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Highlights: 

● Climate smart agriculture engages soil and water conservation for climate adaptation. 

● We developed and calibrated an ABM to study the CSA adoption rate and its effects. 

● CSA adopters have higher food security than non-adopters under climate projections. 

● Food security outcomes are also affected by social networks and market integration. 

● CSA may not counteract severe climate change and further mitigation policy is needed. 

Abstract: The study proposes an agent-based model to investigate how adoption of climate smart 

agriculture (CSA) affects food security. The analysis investigates the role of social and ecological 

pressures (i.e. community network, climate change and environmental externalities) on the adoption 

of physical water and soil practices as well as crop rotation technique. The findings reveal that CSA 

may be an effective strategy to improve the rural populations' well-being for farm households with 

access to capital, strong social networks and access to integrated food markets. The climate scenario 

simulations indicate that farmers adopting CSA fare better than non-adopters, although CSA adoption 

does not fully counterbalance the severe climate pressures. In addition, farmers with poor connections 

to food markets benefit less from CSA due to stronger price oscillations. These results call for an active 
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role for policy makers in encouraging adaptation through CSA adoption by increasing access to capital, 

improving food market integration and building social networks.  
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1. Introduction  

As the world grapples with the potential problems created by global climate change a great deal of 

analysis has turned toward considering adaptation possibilities, especially for farmers in poor 

countries. One such adaptation which has shown promise in the developing world and garnered a lot 

of recent academic interest is climate smart agriculture (CSA) (Amadu et al., 2020; Marenya et al., 

2020; Tesfaye et al., 2020). Climate smart agriculture is a package of micro-level soil and water 

conservation improvements such as planting and agroforestry techniques that can help farmers adapt 

to climate change. A number of recent papers have shown the current effectiveness and in some cases 

willingness of farmers to adopt CSA techniques in such places as Ethiopia, Peru, and Malawi (Amadu 

et al., 2020; Marenya et al., 2020; Tesfaye et al., 2020). While this literature shows CSA adoption 

under current circumstances, understanding longer term adaptation to climate change requires 

understanding the dynamics and effectiveness of this adaptation strategy over time and into the future. 

Specifically, the literature on technology adoption has shown the importance of learning by doing and 

learning from neighbours (Bramoullé and Kranton, 2016; Conley and Udry, 2010), and the potential 

failure of some technologies as the current climate changes. An accurate assessment of the ability of 

CSA techniques to help developing country farmers adapt to climate change requires modelling both 

adoption paths and future climate dynamics. How will the future dynamics of climate and farmer social 

interactions determine climate smart agriculture’s success or failure in improving food security?  

Answering such a question requires moving beyond current econometric approaches, which take past 

data as the guide to future farmer adaptation behavior. While this provides well identified answers for 

the current state of knowledge and climate, projecting into the future from such work requires strong 

assumptions on the static nature of adaptation, farmer behavior, and farmer networks. Our work 

innovates on the adaptation literature by using an agent-based modelling (ABM) approach to 

understand farmer adoption of CSA techniques in rural Ethiopia while facing current and future 

climate change. Such a forward-looking modelling exercise allows us to generate an understanding of 
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future adaptation dynamics, in which the agents themselves learn, choose, and adapt to a changing 

climate.  

To contextualise the analysis, we initialize the model to the adoption rate of climate smart 

agriculture practices and soil fertility derived from farm survey data in the lowland and valley 

fragmented agroecosystem of Ethiopia’s Choke mountain watershed (Simane et al., 2013). We choose 

this region because it is characterised by the capability to register surplus agricultural production, but 

also suffers from land and water resource degradation which may produce food shortage (Zaitchik et 

al., 2012; Teferi et al., 2013). With both its climate and agricultural variability up and down the slope 

of the watershed, the Choke mountain watershed provides an optimal laboratory to test adaptation to 

future climate change. 

This work brings a novel modeling approach to the study of CSA adoption and farmer climate 

adaptation. Agent based models (ABM) develop a computational approach able to study complex 

socio-economic systems characterised by different degrees of organisation and to interpret the 

interaction between heterogeneous agents who can have complex and non-linear behaviours. ABMs 

allow us to model agents that may have different information sets and behave according to rules 

derived from empirical data or laboratory experiments thereby enhancing the realism of the analysis 

(Tesfatsion and Judd, 2006; Branch and Evans, 2006). Adopting an iterative bottom-up approach and 

agents’ adaptive learning process (Delli Gatti et al., 2011), ABMs allow us to investigate system 

dynamics endogenously generated within the model while taking into account the possible 

redistributive implications. This bottom up approach with endogenously determined system dynamics 

allows for a more comprehensive policy assessment. Like the standard micro-econometric approach 

to CSA adoption, ABMs focus on the behavior of individual actors faced with economic and 

information incentives. Unlike micro-econometric approaches, the ABM allows us to simulate future 

scenarios and endogenous interactions between individuals, which is vital for understanding adaptation 

to future climate change.   
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Our ABM incorporates agent interactions in peer-to-peer networks, recognizing that human cognition 

and management ability is itself a scarce resource and depends on environmental and cultural context, 

incentives, and past experiences (Conlisk,1996; Duffy, 2006). The agents in our ABM represent a 

range of autonomous farmers who have dynamic behaviours and heterogeneous characteristics 

(Heckbert et al., 2010; An, 2012; Dobbie et al., 2018). Agents interact with each other according to 

social and ecological pressures, resulting in emergent macro-scale outcomes that can be used to study 

the whole system through scenario analyses (Smajgl et al., 2011; Bazzana et al., 2021). According to 

Adesina and Zinnah (1993) and Ngwira et al. (2014), CSA practices adoption is affected by the 

farmer’s perceptions of these technologies, as much as the characteristics of the technologies 

themselves. Smallholder farmers have subjective preferences for characteristics of CSA techniques 

which may also be affected by their social context. For these reasons, we take into account farmers’ 

neighbours adoption, their social interactions, and their impact on the rate of adoption of different 

types of CSA techniques. We also distinguish between short and long-term practices, which can have 

different dynamics.  

Our objective of this study is to investigate whether CSA adoption dynamics positively affect the food 

security of households. In line with the Food and Agriculture Organization of the United Nations 

(FAO, 2002), we address the multidimensional definition of the food security accounting for: food 

availability, food self-sufficiency, food instability, and food insecurity severity. All four dimensions 

are important in analysing the effectiveness of CSA adoption and adaptation to future climate change.  

In order to provide input to how policy makers might influence the climate adaptation process, the 

ABM allows us to explicitly investigate multiple channels that can impact the adoption and food 

security impacts of CSA. The variations in channels of impact we investigate are social networks, 

market integration, and drastic climate change. The ABM explicitly models the role of social networks 

(participation in community activities) in changing the adoption of CSA strategies that reduce farmers' 

food insecurity. More precisely, we compare the system dynamics of the baseline scenario with two 
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scenarios with higher and lower social network participation rates. In addition, we extend the analysis 

by exploring the adaptive responses to the surrounding market integration characteristics (William et 

al., 2020) by altering the price transmission mechanism, i.e., varying market conditions generated by 

geography and remoteness, which affects the market price dynamics of the food commodities and local 

wealth. A final enquiry expands the analysis by comparing the baseline scenario to a case in which 

climate change is more dramatic. The aim of this analysis is to investigate from a food security 

perspective, whether CSA is an effective mitigation strategy for drastic climate change that increases 

the vulnerability of farmers to production risk.  

Our agent-based modelling of CSA adoption investigates the importance of key policy relevant 

parameters for adaptation to climate change: social networks, the workings of food markets in price 

transmission, and the severity of future climate change to farmers’ abilities to adapt and their 

concomitant food security outcomes. It provides a proof of concept for how researchers and policy 

makers can think about and analyze farmer adaptation to future climate change. In particular, it 

demonstrates how common features of micro-econometric models, networks and adoption dynamics, 

can be modeled in a future oriented ABM to show how policy makers can leverage these features to 

affect future farmer adaptation to climate change. The big advantage of an ABM for future policy 

analysis is that the scenarios allow the individual farmers to choose their own adaptation paths. 

The remainder of the paper is structured as follows: Section 2 presents the methodological approach; 

Section 3 describes the simulation results; Sections 4 and 5 close with policy suggestions and 

concluding remarks. 

 

2. Methodological approach 

The basic structure of the agent based modelling system we analyze considers a population of 

households (𝑗 = 1,… , 𝐽) characterized according to age, social network participation, land size (𝐻), 
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and economic endowment (𝑀). The household sector consists of farmers who may work in their own 

fields or supply labour to the other farmers within the village border. Farmers have limitations in their 

ability to process new information, based on differences in human, physical, and social capital, i.e,. 

they are not perfectly rational and heterogeneous management abilities. Specifically, they differ in 

available land and land productivity, financial resources, family size and age of the household head, 

participation in social gathering and short/long term CSA techniques adoption. 

In each period (𝑡 = 1,… , 𝑇), the households perform the following activities: 1) decide whether to 

adopt long and/or short term CSA practices, 2) cultivate land using production input as farmers, 3) 

supply labour to the market, 4) consume food commodities (𝑖 = 1,… , 𝐼), and 5) exchange agricultural 

products on the market (Figure 1). We assume that farmers have information processing limitations 

and live in an incomplete and asymmetric information context; thus, they are boundedly rational and 

follow simple rules of behaviour. 
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Figure 1. Flow chart of the methodology. 

This flowchart shows the major components and how they are linked in our agent-based model. The model simulates 

farmers’ decision-making on technology adoption of CSA practices, adapting both, either or none of the two general 

categories of WSA and CP. Their decisions are affected by participating in social networks, affecting farm productions 

and the subsequent household consumption. Households also have access to markets for selling and purchasing food 

products, which affects their available economic resources and food consumption. The model outcomes are measured by 

four food security metrics, including availability, self-sufficiency, instability, and food insecurity severity (see Section 

2.6). The model is run under scenarios that differ in network information diffusion extents, food price dynamics in 

integrated or non-integrate markets, and climate conditions. 

 

2.1 Climate Smart Agriculture practices adoption 

The CSA practices include two main types: physical water and soil management actions (WSA), which 

have high costs and are a long time-pay back investment; and conservation practices, such as no or 
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minimum tillage, crop residue management, and crop rotation (Howden et al., 2017), which affect the 

crop yields in the short term.  

The propensity to apply short/long term CSA practices is driven by two main farmer attributes: social 

network memberships and the farmer’s age (Di Falco et al., 2011; Ahmed, 2014; Tefera and Larra, 

2016). The membership to the community network is assumed to create a higher exchange of 

information on the best practices or mitigation strategies to external climate shocks. Therefore, it can 

affect the farmer’s beliefs on the benefits of different CSA practices: it reduces the expectation on the 

CP impact on soil productivity and subsequently the adoption rate, whereas it has a positive effect on 

the belief about the benefits due to WSA on crop yields and would increase its adoption rate. In line 

with empirical studies from Ethiopia, Simane et al. (2013) and Wossen et al. (2013), the choice of crop 

rotation is negatively affected by farmer age whereas soil and water management actions do not depend 

on her age. 

Farmer adoption depends on her belief (bf) of CSA adoption’s effect on soil productivity as follows: 

𝑏𝑓𝑗,𝑥,𝑡 = 𝑏𝑓𝑗,𝑥,𝑡−1 + 𝜆𝑥,𝐴𝑔𝑒 + 𝜆𝑥,𝑁𝑒𝑡𝑤𝑜𝑟𝑘;  1 

where 𝜆𝑥,𝐴𝑔𝑒 and 𝜆𝑥,𝑁𝑒𝑡𝑤𝑜𝑟𝑘  are negative when 𝑥 = 𝐶𝑃, whereas when 𝑥 = 𝑊𝑆𝐴 they are zero and 

positive, respectively. If farmer 𝑗 has positive beliefs about the benefits, 𝑏𝑓𝑗,𝑥,𝑡 ≥ 0, the farmer is 

willing to adopt the x-th CSA practice (WSA and CP) in period 𝑡, whereas in the opposite case the 

farmer does not adopt it. We parameterize the 𝜆′𝑠 using data derived from the Simane et al. (2013) 

farm level survey of CSA adoption.  

At the beginning of each year, the farmer decides whether to implement soil and water conservation 

practices. Given that WSA are long-term actions, it lasts for five periods, the farmer computes and 

compares the expected present value (U) of the economic return of the production types with and 

without the WSA implementation: 
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𝑈𝑥,𝑡 = ∑

5

𝑛=1

𝜎𝑛 (𝑝𝑥,𝑡𝑌𝑥,𝑡 − 𝜏𝑥,𝑡) .             2 

In equation (2), 𝜎 is the discount factor of the future economic returns; 𝜏𝑥,𝑡 is a fixed adoption cost 

when 𝑥 = 𝑊𝑆𝐴 (equal to zero in case of non-adoption, i.e., 𝑥 = 𝑁𝑊𝑆𝐴); 𝑝𝑥,𝑡 and 𝑌𝑥,𝑡 are the average 

price and production over three food commodities (cereal, vegetable and fruits, and animal-based 

products) with/without soil and water management practices adoption at the time period t. The 

adoption of WSA increases crop yields but has a cost, 𝜏𝑊𝑆𝐴,𝑡, whereas if the farmer does not adopt 

WSA there is no gain in crop productivity and no adoption cost. Then, following standard adoption 

models if 𝑈𝑊𝑆𝐴,𝑡 ≥ 𝑈𝑁𝑊𝑆𝐴,𝑡, the farmer adopts WSA.  

Farmers have heterogeneous expectations (E) on yields and climate variables, which evolve according 

to the following path dependent heuristic: 

𝐸𝑗,𝑡−1(𝑣𝑗,𝑡) = 𝑔𝑗𝑣𝑗,𝑡−1; 3 

with 𝑔𝑗 > 0 representing a farmer-specific bias coefficient and v acting as the reference variable. The 

behavioural assumption is that farmers form their expectations on future climate variables using the 

last observed levels, and then adjusted with some bias factor (see Conlisk, 1996; Duffy, 2006; Nolan 

et al., 2009; Groeneveld et al., 2017). Farmers are optimistic (or pessimistic) about the reference 

variables if  𝑔𝑗 > 1 (or 𝑔𝑗 < 1), whereas if 𝑔𝑗 = 1 the agents form their expectations only using the 

last observed level.  

Once the farmer has decided on the adoption of WSA, she allocates the available land to the food 

production. The farmer population can be divided in four different behaviour types: double adopters, 

WSA adopters, CP adopters and non-adopters. In line with Bazzana et al. (2021), farmers 

implementing crop rotation process cultivate the h-th plot as follows: 

ℎ𝑖,𝑡 = ℎ𝑖+1,𝑡−1  ⋁   ℎ𝑖,𝑡−1 = ℎ𝑖+1,𝑡−2  ⋁   ℎ𝑖,𝑡 ≠ ℎ𝑖,𝑡−2;              4 
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where i=1:3 represents the three food productions. We assume this type of crop rotation because it is 

necessary in highland Ethiopia in order to preserve soil productivity. 

In contrast, farmers not adopting crop rotation primarily plant plots according to a “business as usual” 

rule with a market driven correction, i.e., they plant the same crop as the previous period, changing the 

allocation of land between crop types based on relative prices in the market. These farmers reallocate 

a share (𝛿) of the land from the lowest economic return crop in the previous period to the crop with 

the highest past economic return: 

𝑅𝑗,𝑖,𝑡−1 =
𝑝𝑖,𝑡−1𝑌𝑗,𝑖,𝑡−1 

𝐾𝑗,𝑖,𝑡−1
 .           5 

In equation (5), 𝑅𝑗,𝑖,𝑡−1  is the economic return of the i-th agricultural production for the j-th farmer in 

the last period;  𝑝𝑖,𝑡−1, 𝑌𝑗,𝑖,𝑡−1 and 𝐾𝑗,𝑖,𝑡−1 are the price, the production and the land planted with the i-

th commodity. To capture key features of subsistence farming, the available land for food crops that 

is not affected by the market driven mechanism will be cultivated as usual, i.e., with the same crop as 

in the past (ℎ𝑖,𝑡 = ℎ𝑖,𝑡−1). 

The decisions on land use and CSA practices will affect the plot fertility (𝐴ℎ,𝑡):  

𝐴ℎ,𝑡 = (1 + 𝜅𝑗 + 𝜂𝑗 + 𝜂𝑑)𝐴ℎ,𝑡−1;              6 
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where 𝜅 represents a discount (degradation) rate and 𝜂 is the WSA effect on soil fertility. Hence, plot 

fertility for the j-th farmer is determined by her short and long-term agriculture practice choices 

(Holden et al., 2004). Continuous cropping reduces the plot productivity over time (𝜅𝑗 ≤ 0) whereas 

crop rotation is able to maintain the plot productivity (𝜅𝑗 = 0). Moreover, land productivity is 

positively affected by the adoption of soil and water management practices by both the landowner 

(𝜂𝑗 ≥ 0) and the farmers in the neighbouring plots (𝜂𝑑 ≥ 0, positive externality). 

2.2 Farmer’s production 

Based on their available income for productive purposes (𝑀𝑗,𝑡−1), the farmers hire labour and purchase 

production inputs (fertilizers and seeds), and use irrigation water if they have access to an irrigation 

scheme, to produce the i-th food commodity in each plot (h). The agricultural food production function 

(𝑄ℎ,𝑡) is defined according to a Leontief production functions with no substitution possibilities among 

the inputs: 

𝑄𝑖,ℎ,𝑡 = 𝑚𝑖𝑛 (
𝐿𝑖,ℎ,𝑡
𝑎𝑖,𝐿

 ,
𝑆𝑖,ℎ,𝑡
𝑎𝑖,𝑆

) ;            7 

where 𝐿𝑖,ℎ,𝑡 and 𝑆𝑖,ℎ,𝑡 represent labour quantities and the other representative production inputs, 

whereas 𝑎𝐿 and 𝑎𝑆 are the positive technologically determined parameters. 

In making decisions on how to optimize the production process, the farmer is bounded by the following 

budget constraint: 

𝑤𝑡𝐿𝑖,ℎ,𝑡 + 𝑝𝑠,𝑡𝑆𝑖,ℎ,𝑡 = 𝜍 𝑀𝑗,𝑡−1;  

𝑀𝑗,𝑡−1 = [∑

3

𝑖=1

𝜋𝑖,𝑗,𝑡−1 + 𝑤𝑡𝐿𝑗,𝑡−1 + (1 − 𝜍)𝑀𝑗,𝑡−2]  ; 

where 𝑤𝑡 and  𝑝𝑠,𝑡 are the price of labour and the other input; 𝜍 is the marginal propensity to save and 

𝜍 𝑀𝑗,𝑡−1 represents the available monetary resources from the previous periods which are the sum of 
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past profits (𝜋𝑖,𝑗,𝑡−1) from the production of the i-th commodity, labour income and savings.1 The 

farmer hires outside workers if the optimal amount of labour required by the agricultural production 

process is higher than the farmer’s household labour supply. In the opposite case, the household applies 

excess labour time to the other farmers generating income. 

In line with the empirical literature (Lobell and Burke, 2010), the actual crop yield (𝑌ℎ,𝑡) depends on 

both the soil productivity (𝐴ℎ,𝑡) and the effects of available water (rainfall and irrigation) and air 

temperature (𝜌): 

𝑌ℎ,𝑡 = 𝜌𝑡𝐴ℎ,𝑡𝑄ℎ,𝑡;             

where 0 ≤ 𝜌𝑡 ≤ 1 represents the water stress parameter. Following the analysis and parameterization 

in Block et al. (2008), 𝜌𝑡 = 1 means that yields are not limited by water stress, although limitations by 

other factors such as soil fertility or management skills are still possible, while 𝜌𝑡 = 0 implies crop 

destroying drought stress. The parameter 𝜌𝑡 is computed for the study zone using a process-based soil-

water balance model as described in Zhang et al. (2020). The model simulates soil moisture variation 

and crop growth in gridded soil columns using daily climate variables (rainfall and air temperature), 

irrigation if any, water holding capacities of the soil, and crop-specific characteristics (such as crop 

calendars and drought resistant features), and computes a yield factor (i.e., the water stress parameter 

𝜌𝑡) for the entire growing period. 

2.3 Households basic needs satisfaction 

According to the family size, the total food requirements (𝐶𝑗,𝑖,𝑡) are defined as follows: 

𝐶𝑗,𝑖,𝑡 = 𝛩𝑖𝑧𝑗,𝑡−1.             8 

In equation (8), 𝛩𝑖 represents the basic food requirements per capita for the reference good and z is the 

household’s size. Hence farmers harvest their agricultural production and engage in market exchange 

 
1 In line with the current state of credit markets in Ethiopia we assume farmers have to finance investments based on their 

available savings. 
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if the production exceeds or falls behind the basic food requirements of the farmer’s household. We 

assume a preference order in the consumption choice: first, farmers try to satisfy the cereals demand, 

then the vegetables need and finally the demand for animal-based food. To compensate for a potential 

food deficit, expenditure will be subject to the following budget constraint: 

∑

3

𝑖=1

[𝑝𝑖,𝑡(𝑌𝑗,𝑖,𝑡 − 𝑐𝑗,𝑖,𝑡)] + 𝑤𝑡𝐿𝑗,𝑡 + (1 − 𝜍)𝑀𝑗,𝑡−1 = 𝑀𝑗,𝑡.       9 

At the end of the period, the households become one period older, except for those who die, and the 

population size evolves according to the differential between the birth rate and the death rate.  

2.4 Aggregated variable dynamics 

In this section we define the laws of motion for prices, wages, and population. In our baseline model 

which follows the assumptions of Bakker et al. (2018) and Sankaranarayanan et al. (2020), we assume 

the existence of a village food market which is not developed enough to endogenously change the 

commodity prices. Hence, the farmers are price takers and the agricultural commodity prices on the 

market evolve according to an autoregressive process: 

𝑝𝑖,𝑡 = 𝜛𝑖,𝑡𝑝𝑖,𝑡−1 + 𝜀𝑖,𝑡;        10 

where  𝜛𝑖,𝑡 is an exogenous price evolution coefficient and 𝜀𝑖,𝑡 is a shock following a normal 

distribution.2 For labour cost, we assume that the wage level in the economy is equal across farmers 

and evolves as follows: 

 
2 In Section 3, we relax this assumption developing a scenario in which the constraints generated by geography and 

remoteness affect the price transmission endogenizing its evolution as follows: 

�̂�𝑖,𝑡 =

{
 
 

 
 𝛽𝑝𝑖,𝑡 + 𝛾[𝑝𝑖,𝑡(1 + 𝜑𝑖,𝑡)]      𝑤ℎ𝑒𝑟𝑒 𝜑𝑖,𝑡 = 𝑓 (

𝐶i̅,𝑡
𝑌𝑖,𝑡
)  𝑖𝑓 𝐶i̅,𝑡 > 𝑌𝑖,𝑡   

𝛽𝑝𝑖,𝑡 + 𝛾[𝑝𝑖,𝑡(1 − 𝜑𝑖,𝑡)]     𝑤ℎ𝑒𝑟𝑒 𝜑𝑖,𝑡 = 𝑓 (
𝑌𝑖,𝑡

𝐶i̅,𝑡
) 𝑖𝑓 𝑌𝑖,𝑡 > 𝐶i̅,𝑡

,  

Where 𝜑𝑖,𝑡 is increasing and 𝜑𝑖,𝑡(1) = 0.  According to the new price definition, the food commodity price (�̂�𝑖,𝑡) in the 

interested area depends both by the exogenous price trend and by the actual production in the period in the area: if the 

production (𝑌𝑖,𝑡) is higher than the local demand (𝐶i̅,𝑡), the households observe a reduction in the food commodities price, 

whereas if there is a shortage in the food commodity, its price increases. 
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𝑤𝑡 = 𝜛𝑤,𝑡𝑤𝑡−1 + 𝜀𝑡;              11 

In the baseline scenario, we assume that agents supply their labour to the other farmers within the 

village border to endogenously generate labour market dynamics and potential unemployment.  

Finally, since the model considers rural villages, it is reasonable that the prices of the agricultural 

production inputs (𝑝𝑠,𝑡) also evolve according to an exogenous autoregressive process, which is 

comparable to equation (10) because farmers are price takers: 

𝑝𝑠,𝑡 = 𝜛𝑠,𝑡𝑝𝑠,𝑡−1 + 𝜀𝑠,𝑡;              12 

where 𝜛𝑠,𝑡 is an exogenous trend component and 𝜀𝑠,𝑡 is a shock following a normal distribution. 

2.5 Sequence 

The economy is an iterative system where agents repeat the same group of actions at each time step. 

First of all, agents decide whether to adopt CSA practices. Farmers who are members of a social 

network may randomly meet another community member, if the farmers meet, they modify 

positively/negatively their WSA/CP adoption probability based on the new information.  

Based on the expectation on climate variables, productivity and farmer’s type (degree of 

innovativeness), farmers set their land use and desired production inputs. Output depends on farmers’ 

financial constraints, rainfall during the production period, and neighbour’s soil and water practices 

(positive or negative externalities). 

According to the household’s composition, the farmer computes its food security requirement. If 

production is higher than self-consumption demand, the farm household consumes their own food 

commodities and sells on the market the surplus. In the opposite case, households access the market 

to satisfy their household food requirements.  

At the end of the period, the household members become one period older, except for those who die. 

Hence, the household’s size evolves according to the difference between mortality and birth rate. 
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Births are distributed among households according to a uniform distribution whereas, to define the j-

th household member who dies, we use a death probability drawn from a uniform distribution [0,1]. If 

this probability is lower than the household cohort death probability,3 the farmer dies. In the opposite 

case, she survives. According to this mechanism, older agents have a higher probability of dying.  

2.6 Scenarios and simulations 

In the following sections, we run the model to investigate whether CSA adoption dynamics positively 

affect the food security of the households. We design several representative scenarios (Table 1) to 

expand the analysis exploring: 1) how improving or reducing the extension services and community 

social network participation, which may change the information diffusion, affect the well-being of the 

farmers (Scenario A/Baseline, B, and C; Table 1); 2) how development policies (e.g., road and railway 

construction) affecting price transmission can change adoption dynamics and food security (Scenario 

D); 3) whether the adoption of the CSA practices is an effective strategy to handle drastic climate 

change (Scenario E).  

Scenario Food Price Dynamics Network Representative Concentration Pathway4 

A (Baseline) Exogenous 60% 4.5 

B Exogenous 75% 4.5 

C Exogenous 45% 4.5 

D Endogenous 60% 4.5 

E Exogenous 60% 8.5 

Table 1: Scenario parameters settings. 

 
3 See the Ethiopian life table for the cohort death probability (World Health Organization, 2018). 
4 Representative Concentration Pathway (RCP) is a trajectory of greenhouse gas concentration into the future decades 

adopted by the climate modeling and research community. RCP is labeled using a range of radiative forcings in the year 

2100. RCP 4.5 falls in the mid-range, representing an intermediate climate change scenario, while RCP 8.5 represents the 

worst-case scenario with high levels of greenhouse concentrations.  
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In all the scenarios we have defined a representative Ethiopian rural village composed of 100 

households (see Table 2). Farmers participation in community social networks affect their CSA 

adoption rates. Following data collected by Simane et al. (2013) the community network involves 60% 

of the households under the reference Scenario A. We assume a growing population with a birth rate 

of 31.26 per 1000 people and a death rate of 6.67 per 1000 people (in line with Ethiopian data; United 

Nations, 2019). In line with the data for highland Ethiopia, the average initial family size is 5 people, 

but it evolves endogenously over time, affecting the total basic requirements and the households’ well-

being.  

We assume a standardised African starch-based diet in line with the average value for Sub-Saharan 

Countries (FAO, 1997; 2008) as follows: 0.52 cereals, 0.27 vegetables and fruits, and 0.21 animal-

based food products (diary and meat). In relation with these dietary needs, we define four indicators: 

food availability, food self-sufficiency, food instability, and food insecurity severity. Food availability 

is the ratio between actual food consumption and total food requirements, whereas self-sufficiency is 

defined as the ratio between self-production and total food requirement. Food instability is measured 

using the cereal import dependency ratio (FAO, 2011) which, in the case of a household, is the ratio 

of cereal net purchases over cereal consumption. The higher a household is dependent on cereal 

purchases, the lower the household’s food stability is. Following Devereux (2006), we define severely 

food insecure households as those with food availability lower than 70%.   

We model the effects of climate on agricultural production using a water stress measure calibrated to 

14 climate models5, which the literature finds perform the best for our study zone in Ethiopia (Eggen 

et al. 2019). In our case, we calculate the water stress parameter 𝜌 based on daily data simulated by 

the 14 climate models with representative concentration pathways (RCP) 4.5 and 8.5 over 2006-2095 

 
5 The 14 selected climate models are CanESM2, CESM1-BGC, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-CM3, GFDL-

ESM2G, GFDL-ESM2M, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MPI-ESM-LR, MPI-ES-MR, MRI-CGCM3, 

and NorESM1-M. 
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(90 periods). Data variables including daily minimum and maximum temperature, daily rainfall, and 

solar radiation are extracted from each of the 14 climate models in order to calculate the associated 

water stress parameter. The 14 climate models are selected from 20 models in the Coupled Model 

Intercomparison Project, Fifth generation (CMIP5; Taylor et al., 2012) and the data are obtained from 

the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP; Thrasher et al., 2012). 

In addition, the data are bias-corrected through comparing the model simulations to data observations 

in the contemporary climate regimes, including the application of Climate Hazard Group InfraRed 

Precipitation with Stations (CHIRPS) product (Funk et al., 2015) and the Global Data Assimilation 

System (GDAS) (Derber et al., 1991) over 1980-2009. As the rainfall amount during the main raining 

and growing season in the study region has been shown to be highly correlated with the phases of the 

El Niño–Southern Oscillation (ENSO) (e.g., Gissila et al. 2004; Zhang et al. 2016), the model selection 

criteria are based on whether the model is able to well represent ENSO and the rainfall characteristics 

over this climatic region (Eggen et al., 2019).  

Simulations of the ABM were run with a Monte Carlo process repeated 100 times for a period of 90 

years for each climate model. The Monte Carlo runs differ by the actual distribution/allocation of 

births, deaths, wealth, and CSA adopters among the households in each period. The initial parameters 

on the farmer and household characteristics such as the average family size, average available land, 

CSA adoption rates as well as impact of ageing and network on CSA adoption are derived from the 

survey data described in Simane et al. (2013). The data also align closely with parameters in another 

published work that describes survey data from highland Ethiopia (Gebreyes et al., 2020). Table 2 

shows the average parameter values among the simulations over time and initial conditions.6 

 Meaning Value 

J Number of households 100 

 
6 See Table A2 in the appendix for the references of the main parameters of the model.  
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H Maximum number of plots 20 

𝜎 Discount factor 0.9 

𝛿 Share of land affected by market driven mechanism 0.25 

s Share of income invested in the production process 0.95 

g Bias coefficient 1 

z Average family size 5 

𝜆𝑊𝑆𝐴,𝐴𝑔𝑒  Ageing impact on WSA adoption propensity 0 

𝜆𝐶𝑃,𝐴𝑔𝑒 Ageing impact on CP adoption propensity -0.012 

𝜆𝑊𝑆𝐴,𝑁𝑒𝑡𝑤𝑜𝑟𝑘 Network impact on WSA adoption propensity +0.65 

𝜆𝐶𝑃,𝑁𝑒𝑡𝑤𝑜𝑟𝑘 Network impact on CP adoption propensity -0.45 

Initial Condition  

A Soil fertility -0.05; +0.05 

 Irrigation service extension  30% 

 WSA adoption rate  78% 

 CP adoption rate 32% 

Table 2: Parameters value and initial condition.  

3. Results 

The following subsections present the simulation results of food security and CSA adoption starting 

from the baseline scenario. Then, we investigate the role of community networks in the implementation 

of mitigation strategies showing the possible impact of farmer’s wealth on the food security dynamics. 

In subsection 3.3 we change the food price transmission mechanism addressing the crucial role of 

market integration and actual food market access to the satisfaction of food basic needs. Finally, the 

system is hit by a severe climate change shock aiming to explore the effectiveness of CSA adoption as 

a mitigation and adaptation strategy for severe climate change.  
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3.1 Individual decision and aggregated effects of climate smart agriculture adoption 

Looking at the ABM simulation results for aggregate dynamics of Scenario A (i.e., the baseline), 

Figure 2 shows the climate smart agricultural adoption rate and the multidimensional aspects of food 

security: availability, self-sufficiency, instability, and food insecurity severity. Figures 2a and 2b show 

the adoption rates of CP and WSA techniques. Being costless, conservation practices exhibit a growing 

trend in their adoption in earlier periods, which reduces over time as the opportunity to share 

information on best practices among farmers increases. The community relationship explains, on the 

other hand, the growing trend in figure 2b because it positively affects the WSA adoption, which 

generates a cascade effect through the physical water and soil management practices and their positive 

externalities on neighbours. Figure 2c represents the ratio between food consumption and total food 

requirements, highlighting the capability of farmers to reach the food security level by self-production 

and by market exchanges. Figure 2d represents the level of food security reached through self-

production. The gap between food availability and self-sufficiency shows the crucial role played by 

market access in satisfying food basic needs. Indeed, in spite of the growing adoption of the soil and 

water management actions (Figure 2a), the food self-sufficiency level oscillates around 28.96% during 

the simulated period. Figure 2e shows the dependence of household cereal consumption on cereals 

coming from the market, as a measure of instability. In the study area, the average percentage of 

purchased cereals over domestic supply of cereals is 44.89%. This index indicates the extent of 

vulnerability households are exposed to for cereal consumption, a main source of staples, when the 

access to market is disrupted or when the market price is volatile. Figure 2f exhibits the number of 

households with severe food insecurity, i.e. households that are not able to reach a food availability 

level higher than 70%.  
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Figure 2: CSA adoption and evolution of the food security dimensions.  

This figure shows the results from running 100 Monte Carlo simulations of the ABM using scenario A with our baseline 

information in a village of 100 households over a 90-year period. Figure 2a and b show the average share of adopters in 

the farmers population, who adopt the Climate Smart Agriculture technology, crop rotation or water and soil management 

action, respectively. Figure 2c, d and e show the average level of the respective food security metric - availability, self-

sufficiency, and instability, whereas Figure 2f shows the average number of households as defined in food insecurity 

severity.   

As shown by Figure 3, starting from a situation where there is an almost equal land allocation among 

the three agricultural productions (cereals, vegetables and fruits, and pasture for animal-based food 

products), the ABM modeling shows that land allocated to cereals and pasture increases (final level 

around 80% of total land). This redistribution of land among the crops favours the production of goods 

with higher economic returns (animal-based food) or that are more demanded by the households’ 

starch-based diet (cereals). With higher earnings, the farmers try to satisfy the demand for other food 

commodities on the market. Allocating more land to the food commodity at the base of their diet, the 

farmers are able to reach higher levels of self-sufficiency. However, the growth in level of satisfaction 

through self-sufficiency is bounded by physical constraints of the agricultural sector with concave 

yields and by population growth.  
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Figure 3: Average land allocation among agricultural productions.  

This figure shows the average results from running 100 Monte Carlo simulations of the ABM using scenario A with our 

baseline information in a village of 100 households over a 90-year period. The y-axis is the share of total available land 

allocated to cereals (blue bars), vegetables and fruits (red bars), and pasture for animal-based food products (yellow bars). 

(For interpretation of the references to colour in this figure, the reader is referred to the web version of the article.) 

Figure 4 shows the results of the ABM simulations for food availability, i.e., the ratio between food 

consumption and total food requirement. We divide the population in four groups according to climate 

smart agricultural practice adoption: non-adopters, farmers who adopt only WSA, adopters of CP but 

not WSA, and double adopters. Looking at the evolution of the food security indicators, all the four 

groups register an increasing trend in the average level of food availability, but farmers who adopt 

both CSA practices are able to reach the highest food security level. Moreover, comparing the 

dynamics of the four trends, we find that water and soil practices have a more stable impact on food 

availability than crop rotation in general, and a stronger positive impact in the long-run. 
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Figure 4: Food availability evolution by CSA adoption.  

This figure shows the average results from running 100 Monte Carlo simulations of the ABM using scenario A with our 

baseline information in a village of 100 households over a 90-year period. The y-axis is the average level of food availability 

for the four types of farmers: double adopters (dotted line), WSA adopters (solid line), CP adopters (crossed line), non 

adopters (dashed line). 

In summary, our analysis of the baseline scenario indicates that climate smart agriculture practice 

adoption is an effective strategy to improve the well-being of farmers by increasing their food 

availability. Their food availability increases come through a combination of higher food production 

and market purchases given increases in income from selling agricultural production on the market. 

However, the positive number of severely food insecure farm households highlights how heterogeneity 

in wealth, in terms of economic resources and available land, plays a crucial role which may be lost 

looking only at the average effects. 

3.2 The impact of social network in the climate smart adoption practices 

This section uses the ABM to perform a comparative analysis on the role of social networks on the 

farmers’ ability to reach adequate food security. The aim is to understand whether community social 

networks significantly increase the adaptive capacity of farmers through the sharing of best practices 

and mitigation strategies reducing their vulnerability in terms of food security. More precisely, we 

compare the system dynamics of the baseline scenario with two scenarios with altered social network 
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participation rates. In Scenario B, the community network is wider with 75% of the farmers in the area 

participating in each period, whereas in Scenario C the share of participants reduces to 45%.  

Figure 5 shows the results of the ABM simulations in Scenarios A, B and C on three dimensions of 

food security: availability, self-sufficiency, and instability. Each plot exhibits the distribution of a food 

security indicator level in the population for the three scenarios in one of the four demonstrated 

periods.7 

 
7 We do not represent food insecurity severity in Figure 5 because it is graphically less readable. The share of farmers in 

severe food insecure conditions already become close to zero in the second plot (from period 30) for all the scenarios.   
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Figure 5: Distribution of effects across households within a village.  

This figure shows the histogram of the food security indicators from running 100 Monte Carlo simulations of the ABM in 

a village of 100 households over a 90 year period using scenario A (social network extension 60%), scenario B (social 

network extension 75%), and scenario C (social network extension 45%). The y-axis is the number of households that fall 

into each of the bins defined in x-axis based on the level of the respective food security indicator. The first row represents 

food availability, the second row is self-sufficiency, and the third row shows food instability. 

Looking at food availability in Figure 5, we see that initially (t = 2) the levels are comparable across 

scenarios. At t = 30, almost all households in Scenario A and B reach the highest categorical level of 

food availability, while in Scenario C, where the social network is associated with a lower share of 

farmers, a few more households are left behind in the second to the highest food availability category. 

The lower social network participation reduces the possibility to share experiences among peers, 

negatively affecting the adoption of the water and soil management actions and reducing the farmers 

who gave up crop rotation practices as shown in Figure 6. Interesting, it seems that for food availability 
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an income effect emerges. Indeed, although both the CSA practices positively affect agricultural 

yields, only the adoption of WSA requires strong investments whereas CP does not need additional 

production costs leaving unaffected economic resources that the farmers can use to purchase food 

commodities on the market. A wider community network is beneficial if we look at the food security 

level achievable by self-production. Increasing the possibility to exchange information and learn best 

practices from neighbours, the adoption rate of WSA is higher (Figure 6), which strengthens the 

resilience of farmers to adverse and unexpected conditions, e.g., reduced yield under climate impact 

and loss of market access due to physical constraints. Investing in these practices, the households are 

able to increase their yields positively affecting the food security achievable without market transaction 

and to reduce their dependence on cereals from other areas (i.e., higher food self-sufficiency and 

stability as shown in Figure 5).      This suggests the crucial role of social networks, the market price 

dynamics of the food commodities, and population wealth played in food security.  
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Figure 6: CSA adoption rate in the three scenarios.  

This figure shows the average results from running 100 Monte Carlo simulations of the ABM in a village of 100 households 

over a 90 year period using scenario A (social network extension 60%), scenario B (social network extension 75%), and 

scenario C (social network extension 45%). The y-axis is the share of adopters in the farmers population. The solid line is 

the baseline scenario (A), the dashed line represents scenario B whereas the dotted line shows scenario C.  

3.3 The role of market access on food demand satisfaction 

As shown in Section 3.2, market integration is important for food demand satisfaction when self-

production is not able to achieve total household food demand. For this reason, in this section we test 

the ABM with a scenario (Scenario D) where the transportation infrastructures are not as well 

developed, and the constraints generated by geography and remoteness affect price transmission.  In 

this case the frictions in the food market endogenizes the evolution of prices, making them partially a 

function of local production and sales levels. 
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Reducing the market integration of the simulated village produces a growth in the price volatility of 

the food commodities, as shown in Figure 7 (solid line). The price of vegetables and fruits, and animal-

based food given limited market access are higher than the price when households do not have 

constraints on the market access (respectively +1.36% and +5.56% on average) whereas, thanks to its 

higher local supply, cereals have a lower average price (-6.12%). Apart from the average levels, it is 

worth noting that the prices of the commodities show higher volatility in less integrated markets, which 

decreases food availability and increases food instability and insecurity severity. Indeed, farmers living 

in remote areas or districts with less transportation infrastructure are more vulnerable to unexpected 

drops in yields because these directly affect the food available for supply and demand in the local 

market and the price of the food commodities on the market. 

 

Figure 7: Market price of food commodities.  
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This figure shows the average results from running 100 Monte Carlo simulations of the ABM in a village of 100 households 

over a 90 year period using scenario A (exogenous price formation) and scenario D (endogenous price formation). The 

figures represent price for cereals (first), vegetables and fruits (second), and animal-based food (third). The dotted line 

represents the price level if markets are integrated and prices are independent of local production and demand levels 

(Scenario A/Baseline), whereas the solid line is the price in non-integrated markets (Scenario D). 

Figure 8 shows the difference in food security levels reached by households in the ABM simulations 

between Scenario D and Scenario A/Baseline. In Scenario A, where the area is with higher market 

integration (i.e., better connected with transport infrastructures), the farmers are more resilient to the 

food shortage in their own district because we do not observe strong price oscillations which can reduce 

their ability to satisfy food demand by purchasing commodities on the market (see food availability; 

Figure 8a). The higher average price levels farmers face in the market when purchasing food, the fewer 

economic resources remain to be invested in agricultural production. Even if the scenarios show 

comparable CSA adoption rates (the difference in adoption between scenarios D and A is less than 

0.5%), the reduction in the economic endowment has a direct effect on agricultural productivity given 

that the farmers have more binding budget constraints for production input expenditures. This effect 

is even more severe for the farmers with less available resources, both in terms of land and economic 

assets, and it is translated into a wider share of population registering severe food insecurity in Scenario 

D than A, an absolute change of +27.14% (Figure 8d). 
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Figure 8: Difference in food security levels in Scenario D compared to Scenario A.  

This figure represents the difference in the food security indicators in Scenario D compared to Scenario A (blue solid line), 

and the indifference level (red dashed line). For each scenario the average results from running 100 Monte Carlo 

simulations of the ABM in a village of 100 households over a 90-year period is computed, and the difference between the 

scenarios is calculated. 

3.4 Can climate smart agriculture practices manage drastic climate change? 

This section expands the analysis by comparing Scenario E with climate projections under RCP8.5to 

Scenario A under RCP4.5. The aim of this analysis is to investigate whether, from a food security 

perspective, CSA practice adoption is an effective mitigation strategy to different pathways of climate 

projections. 

As shown in Table 3, at the beginning of the simulations the farmers in Scenario E are worse off than 

in scenario A exhibiting a lower adoption rate of CP practices and a higher implementation of WSA 

techniques. However, the results are reversed in the last two decades of the time horizon. Over time, 

the crop rotation adoption becomes higher in the Scenario E (+0.57pp8) whereas the WSA adoption 

comes to be lower (-2.08pp). These inversions in the CSA implementation rates mean that farmers 

prefer sustaining the soil fertility adopting costless practices to improve the self-sufficiency (+0.83pp), 

 
8 pp - percentage points 
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exploiting the positive effects of the WSA adoption (i.e. positive externalities in the neighbourhood) 

acting as a free-rider. This behaviour allows the farmer to spend the new savings from non-adopting 

WSA in the market food to reach a higher food availability level (+0.01pp). The stronger role of the 

food market access is also represented by the deterioration in the food stability. 

Scenario E minus Scenario A first twenty years last twenty years 

Crop rotation adoption rate -0.68pp +0.57pp 

WSA adoption rate  +2.01pp -2.08pp 

Food availability -0.51pp +0.01pp 

Food self-sufficiency -0.85pp +0.83pp 

Food instability  +0.78pp +1.41pp 

Food insecurity severity +7.78pp -0.00pp 

Table 3: Difference in CSA adaptation rates and food security indicators in Scenario E 

compared to Scenario A 

This table shows the difference in the results from running 100 Monte Carlo simulations using scenario E (with 14 climate 

models under RCP 8.5) compared to Scenario A (with the same 14 climate models but under RCP 4.5). pp means percentage 

points.   

The reason why the results in the two scenarios are not extremely different is shown in Figure 9. Figure 

9 exhibits the average water stress parameter dynamics (𝜌𝑡) among the 14 climate models in the 

Scenario A and Scenario E. Interestingly, in the reference geographic area, the representative 

concentration pathway 8.5 is coupled with a lower average water stress parameter (it is 0.4789 in 

Scenario E and 0.4679 in Scenario A) positively affecting the crop yields and the food security metrics, 

especially in the last twenty simulated periods.  
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Figure 9: Water stress parameter dynamics in the two scenarios 

This figure shows the average water stress parameter among 14 climate models using RCP 4.5 (Scenario A) and RCP 8.5 

(Scenario E).  

     In the first twenty years, Scenario E leads to higher water stress on average and the variation of 

climate impacts on crops is also higher, and therefore farmers register a drastic reduction in the food 

self-sufficiency level coupled with slightly lower food availability, compared to Scenario A. The      

increase      of WSA adopters in the farmer population in Scenario E      with respect to Scenario      A 

indicates that WSA is chosen by the farmers as a better adaptation strategy to severer climate impacts, 

although the strategy cannot fully counteract the adverse climate impact.      In the last twenty years, 

crops in Scenario E are projected to endure less water stress than Scenario A, and therefore the food 

self-sufficiency in Scenario E is higher than Scenario A while food instability is higher indicating 

households rely on market purchases for cereal consumption more heavily in Scenario E than in 

Scenario A. Overall, the analysis suggests that farmers adopting CSA actions fare better than the non-
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adopters, in which the effect of water and soil management practices on households well-being is the 

strongest in the scenario with more severe climate impacts.9 

4. Policy implications 

 This work provides a proof of concept for how an ABM can help understand the future dynamics of 

farmer adaptation to climate change through climate smart agriculture. In providing a forward looking 

model with endogenous interactions among agents, this modelling exercise, carefully calibrated to 

survey data from highland Ethiopia, develops new insights for policy makers beyond the micro-

econometric work that has so far developed in the literature (Di Falco et al., 2011; Asfaw et al. 2012). 

Specifically, it identifies multiple interlinked policy efforts that will be needed to maintain food 

security for Ethiopian households in the face of climate change. 

The model results show the importance of farmer networks in CSA adoption, market infrastructure in 

maintaining farmer wealth and food security, the importance of the economic endowment of farmers 

especially in the case of costly long-term investments. Policy makers would do well to develop 

extension models for the roll out of CSA that take advantage of farmer networks for spreading 

information. Our model does, however, have a warning for policy makers, which is that where CSA 

techniques are not especially profitable in the short-term, these social networks can severely reduce 

adoption of a long-term potentially profitable technology. This suggests the potential need for policy 

makers to lessen the short-term economic burdens of climate adaptation through CSA adoption.   

Policy makers also need to be aware that farmer willingness to adopt CSA does not guarantee food 

security for all farm households. Rather the model suggests that in zones with inadequate transport 

infrastructure we see volatility in endogenous local food prices that significantly reduces the ability of 

farmers to mitigate climate change through CSA adoption. This suggests that along with promoting 

 
9 See Figure A2 in Appendix for the percentage difference in food availability level between the two scenarios in the 

first (last) twenty simulated periods. 
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climate smart agriculture, policy makers in Africa and elsewhere should seek to activate food markets 

and supply chains as a complementary climate adaptation policy.   

Similarly, even when most farmers adopt CSA, our model also demonstrates significant heterogeneity 

in the food security benefits of CSA adoption. Up to a quarter of farmers, even with adaptation to 

climate change through CSA adoption, will still not reach adequate levels of food security for their 

households. Policy makers will need to develop additional policies to mitigate the effects of climate 

change to help this sector of the population.   

Finally, the modelling in this paper shows that climate adaptation through CSA adoption is useful but 

does not guarantee food security, especially with the strongest climate change scenarios. This suggests 

that policies to combat climate change are necessary complements to adaptation innovations.  Policy 

makers cannot just hope that farmers can adapt their way out of climate change, they need to be focused 

on lessening the effects of climate change, especially the probability of the most drastic levels of 

climate change.  

 

5. Conclusions  

We develop an Agent Based Model to investigate whether the Climate Smart Agriculture adoption 

dynamics positively affects food security of developing country farmers in a model calibrated to 

Ethiopian highland farmers. We do so using a multidimensional definition of the food security 

(availability, self-sufficiency, stability, and food insecurity severity) and incorporating social and 

ecological pressures (i.e., community network, environmental externalities and climate change) to 

understand farmer adoption of short- and long-term CSA techniques in rural Ethiopia. The analysis 

shows that CSA adoption is an effective strategy to improve the well-being of farmers through 

increases in crop yields and the economic returns from agricultural production. However, a high 

investment strategy such as WSA is not always suitable for farmers who aim to reach higher food 
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availability in a relatively short time frame. The food security response to the strategy also depends on 

farmers’ investment capacity and the remaining economic resources for market purchases to satisfy 

consumption needs. In coping with climate change, the model findings suggest that farmers adopting 

CSA fare better than non-adopters, although the CSA practices adoption is not able to fully 

counterbalance the severe climate pressures. 

Investigating explicitly the role of the social network, the analysis demonstrates the importance of 

community relationships to exchange information and best practices to increase the adoption rate of 

climate smart agriculture techniques. However, our output suggests that an equally crucial role in the 

adoption rate is played by the economic environment, i.e., by both the market price dynamics of the 

food commodities and the population wealth for food security. Farmers living in more remote areas 

are more vulnerable to food shortage in their own district. Having worse connection to the food 

markets, these farmers face stronger price oscillations which negatively affect their well-being. This 

outcome is even more severe for the poorer farmers, both in terms of available land and economic 

assets.  

Methodologically this work adds to the literature on climate adaptation by demonstrating how agent-

based model simulations that take into account neighbourhood learning dynamics can provide 

additional understanding to how farmers might adapt to climate change in the future. The farmers in 

this model are not passive recipients of climate change, but active learners who learn from their 

neighbours, past experiences, past climate, and market opportunities. The work shows how to move 

beyond backward looking models of climate smart agriculture to estimating adaptation possibilities in 

a complex socio-economic environment. Having demonstrated how an agent-based model can 

simulate farmer adaptation with climate smart agriculture, we see many future research avenues for 

use of this and similar agent-based models. These include calibrating the model to other locations in 

Africa and beyond, analysing other CSA-type interventions, and testing how market and supply chain 

interventions might inform policy makers of the ability of households to adapt to future climate change.     
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APPENDIX A 

Parameter Value Source 

Maximum number of plots per household 20 Headey et al., 2014; Gebreyes et al. 

2020 

Discount factor 0.9 Duflo et al. 2011 

Share of land affected by market driven 

mechanisms (ie cash crops) 

0.25 Gebreyes et al. 2020; Bazzana et al. 

2021 

Share of income re-invested in the production 

process 

0.95 World Bank (2013) 

Bias coefficient 1 Gebreyes et al. 2020; Bazzana et al. 

2021 

Average family size 5 Headey et al., 2014; Gebreyes et al. 

2020 

Impact of age on WSA adoption propensity 0 Simane et al. 2013; Wossen et al., 

2013 

Impact of age on CP adoption propensity -0.012 Simane et al. 2013; Wossen et al., 

2013 

Network impact on WSA adoption propensity +0.65 Simane et al. 2013 



42 
 

Network impact on CP adoption propensity -0.45 Simane et al. 2013 

Participation in social networks  60% Di Falco et al., 2011; Simane et al. 

2013 

Percentage of farms with irrigation  30% Simane et al. 2013; Gebreyes et al. 

2020 

Initial WSA adoption rate 78% Simane et al. 2013 

Initial CP adoption rate 32% Asfaw et al., 2012; Simane et al. 2013 

Population birth rate 31.26‰ United Nations, 2019 

Population death rate 6.67‰ United Nations, 2019 

Table A1: Sources of the main parameters of the model. 
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Figure A2: Difference in Food availability according to the farmer type inScenario E compared to 

Scenario A 

This figure presents the percentage difference in the food availability in Scenario E compared to Scenario A for the four 

adopter types. For each scenario the average results from running 100 Monte Carlo simulations of the ABM in a village of 

100 households over a 90-year period are computed, and the difference between the scenarios is calculated. The solid line 

represents the percentage difference in the first twenty periods, whereas the dashed line represents the percentage difference 

in the last twenty periods.    
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