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Abstract 

Globally about 800 million people live without electricity at home, over two 

thirds of which are in sub-Saharan Africa. Ending energy poverty is a key 

development priority because energy plays an enabling role for human 

wellbeing and economic activities. Planning electricity access infrastructure 

and allocating resources efficiently requires a careful assessment of the 

diverse energy needs across space, time, and sectors. However, because of 

data scarcity, most country or regional-scale electrification planning studies 

have been based on top-down electricity demand targets. Yet, poorly 

representing the heterogeneity in the electricity demand can lead to 

inappropriate energy planning, inaccurate energy system sizing, and 

misleading cost assessments. Here we introduce M-LED, Multi-sectoral 

Latent Electricity Demand, a geospatial data processing platform to estimate 

electricity demand in communities that live in energy poverty. The key 

novelties of the platform are the multi-sectoral, bottom-up, time-explicit 

demand evaluation and the assessment of water-energy-agriculture-

development interlinkages. We apply the methodology to the country-study 

of Kenya. Our findings suggest that a bottom-up approach to evaluating 

energy needs across space, time, and sectors is likely to improve the 

reliability and accuracy of supply-side electrification modelling and therefore 

of electrification planning and policy. 

 

1. Introduction 

Electricity is a direct input to virtually every economic sector. An abundant, 

affordable, and reliable provision of power is a necessary condition for 
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human livelihoods to thrive. This involves the achievement of nearly all the 

UN Sustainable Development Goals (SDGs) (McCollum et al., 2018; Nerini 

et al., 2018). Recent statistics on electricity access show that globally just 

under 800 million people (about 10% of the global population) live without 

access to electricity, more than two-thirds of which are in sub-Saharan 

Africa (IEA et al., 2020). Even in areas reached by electricity infrastructure, 

a large latent demand often persists (Fabini et al., 2014; Falchetta et al., 

2020; Poblete-Cazenave and Pachauri, 2019). 

In the context of energy planning to eliminate energy poverty, the assessment 

of the long-run electricity demand plays a crucial role (Leea et al., 2019). 

Namely, the choice of the most efficient electricity supply option and the size 

of the local generation capacity and storage system strongly depend on the 

assumed local demand. In turn, this demand is defined both by the hourly 

load curve and its peaks, and by the total energy consumption. The link 

between the target demand and electricity supply planning becomes very 

evident when carrying out country or regional scale studies with Geospatial 

Electrification Models (GEMs). GEMs are data-intensive computer-based 

tools that can support policymakers in the integrated evaluation of the most 

suitable and cost-effective technology for providing electricity access to all 

settlements (Adkins et al., 2017; Cardona and López, 2018; Kemausuor et 

al., 2014; Korkovelos et al., 2019; Mentis et al., 2017; Moner-Girona et al., 

2019, 2016; Morrissey, 2019; Ohiare, 2015; Parshall et al., 2009; Sanoh et 

al., 2012; Szabo et al., 2011; van Ruijven et al., 2012). Thanks to growing 

data collection and management facilities, bottom-up techno-economic 

electrification analysis has become widely available (refer to the Global 

Electrification Platform and the WRI’s Energy Access Explorer). Differently 

from approaches based on linear programming, GEMs do not aim at locally 

optimising energy systems for specific communities. Their main characteristic 

is that they allow to identify – country or region-wide – the optimal set-up (i.e. 
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the technology with the lowest local levelized cost of electricity) for providing 

electricity access at each settlement, along with the generation capacity and 

investment requirements. The cost-optimal set-up depends on the local 

energy resources and existing infrastructure.  

 

Yet, most of the GEM-based literature has been strongly supply-side 

oriented (Morrissey, 2019). Studies have focused mainly on residential 

energy services when defining the demand of settlements lacking electricity 

access, and have so far exhibited limited capacity of accounting for the 

electricity demand from services and productive uses driven by the 

presence of farms, small businesses, commercial activities, healthcare 

facilities, and schools. In these studies, the residential demand itself has 

mostly been calibrated with regional average residential electricity 

consumption levels of urban and rural consumers (Mentis et al., 2017; 

Szabo et al., 2011; Szabó et al., 2016; van Ruijven et al., 2012), with little 

within-country heterogeneity. Archetypical demand targets include – for 

instance – values for sub-Saharan Arica from the World Bank Multi-Tier 

Framework (Bhatia and Angelou, 2015) or specific per-capita consumption 

levels defined by decision makers under a medium-run time horizon (usually 

2030, the Sustainable Development Goals target year). 

Many studies exploiting GEMs based on such top-down characterisation of 

the demand have concluded that decentralised energy solutions will play a 

prominent role in guaranteeing that SDG 7.1.1 (the universal electricity 

access target) is met. For instance, the Africa Energy Outlook 2019 (IEA, 

2019) argues that mini-grids and stand-alone systems will serve 30% and 

25% of those gaining access, respectively. This means that for more than half 

of the households, the electricity access problem could be solved thanks to 

decentralised energy technologies. Yet, care is required in the interpretation 

of these results. The number and size of non-residential consumers in a 

community can have a crucial effect (Peters et al., 2019) on the total long-
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term energy demand, the peak loads, and consequently a direct effect on the 

optimal energy technology mix (diesel generator, PV, wind, biomass, hydro 

or hybrid technologies), on the optimal technology set-up (i.e. the choice 

between grid extension, mini-grid, or standalone solutions) and on the overall 

cost-benefit analysis of electrification (Brüderle et al., 2011; Morrissey, 2018; 

World Resources Institute, 2020). An inadequate or generic formulation of 

the demand might lead to inefficient allocation of budget and sizing of 

electricity infrastructure (Riva et al., 2019). Moreover, enabling services for 

the community and productive uses of electricity beyond basic household 

needs – such as energy use in agriculture, small businesses, and healthcare 

and education facilities –  is crucial to unleash local economic development 

(Riva et al., 2018). While substantial uncertainty persists over the structural 

welfare impacts of household electrification programs (Urpelainen, n.d.), 

there is robust evidence of the positive effect of electricity provision on time 

spent by household members in income-generating activities (Bernard, 2010; 

Bos et al., 2018; Rathi and Vermaak, 2017; Van de Walle et al., 2013). In turn 

– provided a set of conditions is satisfied – the electricity input might improve 

the income of the whole community (Peters and Sievert, 2016). 

Different approaches have been introduced so far to tackle these limitations. 

For instance, the adoption of more detailed and heterogeneous household 

consumption profiles (Trotter et al., 2017), the use of system dynamics (Riva 

et al., 2019), or the life-cycle assessment of embodied energy in goods and 

services that contribute to providing what is defined decent living energy (Rao 

et al., 2019). Yet, only few (Moner-Girona et al., 2019, 2016; Narayan et al., 

2018; Zhang and Zhang, 2019) of the existing GEM-based studies have so 

far taken into consideration field-validated load profiles or accounted for the 

existence of services and productive activities to estimate local energy 

demand requirements. To tackle these challenges, it has been argued that 

planning tools need to be improved, and evidence-based projections of 
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electricity consumption need to be used (Blodgett et al., 2017; Moner-Girona 

et al., 2018). The main roadblock to deliver a standard methodology to 

estimate electricity demand stems from the data-intensiveness of the 

estimation, the uncertainty over the quality of the existing data and about the 

different scenarios that forecast the energy demand growth over time, as well 

as the computational challenge to produce a high-resolution output.  

To advance the state-of-the art in the characterisation of the demand for 

electricity and ensuring that insights drawn from GEMs are suitable to 

empower communities in the context of electrification planning, here we 

introduce the open-source Multi-sectoral Latent Electricity Demand (M-

LED) geospatial data processing and assessment platform. M-LED enables 

an estimation of electricity demand in communities that live in energy 

poverty. The key novelty of the platform is its multi-sectoral, bottom-up, high 

spatio-temporal resolution evaluation, which altogether advances the state-

of-the-art on latent electricity demand characterisation. Here, by latent 

demand, we refer to demand which would exist if the infrastructure and 

techno-economic conditions to supply it would be met. Secondly, besides 

modelling different non-residential sectors including the agriculture, service, 

and productive activities, the platform includes a more detailed assessment 

of residential demand – representing heterogeneous appliances ownership 

and usage patterns and allowing for stochastic variability in the demand. 

Thirdly, the M-LED platform enables a characterisation of the seasonal and 

hourly variation in the demand from different sectors is of crucial importance 

for properly planning the energy system and assessing the complementarity 

of variable renewable energy sources supply curves with the demand.  

Finally, the multi-sectoral approach includes an assessment on the water-

energy needs and the nexus implications for agriculture-related activities. 

This encompasses an analysis of the potential revenues and costs from the 
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potential agricultural productivity growth thanks to artificial irrigation as a 

result of the provision of electricity.   

The remainder of the paper is structured as follows. Section 2 introduces the 

methodology of the M-LED platform to carry out the multi-sectoral, bottom-

up, high spatio-temporal resolution electricity demand evaluation. Section 3  

presents an application of the platform for country-study of Kenya. Section 4 

discusses the relevance of the results both from an energy modelling and a 

policy perspective, and it and highlights potential future applications of the M-

LED platform.  

2. Materials and methods 

2.1. The Multisectoral Latent Electricity Demand assessment platform 

An integrated electrification plan must identify and target population 

catchment areas (in this study defined as clusters; refer to SI-A1) and the 

different local electricity consumption drivers. These include residential 

demand, productive activities, and several service-provisioning facilities. The 

M-LED platform is an open-source, bottom-up platform designed to 

characterise power requirements across different sectors. The platform 

combines openly available geospatial information, modelling instruments, 

and scenario analysis to support a sectoral-inclusive electrification planning 

(see the SI for a detailed description of the underlying Materials and 

Methods). The input data sources are openly accessible and are reported in 

Table SI1. The data processing procedure collates field and remotely sensed 

observations. The lack of data or uncertainty over future evolutions over 

certain sectors is tackled with explorative modelling. Figure 1 offers an 

overview of the workflow. The methodology is based on an array of Python-

based open-source GIS algorithms (from Quantum-GIS, GRASS-GIS, 

SAGA-GIS, and GDAL) complemented by intermediate R scripting. 
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Figure 1: Conceptual framework of the M-LED platform. (a) Residential 

demand: clustering and appliance baskets generation and parsing; (b) 

Healthcare and educational demand: geolocation and classification of 

facilities and appliance baskets generation and parsing; (c) Agricultural 

uses (irrigation and crop processing) loads (see Figure 3 for further 

details), micro enterprises and commercial demand: drivers of energy 

demand assessment and sectoral demand calculation; (d) Model Output: 

Cluster and Sector -specific yearly Load Curves with month level seasonality 

and 1-hour resolution. (e) Assessment of costs and revenues of 

increased agricultural productivity. (f) The produced output is intended 

to be fed in geospatial electrification models for more effective energy 

planning: this is not included in the present work. 

 

The platform exploits the RAMP (Remote-Areas Multi-energy systems load 

Profiles) model (Lombardi et al., 2019), which supports the creation of 

stochastic, seasonal-heterogeneous energy demand profiles. The underlying 

stochastic process lies in the structure of the bottom-up model adopted for 

load profile generation (Figure 2). The structure consists of three different 

layers of modelling: the User Type, the User and the Appliance layer. “The 

first layer consists in the definition of a set of arbitrary User types (e.g. 

Household, Commercial activities, Public offices, Hospitals, etc.). Each User 

Type is subsequently characterised in terms of the number of individual 

Users associated to that category (second layer) and in terms of Appliances 

owned by each of those Users (third layer). The three-layer structure allows 

to independently model the behaviour of each jik-th Appliance, so that each 

individual ji-th User within a given i-th User Type will have a unique an 

independent load profile compared to the other Users of the same Type. The 

aggregation of all independent User profiles ultimately results in a total load 

profile, which is uniquely generated at each model run. Multiple model runs 

generate different total load profiles, reproducing the inherent randomness 

and unpredictability of users' behaviour and allowing to obtain a series of 

different daily profiles” (quoted from Lombardi et al., 2019).  
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Figure 2: Schematic framework of the RAMP stochastic load generation model. 

Source: Lombardi et al. (2019).  

The M-LED platform generates instantaneous electricity demand load curves 

(rendered at a one hour time step) and then derives the monthly (seasonal-

varying) and yearly-aggregated consumption levels. The outputs consist of 

georeferenced layers for the estimated latent (i.e. currently unsupplied) 

electricity demand within population clusters from a set of residential, 

productive activities, and services. Residential, health, and education load 

profiles are computed following a probabilistic distribution starting from field 

campaign or literature-validated appliance ownership and use patterns under 

an array of scenarios (See SI). Agricultural (irrigation and crop processing) 

and micro enterprises loads are assessed combining techno-economic 

modelling and literature estimates. 

An applicative example for Kenya is provided (with accurate country-specific 

data and a comprehensive assessment on the water-energy needs for 

agricultural activities). The key added value of the M-LED methodology is that 
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its results will allow carrying out supply-side planning of energy access 

systems according not only to the energy resource availability but also to the 

local specific community and productive load profiles, including daily, weekly, 

and seasonal variation, which can significantly affect system design (Huld et 

al., 2017). On top of that, the M-LED geospatial analysis allows to identify 

agricultural productivity growth hotspots where investment can be prioritized 

to leverage the strongest welfare impact. For instance, the platform estimates 

the increase in the revenues from the potential boost in the per-hectare yield 

due to artificial irrigation, which in turn might compensate for the low ability-

to-pay for energy services of rural dwellers (Blimpo and Cosgrove-Davies, 

2019). 

The code and data for the M-LED platform are hosted at the public repository 

https://github.com/giacfalk/M-LED, which also includes a maintained 

documentation at https://github.com/giacfalk/M-LED/wiki.  

 

2.2. Residential, services, and micro-enterprise loads 

Residential electrification plays a crucial role for human wellbeing, for 

instance by enabling telecommunications, conserving food fresh, indoor air 

circulation and cooling, and night-time activities. In fact, most electrification 

efforts and targets, including SDG 7.1.1, focus on bringing electricity to all 

households. Yet, also a large number of healthcare and education facilities 

face significant constraints in their activity because they are unable to 

operate appliances that are crucial for guaranteeing the wellbeing and 

development prospects of local population (Adair-Rohani et al., 2013; 

Sovacool and Vera, 2014). Finally, the provision of electricity can foster 

small entrepreneurial activities such as small shops, mini-markets, 

handcraft and telecommunication services retail (Bose et al., 2013; Kariuki, 

2016; Manggat et al., 2018) which can represent a significant leverage for 

broader socio-economic development (Kongolo, 2010).  
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With regards to residential electrification, to tailor infrastructure efficiently it is 

necessary to distinguish among different household types. A relevant 

example is the introduction of ESMAP’s Multi-Tier Framework for Measuring 

Energy Access (Bhatia and Angelou, 2015). To estimate household demand 

in a flexible way, the M-LED framework is designed to ensure a large degree 

of heterogeneity in residential power demand. We construct 5x2 = 10 

archetypical types (five in urban areas, and five in rural settlements) of 

households by electrical appliance ownership and use patterns. These are 

designed starting from a systematic screening of the literature (Adeoye and 

Spataru, 2019; Blodgett et al., 2017; Kotikot et al., 2018; Lee et al., 2016b; 

Monyei et al., 2019; Monyei and Adewumi, 2017; Sprei, 2002; Thom, 2000) 

about electricity consumption in developing countries and parametrised 

based on data from recent field visits in Kenya by the authors and their team 

(2019). The empirical screening provides the rationale to compile tables of 

appliances and usage patterns (refer to SI-A2) for each household type. A 

total number of 22 appliances is selected and modelled across 11 dimensions 

(ownership, number of appliances per user, appliance power, number of daily 

functioning windows, windows start and end times, percentage of variability 

of windows start and end times, daily functioning time, percentual of random 

variability of daily functioning time, minimum time the appliance is kept on 

after switch-on event, percentage of occasional use, weekend or weekday 

use). These dimensions are summarised in Table 1. In order to account for 

seasonality of the load in the residential sector, the climate variable is taken 

into account and the months of January and December are considered the 

hottest in the country, while June and July the cooler. The appliances related 

with thermohygrometric well-being inside the households, namely fans and 

air conditioning systems, are modelled according to this climatic variability. In 

detail June and July are assumed to have no use of such appliances, and the 

other months gradually increase their use up to a full use in the months of 

January and December. Given the proximity to the equator of the country, 
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dusk and dawn times are considered to not vary significantly enough to justify 

seasonal variation of time of use of appliances and lights. The entire set of 

modelled appliances, users and user types with relative parameters are 

reported in Supplementary File F1. 

 

Table 1: Dimensions considered in the stochastic demand assessment 

Dimension Description Range 

Ownership 
Category of User that owns the 
appliance 

User Type 

Number of appliances per 
user 

Number of that specific 
appliance owned by the user 

Non-negative [-] 

Appliance power 

Nominal power of the specific 
appliance, allows for a random 
variability in a defined range for 
thermal appliances 

Non-negative [W] 

Number of daily functioning 
windows 

Number of time “windows” in 
which the appliance is used 
during the day 

1-3 [-] 

Window start and end times 
Hours of start and end of time 
windows in which the appliance 
can be used 

00:00 – 23:59 

% variability of window start 
and end times 

percentage of allowed random 
variation of the length of the 
usage windows 

0-100 [%] 

Daily functioning time 
total amount of time that the 
appliance is used during one day 

0-1440 [min] 

% of random variability of 
daily functioning time 

percentage of allowed random 
variation of the total daily time of 
use 

0-100 [%] 

minimum time the appliance 
is kept on after switch-on 
event 

minimum amount of time the 
appliance stays on after has 
been switched on 

0-1440 [min] 

percentage of occasional 
use 

probability that the appliance is 
used on a single day 

0-100 [%] 

Weekends or weekdays use 
allows to constrain the usage of 
the appliance only in weekdays 
or in weekends periods 

we / wd / none 
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Thereafter, the RAMP stochastic demand model (see Figure 2) is used to 

simulate for each of the ten household classes a representative community 

of n=100 households (to ensure sufficient stochasticity). For each cluster i, 

The RAMP model generates 12 month-specific load curves (in W), at a 

minute time-step for 365 days, from which it is easy to calculate the total 

residential power consumption (in kWh). 

To parse the simulated energy demand profiles with each population cluster 

(see SI-A3), we firstly evaluate the statistical association between the 

distribution of the population with electricity access across electricity access 

tiers (based on validated, satellite-derived data on the prevalent tier of 

electricity access at each pixel (Falchetta et al., 2019) and with reference to the 

World Bank Multi-Tier Framework for measuring energy access (Bhatia and 

Angelou, 2015)) and the type of settlement (urban or rural prevalence (A.J. et 

al., 2019)), the local population density and the distribution of wealth within of 

sub-Saharan African countries (based on household survey data from the 

USAID DHS StatsCompiler (USAID, 2009)). Then, based on the regression 

coefficients we allocate each household without access to electricity 

enclosed in each cluster to each of the RAMP-generated demand profile 

archetypes. The process therefore assumes that the distribution among 

electricity access tiers of those who already today benefit from electric 

services at home in each cluster will also apply to households that will gain 

electricity access in the future. 

The service infrastructure energy demand is modelled in a similar fashion to 

the residential assessment, we design baskets of appliances ownership and 

use for tiers of each category of facility (detailed in Supplementary File F2). 

Scientific (Giday, 2014; Olatomiwa et al., 2018) and gray (Action, 2013) literature 

on the theme exists, but is often generic and usually scarce when it comes to 

sub-Saharan Africa. Thanks to a field campaign  conducted under the 
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supervision of the authors in primary schools and rural healthcare facilities of 

Kenya and based on a survey and empirical observation of the appliance 

ownership and use, energy consumption, and pupils or hospital beds hosted, 

we are able to reconstruct the field energy demand data in the RAMP model 

and allocate it to the (latent) demand of clusters where similar facilities are 

located. Information on operational healthcare facilities is based on open-

data on the location and characteristics of public1 healthcare facilities (Maina 

et al., 2019). Similarly, open-data for the position and size of schools is 

retrieved (“Kenya Open Data Initiative - Humanitarian Data Exchange,” n.d.). 

We classify healthcare facilities into five tiers following the criteria presented 

in the SI A-4 and the facility type explicated in the original dataset (Maina et 

al., 2019). Once information about the location and typology of healthcare and 

education facilities is compiled, we calculate the density of facilities of each 

tier in each cluster. Based on this information, we estimate the total local 

sectoral demand exploiting the 1-minute resolution, tier-heterogeneous, 

monthly-seasonal demand profiles calculated in RAMP. The seasonality of 

school facilities is indeed dependent on the national school calendar2, and 

has been modelled accordingly. 

 

Approximating the residual productive demand from microenterprises (in 

the context of developing countries defined as small businesses employing 

few, generally household-related, people and with a limited turnover) is 

challenging task because of the lack of granular country or region-wide data, 

which makes it impossible to model at an appliance, plant, or facility level. 

Proxy estimation approaches have been introduced (Moner-Girona et al., 

2019; Parshall et al., 2009). Here (see SI-A5) we propose a model based 

on employment, infrastructure proximity, and wealth to create a bottom-up 

 
1 To date there is no comprehensive publicly available dataset of private healthcare 
facilities in sub-Saharan Africa.  
2 https://publicholidays.co.ke/school-holidays/2020-dates/ 
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residential demand multiplier factor ranging between +30% and + 60% 

(Moner-Girona et al., 2019). In particular, we carry out a PCA (principal 

component analysis) to create a composite index based on relevant drivers 

of productive activities (such as road density, accessibility, employment 

levels and wealth distribution). The composite index is used to define the 

local residential demand multiplier factor, which is used to derive the yearly 

productive demand on top of the residential demand. The baseline load 

curve (share of demand at each hour of the day over the total daily demand) 

of micro productive activities is assumed to follow the same path of that 

described in Moner-Girona et al. (2019) for Kenya, which in turn is derived 

on real metered data. A seasonal variation is imposed on the baseline load 

curve, so that each monthly curve follows the same monthly relative mark-

up observed in the residential demand.  

 

2.3. Load curves for agricultural productive uses: the relevance of the 

WEF nexus (Water, Energy, Food security)  

Currently in sub-Saharan Africa more than 90% of total cropland is rainfed 

(Xiong et al., 2017), with the figure standing at about 95% in Kenya (The World 

Bank, 2019). Together with the lack of fertilisation, the unmet irrigation water 

demand implies a situation of sub-optimal production, in what has been 

defined the yield gap (GYGA, 2017; Mueller et al., 2012). Moreover, the bulk 

of the production is either for subsistence purposes or is sold to wholesale 

markets unprocessed. This is because of the lack of crop processing 

facilities in most small and medium farm businesses (Sims and Kienzle, 2017, 

2016), also because of the lack of energy supply to power those plants, as 

well as due to market accessibility issues. Most farms thus sell their 

production to few large processing plants or supply it directly to wholesale 

markets, where crops are shipped abroad for overseas processing in larger-

scale and more efficient plants. The transition from rainfed to artificially 
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irrigated agriculture through surface or groundwater electrical pumping thus 

provides a relevant example of how an electricity input could dramatically 

boost rural productivity. Moreover, generating value added through local 

crop processing (Kyriakarakos et al., 2020) and retaining it among farms 

would considerably boost local socio-economic prospects, with the potential 

to set a positive feedback involving the entire local rural community. To 

enable these uses, the provision of energy is necessary (Barnes and Floor, 

1996; Cabraal et al., 2005; Kirubi et al., 2009; Pueyo and Maestre, 2019), 

along with the purchase of machineries and infrastructure. In fact, currently 

85% of the global population without electricity access is concentrated in 

rural areas (IEA et al., 2020). While planning energy solutions which can 

comprehensively enable agricultural uses might increase the required 

power capacity and upfront investment, it might also render them 

economically attractive because of the significant reduction in the payback 

time of those investment thanks to the increased rural productivity 

(Kyriakarakos et al., 2020). 

Following this paradigm, here (Figure 3) we estimate the energy 

requirements to enable sufficient artificial irrigation (SI-A6-7) and raw crop 

processing to more refined crop products (SI-A8), with the final objective of 

evaluating the potential local economic gains (SI-A9). For irrigation 

modelling, Agricultural land, hydroclimatic factors, and cropping patterns 

information is conveyed in a set of agroclimatic equations to estimate daily 

irrigation water requirements in each cluster. Then, a groundwater pump 

model estimates the required power and flow rate of the pump as a function 

of the groundwater dwell characteristics and of the irrigation requirements.  

 

For crop processing energy, an extensive literature review of crop 

processing energy requirements in the context of developing countries is 

carried out and associated to crop-specific cropland extent and average 

yield in each cluster. Finally, the most recent database of wholesale prices 
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for a large basket of crops in Kenya relative the location of each wholesale 

market is multiplied to the local potential for yield increase of each crop, net 

of transportation and total (installation, operation, and maintenance) 

pumping costs. 
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 Figure 3: Workflow of the agricultural sector in the M-LED framework. (c1) Water pumping electricity 

requirement estimation procedure. (c2) Crop processing electricity demand estimation. (c3) Agricultural revenues 

calculation.  
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3. Results 

3.1. An applicative example for Kenya: electricity demand revised  

We select Kenya as a country-case study to provide a proof-of-concept of the 

implementation of the M-LED framework to evaluate sectoral, spatial and 

temporal energy demand heterogeneity. The selection is the result of two 

factors. First, data and geospatial information availability in Kenya is 

remarkable compared to most of SSA countries, which renders the platform 

implementation comparatively more accurate. Second, a large number of 

assessments have been carried out on electricity access planning in Kenya 

(Berggren and Österberg, 2017; Fabini et al., 2014; Moksnes et al., 2017; Moner-

Girona et al., 2019; Parshall et al., 2009), and thus there are significant 

opportunities for better understanding the impacts of our multi-sectoral, 

bottom-up electricity demand modelling on the outputs of several 

electrification planning models. On top of it, the lack of available and 

complete field energy profile data in Kenya offers the opportunity to the M-

LED to evaluate and intercompare the significance of the different demand 

scenarios. A selected list of these studies – all focusing on geospatial 

electrification analysis for Kenya but applying different tools and assumptions 

– include refs. (Lee et al., 2016a; Moksnes et al., 2017; Moner-Girona et al., 2019; 

Parshall et al., 2009).  

The panels of Figure 4 provide the resulting spatially-explicit (the original 

results are at a polygonal cluster-dependent resolution; here to ensure a 

more immediate understanding, they are plotted on a 1x1 km grid) sectoral 

electricity latent demand generated for Kenya with the M-LED platform. The 

estimated demand encompasses multiple dimensions: sectoral granularity; 

monthly seasonality in the demand; hourly profile; and spatial distribution of 

the demand.  
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Figure 4A shows the distribution over space of yearly sectoral latent 

electricity demand density (MWh/year/km2). Note that white pixels identify 

areas with either no population or no sectoral latent electricity demand, such 

as natural parks, protected areas, or cropland (for sectors different from 

agriculture). The results show that substantial heterogeneity is observed in 

the residential and commercial and micro-enterprise demand: both are 

highly correlated with population density, with significantly higher latent 

demand in south-western Kenya. Yet in some areas (e.g. in northern Kenya) 

commercial and micro-enterprise demand is comparatively lower than the 

A 
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residential demand because of lower employment and market accessibility. 

Irrigation and crop processing electricity demand are concentrated in the 

agricultural districts in the south-west of Kenya, while healthcare and 

education demand are more scattered across the country, although with 

higher density in higher density populated areas. In particular, healthcare 

facilities are highly sparse but at the same time exhibit a high demand 

density, while schools are relatively more distributed but less electricity 

intensive. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4B depicts the hourly and monthly distribution of the demand across 

sectors.  Residential demand shows a curve with three peaks, during wake-

up, lunch, and evening times. A similar polymodal distribution characterises 

commercial and micro-enterprise demand Most of the seasonality is 

B 
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explained by the variation in the use of air circulation and cooling appliances, 

since residual uses are rather invariant throughout the year given the 

proximity of Kenya to the equator. Educational centres show variation in 

months of year and term breaks with energy demand bimodal distribution with 

peaks in the morning and in the afternoon. Healthcare results show  relatively 

little seasonal variation, with unimodal normal distribution with a peak at 

midday for healthcare. Agricultural-related activities show high seasonal 

variance in the monthly profiles, but the load of the two curves are however 

flat throughout the energy use windows, 5 am – 9 am and 9 – 11 pm for 

irrigation and 6 am – 6 pm for crop processing machinery.   

 

  

 

 

 

 

 

 

 

 

 

Figure 4C summarises the yearly aggregated latent demand across sectors 

in Kenya and its repartition among the eight regions of (visualised on a map 

in Figure 4D). The country-wide aggregation shows that the supply 

requirements are unevenly split into the residential (at about 1.5 TWh/year, 

or 48% of the total 3.1 TWh/year), commercial activities and micro-

C 
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enterprises (nearly 0.75 TWh/year, about one quarter of the total), healthcare 

(about 0.22 TWh/year, or 7%), education (0.18 TWh/year, 5.7%), irrigation 

(0.42 TWh/year, 13.5%), and crop processing sectors (about 0.07 TWh/year, 

only about 2%). Additional insights are drawn when considering the 

repartition of those aggregate energy requirements across the eight main 

regions of Kenya, as well as the shares of each sector within each region. 

The Rift Valley region is the region with the largest latent demand (about one 

third of the total latent demand), driven mainly by the residential and 

productive sectors; it is followed by the Western region (about 25% of the 

country latent demand), with a similar repartition. Notably, in the Central 

region irrigation latent energy is by far the first sector (>two thirds of the total).   

 

Figure 4: Sectoral demand loads in population clusters of Kenya estimated 

with the M-LED methodology. (A) Maps of Kenya representing: (i) the estimated 

residential demand density for households that require electrification 

(MWh/year/km2); (ii) the total healthcare and education demand density for facilities 

requiring electrification (MWh/year/km2); (iii) the water pumping and crop processing 

demand density (MWh/year/km2); (iv) the micro-enterprise and commercial activities 

D 
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electricity demand density (MWh/year/km2); (B) Total (country-wide) typical daily 

sectoral load profiles, by month (MWh/hour in each demand cluster); (C) 

Barplots comparing the yearly total regional and country-level sectoral latent 

electricity demand (TWh/year); (D) Map of the corresponding regions in Kenya. 

 

3.2. Comparison of the estimated demand with previous studies 

A systematic comparison of our results with previous demand estimates 

found in the literature (in most cases used to parametrise geospatial supply-

side electrification models) is not straightforward. This is because of the 

differences in both how this demand is formulated (e.g. yearly sectoral 

consumption in kWh or representative day load curves in W) and how it is 

parsed to settlements (urban/rural, poor/non-poor). Nonetheless, a number 

of insights can still be drawn.  

For instance, Moksnes et al. (Moksnes et al., 2017) adopt tier-based values 

of 44 and 423 kWh/capita/year for rural households and of 423 and 599 

kWh/capita/year for urban households in the two scenarios they consider. 

This yields to average demand values of 141 and 468 kWh/capita/year for 

households to be electrified. Yet, the study considers neither the temporal 

variability in the demand nor additional demand sectors. 

Parshall et al. (Parshall et al., 2009) allocate household demand to a range 

of 360-1800 kWh/hh/year depending on their urban or rural status and the 

prevalence of poverty in the region where they are located. Productive 

demand is fixed across the same categorisation, with values between 50 

and 340 kWh/hh/year. This results in an average yearly productive to 

residential demand ratio of 0.18  Irrespective of the model not encapsulating 

an explicit temporal dimension of the demand, a peak load is assumed 

across productive, service, and institutional uses of energy through a peak 

coincidence factor. The authors assume the following yearly total electric 

consumption for different facilities: clinic – 360 kWh/year, dispensary – 600 
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kWh/year, health centre – 2400 kWh/year, primary school (day) – 1200 

kWh/year, secondary school – 2400 kWh/year, boarding school – 15,000 

kWh/year. Hospitals were not included because they were assumed to 

already have adequate access to electricity.  

Moner-Girona et al. (Moner-Girona et al., 2019) define a different load 

profile for each energy demand sector. each load profile is the same all year 

round without seasonal variability but different load peak depending on the 

location (i.e. number of population) year. In particular, for productive 

activities small-scale industrial infrastructures with a range of 1500 

kWh/year to 3100 kWh/year and commercial activities with a range of 1200 

kWh/year to 1800 kWh/year year are considered, while for household 

demand they follow the approach of (Parshall et al., 2009) to allocate Tier 3 

and Tier 4 yearly consumption values, i.e. 365 and 1020 kWh/hh/year.  

In the M-LED platform application for Kenya we estimate average urban and 

rural residential electricity demand of 62 and 842 kWh/hh/year, respectively. 

Yet, it must be remarked these values do not represent the heterogeneity in 

the demand that characterised our methodology. The country-wide average 

yearly productive (commercial and agricultural) to residential demand ratio 

of our assessment is of about 0.8, while the services (healthcare and 

education) to residential demand ratio is of 0.25. We calculate average 

healthcare facility consumption values of 2,200 kWh/year for dispensaries, 

10,900 kWh/year for health centres and 124,886 kWh/year for sub-district 

hospitals. For schools, we estimate a value of about 6,000 kWh/year for a 

700 pupils institute.  

In general, this comparison suggests that the detailed characterisation of 

our study leads to significant differences with a number of previous studies. 

Firstly, including productive sectors in our characterisation increases 

notably both the total load of settlements and the productive-to-residential 

demand ratio. Secondly, it leads to a larger spread in the residential demand 
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between urban and rural areas. Yet, when encapsulating activities such as 

artificial irrigation and crop processing, the gap in the demand between 

settlement types is reduced.  

On the other hand, a visual comparison of demand maps suggests that the 

spatial distribution of demand hotspots is identified similarly through 

different approaches, provided sectors additional to the residential demand 

are considered. This is because the key non-residential demand drivers 

considered in these studies are often similar and highly correlated among 

each other, such as population density, urban/rural prevalence, poverty 

density or wealth distribution, and the geographical position of service and 

productive infrastructure and of crop fields. Yet, studies focussing on 

achieving universal electrification based on residential demand only flatten 

the heterogeneity in the demand. For instance, by setting a top-down rural 

demand they significantly underestimate the demand of rural settlements 

compared to urban areas;  

 

3.3. Impacts of artificial irrigation: increasing local agricultural 

revenues 

The M-LED platform allows the cost-benefit analysis at (partial) local micro-

economic level (SI-A9). The cost-benefit analysis of the increased agricultural 

yield due to groundwater pumping serves as an applicative example to show 

one of the many aspects of local development that could be triggered by 

electrification. The analysis estimates the irrigation needs to close the yield 

gap by calculating the current yield (in t/ha) of each crop in each agricultural 

cluster and comparing it with the mean yield of the same type of crop in global 

areas falling in the same irrigated agro-ecological zone. The workflow then 

evaluates the potential local economic value added. The potential revenues 

for local producers are calculated by subtracting transport and total pumping 

costs to revenues (in turn calculated assuming the wholesale crop price in 
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local markets). It is crucial to remark that these revenues are direct revenues 

to the producers, so they do not include so does not include export, taxes, 

and additional cost components. For the Kenyan case study, each crop 

wholesale price is assumed to be the 2019 price observed at the nearest 

wholesale market to each functional agricultural cluster (obtained from 

NFAIS, the National Farmers Information System of Kenya; 

http://www.nafis.go.ke). The transportation costs of crops from field to 

wholesale markets are calculated including the fuel consumption, truck rental, 

and time cost of carrying the extra agricultural production to the market 

following the shortest path based on recent accessibility maps (Weiss et al., 

2018). The pumping costs are calculated estimating a multivariate regression 

of total pumping costs (including installation, operation, and maintenance 

components) on the well depth, the pump yield, and their interaction based 

on real field data from Xenarios and Pavelic (2013).  
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Figure 6A shows the maximum theoretical yield gap in current cropland for 

each specific crop. These aggregated values express the national yield gain 

potential if cropland was optimally irrigated, fertilised and managed (the latter 

two components are not modelled in this study). The results show that 

significant increase in the crop production exists for maize (>6 million 

tons/year), potatoes (>2 million tons/year), sugarcane (about 2.5 million 

tons/year), and bananas and fresh vegetables (both at about 2 million 

tons/year). Yet, the effective profitability of this potential yield gains is a 

function of several factors: crop prices at wholesale markets, groundwater 

pumping costs, and transportation distance and time (and thus costs) to these 

markets. In electrification supply-side analysis, agricultural revenues can be 

compared to the local electrification investment requirement to assess what 

would be the payback time of the local electricity access investment if it was 

covered by the additional agricultural yield generated thanks to electrification 

itself. 
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Figure 6: Potential revenues from the increased agricultural yield thanks to 

artificial irrigation. (A)  Maximum theoretical yield gap for each deployed crop in 

Kenya (yield comparison with and without artificial irrigation) (B) Map of Kenya 

showing the total revenue gain (in USD/ha/year)  at current crop-specific market 

prices including subtraction of field to market transportation costs and groundwater 

pumping total costs. 

Figure 6B summarises the results of the model-based assessment with a 

map of Kenya plotting the potential revenues (net of transportation and 

pumping costs) from the increased agricultural yield thanks to artificial 

irrigation at each cluster. The map shows that in rural Kenya there are vast 

areas with gain potential of up to 2500 USD/ha (especially in the already 

comparatively more profitable agricultural district in western Kenya), and 

even larger areas with more modest but widespread revenue growth 

potential. These potential gains are very relevant especially if compared to 

the current income levels of rural Kenya. The proportion of Kenyans living on 

less than the international poverty line is in fact at 36.1% (“Poverty Incidence 

in Kenya Declined Significantly, but Unlikely to be Eradicated by 2030,” n.d.). The 

poverty line is set at 1.90 USD per day in 2011 PPP; thus, assuming an 

average household size of 3.5 (United Nations, Department of Economic and 

Social Affairs, Population Division, 2019), as an yearly household income of 

2,427 USD. Overall, summing all the potential revenues in the country, a total 

potential of $4.9 billion/year results, about 5% of the 2019 Kenyan GDP. 

4. Conclusion and policy implications 

A detailed formulation of electricity demand is a crucial factor in energy 

access planning. This is also reflected in the outcome of supply-side 

electrification models.  Here we have introduced M-LED, a flexible platform 

for generating electricity demand curves based on a multi-sectoral bottom-
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up device-based approach. We have then applied the platform to the country-

study of Kenya.  

The analysis provided an array of novel policy-relevant insights, the crucial 

ones being that modelling electrification based on residential demand only is 

likely to strongly underestimate the total demand of settlements (and chiefly 

rural areas), confirming recent assessments in the literature (Moner-Girona 

et al., 2019). In particular, including healthcare, education, commercial and 

micro-enterprise, and agricultural energy uses implies (country-wide) a more 

than doubling of the estimated yearly latent demand vis-à-vis residential only. 

This mark-up is even greater in agriculture-intensive rural areas where 

energy uses for irrigation and crop processing might be significant higher in 

relative terms. Another crucial insight is given by our hourly and seasonal-

variant formulation of sectoral load curves, which could have a significant 

impact on the optimisation of energy systems, in particular when paired with 

variable renewable energy supply curves.  

This paper introduces the demand estimation methodology and results. Yet, 

future functionalities, currently in the design stage, will link the high-resolution 

hourly, seasonal, and sectoral demand estimates into an array of electricity 

supply planning models. The new functionality will allow to carry out an 

independent assessment for several electrification planning models and 

understand the significance of considering the new multi-sectoral and 

seasonal dimensions.  

Concerning the specific country-study of Kenya, our analysis reveals that the 

sectors considered in this study as additional to the residential sector 

constitute a very relevant share of the total latent demand in areas electricity 

access deficit. In aggregated terms, they account for ~53% of the yearly 

latent electricity demand, or 1.65 TWh/year. The ratio between residential 

and non-residential demand is even more pronounced in the Central region, 

where although the household electricity access levels are already quite high, 
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agriculture-related activities necessitate significant electricity input which 

today is largely missing. Additionally, in population-dense areas productive 

and commercial demand also has a significant impact on the final regional 

demand.  

On top of the detailed latent electricity demand results, the M-LED platform 

enables an analysis of the potential economic returns from the agricultural 

sector as a result of the artificial irrigation. This reveals an untapped revenue 

potential (net of transportation and groundwater pumping costs) of about $4.9 

billion/year (about 5% of the 2019 Kenyan GDP). This suggests significant 

economic potential that in many areas may quickly pay back the 

electrification investment if properly accounted by decision makers in the 

cost-benefit analysis and supported by policies stimulating improved land 

management and fertilisation. Yet, it must be remarked that additional 

relevant dimensions that might affect the results of the analysis in the future 

include the price change of products owing to crop processing and local value 

creation and the efficiency gains in transport from improved road or rail 

transportation and logistics. 

The M-LED platform is open-source and fully customisable to let the user 

define the bulk of the technical and economic parameters, the devices 

ownership and usage patterns, and the overall infrastructure. Irrespective of 

the large amount of work involved in the development of the M-LED platform 

and in the formulation of its assumptions, limitations remain. Firstly, a limited 

number of sectors is estimated; secondly, the data-intensiveness of the 

analysis implies growing uncertainty over the reliability of the database, as 

(despite a careful data selection and wrangling) some sources such as 

infrastructure and facilities location and characteristics might be outdated or 

biased; thirdly, while the appliance ownership and use baskets are designed 

after a careful literature screening supported by field campaign experience of 

the authors, residual cultural, service, and economic heterogeneity might not 
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be captured in the analysis; moreover, in the supply-side analysis a relevant 

role is played by the techno-economic characterisation of technologies, which 

might however be affected by future policies such as subsidies and taxes or 

specific regulatory frameworks; finally, the water and agricultural analysis 

stands on the assumption of an optimal irrigation scheduling and local crop 

processing based on current cropping patterns. 

Our results are potentially beneficial for policy makers, researchers, 

consultants, and other stakeholders involved in the electrification planning. 

For instance, the results could contribute to the prioritisation decisions for the 

allocation of limited governmental funding by leveraging consumers who are 

likely to have the greatest impact on increasing economic growth thanks to 

the provision of electricity to existing productive activities or attracting private 

investments in the most productive areas.  

We encourage further research on the topic and improvements to the state 

of the M-LED platform introduced at the time of the writing of this paper.   A 

better characterisation of potential industrial demand and a dynamic 

formulation of demand  (with intertemporal growth based on income and other 

determinants) represent potential first-order improvements.  

____________________________________________________________ 

Code and data availability 

The M-LED platform source code and the accompanying documentation are 

available at https://github.com/giacfalk/MLED. An archive containing all the 

data inputs for replicating the Kenya analysis will be made available on 

Zenodo. 

 

 

 

https://github.com/giacfalk/PrElGen
https://github.com/giacfalk/PrElGen
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Supplementary Information 

A- Detailed materials and methods  

A1 - Population settlements clustering 

Population clusters are generated based on a processing algorithm which 

takes a gridded population raster layer as the main input and generates 

polygonal shapes as outputs. Previous applications of a similar approach are 

provided in refs. (Arderne, 2020; KTH-dESA/PopCluster, 2019). The 

algorithm selects high population density raster pixels (with a pop. >10 

inhabitants / 900 m2 ≈ 1,110 inhabitants / km2) and classifies them as ‘core’. 

The core pixels are converted to polygons and buffered by a 1 km radius to 

unify surrounding cores. The centroids of the resulting polygons are then 

extracted to identify a unique core for multi-core population areas. Finally, 

Voronoi polygons (the boundaries of the area closer to a given centroid than 

to any other centroid) are generated to cover the entire regional surface and 

include periphery and non-urban areas (e.g. cropland) within the reference 

polygon for each core centroid. The methodology allows grouping 

populations into boundaries that are heterogeneous in size and shape while 

collecting a set of neighbourhooding buildings and land. The algorithm is 

summarised in Figure SI1.  

 

 

Figure SI1: Schematic framework of the GIS algorithm to generate population 

clusters. The clusters represent the functional units of the GIS data processing and 

the demand nodes of the assessment. 
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In this study, the High Resolution Settlement Layer (Facebook Connectivity 

Lab and Center for International Earth Science Information Network - CIESIN 

- Columbia University, 2016) dataset, providing population counts at a 30 m 

resolution based on statistical downscaling of census population based on a 

broad array of remotely-sensed datasets, is used. The High Resolution 

Settlement Layer is based on the 2015 census. Therefore, we estimate the 

change in the population of each grid cell from 2015 up to 2020 by applying 

the yearly country-level population growth rate and the share of urban 

population (ref. (The World Bank, 2019)). Algebraically, the union raster layer 

(U) of the urban and rural population’s layers in year t is expressed by: 

 

 

𝑃𝑜𝑝t
i  = 𝑈(𝑃𝑜𝑝t−1

𝑖 𝑢𝑟𝑏(1 + 𝑃𝐺𝑅𝑡
𝑐(1 + Δ𝑈𝑅𝐵𝑡−1

𝑡 𝑐 )), 𝑃𝑜𝑝t−1
𝑖 𝑟𝑢𝑟(1 + 𝑃𝐺𝑅𝑡

𝑐(1 + Δ𝑅𝑈𝑅𝑡−1
𝑡 𝑐 )))  

(Eq. SI1) 

where: 

 

▪ 𝑃𝑜𝑝t
i: the population in each cell (i)  in year t  

▪ 𝑃𝐺𝑅𝑡
𝑐: population growth rate in country c at year t  

Δ𝑈𝑅𝐵𝑡−1
𝑡 𝑐 increase of share of Urban population at year t respect to previous year in country c 

▪ ΔR𝑈𝑅𝑡−1
𝑡 𝑐 increase of share of Urban population at year t respect to previous year in country c 

 

The rescaling (Eq. SI1) allows to integrate the heterogeneity in the 

demographic change across urban and rural areas and across each country. 

The main limitation in this approach is that – within each country – population 

dynamics are homogeneous across all urban and rural areas, taking the 

national value of the official statistics from the World Bank (The World Bank, 

2019).  
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Urban and rural settlements are identified at the grid-cell level using the 

‘degree of urbanization’ method that delineates and classify settlement 

typologies via a logic of population size, population and built-up area densities 

and contiguity of the cells (A.J. et al., 2019). In our study  the populations cells 

are classified  as urban for contiguous cells with a density of 1,500 inhabitants 

per km2 and a minimum of population of 5,000 inhabitants (GHS-SMOD≥2), 

as rural when grid cell are outside the urban clusters (GHS-SMOD≤1), or as 

not inhabited (GHS-POP=0). To conclude, the total population living inside 

each cluster is calculated with a zonal statistics algorithm (i.e. as the sum of 

the raster pixels falling within the polygon boundary). 

 

A2- Residential electricity demand  

Residential demand of rural and urban households in Kenya, both divided 

into five tiers of consumption, is computed by estimating electric appliances 

ownership across different tiers of consumers. The baskets of appliances are 

obtained through a literature review (ref. (Adeoye and Spataru, 2019; 

Blodgett et al., 2017; Kotikot et al., 2018; Lee et al., 2016b; Monyei et al., 

2019; Monyei and Adewumi, 2017; Sprei, 2002; Thom, 2000)) supported by 

the authors’ personal experience. The compiled database is reported in 

Supplementary File F1, where every category of users is characterized by 

a corresponding usage pattern of the owned appliances, differentiating every 

month to account for seasonality of the uses. Subsequently, the stochastic 

bottom-up tool RAMP (Lombardi et al., 2019) is employed to compute the 

load curve of each household type for each day of the year at a 1 minute time 

resolution. In order to avoid overlap of the peaks in this process, the 

simulation of the load of each tier is carried out for 100 households, taking 

advantage of the stochastic characteristic of RAMP, which avoids that the 

use of the same appliance coincides (deterministically) among users of the 

same category. 
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A3 - Allocation of population to residential consumption tiers 

The next key methodological challenge requires allocating the simulated 

residential energy demand load curves of each household type to the 

population without electricity access in each cluster.  

Firstly, a multi-variate random forest regression machine learning model is 

estimated to evaluate the current association between the distribution across 

tiers of households who already benefit from electricity access and their 

characteristics throughout sub-Saharan Africa: 

 

𝑇𝑖𝑒𝑟𝑠ℎ𝑎𝑟𝑒𝑖 =  𝑊𝑄, 𝑈𝑅, 𝜌𝑖 + 𝜖𝑖 

 (Eq. SI2) 

where: 

▪ 𝑇𝑖𝑒𝑟𝑠ℎ𝑎𝑟𝑒𝑖 is a vector of the shares of population with access in each 

cluster i that belongs to each of the four access tiers. Information about 

the current distribution of households with electricity access across 

tiers is derived from ref. (Falchetta et al., 2019). This source provides 

satellite-proxied field-validated estimates of the distribution of 

households with electricity access across tiers; 

▪ 𝑊𝑄  is a vector of five variables expressing the proportion of 

households in each wealth quintile in the province within which each 

cluster falls. The sum of the five variables at each cluster is thus 

always 1. The wealth distribution information is derived from the most 

recent DHS survey data for each country (USAID, 2009); 

▪ UR is a fractional variable expressing the share of the population in 

each cluster that is classified as urban; it is calculated based on the  

‘degree of urbanization’ method (A.J. et al., 2019); 

▪ 𝜌𝑖 is a vector of country fixed-effects; 
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▪ 𝜖𝑖 is a vector of residuals.  

The trained model is then used to predict the propensity of households are 

currently without access to electricity to fall within each of the five electricity 

tiers once they gain electricity access. To conclude, the predicted distribution 

of households without electricity across energy access tiers in each cluster 

are matched to the corresponding load curves and the relative power 

consumption levels estimated in RAMP. The approach ensures that in each 

cluster the latent residential electricity demand depends on the current link 

between electricity access tiers, wealth distribution, and urban/rural 

prevalence within each country. The results of the regression model are 

reported in Table SI3. 

 

A4- Healthcare and education demand 

In order to assess the energy behaviour of primary schools and healthcare 

facilities in Kenya, a field campaign was conducted in the second semester 

of 2019 by the authors and their team with the specific purpose of interviewing 

personnel from public facilities about their appliance ownership and usage 

patterns. During this campaign 65 Primary Schools, 10 Dispensaries (Tier 1), 

14 Health Centres (Tier 2) and 3 Sub-County Hospitals (Tier 3) were visited. 

The purpose of the field campaign was double, collecting data directly from 

the facility managers to better model the electrical loads and engage with 

local authorities to better understand and classify the different kinds of 

facilities into Tiers, ad understand the national plans for the public facilities in 

the medium term. Thanks to the field campaign it was hence possible to 

collect and process the data presented in Supplementary File F2. The 

reported data are then fed into the open source tool RAMP (Lombardi et al., 

2019) that thanks to a stochastic bottom-up process computes the load curve 

of the user per each day of a year, with a one minute time resolution.  
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The generated load profiles are then parsed to geospatial information about 

the location and characteristics of healthcare and education facilities in 

Kenya (refs. X,Y) with the following logic: 

 

Healthcare 

▪ Tier 1 -> dispensary; Tier 2 -> Health clinics; Tier 3 -> Sub-district 

hospital; Tier 4 -> District Hospital / Provincial General Hospital; Tier 

5 -> National Referral Hospital 

▪ Facilities with missing beds number: Tier 1 -> 0; Tier 2 -> 45; Tier 3 -

> 150; Tier 4 -> 450; Tier 5 -> 2000 

▪ Number of beds in healthcare facility i of tier k * per-bed load at tier k 

 

Education 

Number of pupils in school i * per-pupil load  

 

A5- Micro-enterprises and commercial activities demand  

In the M-LED framework, we estimate the electricity demand induced by 

small-scale productive and commercial activities that are widely emerging 

in communities of sub-Saharan Africa with an availability of electric energy, 

such as barber shops, minimarkets, or telecommunication points. This is 

carried out in three steps. First, a composite index based on the productive 

activities drivers and energy use is constructed based on road density (with 

road infrastructure data drawn from ref. (Center for International Earth 

Science Information Network - CIESIN - Columbia University and 

Information Technology Outreach Services - ITOS - University of Georgia, 

2013)), employment levels and wealth distribution (at the provincial level, 

with data from ref. (USAID, 2009)), and city accessibility (ref. (Weiss et al., 

2018)) proximity is built. The indicators are aggregated using a principal 
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component analysis (PCA). PCA is a multivariate statistical method that is 

used in development research to reduce the number of variables in a 

dataset and construct composite indices. In a PCA, the variables are 

weighted according to the variance explained by the first principal 

component (Booysen, 2002). Figure SI2 below highlights the results of the 

PCA: 

 

 

Figure SI2: Results of the PCA to evaluate the propensity of micro-entrepreneurial 

and commercial activities to operate 

Next, the PCA outcome is rescaled to the 0.3 and 0.6 range (following 

(Moner-Girona et al., 2019)) to create a bottom-up mark-up factor on top of 

the residential demand. The baseline load curve (share of demand at each 

hour of the day over the total daily demand) of micro productive  activities is 

assumed to follow the same path of that described in (Moner-Girona et al., 
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2019), which in turn relies on ground-metered data from mini-grids in Kenya. 

Finally, a seasonal variation is imposed to the monthly demand loads 

curves: in particular, the seasonality follows the same monthly mark-up 

observed in the residential demand across months of the year.  

Algebraically, the final sectoral demand 𝐶𝑜𝑚𝑚𝑃𝑟𝑜𝑑𝑖𝑚ℎ (where i, m, and h, 

identify demand clusters, months of the year, and hours of the day, 

respectively) is expressed as: 

𝐶𝑜𝑚𝑚𝑃𝑟𝑜𝑑𝑖𝑚ℎ = (1 + 𝑃𝐶𝐴𝑖
𝑟𝑎𝑛𝑔𝑒

) × 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑖𝑚ℎ × 𝐶𝑜𝑚𝑚𝑃𝑟𝑜𝑑𝐶𝑢𝑟𝑣𝑒𝑚ℎ 

 (Eq. SI3) 

where: 

▪ 𝐶𝑜𝑚𝑚𝑃𝑟𝑜𝑑𝑖𝑚ℎ  is the commercial and productive demand at each 

cluster i at each month of the year m at each hour h; 

▪ 𝑃𝐶𝐴𝑖
𝑟𝑎𝑛𝑔𝑒

 is the result of the PCA at each cluster rescaled to the 0.3-

0.6 range; 

▪ 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑖𝑚ℎ  is the residential demand at each cluster i at each 

month of the year m at each hour h; 

▪ 𝐶𝑜𝑚𝑚𝑃𝑟𝑜𝑑𝐶𝑢𝑟𝑣𝑒𝑚ℎ are the twelve month-specific hourly curves for 

the sectoral demand derived from (Moner-Girona et al., 2019) and 

adjusted for the seasonality based on the residential seasonality 

variation. 

 

A6- Irrigation water requirements modelling 

In developing countries crops are mostly rain-fed and existing water storage 

systems exploit gravity. For instance, in sub-Saharan Africa it is estimated 

that over 90% of all agricultural land is rain-fed only (Rockstrom et al., 2007). 

The possibility to exploit electrical energy to pump water bears a huge rural 

productivity growth potential – if those water resources are used sustainably 

(Jägermeyr et al., 2016; Mueller et al., 2012). Thus, accurately predicting 
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those water requirements and their load curve and in turn derive the electric 

energy necessary to pump it can shed light on the role of pumping energy in 

the elaboration of a rural electrification plan that might act as a trigger to rural 

productivity growth.  

We exploit 30-m resolution GIS information on the location of rainfed cropland 

in Africa (Teluguntla et al., 2018) to statistically downscale 10 km resolution 

information on the cropping area and regime of 42 distinct crops (You et al., 

2014a). First, we use the GFSAD30AFCE cropland extent product to 

estimate the rainfed cropland area within each cluster. Then, using the 

MapSPAM database and referring to the rainfed harvested (i.e. not only the 

physical area, but the total area accounting for multiple harvests of a crop on 

the same plot) cropland area for 42 types of crops, we calculate the total area 

for each crop type within the clusters. Since, however, the GFSAD30AFCE 

product has a 30 m resolution while the MapSPAM layers only have a 10 km 

resolution, we redistribute the area value written into each 1 km resolution 

pixel such that it is proportional to the share of total cropland area within each 

cluster over the total cropland area underlying each MapSPAM pixel. 

Following this approach, we are able to downscale the layers based on the 

30 m layer, under the assumption that, under each 10 km pixel, for each crop 

cropland is homogeneously distributed in underlying pixels. While this is an 

assumption, it is not particularly limiting given the already high resolution of 

the MapSPAM layer, which limits the maximum spatial allocation error to a ∼ 

500 m radius, and in any case is such that the total sum of cropland in the 

clusters underlying the MapSPAM pixels is equal to the value reported in the 

MapSPAM pixel itself. 

We then combine the cropland information with satellite-derived observations 

of precipitations and evapotranspiration (Abatzoglou et al., 2018) and 

information about crop scheduling and watering periods (refer to Table SI2) 

to accurately estimate the daily water gap that would be necessary to ensure 
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the optimal yield is achieved in each cluster (with the caveat that we do not 

consider variation in fertilisation, pesticides, or land management regimes): 

𝑊𝑅𝑖
𝑦

=  ∑
𝐴𝐸𝑇𝑖

𝑚−𝑃𝑅𝑖
𝑚 𝜂 𝐶𝑅𝑆𝐻𝐴𝑅𝐸𝑖

𝜂𝑐

12
𝑚       

  (Eq. SI4) 

where: 

▪ 𝑊𝑅𝑖
𝑦
 is the yearly irrigation water requirement at cluster I; 

▪ 𝐴𝐸𝑇𝑖
𝑚  is the total monthly actual evapotranspiration in cluster i  

calculated from the processed geospatial information on each crop’s 

harvested area (You et al., 2014b), the relative crop factors (Allen et 

al., 1998) – which depend both on each specific crop and the 

agroclimatic zone where it is being cultivated –, and the local potential 

evapotranspiration (Abatzoglou et al., 2018); 

▪ 𝑃𝑅𝑖
𝑚 are the monthly cumulative precipitations; 

▪ 𝐶𝑅𝑆𝐻𝐴𝑅𝐸𝑖 is the share of cropland area over the total cluster area;  

▪ 𝜂 is a roots absorption efficiency parameter, set at 0.6. 

The artificial irrigation water requirement is increased by dividing it by an 

irrigation efficiency parameter 𝜂𝑐 . This is crop-specific, as each crop is 

irrigated with either drip, sprinkler, or surface irrigation, for which efficiencies 

of 0.85, 0.6, and 0.6, respectively, are assumed. Each crop is allocated to a 

technology following the FAO guidelines (Allen et al., 1998), with staple crops 

allocated to surface irrigation, and sprinkler and drip irrigation to vegetables 

and sugarcane and fruit trees, respectively. Rainfall is given an absorption 

efficiency of 0.6. Finally, the yearly water requirement per hectare per crop is 

embedded into each cluster, a weighted sum between the products of such 

water requirement and the rainfed harvested area of each crop in that cluster 

is calculated. This results in monthly and yearly water requirement in m3 
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within each cluster, which is the requirement necessary to attain the potential 

yield in currently rainfed cropland. 

 

A7- Water pumping energy demand quantification 

To quantify the electricity necessary yearly to satisfy the estimated demand 

for irrigation in each cluster, we set-up a groundwater pumping model based 

on Eq. SI5: 

𝑃𝑊𝑖 =  
𝜌𝑞𝑔ℎ

𝜂
     

  (Eq. SI5) 

where 

▪ PW is the hydraulic power requirement in W; 

▪ ρ is the density of the fluid in kg · m−3 (here set at 1,000, for water); 

▪ q is flow capacity of the pump in m3 · h−1; 

▪ g is the gravitational constant (9.81 m · s−2) ;  

▪ h is the differential head, in m;  

▪ η is a pumping efficiency parameter, set at 0.75.  

▪ h is defined by calculating the average local groundwater well depth 

using data from MacDonald et al. (2012) – including depth, storage, 

and productivity.  

The flow capacity of the pump q is defined as the flow capacity necessary to 

satisfy the local irrigation requirements in the month t with the highest 

requirement assuming a maximum watering of six hours per day. To translate 

the pumping power requirement (W) in the daily electricity demand (kWh), 

the following product is estimated: 

𝑃𝑊ℎ𝑚 =
𝑃𝑊

1000
× 𝐼𝐻𝑚    

  (Eq. SI6) 
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where: 

▪ 𝑃𝑊ℎ𝑚  is the estimated electricity consumption of the pump (in kWh) 

in each month m; 

▪ 𝑃𝑊 is the nameplate power of the pump (in W); 

▪ 𝐼𝐻𝑚 are the number of irrigation hours in month m. 

Finally, as shown in Figure SI3, to derive cluster and month-specific load 

curves we consider an archetypical curve with two irrigation windows per day 

(5am-9am and 10pm-12am) where the pump is operating, consistent with 

farming practices to reduce evapotranspiration: 

 

Figure SI3: Representative load curve of the irrigation electricity demand (% of daily 

load at each hour of the day). 

 

In order to guarantee a sustainable supply of irrigation water, two 

constraints are set so that irrigation does not lead to the dwell’s depletion.  

The constraints are formulated as: 
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𝑊𝑊𝑖
𝑑 ≤

(𝐺𝑊𝑃𝑟𝑜𝑑𝑖∗
𝑁𝑜𝑖𝑟𝑟ℎ𝑜𝑢𝑟𝑠

𝐼𝑟𝑟ℎ𝑜𝑢𝑟𝑠
)+ 𝐺𝑊𝑃𝑟𝑜𝑑𝑖

1000
   

  (Eq. SI7a) 

and  

𝑊𝑊𝑖
𝑑 ≤

𝐺𝑊𝑆𝑡𝑜𝑟𝑖

𝐼𝑟𝑟ℎ𝑜𝑢𝑟𝑠 ×3600
+

𝐺𝑊𝑃𝑟𝑜𝑑𝑖

1000
    

  (Eq. SI7b) 

where: 

▪ 𝑊𝑊𝑖
𝑑 is water withdrawal for irrigation purposes on the day of the year 

d in cluster I; 

▪ 𝐺𝑊𝑃𝑟𝑜𝑑𝑖 is the average groundwater dwell productivity  (in litres per 

second); 

▪ 𝐺𝑊𝑆𝑡𝑜𝑟𝑖 is the average groundwater dwell storage  (in meters); 

▪ 𝐼𝑟𝑟ℎ𝑜𝑢𝑟𝑠 and 𝑁𝑜𝑖𝑟𝑟ℎ𝑜𝑢𝑟𝑠 are the number of hours in which the pump 

is operated or not, respectively, during the average irrigation day.  

If the constraints are not met, the algorithm seeks to fill the watering gap 

withdrawing from the nearest freshwater surface  (if this is within a 

reasonable distance threshold, set at 5 km). The surface water pumping is 

modelled as: 

𝑆𝐹𝑃𝑊𝑖 =  𝑞𝑖 × 
(32 ×𝑊𝑆 ×𝑆𝑊𝐷𝑖 ×𝑉)

𝑃𝐷2  ×  𝜂−1  

  (Eq. SI8) 

where: 

▪ 𝑆𝐹𝑃𝑊𝑖 is the power of the surface water pump in W 

▪ 𝑞𝑖 is the required water flow rate (m3/s), obtained as the difference 

between the total required flow rate to meet irrigation needs and the 
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flow rate that can be guaranteed sustainably by the groundwater 

pump; 

▪ 𝑊𝑆 is the speed of water in the pipe, set at 2 m/s; 

▪ 𝑆𝑊𝐷𝑖  is the Euclidean distance to the surface water body; 

▪ 𝑉 is the viscosity of water, 0.00089 Ns/m2 

▪ 𝑃𝐷 is the pipe diameter, set at 0.8 m 

▪ η is a pumping efficiency parameter, set at 0.75.  

In those instances where the irrigation demand cannot be fulfilled sustainable 

either by groundwater or via surface water pumping, a remark is signalled in 

the analysis result about the possibility to replace the existing crops or 

cropping schedule to relax the water stress in critical clusters. The analysis 

is carried out at a daily temporal resolution to account for overlapping growing 

seasons of crops found in each cluster and the therefore greater 

simultaneous water withdrawal needs.  

 

A8- Crop processing electricity demand 

To estimate the electricity necessary to mechanically process the raw crop 

production of each cluster, an extensive literature review of crop processing 

energy requirements in the context of developing countries is carried out. 

Refer to Supplementary File 3 for an extensive summary of the sources 

accessed. Figure SI4 summarises the resulting estimates range for each 

crop (in kWh/kg of processed crop).  
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Figure SI4: Comparison of the literature ranges for crop processing electrical 

requirements for the main crops considered for sub-Saharan Africa (in kWh/kg of 

processed crop).  

 

Thereafter, the yearly crop yield in each cluster i for each of the 42 crop 

classes c of the MapSpam database is estimated multiplying the mean crop 

yield (in kg/ha) of pixels falling into each cluster with the downscaled crop-

specific cropland extent (in ha)  of each cluster. 

 

𝑌𝑌𝑖𝑒𝑙𝑑𝑐
𝑖𝑚 = 𝑌𝑖𝑒𝑙𝑑𝑐

𝑖𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅  × 𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑐
𝑖  

  (Eq. SI9) 

where: 

▪ 𝑌𝑌𝑖𝑒𝑙𝑑𝑐
𝑖𝑚 is the yield of each crop c at each month m in each cluster 

i; 

▪ 𝑌𝑖𝑒𝑙𝑑𝑐
𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅  is the average yield (in kg/ha) of crop c for cropland falling 

within each cluster I; 
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▪ 𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑐
𝑖  is the harvested area of each crop c at each cluster i (in 

ha). 

The total yearly electricity consumption for crop processing (CP) in each 

cluster is then calculated as: 

 

𝐶𝑃𝑖𝑚 = ∑ 𝑌𝑌𝑖𝑒𝑙𝑑𝑐
𝑖𝑚

𝑁

𝑖

× 𝑘𝑊ℎ/𝑘𝑔𝑐 

  (Eq. SI10) 

where: 

▪ 𝐶𝑃𝑖𝑚 is the estimated electricity consumption for crop processing (in 

kWh) in each month m at each cluster i; 

▪ 𝑌𝑌𝑖𝑒𝑙𝑑𝑐
𝑖𝑚 is the yield of each crop c at each month m in each cluster 

I; 

▪ 𝑘𝑊ℎ/𝑘𝑔𝑐 are the crop-specific unit processing energy requirements 

(in kWh). 

In a similar fashion to the irrigation load curve definition, crop processing 

machinery follows an archetypical load (Figure SI5) with an on/off flat curve 

and an operation window between : 
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Figure SI5: Representative load curve of the crop processing electricity demand (% 

of daily load at each hour of the day). 

 

A9- Yield gap. agricultural revenues, and costs 

For the Kenya country-study, we estimate the local productivity (kg · ha−1), 

the mean yield for each crop is calculated using the MapSPAM rainfed crops 

layers. The total production in rainfed cropland is the given by the product of 

yield and harvested area in each cluster. To estimate the revenues stemming 

from the irrigation of previously rainfed cropland and the related costs, we 

develop a simple model of production, transportation, and wholesale. 

Farmers in cluster i would bear cost components F (the fixed cost for 

purchasing the water pump) and R (the running costs, including electricity to 

power the pump and operation and maintenance of the appliance), as well as 

T (the travel costs to the closest wholesale market, including the rent/use of 

the truck, the fuel, and the opportunity cost of time). In turn, they earn a 

revenue which is defined as the additional yield of each crop produced thanks 
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to irrigation by the wholesale market price at which that crop is currently 

exchanged (according to official statistics).  

Here we model transportation costs, total pumping costs, and the potential 

revenues from wholesale to quantify the potential locally generated 

agricultural revenues from the increased agricultural productivity as a result 

of the artificial watering. To estimate this added value, we retrieve the most 

recent database of wholesale prices for a large basket of crops in Kenya 

relative the location of each wholesale market. We then calculate what is the 

nearest wholesale market to each cluster, and – assuming constant prices 

over time – we estimate the yearly revenue. 

 

 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠𝑖 =  ∑ 𝑃𝑖
𝑗

 ×  𝑌𝑖𝑒𝑙𝑑𝑔𝑎𝑝𝑖
𝑗𝑐𝐶

𝑗=1    

  (Eq. SI11) 

where: 

▪ 𝑃𝑖
𝑗
 is the local  (i.e. in each cluster i) wholesale unit price for each crop 

j 

▪ 𝑌𝑖𝑒𝑙𝑑𝑔𝑎𝑝𝑖
𝑗𝑐

 is the average difference between rainfed and irrigated 

yield in climate zone c for each crop j.  

▪ To estimate and subtract transportation costs needed to generate 

these revenues to obtain effective profit, we calculate the following: 

 

𝑇𝐶𝑠𝑖 = 2 × (𝑇𝑇𝑀𝑖 × 𝐹𝑢𝑒𝑙𝑐𝑜𝑠𝑡𝑖 × 𝑙𝑝𝑒𝑟𝑚𝑖𝑛) × 𝑛   

  (Eq. SI12) 

where: 
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▪ 𝑇𝑇𝑀𝑖  is the travel time from each cluster i to the nearest market 

calculated in Google Earth Engine exploiting the algorithm developed 

by (Weiss et al., 2018) 

▪ 𝐹𝑢𝑒𝑙𝑐𝑜𝑠𝑡  is the local cost of diesel fuel derived with the approach 

described in (Szabo et al., 2011)  

▪ 𝑙𝑝𝑒𝑟𝑚𝑖𝑛 is a parameter expressing the average fuel consumption of a 

truck in litres per minute.  

The whole product is multiplied by 2 to simulate a return journey, and by 𝑛, 

which is defined as the ratio of the weight of the total yield gap and the weight 

that a track journey can transport, thus representing the number of required 

journeys.  

To model groundwater pumping total costs, we refer to the database for 

recent projects in different countries of sub-Saharan Africa compiled in ref. 

(Xenarios and Pavelic, 2013), selecting only mechanical electric-powered 

pumps. In particular, we estimate the following non-linear regression model: 

𝑇𝑃𝐶𝑖 = ℎ𝑖 × 𝛽1 + 𝑦𝑖  × 𝛽2 + ℎ𝑖 ×  𝑦𝑖  × 𝛽3 + 𝜀𝑖  

  (Eq. SI13) 

where: 

▪ 𝑇𝑃𝐶𝑖 are total pump costs, which include both fixed upfront costs (for 

the installation of the pump) and operational and maintenance costs; 

▪ ℎ𝑖 is the well depth (in m);  

▪ 𝑦𝑖 is the pump yield (in l/s). 

The model yields a cost function, which is plotted in Figure SI6 for a ℎ𝑖 ∈

(10, 50) and 𝑦𝑖 ∈ (1, 10). We then estimate total pumping costs using the 

model in all clusters of our analysis where groundwater pumping 

requirements and feasibility criteria are met . 
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Figure SI6: 3D surface plot of the non-linear function to assess groundwater pumps 

total costs 

 

A limitation of our local microeconomic economic analysis is that we do not 

monetise the intangible benefits of the improved local education and 

healthcare level as a result of the new electricity input. However, these likely 

imply both substantial costs savings in terms of human lives and treatment, 

and a greater accumulation of human capital which in the long-run can yield 

to significantly larger economic growth, as discussed in the relevant literature 

(Aguirre, 2017; Daka and Ballet, 2011; Sovacool and Ryan, 2016; Spalding-

Fecher, 2005). We encourage studies targeting to quantify those indirect, 

long-run monetary gains. The same is true for small commercial and 

productive activities, and the additional value added from local crop 
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processing. We acknowledge that electricity is likely to have a broad array of 

impacts through complex socio-economic linkages (Riva et al., 2018), 

including on fertility and migration decisions (Fried and Lagakos, 2017; 

Grimm et al., 2015).  

 

__________________________________________________ 

Supplementary tables  

 

 

Table SI1: Main data sources in the M-LED platform  

Input step Dataset Unit 

Source 
Time 

resolution 

Spatial 

resolution 
(ref. 

number) 

Population 

clustering 

and 

residential 

demand 

High 

Resolution 

Settlement 

Layer 

Number of 

people per 

cell 

(Facebook 

Connectivity 

Lab and 

Center for 

International 

Earth 

Science 

Information 

Network - 

CIESIN - 

Columbia 

University, 

2016) 

Annual 30 m 

Wealth 

distribution, 

Distribution 

across 

quintiles; 

(USAID, 

2009) 
Survey year 

Province-

level 
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employment 

levels 

employment 

rates 

GHS-SMOD 

Classification 

urban, rural 

settlement 

(A.J. et al., 

2019) 
5 years 250 m 

VIIRS DNB 

nighttime 

lights 

Radiance 
(Elvidge et 

al., 2017) 

Monthly 

(aggregated 

to annual) 

30 arc-

seconds 

Electricity 

access levels 
% 

(Falchetta et 

al., 2019) 
Annual 450 m 

GADM – 

global 

administrative 

layers 

- 

 (Hijmans et 

al., 2018) 
2018 

Country 

and 

provincial 

boundaries 

Productive 

demand 

Travel time to 

nearest 

feature 

hours 
(Weiss et al., 

2018) 
- 1 km 

Cropland 

extent 

Land area 

(ha) 

(Teluguntla 

et al., 2018) 
2015 30 m 

Crop-specific 

harvested 

area and 

yield 

Land area 

(km2) 
(You et al., 

2014b) 
2005 10 km 

 Yearly yield 

(tonnes/(km2) 

Crop 

processing 

energy 

demand  

kWh/kg of 

yield 

processed 

See Table 

SI3 
- - 
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Crop 

schedule and 

crop factors   

Days and 

coefficients 

See Table 

SI2;  

ref. (Allen et 

al., 1998)  

- - 

Global Agro-

Ecological 

Zone (GAEZ)  

layers 

Area (ha), 

climate zone 

(Fischer et 

al., 2012) 
2005 0.5° 

Groundwater 

depth, 

productivity, 

storage 

m, l/s, m 
(MacDonald 

et al., 2012) 
2012 5 km 

Surface water 

basins 
Distance (m) 

 (Pekel et al., 

2016) 
- 30 m 

Services 

demand 

Healthcare 

facilities 
Tier 

(Maina et al., 

2019) 

 Existing 

(2015) and 

predicted to 

2030 

Exact 

position 

Education 

facilities 
 Tier 

 (“Kenya 

Open Data 

Initiative - 

Humanitarian 

Data 

Exchange,” 

n.d.) 

 Existing 

(2015) and 

predicted to 

2030 

Count of 

facilities in 

cluster  

Kenya 

case study  

Crop 

wholesale 

prices at 

different 

markets 

USD/ton 

(“NAFIS – 

National 

Farmers 

Information 

Service,” 

n.d.)  

1 year 
Exact 

position 
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Table SI2: Crop schedule and crop factors  

Crop K_c

1 

K_c

2 

K_c

3 

nd_

1 

nd_

2 

nd_

3 

nd_

4 

pm_

1 

pm_

2 

eta_ir

r 

Maize 0.3 1.2 0.35 30 50 60 40 1503 3010 0.6 

Bean 0.15 1.15 0.35 20 30 40 20 1510 0109 0.6 

Sorghum 0.3 1 0.55 20 35 45 30 2503 1510 0.6 

Sweet 

potato 

0.5 1.15 0.65 15 30 50 30 1503 0109 0.6 

Tea 0.95 1 1 90 90 90 90 0101 0101 0.85 

Plantain 1 1.2 1.1 120 60 180 5 0101 0101 0.85 

Cowpea 0.4 1.15 0.3 20 30 35 15 1503 1510 0.85 

Pigeonpea 0.7 1.05 0.95 20 30 35 15 1003 1510 0.85 

Vegetable

s 

0.7 1.05 0.95 40 60 50 15 2003 0109 0.85 

Arabica 

coffee 

1.05 1.1 1.1 90 90 90 90 0101 0101 0.85 

Banana 1 1.2 1.1 120 60 180 5 0101 0101 0.85 

Potato 0.5 1.15 0.75 25 30 45 30 1503 0109 0.6 

Cotton 0.35 1.2 0.6 30 50 60 55 0101 0101 0.6 

Cassava 0.3 1.1 0.5 150 40 110 60 0101 0101 0.85 

Pearl 

millet 

0.3 1 0.3 15 25 40 25 1503 1510 0.6 
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Wheat 0.5 1.15 0.33 15 30 65 40 1503 1507 0.6 

Rice 1.05 1.2 0.75 30 30 80 40 0101 0101 0.6 

Small 

millet 

0.3 1 0.3 15 25 40 25 1503 1510 0.6 

Sugar beet 0.35 1.2 0.7 40 70 75 35 0101 0101 0.6 

Sunflower 0.4 1 0.35 25 35 45 25 1503 1510 0.85 

Soybean 0.5 1.15 0.5 15 15 40 15 1503 1510 0.6 

Groundnut 0.7 1.15 0.6 25 35 45 25 1503 1510 0.6 

Rapeseed 0.4 1.1 0.35 25 35 45 25 0101 0101 0.6 

Sugarcane 0.4 1.25 0.75 50 70 220 140 0101 0101 0.6 

 

Table SI3: Results of the multi-variate random forest regression for 

residential electricity tiers allocation 

Sample size: 297 

Number of trees: 1000 

Forest terminal node size: 5 

Average no. of terminal nodes: 40.335 

No. of variables tried at each split: 3 

Total no. of variables: 8 

Total no. of responses: 4 

User has requested response: acc_pop_share_t1 

Resampling used to grow trees: swor 

Resample size used to grow trees: 188 

Analysis: mRF-R 

  Family: regr+ 

Splitting rule: mv.mse *random* 

Number of random split points: 10 



65 

% variance explained: 46.63 

Error rate: 0.03 
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