, ranging 

from 0, corresponding to a complete neglect of risk (investors only process the most representative state), 

to 1,  corresponding to investors holding rational expectations; intermediate values of 𝛿𝛿 relate to investors 

overestimating the likelihood of representative states (see Gennaioli et al., 2015).   

Changes from one mood to another (from excessive optimism to excessive pessimism and vice-versa) occur 

through representativeness, causing large swings in agents’ confidence and price expectations. This is a 

key assumption in our model. Indeed, when mental shifts take place in agents because the probability of 

the less representative state suddenly becomes more representative, they then overreact by reassessing 

their price expectation proportionally to the variation of the corrected posterior probability of the most 

representative state. Our modelling of overreactions and changes in behavior is consistent with the 

bimodal risk perception setting (McClelland et al., 1993), with which an event suddenly comes “on 

screen”, producing significant changes in behavior whenever the associated risk probability crosses a 

certain threshold. 

Speed of change in agents’ confidence depends on three factors: 1) how fast news accumulates over time 

(amount of good and bad news); 2) how far agents look back in time when processing information before 

taking their investment decisions (memory); 3) how much importance agents attach to news (weight). 

Overreactions in price expectations are made-up of price jumps whose amplitude is modulated by a 

parameter 𝜂𝜂 ≥ 0 which reflects the perceived catastrophic potential. Therefore, our framework is so 

general as to include unprecedented tail events as a special case, being classified as such by their posterior 

probability and the disproportionate weight attached to bad news, first, and by the jump size in price 

expectations, second.  
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A higher number of changes in beliefs according to the representativeness mechanism reflects on more 

frequent (positive and negative) price jumps, thus contributing to price volatility. The effect is stronger 

with high neglect of risk and short memory windows upon which traders collect and process their 

information in forming price expectations. 

By inspecting the stock market crash induced by the pandemic in February-March 2020 and the 

subsequent partial stock market recovery, we show that our model matches the pattern of the STOXX 

Europe 600 Index exhibited before and after the big shock.  

Settling on 21 February 2020, the pandemic-based time threshold (international media put the COVID-

19 news “on screen” focusing on the Italian epidemic epicenter), we find that the memory window 

shrinks from pre- to post-COVID outbreak. We estimate a posterior probability of a bad state under 30 

percent even after the news was already circulated worldwide; at the same time, the discount factor is 

getting closer to 1, indicating that agents started to process information by deflating the bad news less. 

We classify this first phase as unknown risk perception: the extreme event impacts are unobservable, 

unknown and judged as potentially substantial but nevertheless delayed.  

The second phase is when the extreme negative impact of COVID-19 materializes. The impact we 

estimate in one day (12 March 2020) is comparable to more than half a year (in business days) of 

continuing bad news on a daily basis. We classify this second phase as dread risk perception, where 

catastrophic perspectives reflect a jump close to 100 percent in the bad state posterior probability, 

continuing for nearly 3 months. The third phase is when investors are making close-to-rational 

expectations (𝛿𝛿 is around 0.95) by denoting higher sensitivity to flows of news and judging positive or 

negative market outcomes as almost equally likely (calibrated posterior probabilities are both around 0.5 

on average).   

The paper proceeds as follows: Section 2 presents the model setup and shows how representativeness 

impacts on agents’ confidence and price expectations in a dynamic setting; Section 3 focuses on price 
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overreaction; in Section 4, we simulate the full model, while Section 5 presents and comments on the 

results from our calibration experiment; Section 6 concludes. 

2 Market price dynamics 

The model setup follows market equilibrium dynamics with heterogeneous beliefs as in Brock and 

Hommes (1997). The market is composed of ∑ 𝑗𝑗 = 𝐽𝐽 heterogeneous and bounded rational traders who 

invest their wealth in a risk-free asset and in a risky asset. Assuming that each j-th investor is a myopic 

mean variance maximizer, demand for the risky asset share 𝑠𝑠 solves the following problem: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠   𝐸𝐸ℎ,𝑡𝑡�𝑊𝑊𝑗𝑗,𝑡𝑡+1� −
𝑎𝑎
2
𝑉𝑉ℎ,𝑡𝑡�𝑊𝑊𝑗𝑗,𝑡𝑡+1�; 

where 𝑎𝑎 denotes the risk aversion parameter which we assume as being equal for all agents; 𝐸𝐸ℎ,𝑡𝑡�𝑊𝑊𝑗𝑗,𝑡𝑡+1� 

and 𝑉𝑉ℎ,𝑡𝑡 denote the conditional expectation and conditional variance of tomorrow’s wealth based upon 

the informational set available at time 𝑡𝑡 of the agent 𝑗𝑗 following the trading rule ℎ. Tomorrow’s wealth 

for the j-th investor is computed as:  

𝑊𝑊𝑗𝑗,𝑡𝑡+1 = �1 − 𝑠𝑠𝑗𝑗,𝑡𝑡�𝑅𝑅𝑊𝑊𝑗𝑗,𝑡𝑡 + 𝑠𝑠𝑗𝑗,𝑡𝑡 𝑊𝑊𝑗𝑗,𝑡𝑡�𝐸𝐸ℎ,𝑡𝑡(𝐷𝐷𝑡𝑡+1) + 𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1) − 𝑅𝑅𝑝𝑝𝑡𝑡�, 

where 𝑠𝑠𝑗𝑗,𝑡𝑡6 is the share of wealth invested in the risky asset at time 𝑡𝑡, 𝑅𝑅 is the gross return paid by the 

risk-free asset with 𝑅𝑅 = 1 + 𝑟𝑟 and 𝑟𝑟 is the constant risk-free rate of return; 𝑝𝑝𝑡𝑡 is the ex-dividend price 

of the risky asset at time 𝑡𝑡. The terms within the square brackets denote the risk premium, where 

𝐸𝐸ℎ,𝑡𝑡(𝐷𝐷𝑡𝑡+1) is the expectation at time 𝑡𝑡 for traders following the h-th trading rule of tomorrow’s dividend 

𝐷𝐷𝑡𝑡+1 which, in turn, is assumed to be exogenous and deterministic, while 𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1) is tomorrow’s 

expected price 𝑝𝑝𝑡𝑡+1 of the risky asset predicted by all investors following the h-th trading rule. 

Investors are assumed to form their expectations on future price dynamics by extrapolating past prices 

following four different h trading rules: 

                                                 
6 As in Brock and Hommes (1998), the solution for the share of wealth invested in the risky asset at time 𝑡𝑡 is:  
𝑠𝑠𝑗𝑗,𝑡𝑡 = 𝐸𝐸ℎ,𝑡𝑡(𝐷𝐷𝑡𝑡+1)+𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1)−𝑅𝑅𝑝𝑝𝑡𝑡

𝑎𝑎𝑉𝑉ℎ,𝑡𝑡�𝑊𝑊𝑗𝑗,𝑡𝑡+1�
. 
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(1) 𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1) = 𝑝𝑝𝑡𝑡; 

(2) 𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1) = 𝑝𝑝𝑡𝑡(1 + 𝑏𝑏); 

(3) 𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1) = 𝑝𝑝𝑡𝑡 + 𝛼𝛼(𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1); 

(4) 𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1) = 𝑝𝑝𝑡𝑡 + 𝛽𝛽(𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1), 

where 𝑏𝑏 > 0 represents a positive bias and 𝛼𝛼 and 𝛽𝛽 are positive trend extrapolation coefficients with 

 𝛽𝛽 > 𝛼𝛼.  

Equation (1) is the naive heuristic. According to this rule, agents form their expectations using the last 

observed price. This is the simplest case tracing back to Ezekiel (1938) for which past prices are assumed 

to prevail in the future. Equation (2) is the biased rule and represents optimistic expectations as in Brock 

and Hommes (1998). Agents are optimistic about future prices which are assumed to follow an increasing 

path by adding a constant 𝑏𝑏 to past prices. Equations (3) and (4) describe chartist strategies where the 

extrapolation coefficients 𝛼𝛼 and 𝛽𝛽 measure the strength of the adjustment. These strategies have been 

deeply analyzed both in laboratory experiments (e.g. Hommes, 2011; Anufriev and Hommes, 2012) and 

in empirical studies on financial market dynamics (e.g. Frankel and Froot, 1990).   

Once the j-th trader has formed her/his expectations about a future price, she/he submits a limit order 

(𝑙𝑙𝑗𝑗,𝑡𝑡) to the central order book (Staccioli and Napoletano, 2020). A limit order is characterized by the 

desired quantity and market order (i.e. to sell or buy):  

𝑙𝑙𝑗𝑗,𝑡𝑡 = �𝑄𝑄�𝑗𝑗,𝑡𝑡, 𝑜𝑜𝑗𝑗,𝑡𝑡�; 

where the first element in the brackets denotes the quantity that the trader would like to share, 𝑄𝑄�𝑗𝑗,𝑡𝑡 =

𝑠𝑠𝑗𝑗,𝑡𝑡𝑊𝑊𝑗𝑗,𝑡𝑡, and 𝑜𝑜𝑗𝑗,𝑡𝑡 represents the order type. We assume that all traders can short-sell but, in line with 

Raberto et al. (2001), they do not have access to external financing, thereby avoiding budget constraints. 

Once all orders have been collected, the stock market volume at time 𝑡𝑡 is computed as the minimum 

between buy and sell order quantities:  
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(5) 𝑉𝑉𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚�∑ �𝑄𝑄�𝑗𝑗,𝑡𝑡|𝑜𝑜𝑗𝑗,𝑡𝑡 = 𝑏𝑏𝑏𝑏𝑏𝑏�𝑌𝑌
𝑗𝑗=1 ;∑ �𝑄𝑄�𝑗𝑗,𝑡𝑡|𝑜𝑜𝑗𝑗,𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝐽𝐽−𝑌𝑌

𝑗𝑗=1 �. 

Equation (5) implies that some orders may not be executed for a given market price. Namely, for some 

investors the desired quantity they want to exchange is higher than the actual traded quantity, i.e. 𝑄𝑄�𝑗𝑗,𝑡𝑡 >

𝑄𝑄𝑗𝑗,𝑡𝑡. In this case, we randomly select traders who have decided to exchange in order to get 𝑄𝑄�𝑗𝑗,𝑡𝑡 = 𝑄𝑄𝑗𝑗,𝑡𝑡.  

As in Hommes et al. (2020), the realized price 𝑝𝑝𝑡𝑡 at time 𝑡𝑡 depends on the h-based price average 

predictions 𝐸𝐸ℎ,𝑡𝑡−1(𝑝̅𝑝𝑡𝑡) and the rational expectation equilibrium fundamental price 𝑝𝑝𝑓𝑓,𝑡𝑡 as follows: 

(6) 𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑓𝑓,𝑡𝑡 + 1
𝑅𝑅
�𝐸𝐸ℎ,𝑡𝑡−1(𝑝̅𝑝𝑡𝑡) − 𝑝𝑝𝑓𝑓,𝑡𝑡� + 𝜀𝜀𝑡𝑡, 

where 𝑝𝑝𝑓𝑓,𝑡𝑡 = 𝐷𝐷𝑡𝑡
𝑟𝑟

  and 𝜀𝜀𝑡𝑡 is an IID noise term. As Hommes et al. (2020) point out, the price equation for 

𝑝𝑝𝑡𝑡 has rational bubble solutions, with �𝐸𝐸ℎ,𝑡𝑡−1(𝑝̅𝑝𝑡𝑡) − 𝑝𝑝𝑓𝑓,𝑡𝑡� growing at the risk-free rate 𝑟𝑟, although these 

rational bubbles are often excluded by imposing transversality conditions.  

Agents are allowed to maintain or switch their trading rule in every period based on the prediction ability 

of the forecasting heuristic they use. The logic comes from Brock and Hommes (1997), where agents 

tend to switch towards forecasting strategies that have performed better in the recent past, and are 

consistent with the diagnostic expectations (DE) introduced in Bordalo et al. (2018) and Bordalo et al. 

(2020a). Within the DE framework, investors receive noisy private information every period, to then 

update their beliefs by putting more weight on the states of the world whose objective likelihood has 

increased the most in light of recent news. In our model, traders are forward-looking in forming their 

beliefs and after formulating their (noisy) price expectation, they are assumed to check whether the 

forecasting power of the trading rule is good enough to maintain the strategy or switch to another. Living 

in a noisy environment, as traders receive good signals (with low noise), they grow more confident about 

the value of the asset they expect, thereby maintaining the same trading rule in forming price expectations. 

As we discuss in the next section, another important ingredient in our model which makes it more 

consistent with diagnostic expectations is the assumption that investors incorporate their signals more 

aggressively into their beliefs according to the representativeness heuristic (Kahneman and Tversky, 
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1972). This refers to the notion that, in forming probabilistic assessments, individuals put too much 

weight on outcomes that are more likely in relative rather than in absolute terms.    

Agents assess their prediction ability according to the following forecasting diagnostic (Hommes, 2011):  

(7) 𝑈𝑈ℎ,𝑡𝑡 = �𝑝𝑝𝑡𝑡 − 𝐸𝐸ℎ,𝑡𝑡−1(𝑝𝑝𝑡𝑡)�
2
  

where 𝑝𝑝𝑡𝑡 is the actual price at time 𝑡𝑡 and 𝐸𝐸ℎ,𝑡𝑡−1(𝑝𝑝𝑡𝑡) is the expected price for period 𝑡𝑡 formed in 𝑡𝑡 − 1 

with the h-th trading rule. The switching mechanism is based on a relative performance evaluation process 

that every agent executes in each period relative to the average forecasting diagnostic exhibited by all 

agents, 𝑈𝑈�𝑡𝑡 = 𝐽𝐽−1 ∙ ∑ (𝑈𝑈ℎ,𝑡𝑡 ∙ 𝐽𝐽ℎ)𝐻𝐻
ℎ=1 . The relative performance evaluation between 𝑈𝑈ℎ,𝑡𝑡 and 𝑈𝑈�𝑡𝑡 causes 

agents to switch to forecasting strategies according to the following Proposition 1.  

Proposition 1: In every period 𝑡𝑡, every agent has three possible actions they can follow based on 𝑄𝑄𝑗𝑗,𝑡𝑡, 𝑈𝑈ℎ,𝑡𝑡 and 𝑈𝑈�𝑡𝑡:  

1. If she/he has traded in 𝑡𝑡 and the performance measure 𝑈𝑈ℎ,𝑡𝑡 is lower than the average forecasting error 𝑈𝑈�𝑡𝑡, she/he 

maintains both the same h-th heuristic and the same order type in the next period 𝑡𝑡 + 1.  

2. If she/he has traded in 𝑡𝑡 and the performance measure 𝑈𝑈ℎ,𝑡𝑡 is higher than the average forecasting error 𝑈𝑈�𝑡𝑡, she/he 

switches the strategy randomly towards another h-th heuristic while maintaining the same order type in the next 

period 𝑡𝑡 + 1. 

3. If in period 𝑡𝑡 he/she has not traded, he/she randomly changes both the h-th heuristic and the order type in the 

next period 𝑡𝑡 + 1.  

Mathematically: 

(8) �ℎ𝑗𝑗,𝑡𝑡+1; 𝑜𝑜𝑗𝑗,𝑡𝑡+1� = �
�ℎ𝑗𝑗,𝑡𝑡;𝑜𝑜𝑗𝑗,𝑡𝑡�       𝑖𝑖𝑖𝑖  𝑄𝑄𝑗𝑗,𝑡𝑡 > 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈ℎ,𝑡𝑡 < 𝑈𝑈�𝑡𝑡 
�𝜌𝜌𝑗𝑗,𝑡𝑡+1;𝑜𝑜𝑗𝑗,𝑡𝑡�       𝑖𝑖𝑖𝑖  𝑄𝑄𝑗𝑗,𝑡𝑡 > 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈ℎ,𝑡𝑡 ≥ 𝑈𝑈�𝑡𝑡 

�𝜌𝜌𝑗𝑗,𝑡𝑡+1;𝜚𝜚𝑗𝑗,𝑡𝑡+1�       𝑖𝑖𝑖𝑖  𝑄𝑄𝑗𝑗,𝑡𝑡 = 0                               
 

where 𝜌𝜌𝑗𝑗,𝑡𝑡 is a random integer parameter uniformly distributed on the support (1, H), and 𝜚𝜚𝑗𝑗,𝑡𝑡+1 is a 

binary categorial variable randomly uniformly distributed on the domain (buy, sell). 
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The switching mechanism does not work for all agents, since we assume that a sample of investors 

maintain their forecasting strategy regardless of the prediction ability of the rule. This is consistent with 

the status quo effect (Kahneman et al., 1991), in which individuals have a strong tendency to remain at 

the status quo, because the disadvantages of leaving it are greater than the corresponding advantages. 

3 Representativeness and Price Overreaction 

In our model setup, once the exchange takes place, the informational set available to traders is enriched 

by the information on pure price and trading movements (market activity-based information), together 

with general economic and political news, in addition to firm-specific information (public information). 

Agents use both strings of information to update their price expectation, an assumption which is 

consistent with empirical literature confirming the robust relationship between public information and 

market activity measures (e.g. Mitchell and Mulherin, 1994). Market activity-based information measures 

are (1) stock price dynamics; (2) trading volume; (3) the number of traders who actually executed buy or 

sell orders. The news is classified as good (𝑛𝑛𝑔𝑔) whenever the change that occurred in each of the 3 measures 

in the last period is ≥ 0; instead, the news is classified as bad (𝑛𝑛𝑏𝑏) when the change is negative.  

Public information could instead rely on scheduled and unscheduled announcements. The logic is 

consistent with the empirical findings on public information and the role it plays as a powerful source of 

price movements, such as macroeconomic and political announcements (Aït-Sahalia et al., 2012; Birz and 

Lott, 2011; Baker et al., 2019), central bank communications (Andrade and Ferroni, 2020) and firm-

specific announcements, such as earnings announcements (Bernard and Thomas, 1990). 

3.1 News, memory, and weight of news 

Agents receive strings of good and bad news in each period for both types of information (market 

activity-based and public) and accumulate a memory of past news (m) over time up to time 𝑡𝑡 − 1, used 

to update their expected posterior probability (𝜋𝜋𝑥𝑥,𝑡𝑡) concerning the state of the market with the new 

piece of information of period 𝑡𝑡: 
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(9) 𝜋𝜋𝑥𝑥,𝑡𝑡 = 𝜋𝜋𝑥𝑥,𝑡𝑡−1+𝑛𝑛𝑥𝑥,𝑡𝑡
1+𝑛𝑛𝑔𝑔,𝑡𝑡+𝑛𝑛𝑏𝑏,𝑡𝑡

; 

where 𝑛𝑛𝑥𝑥,𝑡𝑡 = ∑ 𝜑𝜑𝑖𝑖𝑛𝑛𝑖𝑖=𝑥𝑥,𝑡𝑡
𝑚𝑚
𝑖𝑖=1 , with x denoting the state of the market (good, 𝑔𝑔, or bad, 𝑏𝑏), 𝑛𝑛𝑥𝑥,𝑡𝑡 is the total 

news of x-th type which arrived at time 𝑡𝑡. 𝜑𝜑𝑖𝑖 > 0 is the weight assigned to each news since we assume 

that some information is perceived as more important than other information, thus reflecting a higher 

weight. For every time step 𝑡𝑡 we have: 

𝜋𝜋𝑔𝑔,𝑡𝑡 + 𝜋𝜋𝑏𝑏,𝑡𝑡 = 1. 

See Proposition A.1 in the Appendix. 

It is at this point that representativeness comes into play. Kahneman and Tversky (1972) define the 

heuristic as follows: “an attribute is representative of a class if it is very diagnostic; that is, the relative 

frequency of this attribute is much higher in that class than in a relevant reference class”. Within a stock 

market setup like the current one, representativeness leads investors to overweight the probability of 

events that have become more likely in light of recent news (Gennaioli et al., 2015; Bordalo et al., 2018). 

Therefore, after a period of good news, investors tend to judge positive future outcomes in an overly 

optimistic way while neglecting the bad ones; in the same way, when past news is bad, investors are 

excessively pessimistic when future outcomes are negative and neglect good news because it is less 

representative.  

Proposition 2: Given new information at time t, every agent revises the posterior probability of the market state x (good/bad) 

by inflating the likelihood of the most representative state and deflating the less representative one.  

In every period t, agents first compute representativeness (𝑅𝑅) of state x as:  

𝑅𝑅𝑥𝑥,𝑡𝑡 =
𝜋𝜋𝑥𝑥,𝑡𝑡

𝜋𝜋𝑥𝑥,𝑡𝑡−1
, 

and next they revise the posterior probability for good, 𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝 , and bad states, 𝜋𝜋𝑏𝑏,𝑡𝑡

𝑝𝑝 , based on the following rule: 
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𝑖𝑖𝑖𝑖 𝑅𝑅𝑔𝑔,𝑡𝑡 > 𝑅𝑅𝑏𝑏,𝑡𝑡

⎩
⎪
⎨

⎪
⎧𝜋𝜋𝑔𝑔,𝑡𝑡

𝑝𝑝 =
𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡

�𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡� + 𝛿𝛿�𝜋𝜋𝑏𝑏,𝑡𝑡−1 + 𝑛𝑛𝑏𝑏,𝑡𝑡�

𝜋𝜋𝑏𝑏,𝑡𝑡
𝑝𝑝 =

𝛿𝛿�𝜋𝜋𝑏𝑏,𝑡𝑡−1 + 𝑛𝑛𝑏𝑏,𝑡𝑡�
�𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡� + 𝛿𝛿�𝜋𝜋𝑏𝑏,𝑡𝑡−1 + 𝑛𝑛𝑏𝑏,𝑡𝑡�

 

(10) 

𝑖𝑖𝑖𝑖 𝑅𝑅𝑏𝑏,𝑡𝑡 > 𝑅𝑅𝑔𝑔,𝑡𝑡

⎩
⎪
⎨

⎪
⎧𝜋𝜋𝑏𝑏,𝑡𝑡

𝑝𝑝 =
𝜋𝜋𝑏𝑏,𝑡𝑡−1 + 𝑛𝑛𝑏𝑏,𝑡𝑡

�𝜋𝜋𝑏𝑏,𝑡𝑡−1 + 𝑛𝑛𝑏𝑏,𝑡𝑡� + 𝛿𝛿�𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡�

𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝 =

𝛿𝛿�𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡�
�𝜋𝜋𝑏𝑏,𝑡𝑡−1 + 𝑛𝑛𝑏𝑏,𝑡𝑡� + 𝛿𝛿�𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡�

 

where 𝛿𝛿 is the discount factor that modulates the severity of the probability deflation with 0 ≤ 𝛿𝛿 ≤ 1. We have three 

scenarios: (1) when 𝛿𝛿 = 0, investors only process the most representative state; (2) when 𝛿𝛿 = 1, investors hold rational 

expectations; (3) with intermediate values of 𝛿𝛿, investors overestimate the likelihood of representative states (Gennaioli et 

al., 2015).   

For every time step 𝑡𝑡 we have: 

𝑅𝑅𝑔𝑔,𝑡𝑡 > 𝑅𝑅𝑏𝑏,𝑡𝑡   ⇔   𝜋𝜋𝑔𝑔,𝑡𝑡 > 𝜋𝜋𝑔𝑔,𝑡𝑡−1  ⇔  𝜋𝜋𝑔𝑔,𝑡𝑡 > 𝑛𝑛𝑔𝑔,𝑡𝑡

𝑁𝑁
, with 𝑁𝑁 = 𝑛𝑛𝑔𝑔,𝑡𝑡 + 𝑛𝑛𝑏𝑏,𝑡𝑡, 

see Proposition A.2 in the Appendix; and:  

𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝 + 𝜋𝜋𝑏𝑏,𝑡𝑡

𝑝𝑝 = 1, 

see Proposition A.3 in the Appendix. 

Suppose investors observe a longer string of good news, obtaining 𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝 > 𝜋𝜋𝑏𝑏,𝑡𝑡

𝑝𝑝 . Proposition 2 states that, 

while traders are surfing the wave of optimism by neglecting the probability of bad events, the actual 

posterior probability of the negative market state is not changed, even though bad news has been less 

frequent. Traders are therefore overestimating the probability of positive outcomes endogenously, 

thereby reinforcing the market trend until new information is strong enough to change the probability of 

the less representative state suddenly becoming the more representative one. In short, the change in an 

agent’s belief depends on three factors: 
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1) The amount of good and bad news: strings of market activity-based and public information 

accumulate over time, providing positive and negative signals to the agent who assesses 

probability estimates for good and bad market states;  

2) Memory: agents look back in time when processing information in a way which is consistent with 

Bordalo et al. (2020b), who postulate that experiences from the past are first consolidated within 

a norm, then individuals adjust valuations in the direction of any discrepancy between the 

estimated and observed attributes. In our setup, memory relates to the length of the time interval 

over which past news is recorded and evaluated through representativeness leading to shape and 

reshape beliefs and price expectations. 

3) Importance attached to the news (weight): news is not all the same but differs in its contribution 

to agents’ beliefs based on the importance individuals attach to it. Changes in agents’ beliefs can 

therefore occur through flows of news on the same type (good or bad) or because of the high 

impact the news exerts on risk/return perception.  

3.2 Agents’ confidence and Price Overreaction 

First of all, representativeness causes changes in agents’ beliefs, and this occurs when the less 

representative state suddenly becomes the more representative one. Probabilities are dynamically updated 

with arriving strings of good and bad news, some of which might be so “extreme” as to overturn the 

previous probability state. Therefore, the amount of good and bad news and the weights attached to it 

induces changes from one mood to another. These sudden changes in beliefs produce jumps in price 

expectations, whose amplitude is modulated by a parameter 𝜂𝜂 ≥ 0 which reflects the perceived 

boom/bust potential.  

Proposition 3: When the probability of the less representative state suddenly becomes the highest, the price expectation 

exhibits a jump which is proportional to change in the adjusted posterior probability of the most representative state.  
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(11) 𝐸𝐸ℎ,𝑡𝑡
𝑝𝑝 (𝑝𝑝𝑡𝑡+1) =

⎩
⎪
⎨

⎪
⎧ 𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1) − 𝛾𝛾𝑡𝑡    𝑖𝑖𝑖𝑖 𝜋𝜋𝑔𝑔,𝑡𝑡−1

𝑝𝑝 > 𝜋𝜋𝑏𝑏,𝑡𝑡−1
𝑝𝑝 ∪  𝜋𝜋𝑔𝑔,𝑡𝑡

𝑝𝑝 < 𝜋𝜋𝑏𝑏,𝑡𝑡
𝑝𝑝 ∪ 𝑛𝑛𝑏𝑏,𝑡𝑡

𝑛𝑛𝑔𝑔,𝑡𝑡
>

𝜋𝜋𝑏𝑏,𝑡𝑡−1
𝑝𝑝 +𝑛𝑛𝑏𝑏,𝑡𝑡−1

𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 +𝑛𝑛𝑔𝑔,𝑡𝑡−1

𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1) + 𝛾𝛾𝑡𝑡    𝑖𝑖𝑖𝑖 𝜋𝜋𝑏𝑏,𝑡𝑡−1
𝑝𝑝 > 𝜋𝜋𝑔𝑔,𝑡𝑡−1

𝑝𝑝 ∪  𝜋𝜋𝑏𝑏,𝑡𝑡
𝑝𝑝 < 𝜋𝜋𝑔𝑔,𝑡𝑡

𝑝𝑝 ∪ 𝑛𝑛𝑔𝑔,𝑡𝑡

𝑛𝑛𝑏𝑏,𝑡𝑡
>

𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 +𝑛𝑛𝑔𝑔,𝑡𝑡−1

𝜋𝜋𝑏𝑏,𝑡𝑡−1
𝑝𝑝 +𝑛𝑛𝑏𝑏,𝑡𝑡−1

;

𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1)    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒;

  

where 𝛾𝛾𝑡𝑡 = 𝜂𝜂𝑥𝑥(𝜋𝜋𝑥𝑥,𝑡𝑡
𝑝𝑝 − 𝜋𝜋𝑥𝑥,𝑡𝑡−1

𝑝𝑝 ) with 𝜂𝜂𝑥𝑥 > 0 measuring the perceived boom/bust, also allowing for possible asymmetric 

impacts with  𝜂𝜂𝑏𝑏 ⋚ 𝜂𝜂𝑔𝑔.  

Eq. (11) can be reformulated as: 

𝐸𝐸ℎ,𝑡𝑡
𝑝𝑝 (𝑝𝑝𝑡𝑡+1) =

⎩
⎪⎪
⎨

⎪⎪
⎧𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1) − 𝛾𝛾𝑡𝑡    𝑖𝑖𝑖𝑖 𝜋𝜋𝑔𝑔,𝑡𝑡−1

𝑝𝑝 >
1
2

 ∧  𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝 <

1
2

 ∧
𝑛𝑛𝑏𝑏,𝑡𝑡

𝑛𝑛𝑔𝑔,𝑡𝑡
>
𝜋𝜋𝑏𝑏,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑏𝑏,𝑡𝑡−1

𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑔𝑔,𝑡𝑡−1

𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1) + 𝛾𝛾𝑡𝑡    𝑖𝑖𝑖𝑖 𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 <

1
2
∧  𝜋𝜋𝑔𝑔,𝑡𝑡

𝑝𝑝 >
1
2

 ∧
𝑛𝑛𝑔𝑔,𝑡𝑡

𝑛𝑛𝑏𝑏,𝑡𝑡
>
𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑔𝑔,𝑡𝑡−1

𝜋𝜋𝑏𝑏,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑏𝑏,𝑡𝑡−1

;

𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1)    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒;

  

See Proposition A.4 in the Appendix. 

To simplify further, we can finally re-manipulate the equation as: 

 

(12) 𝐸𝐸ℎ,𝑡𝑡
𝑝𝑝 (𝑝𝑝𝑡𝑡+1) = 𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1) + P𝑡𝑡𝛾𝛾𝑡𝑡, with 

P𝑡𝑡 =

⎩
⎪
⎨

⎪
⎧−1    𝑖𝑖𝑖𝑖 𝜋𝜋𝑔𝑔,𝑡𝑡−1

𝑝𝑝 >
1
2

 ∧  𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝 <

1
2

 ∧
𝑛𝑛𝑏𝑏,𝑡𝑡

𝑛𝑛𝑔𝑔,𝑡𝑡
>
𝜋𝜋𝑏𝑏,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑏𝑏,𝑡𝑡−1

𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑔𝑔,𝑡𝑡−1

+1    𝑖𝑖𝑖𝑖 𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 <

1
2
∧  𝜋𝜋𝑔𝑔,𝑡𝑡

𝑝𝑝 >
1
2

 ∧
𝑛𝑛𝑔𝑔,𝑡𝑡

𝑛𝑛𝑏𝑏,𝑡𝑡
>
𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑔𝑔,𝑡𝑡−1

𝜋𝜋𝑏𝑏,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑏𝑏,𝑡𝑡−1

;

0    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

  

Equation (12) can be interpreted as a mean-reverting doubly stochastic process with Poisson jumps. 

Specifically, if we consider the event: 

𝐴𝐴𝑡𝑡 = � �𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 >

1
2

 ∧  𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝 <

1
2

 ∧  
𝑛𝑛𝑏𝑏,𝑡𝑡

𝑛𝑛𝑔𝑔,𝑡𝑡
>
𝜋𝜋𝑏𝑏,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑏𝑏,𝑡𝑡−1

𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑔𝑔,𝑡𝑡−1

  �   

∨  �𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 <

1
2
∧  𝜋𝜋𝑔𝑔,𝑡𝑡

𝑝𝑝 >
1
2

 ∧
𝑛𝑛𝑔𝑔,𝑡𝑡

𝑛𝑛𝑏𝑏,𝑡𝑡
>
𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑔𝑔,𝑡𝑡−1

𝜋𝜋𝑏𝑏,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑏𝑏,𝑡𝑡−1

�  �, 
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and its complementary event 𝐵𝐵𝑡𝑡 = 𝐴𝐴𝑡𝑡𝐶𝐶 , then 𝜆𝜆𝑡𝑡 is the probability of 𝐴𝐴𝑡𝑡 , as in (Duffie, 2005) and (Duffie 

and Singleton, 2003).  

Note that our framework includes unprecedented tail events as a special case. Suppose the tail event is 

negative, this is what materializes in the market. The news first arrives on screen and agents attach a 

disproportionate weight; second, the bad state posterior probability is adjusted upward thus exceeding 

the threshold 1
2
; third, agents change their beliefs and, conditional on the new adjusted posterior 

probabilities, reassess their price expectations along a jump-based process formalized in eq. (12), in which 

the jump size 𝜂𝜂𝑥𝑥 > 0 reflects the catastrophic potential perceived and evaluated by agents. This is 

consistent with the probability weighting function suggesting that people tend to overestimate the 

likelihood of tail events in their decision-making process (Barberis, 2013). Moreover, our price 

overreaction is also consistent with the bimodal risk perception logic (McClelland et al., 1993), as the 

event that suddenly comes “on screen” can produce changes in behavior and price, only if the associated 

risk probability crosses a certain threshold, in our case set at 1
2
 (see eq. (12) and Proposition A.4). 

4 Model Simulation 

4.1 Simulation setup and market dynamics 

Since the model includes heterogenous, bounded rational agents and cannot be solved analytically, in this 

section we run a numerical simulation to explore the entire market dynamics. This exercise shows how 

our model is able to produce many market stylized facts, such as bubbles and crashes, excess volatility, 

fat-tailed return distributions, uncorrelated price changes and volatility clustering. 

The values assigned to the model’s parameters are in Table 1. We start by assuming a market with 200 

traders over 250 trading periods. At time 0, agents are equally distributed among the four h trading rules, 

then switching (or maintaining) their trading rule in every period based on the prediction ability of the 

forecasting heuristic they use, as discussed in Section 2. Following Anufriev and Hommes (2012), we set 

the trend coefficients for the weak (𝛼𝛼) and strong (𝛽𝛽) chartist (eq. 3 and eq. 4) at 0.4 and 1.3, respectively, 
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and the risk-free rate 𝑟𝑟 at 5 percent (Hommes et al., 2020). As in Bao et al. (2017) we take the fundamental 

price as fixed over time, also resulting in a constant dividend. Specifically, we assume a fundamental price 

𝑝𝑝𝑓𝑓,𝑡𝑡 ≡ 𝑝𝑝𝑓𝑓��� = 100, implying a dividend 𝐷𝐷𝑡𝑡 ≡ 𝐷𝐷� = 𝑟𝑟 ∙ 𝑝𝑝𝑓𝑓,𝑡𝑡 = 5. The conditional variance 𝑉𝑉ℎ,𝑡𝑡�𝑊𝑊𝑗𝑗,𝑡𝑡+1� is 

computed in each time 𝑡𝑡, based upon prices 𝑝𝑝𝑡𝑡 (eq. 6) up to time 𝑡𝑡 − 1. The bias parameter 𝑏𝑏 in equation 

(2) for optimistic expectations is 2.5% (De Grauwe and Rovira Kaltwasser, 2012) and loss aversion 𝑎𝑎 =

20 (Tversky and Kahneman, 1992; Aït‐Sahalia and Brandt, 2001; Pruna et al., 2020). The discount factor 

that modulates the severity of the probability deflation within the representativeness framework is 𝛿𝛿 =

0.8, therefore overestimating the likelihood of representative states. Memory is set at 𝑚𝑚 = 6 periods, 

over which agents evaluate bad and good news through representativeness. After each trade, investors 

receive a total amount of news 𝑛𝑛 = 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑝𝑝 = 5 of which: (i) 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 3 is market activity-based 

information (price trend, volume exchanged and active traders in the past run) with a weight attached to 

each stream of news 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚 = 1, and (b) 𝑛𝑛𝑝𝑝 = 2 is public information (e.g. public 

macroeconomic/political announcements) with a weight attached to each stream of news 𝜑𝜑𝑝𝑝 = 2, since 

we assume that this information has a higher impact.   

Good and bad public information news is randomly simulated and is therefore exogenous, while market 

activity-based news is endogenously formed by the simulation exercise. Accordingly, overreactions are 

both endogenous and exogenous. Together with public and market activity-based information, we also 

include a number of exogenous extreme events 𝑛𝑛𝑒𝑒𝑒𝑒,𝑡𝑡 which are randomly generated and can be both 

positive or negative with 0 ≤ 𝑛𝑛𝑒𝑒𝑒𝑒,𝑡𝑡 ≤ 10. In our exercise, a number of  

𝑛𝑛𝑒𝑒𝑒𝑒,𝑡𝑡 = 5 extreme events were simulated, which are depicted and numbered in Figure 1 by means of 

vertical dotted lines (blue is for positive extreme events, red for negative ones). We arbitrarily attach to 

each extreme event a weight 𝜑𝜑𝑒𝑒𝑒𝑒 = 36, which persists over the next 6 trades with a constant decrease 

and zeroing at the sixth trade (𝜑𝜑𝑒𝑒𝑒𝑒,𝑡𝑡 = 36 − 6𝑡𝑡 with 𝑡𝑡 = 1, … ,6). The logic we follow in simulating this 

news is that, once the extreme event occurs, the impact is definitely greater than common news and 

remains vivid, although disappearing piecemeal over the short run. Boom burst patterns are driven by 
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the flow of good and bad news arriving over time to agents, who tend to neglect the probability of the 

less representative state because the corresponding news registered over their moving memory windows 

are less frequent and/or have lower weights. However, when new strings of information of the less 

probable state are high enough to change the agent’s beliefs, the less representative state suddenly 

becomes the more representative one, traders overreact and the market price exhibit jumps with an 

amplitude that reveals the perceived boom/bust. The amplitude of jumps is set at 𝜂𝜂𝑏𝑏 = 60 and 𝜂𝜂𝑔𝑔 =

30  for bad- and good-based jumps, respectively, then assuming a sensitivity to losses greater than that 

of gains (Thaler et al., 1997). 

It is interesting to note that not all the 5 extreme events affect market dynamics in the same way. The 

first two vertical dotted red lines in Figure 1 are two negative events having the same impact, but the 

effect triggered by each on price dynamics differs substantially. In the first extreme event, the bad news 

does not activate an overreaction in price expectations and, therefore, we do not observe a negative spike 

in the market price. This is because traders have already recorded higher amounts of bad news, thereby 

still being in a bad state. For this reason, the new event, while extreme, is not strong enough to reflect 

into P𝑡𝑡 = −1 (eq. 12); see Figure 1. As a result, investors continue to deflate good news because this is 

less representative. Instead, when the second extreme event happens, the market is in a good state and 

traders are underestimating the probability of bad news. Once the negative event materializes, agents 

correct their posteriors and, since the bad state is no longer the less representative state, they start 

deflating good news. As a whole, extreme event-driven overreactions appear when the vertical dotted 

lines intersect with the spikes in the dashed lines, where we have P𝑡𝑡 = ±1. Instead, the other 

overreactions are driven by the strings of market activity-based and public news.   

Market price dynamics depend on the trading rule switching mechanism also followed by the agents 

(Proposition 1). In Figure 2, we note that the optimistic (biased) rule is chosen by the lower share of 

agents, while strong trend follower and naïve rules are the strategies mostly selected by investors, together 

accounting for around 40-50 percent of the market over the 250 trading periods. This is due to the relative 

performance evaluation process (eq. 6), leading agents to switch towards forecasting strategies that have 
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performed better (according to Proposition 1). Strong trend follower and naïve are likely to be the rules 

that better capture jump-based price dynamics. Moreover, once overreactions take place, both heuristics 

tend to move with the market price, to then reflect in a higher share of traders following such rules since 

they perform better in terms of forecasting error.  

The market price dynamics we simulate denote many of the market stylized facts documented in the 

empirical literature on bubbles and crashes, excess volatility, fat-tailed return distributions, uncorrelated 

price changes and volatility clustering. The top left- to right-hand panel of Figure 3 reports log price 

dynamics relative to its fundamental value (blue line) to emphasize the bubbles and anti-bubbles 

generated by the model through representativeness-based overreactions. Also, the top-right side panel 

exhibits the return behavior, which clearly denotes high volatility. The corresponding return distribution 

and autocorrelation function are in the bottom left- to right-hand panel. Note the non-normal 

distribution with fat tails, negative asymmetry and excess kurtosis, all characterizing an equity return 

distribution far from normality when extreme events occur. The autocorrelation function (ACF) of raw 

returns for the first 100 lags computed together with their 95 percent confidence bands denote no 

statistically significant return autocorrelation. This is interesting since no statistical artefacts arise even 

when including possible extreme events. Indirectly, this is consistent with the view on price latency7 as a 

primary source of autocorrelations in equity returns (e.g. Atchison et al., 1987), which are indeed not 

included in our simulation.  

4.2 Sensitivity Analysis 

In order to inspect how market dynamics are sensitive to changes in the key model parameters within 

the same simulation design (Table 1), we run 50 Monte Carlo simulations by changing the memory (m) 

and the discount factor (𝛿𝛿), which assume a major role in the way agents collect and process information 

in forming their price expectations. Specifically, we generated a total of 6 extreme events, 4 positive and 

                                                 
7 Price latency, also referred to as nonsynchronous trading, relies on delays in transaction price adjustments due to market 
friction, such as liquidity. Other market frictions, such as price stabilization mechanisms (designed to control price volatility), 
may also contribute to the observed autocorrelation; see, Harris (1989). 
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2 negative, over the following time periods: period # 24, 35, 49 and 175 for good extreme events, and 

period # 157 and 193 for bad extreme events. We first ran the simulations using 𝑚𝑚 = 1;  6; 12, thereby 

inspecting how the short- to medium-term memory windows impact on market dynamics. Next, we 

changed the representative-based deflation mechanism for news using 𝛿𝛿 = 0.6;  0.8; 1, and then 

compared the price formation, when the more representative state was overestimated (𝛿𝛿 = 0.6;  0.8), 

with the rational expectation hypothesis (𝛿𝛿 = 1) in which more and less representative states are 

processed in the same way with no deflation mechanism.  

Figure 4 reports market price distribution for different values of memory. Note that as memory increases, 

price dispersion reduces substantially. When processing more pieces of information collected over higher 

time intervals, agents formulate their price expectations by containing their forecasting error, which 

governs the switching mechanism of trading strategies leading the market price on a higher level with a 

low dispersion. Interestingly, note how extreme events impact differently on the three scenarios. When 

traders use the informational set of the last trade only (𝑚𝑚 = 1), the market price denotes a higher volatility 

because of the higher number of changes in beliefs according to the representativeness mechanism, 

subsequently reflecting on more frequent (positive and negative) price jumps. As a result, the price level 

tends to be lower on average with strong dispersion. Indeed, having less information upon which to 

compute representativeness, the impact of unexpected news, i.e. with lower representativeness, is likewise 

high enough to change agents’ beliefs. To put the point into perspective, we calculate that under the 𝑚𝑚 =

1 scenario, overreactions were almost one-third of total price simulations (3,732 out of 12,5008), of which 

only 3.91% ascribed to extreme events. On the other hand, when traders move on longer memory 

windows, the informational set enriches and good and bad news tend to mix together reflecting on more 

stable representativeness, and then, on less changes in beliefs. Overreactions are reduced to about one-

fifth (2,480 out of 12,500) and overreactions due to extreme events are 5%. Market prices denote low 

dispersion with higher persistence around the trend.  

                                                 
8 Since 𝑇𝑇 = 250, and 50 were the Monte Carlo simulations, we have 250 × 50 = 12,500 price simulations as a whole. 
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Consider now the role played by the discount parameter 𝛿𝛿. Figure 5 reports price distributions for the 

three scenarios 𝛿𝛿 = 0.6;  0.8; 1. Note that when the severity of the distortion is stronger (i.e. 𝛿𝛿 = 0.6), 

market price dynamics are more dispersed, also impacting on the lower average price value. This result 

can be explained by the nature of the representativeness mechanism which leads traders to process good 

and bad news asymmetrically, in that less representative news are deflated while posterior probabilities 

of the more representative news are over-weighted. Instead, when traders become more “rational” (i.e., 

𝛿𝛿 = 1), they do not deflate any news, resulting in lower impacts on price dynamics. As a result, the market 

price level is higher on average and less volatile. 

5 Calibrating the Stock Market Impact of COVID-19  

The COVID-19 pandemic is a natural laboratory to explore how the learning process of market traders 

evolves when an unprecedented and unknown event occurs. The pandemic was perceived as an 

unprecedented global crisis, with hundreds of countries having implemented varying degrees of 

restrictions on population movement to slow the spread of the severe acute respiratory syndrome (Han 

et al., 2020). As pointed out by the World Bank9, COVID-19 caused a global recession whose depth over 

the past century and a half was surpassed only by the two World Wars and the Great Depression.  

How did the stock market react when the world grasped the devastating health and economic crisis 

caused by the pandemic? In retrospect, stock market dynamics during the COVID-19 pandemic denote 

three main phases. In the first phase, markets simply ignored the potential impacts of the pandemic (until 

21 February 2020). In the second phase, from 23 February to 20 March 2020, the fear of COVID caused 

stock markets to plummet, reaching a global crash on 12 March 2020; stock markets suffered from the 

greatest single-day percentage fall since the 1987 crash. Lack of investor confidence was also exacerbated 

by the European Central Bank, since the Governing Council decided to keep key ECB interest rates 

                                                 
9 See https://www.worldbank.org/en/publication/global-economic-prospects  

https://www.worldbank.org/en/publication/global-economic-prospects
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unchanged10 despite market expectations.11 In the third phase, from 23 March to 20 April 2020, stock 

market prices rebounded worldwide following massive interventions by central banks.  

In order to examine the pandemic’s impact on stock markets, we focus on the STOXX Europe 60012 

over the period from 10 July 2019 to 30 June 2020. This period includes 250 daily closing values of the 

index we used to calibrate our agent-based model. The following sections present the calibration set-up 

and discuss main results. 

5.1 Calibration set-up 

We used the 𝑇𝑇 = 250 observations (from 10 July 2019 to 30 June 2020) of daily values of the STOXX 

Europe 600 Index 𝒅𝒅 = ( 𝑑𝑑1,𝑑𝑑2, … , 𝑑𝑑𝑇𝑇) to calibrate the model, assuming each value as a single trade. We 

calibrated the discount factor, the jump amplitude and the fundamental price trend, whereas the 

remaining model parameters maintained the same settings as before (see Section 4.1, Table 1), except for 

the timing of the extreme event and the corresponding weight, which we discuss later.   

Denoting the discrete time interval upon which the model is calibrated as 𝐼𝐼 ≔ [1,𝑇𝑇] ∩  ℕ, for every time 

step 𝑡𝑡 ∈ 𝐼𝐼 we assumed a time-varying discount factor 𝛿𝛿 and a jump amplitude 𝜂𝜂, having 𝛿𝛿𝑡𝑡 ∈ [0,1] and 

𝜂𝜂𝑡𝑡 ∈ (0,∞]. The fundamental price 𝑝𝑝𝑓𝑓,𝑡𝑡 is assumed as a first-order autoregressive process following  

(13) 𝑝𝑝𝑓𝑓,𝑡𝑡 = 𝛼𝛼 + 𝜏𝜏𝑡𝑡𝑝𝑝𝑓𝑓,𝑡𝑡−1 + ε𝑡𝑡 

with 𝜏𝜏𝑡𝑡 ∈ [0,1], thus imposing stationarity. We set 𝑝𝑝𝑓𝑓,1 = 350, corresponding to the average computed 

over the period from May to June 2020. Memory 𝑚𝑚𝑡𝑡 is also time-varying, and we set 1 ≤ 𝑚𝑚𝑡𝑡 ≤ 𝐾𝐾 for 

every 𝑡𝑡 ∈ 𝐼𝐼, thereby assuming that traders update their expectations looking at a time window only 

ranging from the last trade to 𝐾𝐾 past days, which we set at 20 to enable the modelling of the essential 

aspect of learning from experience, namely the gradual loss of memory (Nagel and Xu, 2019).13 Finally, 

                                                 
10 See https://www.ecb.europa.eu/press/pressconf/2020/html/ecb.is200312~f857a21b6c.en.html  
11 S&P 500 futures dropped off more than 200 points in less than an hour. 
12 The STOXX Europe 600 Index includes a fixed number of 600 stocks and represents large, mid and small capitalization 
companies across 17 countries in the European region: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, 
Luxembourg, the Netherlands, Norway, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom. 
13 As pointed out by Nagel and Xu (2019), the dynamics of subjective beliefs and asset prices crucially depend on agents’ 
memory, as past data moves into beliefs, decisions, and, ultimately, prices. While full memory of all past observations is a 

https://www.ecb.europa.eu/press/pressconf/2020/html/ecb.is200312%7Ef857a21b6c.en.html
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𝑝𝑝𝑡𝑡 ∈ ℝ+ is the theoretical market price obtained as a solution of Equation (6), and the corresponding 

vector over the time interval 𝐼𝐼 is 

𝒑𝒑 = ( 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑇𝑇),                              𝒑𝒑 ∈ ℝ+
𝑇𝑇  . 

We then have: 

𝜹𝜹 = ( 𝛿𝛿1,𝛿𝛿2, … , 𝛿𝛿𝑇𝑇),  𝜹𝜹 ∈ [0,1]𝑻𝑻, 

𝜼𝜼 = ( 𝜂𝜂1, 𝜂𝜂2, … , 𝜂𝜂𝑇𝑇),  𝜼𝜼 ∈ (0,∞]𝑻𝑻, 

𝝉𝝉 = ( 𝜏𝜏1, 𝜏𝜏2, … , 𝜏𝜏𝑇𝑇),   𝝉𝝉 ∈ [0,1]𝑻𝑻, 

𝒎𝒎 = ( 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑇𝑇),  𝒎𝒎 ∈ [1,𝐾𝐾]𝑻𝑻 ∩ ℕ+
𝑇𝑇 . 

Since COVID-19 produces a structural break in the data, we split the time series into two sub-periods by 

fixing a time threshold 𝑍𝑍, 1 < 𝑍𝑍 < T. As a result, the discrete time interval 𝐼𝐼 is split into two subsets 

𝐼𝐼𝐴𝐴 ≔ [1,𝑍𝑍] ∩ 𝐼𝐼 and  𝐼𝐼𝐵𝐵 ≔ [𝑍𝑍 + 1, 𝑇𝑇] ∩ 𝐼𝐼, respectively. The time threshold is set on 21 February 2020 

(corresponding to 𝑍𝑍 = 160), when international media brought the COVID-19 news “on screen” 

focusing on the Italian epidemic outbreak14. The extreme event arrival 𝑍𝑍𝑒𝑒𝑒𝑒 is set on 12 March 2020 

(corresponding to 𝑍𝑍𝑒𝑒𝑒𝑒 = 174), when stock markets experienced one of the highest losses ever. The 

weight attached to such an event is set at 𝜑𝜑𝑒𝑒𝑒𝑒 = 950, also assuming weight decay over 50 trades15. The 

value for 𝜑𝜑𝑒𝑒𝑒𝑒 was chosen for minimization purposes after running many simulations (𝑝𝑝174 − 𝑑𝑑174)2.  

To take into account the change in regime that occurred in the parameters’ dynamics, we assume 𝑚𝑚𝐴𝐴 , 

𝑚𝑚𝐵𝐵 ∈ [1,𝐾𝐾] ∩ ℕ and 𝜏𝜏𝐴𝐴, 𝜏𝜏𝐵𝐵 ∈  [0,1], such that: 

                                                 
standard assumption for econometricians, memory decay seems to be a more appropriate conjecture. This is also consistent 
with standard Bayesian parameter learning models. The authors observe that as a consequence of memory decay, learning is 
perpetual and there is a persistent time-varying wedge between agents’ subjective beliefs and the objective beliefs implied by 
the true parameters of the process generating asset payoffs. 
14 See Reuters: https://www.reuters.com/article/us-china-health-italy/coronavirus-outbreak-grows-in-northern-italy-16-
cases-reported-in-one-day-idUSKBN20F0UI  
15 We chose the time decay of 50 days by mirroring pandemic lockdown durations in main European countries (e.g. France, 
55; Italy, 70; Germany, 28; Ireland, 67; Spain, 56; UK, 103). The rationale for the time decay assumed for 𝜑𝜑𝑒𝑒𝑒𝑒  is consistent 
with the literature on extreme returns and informational releases. For e.g., for a subset of stocks from 1990 to 1992 that had 
extreme returns, (Pritamani and Singal, 2001) collect news from the Wall Street Journal and Dow Jones News Wire and find 
both the positive and negative abnormal return drift for up to 20 days after a news story.  

https://www.reuters.com/article/us-china-health-italy/coronavirus-outbreak-grows-in-northern-italy-16-cases-reported-in-one-day-idUSKBN20F0UI
https://www.reuters.com/article/us-china-health-italy/coronavirus-outbreak-grows-in-northern-italy-16-cases-reported-in-one-day-idUSKBN20F0UI
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𝑚𝑚𝑡𝑡 =  𝑚𝑚𝐴𝐴   and    𝜏𝜏𝑡𝑡 =  𝜏𝜏𝐴𝐴  for every    𝑡𝑡 ∈ 𝐼𝐼𝐴𝐴, 

𝑚𝑚𝑡𝑡 =  𝑚𝑚𝐵𝐵   and    𝜏𝜏𝑡𝑡 =  𝜏𝜏𝐵𝐵  for every    𝑡𝑡 ∈ 𝐼𝐼𝐵𝐵. 

The whole parameters’ space is thus specified as: 

𝑋𝑋 = {𝒙𝒙 | 𝒙𝒙 = (𝜹𝜹,𝜼𝜼,𝑚𝑚𝐴𝐴,𝑚𝑚𝐵𝐵, 𝜏𝜏𝐴𝐴, 𝜏𝜏𝐵𝐵) ∈  [0,1]𝑻𝑻 ×  ℝ+
𝑇𝑇 × ℕ+ × ℕ+ × [0,1]  × [0,1]}. 

At this point, to estimate 𝑿𝑿 we start from the market price vector 𝒅𝒅 ∈ ℝ+
𝑇𝑇  and look for the parameters’ 

vector  𝒙𝒙� ∈ 𝑋𝑋 which minimizes the Euclidean distance between 𝒅𝒅 and 𝒑𝒑. To do this, we define the map: 

Ψ:  𝑋𝑋 →  ℝ+
𝑇𝑇 ,                   Ψ(𝐱𝐱) = 𝒑𝒑𝒙𝒙 

which associates the corresponding solution 𝒑𝒑𝒙𝒙 of Equation (6) to the parameters’ vector  𝒙𝒙 ∈ 𝑿𝑿. 

Computationally, we consider the following convex cost functional: 

Γ:   𝑋𝑋 → ℝ+,                   Γ(𝐱𝐱) = 1
2
‖ Ψ(𝐱𝐱)− 𝒅𝒅 ‖2ℝ𝑻𝑻 = 1

2
 ∑ |Ψ(𝐱𝐱)𝑡𝑡 − 𝒅𝒅𝑡𝑡|2𝑇𝑇

𝑡𝑡=1 , 

next solving the following control problem (Quarteroni, 2014): 

(14) 𝒙𝒙�  ∶=  min
𝐱𝐱 ∈ 𝐗𝐗

 Γ(𝐱𝐱). 

We compute eq. (14) following the interior-point method (Pólik and Terlaky, 2010).   

5.2 Results 

The solution for the minimization problem (eq. [14]), 𝒙𝒙� = �𝜹𝜹�,𝜼𝜼�,𝑚𝑚�𝐴𝐴,𝑚𝑚�𝐵𝐵, 𝜏̂𝜏𝐴𝐴, 𝜏̂𝜏𝐵𝐵, � ∈ 𝑋𝑋 led to optimal 

vectors 𝜹𝜹� and 𝜼𝜼� depicted in Figure 4, whereas the value for memory and autoregressive coefficients 𝜏𝜏 

(eq. [13]) for the two sub-periods 𝐼𝐼𝐴𝐴 and 𝐼𝐼𝐵𝐵 are: 

𝑚𝑚�𝐴𝐴 = 8,         𝑚𝑚�𝐵𝐵 = 6,         𝜏̂𝜏𝐴𝐴 = 6.1 ⋅ 10−3,         𝜏̂𝜏𝐵𝐵 = 0.875. 

The resulting estimated price 𝒑𝒑 is reported in Figure 5, where we compare the observed (actual) versus 

the simulated index values.  

The major outcomes of the calibration experiment are four. Foremost, consider first the memory and 

the fundamental price trend. The memory window shrinks from pre- to post-COVID outbreak, moving 
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from 8 to 6 past days. The gradual loss of memory (Nagel and Xu, 2019) of agents seems to cover a very 

short-term past window, which shortens even more when the extreme event materializes. This is also 

due to the weight attached to the news of 12 March 2020, which is so strong that it is equivalent to more 

than half a year (in business days) of continuing daily bad news. Indeed, since the model generates 3 

market activity-based information daily, each one having a weight of 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚 = 1, and 2 public information, 

each one with a weight of 𝜑𝜑𝑝𝑝 = 2, by assuming that all news in one day is bad, we have a total weight 

attached to bad news equal to 7 (see Section 4.1). Hence, since the weight attached to the COVID-based 

extreme event is 950, we can calculate that this extreme weight is equivalent to 950
7
≅ 136 days of 

continuing bad news. Predominant concern on very recent streams of news reflects on high price 

volatility, which increases just after the extreme event when the memory window shrinks. Moreover, as 

we discuss in Section 4.2, with less information upon which to compute representativeness, the impact 

of news with lower representativeness could be high enough to change agents’ beliefs more frequently. 

This is what happened on 22 April 2020, when we move from a bad to a good state, as we comment later 

on price calibration results. Consider now 𝜏̂𝜏𝐴𝐴 and 𝜏̂𝜏𝐵𝐵. The two autoregressive coefficients reflect the 

substantial flat fundamental price path before the pandemic outbreak with a coefficient close to zero, 

and a strong mean reversion towards pre-COVID values after 12 March 2020 with a coefficient near 0.9. 

This value documents the substantial rebound of stock markets when central banks’ massive 

interventions were announced all over the world.   

The second key finding is on discount factor dynamics. The time-varying 𝛿𝛿 in Figure 6 denotes 4 regimes. 

The first approximately covers the period from 10 July 2019 to 13 August 2019 with values around 0.75 

on average: since we are in a good state, agents tend to deflate bad news substantially. The second regime 

is from 14 August 2019 to 21 February 2020, the time threshold 𝑍𝑍 (COVID-19 outbreak), when discount 

factors jump to 0.85 on average, thus deflating bad news to a lesser extent. The third regime is from 22 

February to 21 April 2020 and includes the extreme event exogenously fixed on 12 March 2020 (𝑍𝑍𝑒𝑒𝑒𝑒; see 

Section 5.1) when we have the extreme negative overreaction, as a bad state suddenly becomes the most 

representative. Over this third regime, the discount factor moves around 0.92 on average, documenting 
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how agents tend to process information without asymmetrical deflations and then approaches a rational-

based framework in which good and bad news have the same weight in forming market beliefs. This 

tendency is reinforced in the fourth and final regime, from 22 April 2020 to the end of the period when 

stock markets recovered substantially; the market shifts to a good state on 2 June 2020 to then bounce 

to bad-good-bad (12-15-16 June 2020) while maintaining a corrected bad posterior probability slightly 

higher than the threshold �𝜋𝜋𝑏𝑏,𝑡𝑡
𝑝𝑝 > 1

2
� which causes the market to remain in a bad state until the end of 

the period. Over this final regime, investors tend to hold close-to-rational expectations since 𝛿𝛿 is around 

0.95 on average.  

Our third key outcome refers to the jump amplitude 𝜂𝜂. The parameter governs price overreaction when 

a change in beliefs occurs, giving measure to the perceived price impact of extreme events, as well as to 

endogenous and smooth changes in representativeness. Indeed, as discussed in Section 3.2, the number 

and the weight of good and bad news induces changes from one state to another, producing price jumps. 

Figure 6 denotes the 5 overreactions. The first is on 12 March 2020 corresponding to the exogenous 

COVID-based extreme event, the second is on 2 June 2020 which is endogenously driven by the flows 

of good news received after the negative peak which led to change from a bad to a good state when the 

COVID-based extreme event had gradually lost its weight, whereas good news accumulates to the point 

of overturning representativeness. Finally, it arrives at the rebound of 12-15-16 June 2020, when we move 

on to a bad-good-bad state. Calibrated values for the corresponding jump amplitude parameter are: 

𝜂̂𝜂3/12/2020 = 103,    𝜂̂𝜂6/2/2020 = 55,    𝜂̂𝜂6/12/2020 = 50,    𝜂̂𝜂6/15/2020 = 52,    𝜂̂𝜂6/16/2020 = 64. 

As expected, in 𝑍𝑍𝑒𝑒𝑒𝑒 the parameter is almost double the others, which relate to endogenous overreactions 

after the extreme and unprecedented event materialized; agents now tend to be more sensitive to all news 

and they are “living on the hedge”, being ready to change their beliefs, incidentally, by processing 

information on a shortened time window (as already stated, memory shortens from the pre- to post-

COVID outbreak).      
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After having discussed the key calibrated parameters, consider now the resulting simulated price obtained 

as the solution of Equation (6) reported in Figure 7, compared with the actual values of the STOXX 

Europe 600 index. The calibrated values of the index show a good fit especially in replicating price 

dynamics after the COVID-19 outbreak, when we have the extreme negative return followed by a 

substantial market recovery. As a whole, the entire price calibration experiment makes two points.  

First, the unprecedented COVID-19 impact on stock markets occurred about 3 weeks after the arrival 

of the pandemic was reported on the first page of newspapers around the world (Baker et al., 2020). 

Agents maintained their beliefs even after the news was already circulated worldwide, since the posterior 

probability of a bad state was contained under 30 percent (see Figure 7), while they started to process 

information by deflating the bad news less (discount factor is getting closer to 1). This phase seems 

characterized by an unknown risk perception (Peters and Slovic, 1996), for which the hazard of the extreme 

event is, in some sense, unobservable and unknown with harmful impacts judged as potentially 

substantial, but nevertheless delayed.  

Second, the extreme negative impact of COVID-19, which was so strong that in one day it assumed the 

same impact as more than half a year (in business days) of continuing bad news on a daily basis, seems 

to reflect a dread risk perception: the perceived lack of control and the catastrophic perspectives reflect a 

jump of the bad state posterior probability close to 100 percent continuing for nearly 3 months (Figure 

7). In this time interval, the stock market is recovering from the extreme negative return and is 

approaching a new normal, with investors making close-to-rational expectations (𝛿𝛿 is around 0.95) and 

judging positive or negative market outcomes as almost equally likely (posterior probabilities are both 

around 0.5 on average).   
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6 Conclusion 

In this paper, we introduce an agent-based model for the learning and decision-making process of stock 

market traders when catastrophic and unprecedented events materialize within a behavioral 

heterogeneous agent context with bounded rationality. Agents are assumed to shift from excessive 

optimism to excessive pessimism and vice-versa, reflecting on large swings in agents’ confidence and price 

expectations, through representative diagnostics. This is our key assumption to explain when 

overreactions occur and the extent to which they impact on price dynamics. The price jump amplitude 

reflects the perceived catastrophic potential and, as such, unprecedented tail events are special cases in 

our modelling, since they are classified as extreme because of their posterior probability, the 

disproportionate weight attached to the news, and the jump size in price expectation.  

The calibration experiment we ran on the STOXX Europe 600 index over the period from 10 July 2019 

to 30 June 2020 to explore the anatomy of the COVID-19 impact offers two key insights about the 

learning process of market traders when an unprecedented and extreme event occurs. 

First, the extreme event impact on stock price is delayed and needs confirmation of bad news to align 

single risk perceptions. The impact we estimate on 12 March 2020, which is equivalent to more than half 

a year (in business days) of continuing bad news on a daily basis, materialized after flows of bad news 

mounted over time and a price jump occurred when the lack of investor confidence was exacerbated by 

the decision to keep key ECB interest rates unchanged16.  

Second, once the extreme event occurred, agents tended to be more sensitive to all positive and negative 

news by changing their beliefs more frequently as they processed information on shortened past time 

windows. Investors are successively moving on close-to-rational expectations, assessing 

positive/negative market outcomes as almost equally likely. Hence, representativeness seems to be time 

                                                 
16 Referring to calls for the ECB to go further and cut interest rates to ease borrowing costs for highly indebted eurozone 
countries, President Christine Lagarde said: “We are not here to close spreads, there are other tools and other actors to deal 
with these issues”. 
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dependent and conditional on states of the economy. Our evidence on an extreme negative event proves 

that the deflation mechanism of less representative news seems to disappear after the shock materializes.    
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APPENDIX 

 

Proposition A.1  

For every time step 𝑡𝑡 = 1, … ,𝑇𝑇 we have: 

𝜋𝜋𝑔𝑔,𝑡𝑡 + 𝜋𝜋𝑏𝑏,𝑡𝑡 = 1. 

Proof. By definition (eq. [8]), we have:   

𝜋𝜋𝑔𝑔,𝑡𝑡 =
𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡

1 + 𝑛𝑛𝑏𝑏,𝑡𝑡 + 𝑛𝑛𝑔𝑔,𝑡𝑡
, 

𝜋𝜋𝑏𝑏,𝑡𝑡 =
𝜋𝜋𝑏𝑏,𝑡𝑡−1 + 𝑛𝑛𝑏𝑏,𝑡𝑡

1 + 𝑛𝑛𝑏𝑏,𝑡𝑡 + 𝑛𝑛𝑔𝑔,𝑡𝑡
. 

Since in the first time step 𝜋𝜋𝑔𝑔,1 + 𝜋𝜋𝑏𝑏,1 = 1, by applying a recursive argument, we infer that:   

𝜋𝜋𝑔𝑔,𝑡𝑡 + 𝜋𝜋𝑏𝑏,𝑡𝑡 =
𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡 + 𝜋𝜋𝑏𝑏,𝑡𝑡−1 + 𝑛𝑛𝑏𝑏,𝑡𝑡

1 + 𝑛𝑛𝑏𝑏,𝑡𝑡 + 𝑛𝑛𝑔𝑔,𝑡𝑡
=  

1 + 𝑛𝑛𝑔𝑔,𝑡𝑡 + 𝑛𝑛𝑏𝑏,𝑡𝑡

1 + 𝑛𝑛𝑏𝑏,𝑡𝑡 + 𝑛𝑛𝑔𝑔,𝑡𝑡
= 1. 

 

Proposition A.2  

For every time step 𝑡𝑡: 

𝑅𝑅𝑔𝑔,𝑡𝑡 > 𝑅𝑅𝑏𝑏,𝑡𝑡   ⇔   𝜋𝜋𝑔𝑔,𝑡𝑡 > 𝜋𝜋𝑔𝑔,𝑡𝑡−1  ⇔  𝜋𝜋𝑔𝑔,𝑡𝑡 >
𝑛𝑛𝑔𝑔,𝑡𝑡

𝑁𝑁
, 

where 𝑁𝑁 = 𝑛𝑛𝑔𝑔,𝑡𝑡 + 𝑛𝑛𝑏𝑏,𝑡𝑡. 

Proof. From eq. (8) we obtain: 

𝜋𝜋𝑔𝑔,𝑡𝑡 =
𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡

1 + 𝑁𝑁
, 

𝜋𝜋𝑔𝑔,𝑡𝑡−1 =
𝜋𝜋𝑔𝑔,𝑡𝑡−2 + 𝑛𝑛𝑔𝑔,𝑡𝑡−1

1 + 𝑁𝑁
. 

Combining the result of Prop. 1 with the definition of 𝑅𝑅𝑥𝑥,𝑡𝑡 = 𝜋𝜋𝑥𝑥,𝑡𝑡
𝜋𝜋𝑥𝑥,𝑡𝑡−1

 we infer that:  

𝑅𝑅𝑔𝑔,𝑡𝑡 =
𝜋𝜋𝑔𝑔,𝑡𝑡

𝜋𝜋𝑔𝑔,𝑡𝑡−1
=
𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡

1 + 𝑁𝑁
⋅

1 + 𝑁𝑁
𝜋𝜋𝑔𝑔,𝑡𝑡−2 + 𝑛𝑛𝑔𝑔,𝑡𝑡−1

=
𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡

𝜋𝜋𝑔𝑔,𝑡𝑡−2 + 𝑛𝑛𝑔𝑔,𝑡𝑡−1
, 

𝑅𝑅𝑏𝑏,𝑡𝑡 =
𝜋𝜋𝑏𝑏,𝑡𝑡

𝜋𝜋𝑏𝑏,𝑡𝑡−1
=

1 −  𝜋𝜋𝑔𝑔,𝑡𝑡

1 −  𝜋𝜋𝑔𝑔,𝑡𝑡−1
= �1 −

𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡

1 + 𝑁𝑁
� : �1 −

𝜋𝜋𝑔𝑔,𝑡𝑡−2 + 𝑛𝑛𝑔𝑔,𝑡𝑡−1

1 + 𝑁𝑁
�. 

By comparison, the inequality 
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𝑅𝑅𝑔𝑔,𝑡𝑡 > 𝑅𝑅𝑏𝑏,𝑡𝑡   

can be rewritten as: 

𝜋𝜋𝑔𝑔,𝑡𝑡

𝜋𝜋𝑔𝑔,𝑡𝑡−1
>

1 −  𝜋𝜋𝑔𝑔,𝑡𝑡

1 −  𝜋𝜋𝑔𝑔,𝑡𝑡−1
. 

Exploiting calculations, we have: 

𝜋𝜋𝑔𝑔,𝑡𝑡(1 −  𝜋𝜋𝑔𝑔,𝑡𝑡−1) > 𝜋𝜋𝑔𝑔,𝑡𝑡−1(1 −  𝜋𝜋𝑔𝑔,𝑡𝑡), 

Hence, it follows that: 

𝜋𝜋𝑔𝑔,𝑡𝑡− 𝜋𝜋𝑔𝑔,𝑡𝑡−1𝜋𝜋𝑔𝑔,𝑡𝑡 > 𝜋𝜋𝑔𝑔,𝑡𝑡−1 − 𝜋𝜋𝑔𝑔,𝑡𝑡−1𝜋𝜋𝑔𝑔,𝑡𝑡. 

Subsequently, after suitable cancellation, we obtain:  

𝜋𝜋𝑔𝑔,𝑡𝑡 > 𝜋𝜋𝑔𝑔,𝑡𝑡−1 

and the first chain of implications is proved. Moreover, recalling that 

𝜋𝜋𝑔𝑔,𝑡𝑡 =
𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡

1 + 𝑁𝑁
 

and combining this with the previous equation, we conclude that:  

𝜋𝜋𝑔𝑔,𝑡𝑡 > 𝜋𝜋𝑔𝑔,𝑡𝑡−1 = (1 + 𝑁𝑁) 𝜋𝜋𝑔𝑔,𝑡𝑡 − 𝑛𝑛𝑔𝑔,𝑡𝑡 =  𝜋𝜋𝑔𝑔,𝑡𝑡 + 𝑁𝑁 𝜋𝜋𝑔𝑔,𝑡𝑡 − 𝑛𝑛𝑔𝑔,𝑡𝑡, 

We can then infer the second chain of implications, namely: 

𝜋𝜋𝑔𝑔,𝑡𝑡 <
𝑛𝑛𝑔𝑔,𝑡𝑡

𝑁𝑁
. 

Proposition A.3  

For every time step 𝑡𝑡: 

𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝 + 𝜋𝜋𝑏𝑏,𝑡𝑡

𝑝𝑝 = 1. 

Proof. According to eq. (9) we have:  

𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝 =

𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡

�𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡� + 𝛿𝛿�𝜋𝜋𝑏𝑏,𝑡𝑡−1 + 𝑛𝑛𝑏𝑏,𝑡𝑡�
,

𝜋𝜋𝑏𝑏,𝑡𝑡
𝑝𝑝 =

𝛿𝛿�𝜋𝜋𝑏𝑏,𝑡𝑡−1 + 𝑛𝑛𝑏𝑏,𝑡𝑡�
�𝜋𝜋𝑔𝑔,𝑡𝑡−1 + 𝑛𝑛𝑔𝑔,𝑡𝑡� + 𝛿𝛿�𝜋𝜋𝑏𝑏,𝑡𝑡−1 + 𝑛𝑛𝑏𝑏,𝑡𝑡�

.
 

Adding up the previous equations, it follows that:  

𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝  + 𝜋𝜋𝑏𝑏,𝑡𝑡

𝑝𝑝 = 𝜋𝜋𝑔𝑔,𝑡𝑡−1+𝑛𝑛𝑔𝑔,𝑡𝑡

�𝜋𝜋𝑔𝑔,𝑡𝑡−1+𝑛𝑛𝑔𝑔,𝑡𝑡�+𝛿𝛿�𝜋𝜋𝑏𝑏,𝑡𝑡−1+𝑛𝑛𝑏𝑏,𝑡𝑡�
+  𝛿𝛿�𝜋𝜋𝑏𝑏,𝑡𝑡−1+𝑛𝑛𝑏𝑏,𝑡𝑡�

�𝜋𝜋𝑔𝑔,𝑡𝑡−1+𝑛𝑛𝑔𝑔,𝑡𝑡�+𝛿𝛿�𝜋𝜋𝑏𝑏,𝑡𝑡−1+𝑛𝑛𝑏𝑏,𝑡𝑡�
= 𝜋𝜋𝑔𝑔,𝑡𝑡−1+𝑛𝑛𝑔𝑔,𝑡𝑡+ 𝛿𝛿�𝜋𝜋𝑏𝑏,𝑡𝑡−1+𝑛𝑛𝑏𝑏,𝑡𝑡�

�𝜋𝜋𝑔𝑔,𝑡𝑡−1+𝑛𝑛𝑔𝑔,𝑡𝑡�+𝛿𝛿�𝜋𝜋𝑏𝑏,𝑡𝑡−1+𝑛𝑛𝑏𝑏,𝑡𝑡�
 = 1. 
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Proposition A.4  

Eq. (10) can be written as: 

𝐸𝐸ℎ,𝑡𝑡
𝑝𝑝 (𝑝𝑝𝑡𝑡+1) =

⎩
⎪
⎨

⎪
⎧ 𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1) − 𝛾𝛾𝑡𝑡    𝑖𝑖𝑖𝑖 𝜋𝜋𝑔𝑔,𝑡𝑡−1

𝑝𝑝 >
1
2

 ∧  𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝 <

1
2

 ∧  𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 >  𝑛𝑛𝑔𝑔,𝑡𝑡(𝑁𝑁 + 1) − 𝑛𝑛𝑔𝑔,𝑡𝑡−1,

𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1) + 𝛾𝛾𝑡𝑡    𝑖𝑖𝑖𝑖 𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 <

1
2
∧  𝜋𝜋𝑔𝑔,𝑡𝑡

𝑝𝑝 >
1
2

 ∧ 𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 <

𝑛𝑛𝑔𝑔,𝑡𝑡

𝑁𝑁
 �1 − 𝑛𝑛𝑔𝑔,𝑡𝑡−1 +  𝑛𝑛𝑔𝑔,𝑡𝑡�,

𝐸𝐸ℎ,𝑡𝑡(𝑝𝑝𝑡𝑡+1)    𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,

   

where 𝑁𝑁 = 𝑛𝑛𝑔𝑔,𝑡𝑡 + 𝑛𝑛𝑏𝑏,𝑡𝑡. 

Proof. By mean of Prop. A.2, it easily follows that: 

𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 > 𝜋𝜋𝑏𝑏,𝑡𝑡−1

𝑝𝑝  ⇔  𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 > 1 − 𝜋𝜋𝑔𝑔,𝑡𝑡−1

𝑝𝑝 ⇔  𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 >

1
2

, 

𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝 < 𝜋𝜋𝑏𝑏,𝑡𝑡

𝑝𝑝  ⇔  𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝 < 1 − 𝜋𝜋𝑔𝑔,𝑡𝑡

𝑝𝑝 ⇔  𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝 <

1
2

, 

𝜋𝜋𝑏𝑏,𝑡𝑡−1
𝑝𝑝 > 𝜋𝜋𝑔𝑔,𝑡𝑡−1

𝑝𝑝  ⇔  1 − 𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 > 𝜋𝜋𝑔𝑔,𝑡𝑡−1

𝑝𝑝 ⇔  𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 <

1
2

, 

𝜋𝜋𝑏𝑏,𝑡𝑡
𝑝𝑝 < 𝜋𝜋𝑔𝑔,𝑡𝑡

𝑝𝑝  ⇔  1 − 𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝 < 𝜋𝜋𝑔𝑔,𝑡𝑡

𝑝𝑝 ⇔  𝜋𝜋𝑔𝑔,𝑡𝑡
𝑝𝑝 >

1
2

. 

Moreover, by denoting 𝑁𝑁 = 𝑛𝑛𝑔𝑔,𝑡𝑡 + 𝑛𝑛𝑏𝑏,𝑡𝑡 and applying the result of Prop. A.2, we have: 

𝑛𝑛𝑏𝑏,𝑡𝑡

𝑛𝑛𝑔𝑔,𝑡𝑡
=

1 − 𝑛𝑛𝑔𝑔,𝑡𝑡

𝑛𝑛𝑔𝑔,𝑡𝑡
>
𝜋𝜋𝑏𝑏,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑏𝑏,𝑡𝑡−1

𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑔𝑔,𝑡𝑡−1

=
1 − 𝜋𝜋𝑔𝑔,𝑡𝑡−1

𝑝𝑝 + 𝑁𝑁 − 𝑛𝑛𝑔𝑔,𝑡𝑡−1

𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑔𝑔,𝑡𝑡−1

. 

Then, we obtain: 

�1 − 𝑛𝑛𝑔𝑔,𝑡𝑡� ⋅ �𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑔𝑔,𝑡𝑡−1� > (1 − 𝜋𝜋𝑔𝑔,𝑡𝑡−1

𝑝𝑝 + 𝑁𝑁 − 𝑛𝑛𝑔𝑔,𝑡𝑡−1) ⋅ 𝑛𝑛𝑔𝑔,𝑡𝑡 , 

Hence, exploiting cancellation, we conclude that: 

𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 >  𝑛𝑛𝑔𝑔,𝑡𝑡(𝑁𝑁 + 1) − 𝑛𝑛𝑔𝑔,𝑡𝑡−1. 

Finally, applying a completely analogous argument, we infer that: 

𝑛𝑛𝑔𝑔,𝑡𝑡

𝑛𝑛𝑏𝑏,𝑡𝑡
>
𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑔𝑔,𝑡𝑡

𝜋𝜋𝑏𝑏,𝑡𝑡−1
𝑝𝑝 + 𝑛𝑛𝑏𝑏,𝑡𝑡

      ⇔      𝜋𝜋𝑔𝑔,𝑡𝑡−1
𝑝𝑝 <

𝑛𝑛𝑔𝑔,𝑡𝑡

𝑁𝑁
 �1 − 𝑛𝑛𝑔𝑔,𝑡𝑡−1 +  𝑛𝑛𝑔𝑔,𝑡𝑡� . 
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Tables 

 

Parameter Label Value 

Number of periods T 250 

Number of traders J 200 

Initial population for each h-th heuristic 𝐽𝐽ℎ 50 

Risk-free rate 𝑟𝑟 5% 

Weak chartist coefficient 𝛼𝛼 0.4 

Strong chartist coefficient 𝛽𝛽 1.3 

Bias b +2.5% 

Risk aversion a 20 

Discount factor  𝛿𝛿 0.8 

Memory m 6 

Number of market activity-based news per trade 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 3 

Weight of market activity-based news 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚 1 

Number of public news per trade 𝑛𝑛𝑝𝑝 2 

Weight of public news 𝜑𝜑𝑝𝑝 2 

Number of extreme events over T 𝑛𝑛𝑒𝑒𝑒𝑒,𝑡𝑡 [0,10] 

Weight of extreme events 𝜑𝜑𝑒𝑒𝑒𝑒 36 

Bad-based Jump amplitude 𝜂𝜂𝑏𝑏 60 

Good-based Jump amplitude 𝜂𝜂𝑔𝑔 30 

Table 1. Parameters’ value and initial conditions. 
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Figures 

Figure 1. Price dynamics (solid line), overreactions in the price expectations mechanism P𝑡𝑡 (dashed line) 
and positive/negative extreme events (dotted line).   
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Figure 2. Heuristic share in the population: the blue line represents naïve traders, the red line depicts 
biased traders, the yellow line is the weak trend heuristic and the purple line shows the strong trend 
chartist.   
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Figure 3. Matching the stylized facts. Top-left panel: log price dynamics. Top-right panel: asset returns. 
Bottom-left panel: distribution of normalized returns. Bottom-right panel: autocorrelation function of 
returns. 
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Figure 4: Quarterly price distribution of 12,500 observations with different traders’ memory, 𝑚𝑚 =
6, 1, 12. 
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Figure 5: Quarterly price distribution of 12,500 observations with different discount parameter values, 
𝛿𝛿 =  0.8, 0.6, 1. 
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Figure 6. Time-varying discount factor and jump amplitude parameters. 
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Figure 7. Observed vs. calibrated STOXX Europe 600 and corrected posterior probability of bad states. 
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