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1 Introduction

The literature of two-way flow information network originates from the seminal work

of Bala and Goyal (2000) whose model possesses the following features: (i) each agent

possesses a piece of nonrival information that he does not mind sharing with others,

(ii) an agent forms a link with another agent by simply bears the link establishment

cost c > 0, which is assumed to be identical among all agents 1, (iii) once the link is

established, two agents - both who pay for the link formation cost and who does not pay

- share information with each other (hence the term two-way flow) 2, (iv) through a series

of links, information of two agents can also be shared (v) as information traverses via

links, information decay may be present, and (vi) the percentage of information decay,

1 ≥ σ ≥ 0, is linkwise and is assumed to be identical across all links. For the sake

of prediction, Bala and Goyal (2000) use Strict Nash equilibrium 3 in pure strategies

to study static properties. These equilibrium networks are called Strict Nash networks

(SNN) henceforth. Naturally, due to these simplified assumptions Bala and Goyal (2000)

find that SNNs also have rather simplified shapes, which are either center-sponsored star

or empty network.

Consequently these simplifications have inspired a vast literature that questions how

an incorporation of more realistic assumptions would alter or lead to a larger class of

networks that are Strict Nash. Within such a vast literature, interestingly many mod-

els predict that Strict Nash networks consists of minimal components that are either Bi

or branching network (see illustrations of these networks in Figure 1 and 2). Another

surprising observation is that this result emerges from models whose assumptions do

contrast each other. Specifically, this result is seen in the model De Jaegher and Kam-

phorst (2015), which assumes the presence of information decay without agent heterogeneity in

link formation cost, as well as the models of Charoensook (2015), Galeotti et al. (2006),

and Billand et al. (2011) which assume the absence of information decay yet with the presence

of agent heterogeneity in link formation cost. Why is this the case? This paper seeks to answer

this question 4.

We systematically classify the related literature here. Generally speaking, there are

two strands of two-way flow models that predict that Strict Nash networks consists of

1This marks a major difference between another seminal model proposed by Jackson and WohlinskyJack-
son. and Wolinsky (1996), which assumes that link formation requires mutual consent. For further literature
review in strategic network formation models, see Jackson (2008) and Jackson (2007)

2Bala and Goyal (2000) also propose a different type of model called one-way flow in which information
flows to an agent only if he pays for the link formation cost

3In their paper, some of their results are achieved through Nash equilibrium rather than Strict Nash.
However, prediction through Nash equilibrum tends to yield a large set of equilibrium networks. To narrow
down the set of equilibrium networks Bala and Goyal (2000) adopt Strict Nash concept.

4We note that some literatures do not use the term Bi or branching networks in their results, although
the shapes of NNs or SNNs in their paper are specific types of Bi or branching networks. For example,
Proposition 1 of De Jaegher and Kamphorst (2015) uses the term ‘rooted directed tree with all links pointing
away from its root’ and ‘directed tree with a unique multi-recipient player. Any link not received by this
player points away from him.’ By comparing Figure 5 in De Jaegher and Kamphorst (2015) with Figure 1
and 2 in this paper, it is not difficult to observe that such networks are branching and Bi network (where i is
the multi-link recipient player) respectively.
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Figure 1: Three minimal Bi∗ networks. An arrow from agent i to j indicates that i sponsors a link to
j. Observe that i∗ is the only agent who receives more than one link, and all links that he does not
receive point away from him. Observe further that the middle network is a periphery-sponsored
star.

i∗
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Figure 2: Three branching networks rooted at i∗. Observe that i∗ is the only agent that receives no
links. Observe further that the middle network is a center-sponsored star, which is the only form
of non-empty component of SNNs in Proposition 4.2 of Bala and Goyal (2000) and Proposition 3.2
of Galeotti et al. (2006).

minimal components that are either Bi or branching network. As mentioned above, one

strand assumes the presence of information decay without agent heterogeneity in link

formation cost. These models are that of De Jaegher and Kamphorst (2015) - specifically

Proposition 1 - and Bala and Goyal (2000). Worthmentioning is that the results of De

Jaegher generalize that of Bala and Goyal in the sense that De Jaegher and Kamphorst

(2015) assume a more general payoff. In addition, De Jaegher and Kamphorst (2015)

provide a fine-detail characterization of SNN while Bala and Goyal (2000) only provide

a partial characterization. The other strand assumes the absence of information decay

with the presence of agent heterogeneity in link formation cost. These models are that

of Charoensook (2015), Galeotti et al. (2006), and Billand et al. (2011). A major difference

among these models is on how agent heterogeneity in link formation cost is assumed.

Galeotti et al. (2006) assume that the link formation cost depends exclusively on the

identity of agents who estabish links (link sender), while Billand et al. (2011) assume that

link formation cost depends exclusively on the identity of agents who receive the links

(link receiver). On the other hand, Charoensook (2015) assume that link formation cost

may depend on the identity of both link sender and link receiver yet with a restriction

called Uniform Partner Ranking. The results of Charoensook (2015), therefore, generalizes

the results of Galeotti et al. (2006) (Proposition 3.2) and Billand et al. (2011) (Proposition

1), as well as the original model of Bala and Goyal (2000) that assumes no heterogeneity

and no decay (Proposition 4.2). Table 1 below helps summarize these related literatures

and their results.

Considering such a vast array of literature that gives rise to the result that minimal
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Paper Proposition Decay Heterogeneity Generalization

Bala and Goyal (2000) 4.2 No No

Charoensook (2015)
Galeotti et al. (2006) 3.2 No Yes
Billand et al. (2011) 1 No Yes
Charoensook (2015) 1 No Yes

Bala and Goyal (2000) 5.4 Yes No
De Jaegher and Kamphorst (2015)De Jaegher and Kamphorst (2015) 4.1 Yes No

Table 1: Categorization of related literatures

SNN consists of components that are either Bi or branching, this paper contributes to the

literature by identifying a unique condition mutually found in these literatures that hold

together this common result. This condition is called Partially Consistent Partner Prefer-

ence condition (PCPP condition henceforth). This condition rests upon three definitions

introduced in this paper, which we now elaborate. First, we define the term viewpoint of i

as a subnetwork disconnected from i under a fictitious presupposition that a link between

i and j, whether the link is sponsored by i or j does not matter, is removed. Next, based

upon this concept of viewpoint we pick up any two agents j and k contained in the same

viewpoint and ask ‘if i were to establish a link either with j or k, which agent would give

i a higher payoff.’ This is how we define the preference of i over agent j and k. Naturally,

if j gives a higher payoff (at least the same payoff) to i than k does, we say that i strictly

(weakly) prefers j to k. Third, we define a chain between i and i′ as a series of undirected

links whose two ends are i and i′, where the term undirected refers to the fact that the

identity of link sponsorship does not matter.

Based upon these three definitions let us assume that we pick up any chain with at

least four agents. Let this chain be i, j, ..., j′ , i′. Our PCPP condition says that either (i)

i prefers j to j′ implies that i′ also prefers j to j′, or (ii) i′ prefers j′ to j implies that i

also prefers j′ to j. That is, PCPP condition imposes that agents i and i′ agree on their

preference over agents j and j′, hence the term ‘consistent’ partner preference. Very

interestingly, PCPP condition holds true for any minimal networks - be they SNN or not

- in all two-way flow models in the related literatures above. Then based upon this PCPP

condition, we show that PCPP is indeed a sufficient condition for every component of

minimal SNN to be either Bi or branching.

Considering that PCPP holds in both models that assume agent heterogeneity in link

formation cost with no decay and models that assume decay with no heterogeneity in link

formation cost, we provide an insight on why this commonality arises. First, concerning

the role of information decay it is important to keep in mind that while homogeneity

is assumed in the sense that every link in a network has the same level of decay as a

consequence of this assumption a form of heterogeneity is incurred. Specifically agents

become heterogeneous in terms of informational benefits that they obtain in the network
5. Indeed, some agents will receive more information benefits than others because their

5Indeed, De Jaegher and Kamphorst (2015) note that information decay is not an ’ex-ante’ form of agent
heterogeneity but is an ’ex-post’ form of agent heterogeneity
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locations - measured by distances from other agents - in the network allow for less in-

formation decay compared to the positions of other agents. Naturally, agents who are

relatively ’better informed’ than other agents are preferred potential partners since they

provide more informational benefits to whoever chooses to establish a link with them.

Note that this argument is further enhanced by the fact that homogeneity in link for-

mation cost is assumed so that only informational benefits matter when choosing a link

receiver.

Consequently, the role of information decay is rather similar to the role of agent het-

erogeneity in the sense that among two potential partners that an agent wishes to form

a link, one potential partner is likely to provide higher payoffs than the other. This in-

tuition is formalized in this paper as a preference relation that an agent i can have over

two agents j and j′. While it is natural to expect that every agent has different preferences

in terms of partner preferences, what this paper further find out is that a similar pat-

tern of consistency in terms of preference relation emerges in every non-empty network

from the strand of literature in small information decay generalized by De Jaegher and

Kamphorst (2015) and heterogeneity in link formation cost generalized by Charoensook

(2015). Essentially we formalize this consistency in preference relation of agents as Par-

tially Consistent Partner Preference condition that we previously mentioned. This PCPP

condition further allows us to predict that every non-empty component of SNN in the

literature in Table 1 above is either branching or minimal Bi networks.

This paper proceeds as follows. In the next section we introduce the model of two-

way flow networks and payoffs that are general enough to cover all models in the related

literature. Then we introduce the concepts of viewpoint, partner preference, and Partially

Consistent Partner Preference condition. Subsequently we introduce useful lemmas and

main propositions. Next, we provide two discussion sections. One proposes a model

extended from an existing literature that also satisfies PCPP, hence showing how PCPP

established by this paper can be used to predict patterns of SNNs. The other section

illustrate a few models that do not satisfy PCPP condition but still have the result that

every component of minimal SNN is either Bi or branching, which illustrates that PCPP

condition is a sufficient but not necessary condition that guarantees this result. Finally

we adjourn this paper with a few concluding remarks.

2 The Model

2.1 Strategy of each agent

Let N = {1, ..., n} be the set of agents. Consider an agent i ∈ N. For each agent j 6= i, j ∈ N,

i chooses whether to form a costly link without j’s consent. Let gij = 1 indicates that i

forms a link with j and gij = 0 indicates that i does not form a link with j. Let gi ≡ {gij}j 6=i

be a strategy of i. Naturally, a collection of strategies of all agents is a strategy profile,

which is defined as g = {gi}i∈N . Due to the fact that an i can form a link with another

j with j’s consent, all links from the network. Consequently g represents both a strategy

profile and a network.
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2.2 Network Connectivity and Information flow

Consider an agent i in a network g. i can retrieve information of another agent j whenever

there is a link or a series of link between i and j, whether i or j sponsors the link does

not matter (hence the term ‘two-way’ flow). Thus, we write ḡij = 1 to indicate that gij = 1

or gji = 1, and ḡij = 0 to indicate otherwise. The set of all these links is denoted by ḡ. In

case that link sponsorship matters when constructing some lemmas and proofs, though,

we write NS
i ≡ {j ∈ N|ij ∈ g} to represent all link receivers of i.

A series of links between agent i and j through which information flows from i to

j (and vice versa) is called chain. More formally, a chain between i and j is a sequence

j0, j1, ..., jm such that j0 = i, jm = j and ḡjl ,jl+1
= 1 for all jl , jl+1 that are included in this

sequence. A path from i to j is defined in the same manner as a chain except that gjl ,jl+1
= 1

replaces ḡjl ,jl+1
= 1.

2.3 Network-related notations

A network is said to be minimal if there is at most one chain between two agents in the

network. A network is connected if there is at least one chain between two agents in

the network. That is, any pair of agents in this network can observe and hence obtain

information of one another. Of course, a network is minimally connected if there is exactly

one chain between any two agents in the network.

If we have two networks g1 and g2 such that g1 ⊂ g2, we say that g1 is a subnetwork

of g2. A subnetwork g1 is said to be a component of g2 if g1 is connected and there is no

chain between any pair of agents i and j such that i belongs to g1 and j belongs to g2.

Network patterns Now let us turn to introduce some patterns of networks that are used

in this paper. Before so doing we introduce the following notations. Ii (g) denote the set of

agents that establish links with i and Oi (g) denote the set of agents that i establishes links

with. A network such that there is exactly one agent i such that |Ii (g) |= 0 and |Ij (g) |= 1

for every j 6= i is called a branching network. Figure 2 illustrate several forms of branching

networks. Note that there exists a path from i to every other agent in the network. Note

further that a center-sponsored star seen in Figure 2, which is the only non-empty SNN

in the Proposition 4.2 of Bala and Goyal (2000) is also a branching network.

Next, we introduce another form of network called Bi network. This form of network

is first in the context of Mathematical Graph Theory in Harary et al. (1965), and then

studied in the context of Strict Nash Network by Billand et al. (2011) whose the following

definition is borrowed from. Specifically, Let N′ ⊂ N. We set QN ′ (g) = N′ ∪ {j ∈
N|there exists i ∈ N′such that there is a path from ito j}. A point contrabasis of a network

g, B (g), is a minimal set (for the inclusion relation ⊂) of players such that QB(g) = N.

An i-point contrabasis, Bi (g), is a point contrabasis of g such that all players j ∈ Bi (g)
establishes links with i. A network g is a Bi-network if it satisfies the following properties:

|Ii (g) |≥ 2, |Ij (g) |< 2 for all j 6= i, and Ii (g) = Bi (g). Figure 1 shows several forms of Bi

network. Note that a periphery-sponsored star is also a Bi network.
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Finally, if a network is such that |Oi (g) |= |Ii (g) |= 0, then the network is said to be an

empty network.

2.4 Modified Networks

Consider a network g. Let ij ∈ g. That is, i establishes a link with agent j in g. If i changes

his mind by removing this link ij and establishes a link with k instead, we have a netwotk

that is almost similar to g except that ij is replaced by ik. We denote this network by

g − ij + ik.

Now let us consider two networks g1 and g2 that are disconnected from each other in

the sense that there is no chain between an agent in g1 and an agent g2. Let agent i and

j belong to g1 and g2 respectively. If we assume that i establishes a link with j, then the

network g1 and g2 are jointed. We denote this jointed network by g1 ⊕ij g2.

2.5 Decay and Distance

In some models, including De Jaegher and Kamphorst (2015) and Section 5.2 of Bala and

Goyal (2000), a homogeneous and geometric link-wise decay is present. More specifically,

let σ ∈ [0, 1] be called ‘decay factor.’ This decay is link-wise and geometric in the sense

that for each link that the information traverses a percentage of (1 − σ) 100% of informa-

tion is los and a percentage of σ100% of information remains. In more formal terms, let

Vi,j be the ‘ex-ante’ information or the information of j that flows to i, where the term

ex-ante refers to the scenario in which the decay is completely absent. Naturally, the

ex-post information of j that i receives takes into account that the information decays as

it traverses through links. More specifically,if the information flows to i directly through

a link ī j, the ‘ex-post’ information of j that i receives is σ · Vi,j. If the information flows

to i directly through a two-link ij-chain, the ‘ex-post’ information of j that i receives is

σ
2 · Vi,j. In general, if the information flows to i directly through a k-link ij-chain, the ‘ex-

post’ information of j that i receives is σ
k · Vi,j. Note that this decay is homogeneous in

the sense that the same σ is applied to all links, regardless to the identiy of link receiver

and link sponsor. Therefore, if there is more than one chain between two agents, the

chain that consists of the smallest amount of links yields the highest ex-post information.

Consequently, th original model of BG and many works in this literature assume that

information in exchanged through the shortest chain.

The assumption that the information is exchanged through the shortest chanin further

results in the fact that an agent i has an incentive to establish a link in order to construct

a shorter chain with j even if there exists another ij-chain in the network. However, if the

decay factor σ is sufficiently small, the benefits from doing so cannot cover the additional

link establishment cost. Consequently such an incentive disappears and there is at most

one chain between any two agents in the network. Throughout De Jargher’s paper and

this paper, this assumption of sufficiently small decay is assumed.
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2.6 Link Formation Costs

Let cij be the link formation cost that agent i bears whenever he establishes a link with

agent j, j 6= i. If cij = c for all i, j such that i 6= j, the model is said to assume agent

homogeneity in link formation cost. Naturally if there are two distinct pairs of agents ij

and i′ j′ such that cij 6= ci′ j′ then the model is said to assume agent heterogeneity in link

formation cost.

Now let us define C = {cij}i 6=j as the cost structure of a network. If cij = ci for every cij ∈
C, then the two-way flow model is said to assume player heterogeneity in link formation

cost in the sense that cij depends only on the identity of the player, which is the agent who

establishes the link. We remark that player heterogeneity in link formation is assumed in

the model of Galeotti et al. (2006). Conversely if cij = cj for every cij ∈ C, then the two-way

flow model is said to assume partner heterogeneity in link formation cost in the sense that

cij depends soley on the identity of the partner, which is the agent who receives the link.

Next, we introduce a restriction on C that is more general than player heterogeneity

and partner heterogeneity. Specifically consider a set X ∈ N and agents j, k ∈ X, j is at

least as good a partner as k with respect to the set X if cij ≤ cij for any i ∈ X, i 6= j 6= k.

Moreover, if the inequality is strict then j is said to be a better partner than k with respect

to to the set X. If X = N and for any distinct pair j, k ∈ N it holds true that j is at

least as good a partner as k or k is at least as good a partner as j with respect to the

set N then C is said to satisfy Uniform Partner Ranking condition. We remark that this

Uniform Partner Ranking condition is first introduced by Charoensook (2015). Note that

if C assumes player heterogeneity, C also satisfies UPR condition since cij = cik = ci so that

j is at least as good a partner as k and k is at least as good a partner as j. Note further

that if C assumes partner hetergeneity, C also satisfies UPR condition since cj ≤ ck implies

that cij ≤ cik for every i 6= j 6= k.

2.7 The Payoffs

The payoffs of an agent depends on three factors: (i) the value of information that arrives

to him, (ii) the cost of link formation that he has to pay, and (iii) the properties of the

payoff functions whose real-value depend on these two arguments. In this subsection, we

first define these three factors in a very general form in order that our definitions enclose

all related existing models in the literature, and then introduce more specific forms used

in each key model in the literature. We begin by defining the total ex-post information of

i in the network g as:

(1a)Ii

(

g
)

= ∑
j∈Ni(g)\{i}

σ
di,jVi,j

Let the ‘ex-post’ communicational benefits of i in the network g be

(1b)Vi

(

g
)

= f
(

Ii

(

g
))
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where f (·) is such that f ′ (·) > 0. Finally, we define the payoffs of i in g as

(1c)Ui

(

g
)

= π



Vi

(

g
)

, ∑
j∈Ni(g)\{i}

ci,j





where π (·, ·) is such that π : R2 → R+ and π (·, ·) is strictly increasing in the first element

and strictly decreasing in the second element.

We now turn to relate the above payoff to more specific forms of payoffs found in

the literature. For Bala and Goyal (2000),it is assumed that (1) π (·, ·) is linear in both

arguments ; (2) Vij = 1 for all i 6= j; and (3) cij = c > 0 for all i 6= j, and (4) Vi (g) =

f (Ii (g)) = Ii (g). Consequently, the payoff in Bala and Goyal (2000) is:

(2)Ui

(

g
)

= ∑
j∈Ni(g)\{i}

σ
di,j − |NS

i

(

g
)

|c

De Jaegher and Kamphorst (2015) assume a similar yet more generalised payoff com-

pare to that of Bala and Goyal (2000) above. The only difference is that instead of

Vi (g) = Ii (g) they assume that Vi (g) = f (Ii (g)).
Consequently, the payoff in De Jaegher and Kamphorst (2015) is:

(3)

Ui

(

g
)

= Vi

(

g
)

− |NS
i

(

g
)

|c

= f



 ∑
j∈Ni(g)\{i}

σ
di,j



 − |NS
i

(

g
)

|c

For Charoensook (2015), it is assumed that (1) Vi (g) = f (Ii (g)) = Ii (g) and, (2) σ = 1,

ie., no decay is present. Consequently, the payoff in Charoensook (2015) is:

(4)Ii

(

g
)

= π



 ∑
j∈Ni(g)

Vij, ∑
j∈Ni(g)

cij





We remark that the payoff of Charoensook (2015) covers that of player heterogeneity

model (Galeotti et al. (2006)) in which cij = ci and Pure partner heterogeneity model of

Billand et al. (2011) in which cij = cj.

2.8 Nash Networks and Strict Nash Networks

Consider a network g. Let g−i be the set of all links in g that i does not establish. That is,

g−i = g\gi . Put differently, a union of g−i and gi is exactly the network g. These notations

are used to define the following terms.

Definition 1 (Best response). A strategy gi is a best response of i to g−i if

Πi

(

i; gi ⊕ g−i

)

≥ Πi

(

i; g′i ⊕ g−i

)

, for all g′i ∈ Gi

Definition 2 (Nash network). A network g is a Nash network if gi is a best response to g−i for

every agent i ∈ N.

Moreover, if the inequality is strict for all i ∈ N , Nash network is a Strict Nash Network.

We abbreviate the term Strict Nash Network by SNN.
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2.9 Preference Relation: definitions

In this subsection, we provide the definition of preference relation of an agent. Our

definition of preference relation aims to shed light upon the realism that an agent has in

mind which agent, among other agents, is preferred as a potential partner with whom he

wants to form a link. First, we define the set of agents on which this preference relation

is defined as follows.

Definition 3 (viewpoint and anti-viewpoint). In a minimally connected network or a minimal

component, a removal of the link between i and j (whether i or j sponsors the link does not matter)

splits the component into two - one containing i and the other containing j. The split component

that contained j - Dj
(

g − ī j
)

is called the viewpoint of i via j or a viewpoint of i for short.

Conversely, the split component that contained i - Di
(

g − ī j
)

- is called an anti-viewpoint of i via

j or an anti-viewpoint of i for short.

Remarks 1. Since a viewpoint is defined in a minimally connected network or minimal component

so that two agents are observed via exactly one chain for any two agent that are observed by an

agent i, there exists only one viewpoint that contains both agents.

Definition 4 (preference relation). Consider two agents x and y. i is said to prefer x to y or

x %i y if:

1. x and y are contained in the same viewpoint of i.

2. Ui

(

Di
(

g − ī j
)

⊕ix Dj
(

g − ī j
))

≥ Ui

(

Di
(

g − ī j
)

⊕iy Dj
(

g − ī j
))

Moreover, if the inequality above is strict, i is said to strictly prefer x to y or x ≻i y.

Intuitively, in a minimal network whenever a link of i ,ḡij = 1, is removed i is discon-

nected from a group of agents whose information arrives to j before finally reaching i.

Our definition of preference relation simply asks ‘if we pick up any two agents x and y

from this group of agents and suppose that i wishes to establishes a link to either x or y,

which agent would yield a higher payoff to i?’ This intuition is reflected in the condition

(ii) of this definition, where the viewpoint of i is jointed with the reverse viewpoint of i

with the link gix = 1 and giy = 1 on the left-hand side and right-hand side of the inequality

respectively. Observe further that this inequality compares the payoff of i from establish-

ing gix = 1 against that from establishing giy = 1, which illustrates the aforementioned

intuition on which agent would yield i a higher payoff. Another important point is to

notice that this definition of partner preference is network-based in the sense an agent i

knows whether he prefers agent x to y as a partner only if the structure of network in

which all three agents i, x and y reside is given.

Based upon this definition, we further define another related term below.

Definition 5 (most preferred partner). An agent x is said to be a most preferred partner of

agent i if x %i y for every agent y that is contained in the same viewpoint of i that also contains x

Remarks 2. If a minimal network is a Strict Nash network, then every agent x with whom i

establishes a link is his most preferred partner. However, an agent y who establishes a link with i

does not necessarily need to be a most preferred partner of i.
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2.10 The Partially Consistent Partner Preference Condition: definition

Having defined the term partner preference in the above subsection, in this subsection

we use this concept to introduce a condition that a minimal network as well as a two-way

flow model may satisfy. This concept requires that certain pairs of agents in a minimal

network agree on their preference relation over a certain pair of agent, which we specify

below.

Definition 6. A minimal network satisfies Partially Consistent Partner Preference Condition

(PCPP henceforth) if for every n-agent chain i1, i2, ..., in−1, in with n ≥ 4 in any non-empty

network, either of the following two properties with respect to partner preference holds true:

1. i1 %i0 in−1 then i1 %in in−1

2. in−1 %
in i1 then in−1 %

i0 i1

Moreover, we say that a two-way flow model satistfies this PCPP condition if every minimal

network resulted from this model satisfies the PCPP condition.

That is, for any pair of agent i1 and i2 who retrieve information of each other via a

chain i1, i2, .., in−1, in PCPP requires that i1 and in agree on their preference towards their

direct neighbours - i2 and in−1. Note that PCPP does not require that i1 and in perceive

i2 or in−1 as their most preferred partner. Note further that PCPP only applies to chains

with more than three agents. That is, PCPP requires that i2 6= in−1.

2.11 Useful Lemmas

Lemma 1. The model of De Jaegher and Kamphorst (2015) with the following payoff:

Ui

(

g
)

= Vi

(

g
)

− |NS
i

(

g
)

c|

where:

Vi (g) = f (Ii (g)) ; f ′′ (I) < 0; f ′ (I) > 0; Ii (g) =
n−1

∑
d=0

(

σ
d|Nd

i (g) |
)

satisfies the Partially Consistent Partner Preference condition.

b

b

b

b
bb

i0

i3i2

i1

Table 2: Figure 1: net-
work with 6 agents 1©

b

b

b

b
b

i3i2

i1

Table 3: Figure 1: net-
work with 6 agents 1′©

b

b

b
bb i0

i2

i1

Table 4: Figure 1: net-
work with 6 agents 1′′©

Proof. Without loss of generality consider the network 1©. There is a chain i0, i1, i2, i3. We

will show that if i1 %i0 i2 then i1 %i3 i2. To do so, let us assume that i1 %i0 in−1. This

11



assumption necessitates that in the network 1′©, which is the viewpoint of i0 that contains

both agents i1 and i2, i1 is better informed than i2
6. 7

Now let us modify the network 1′© by eliminating the link ¯i2i3, which results in the

network 1̂′©. Observe that by removing ¯i2i3 from the network 1′©, both i1 and i2 lose

information from i3. However, i1 loses more information from i3 than i2 does because i1
is closer to i3 than i1. This fact together with the fact that i1 is better informed than i2 in

1′© imply that i1 is also better informed than i2 in 1̂′©.

Next, let us modify the network 1′© by adding the link ¯i0i1 so that the network 1′©

becomes 1′′©. Observe that in 1′′© the agent i1 is closer to i0 than i2 is. This observation,

together with the facts that in 1′© i1 is better informed than i2 and that the network 1′′©

is simply 1′′© = 1̂′©+ ¯i0i1 lead to the conclusion that in 1′′© i1 is better informed than i2.

Finally, observe that 1′′© is nothing else but the viewpoint of i3 that contains i2 and i1. The

aforementioned fact that in 1′′© i1 is better informed than i2 therefore allows us to conclude

that i1 %i3 i2.

Lemma 2. In the model of Charoensook (2015) with the following payoff:

Ui

(

g
)

= π



 ∑
j∈Ni(g)\{i}

Vi,j, ∑
j∈Ni(g)\{i}

gi,jci,j





where C = {ci,j : i, j ∈ N, i 6= j} satisfies the Uniform Partner Ranking condition, Partially

Consistent Partner Preference holds.

Proof. Let us consider a chain i0, i1, ..., in−1, in. Without loss of generality let us assume

that i1 %i0 in−1. Consequently our goal is to show that i1 %in in−1. Before so doing, we

remark that in Charoensook (2015)’s model and any model that assumes no information

decay any agent i weakly prefers agent x to y if and only if ci,x ≤ ci,x. Onwards, we use

this fact to complete this proof.

Now since it is assumed that i1 %i0 in−1 we know that ci0 ,i1 ≤ ci0 ,in−1
. Due to the fact

that C = {ci,j : i, j ∈ N, i 6= j} satisfies UPR, ci0 ,i1 ≤ ci0 ,in−1
necessitates that cin ,i1 ≤ cin ,in−1

,

which in turn necessitates that i1 %i0 in−1. We have thus proof.

Definition 7 (inward-pointing chain). Consider an n-link chain i0, i1, ...., in−1, in where n ≥ 3.

This chain is said to be an inward-pointing chain if i0 accesses i1 and in accesses in−1.

Naturally, if n = 3, we know that i1 = in−1 so that i0 and i0 access the same agent.

Moreover, if n > 3, we know that i1 6= in−1 so that i0 and i0 access different agents.

6It is easy to prove that this assumption holds true by specifically identify the aggregate ex-post informa-
tion that i1 and i2 possess in the network 1′©. We leave this to our readers

7We note in this proof ix is better informed than iy in a network if ix receives more aggregate communi-
cation benefits than iy. Moreover, since link formation cost is homogeneous an agent i prefers ix to iy as a
partner only if ix is better informed than iy in the viewpoint that contains both ix and iy.
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Lemma 3. A minimally connected network is either a branching or Bi network if and only if there

exists no inward-pointing chain with more than three agents in this component.

Proof. [If a minimally connected network has no inward-pointing chain with more than three

agents, then this network is either Bi or branching]

Let us pick up a chain with exactly four agents that is not an inward-pointing chain.

Now since it is not inward pointing, there are two cases. The first case is that this chain

sequentially consists of links {i0i1, i1i2, i2i3}. The other case is that this chain sequentially

consists of links {i0i1, i2i1, i2i3}. Note that the difference between the two cases is the

sponsorship of the link between agent i1 and i2.

Now let us consider the first case. Let us add one more agent i4 so that the new

chain becomes {i0i1, i1i2, i2i3i4}. Note that i3 has to access i4 and not the other way round.

Otherwise, this chain becomes and inward pointing chain which we assume to be non-

existent at the beginning. Now if we follow this analogy by adding other agents to thic

chain, then the resulted network is such that every agent receives exactly one link except

i0 who receives no link. Consequently this network is a branching network.

Now let us consider the second case. Similar to the first case we add agent i4 to this

chain. Note that i3 has to access i4 and not the other way round. Otherwise, this chain

becomes and inward pointing chain. Now if we follow this analogy by adding other

agents to this chain, then we know that there exists a path from i3 to all these added

agents. Then if we repeat this argument by adding agents to i0, by the same analogy we

know that there exists a path from i0 to all these added agents. Now observe that since i0
and i2 access i1 it follows that i0 and i2 belong to the contrabasis of this network, which

in turn necessitates that i1 is the point contrabasis of this network. Finally, we conclude

that this network is a B1 network.

If a minimally connected network is either a branching or Bi network, there exists no inward-

pointing chain in this component

To do so, we prove that if there exists an inward-pointing path with more than three

agents in a minimally connected network, then the network is neither a branching or Bi

network. We divide our proof into two steps: (i) if an inward-pointing path with more

than three agents exists, then the network has at least one agent i who receives more than

one link, and (ii) this agent i is not an i− point contrabasis of this network, which in turn

necessitates that the network is neither branching nor Bi network.

Let us prove the first step: if an inward-pointing path exists, then the network has

at least one agent i who receives more than one link. Indeed, it is easy to show that an

agent who receives more than one link lies in an inward-pointing path. We prove by

contradiction. Consider an inward-pointing path between i and j. Let i accesses i′ and j

and j′ in this path. Next, to prove by contradiction let us suppose that there is no agent

who receives more than one link. Then since i accesses i′, we know that i′ his adjacent

agent in this path. By induction we know that j′ access j. A contradiction. Therefore,

there has to be one agent who receives more than one link in this path. Let this agent be

i∗.

We now prove the second step: i∗ is not an i∗ point contrabasis of this network. To do

13



so, without loss of generality let us assume that i∗ 6= j in this inward-pointing ij−path.

Now, consider a path between i∗ and j. To prove by contradiction let us suppose that i∗

is point contrabasis and the network is Bi∗ . The assumption that i∗ is point contrabasis

necessitates that there is a path between an adjacent of i∗ and j. Let this adjacent agent

be k. Since a path between k and j exists, we know that k accesses his adjacent agent,

and this adjacent agent accesses another agent. By induction we know that k accesses j′

who is adjacent to j. Again, by induction we know that j′ access j. A contradiction to the

assumption that j accesses j′ in this inward-pointing path.

2.12 Main Result: Partially Consistent Partner Preference condition as a Suf-
ficient Condition

Proposition 1. If a two-way flow model satisfies Partially Consistent Partner Preference condi-

tion, every non-empty SNN is either Bi or branching.

Proof. By Lemma 3, it suffices to prove that if a two-way flow model satisfies Partially

Consistent Partner Preference condition, every SNN has no inward-pointing chain. To

prove by contradiction, let us assume that in an SNN an inward-pointing chain exists.

By the definition of inward-pointing chain with more than three agents- i0, i1, ...., in−1, in

- we know that i0 accesses i1 and in accesses in−1. Since in an SNN every agent chooses

his best response, this further neccessitates that i1 %i0 in−1 and in−1 %in i1, which is a

contradiction to the assumption that the two-way flow model satisfies Partially Consistent

Partner Preference condition.

Corollary 1. The results of De Jaegher and Kamphorst (2015) (Proposition 1), Bala and Goyal

(2000) (Proposition 5.4), Charoensook (2015) (Proposition 1), Billand et al. (2011) (Proposition 1),

Galeotti et al. (2006) (Proposition 1), Bala and Goyal (2000) (Proposition 4.2) are such that every

non-empty SNN is either Bi or branching because all these two-way flow models satisfy Partially

Consistent Partner Preference condition.

Proof. In the previous section, Lemma 1 and 2 we show that the model of De Jaegher and

Kamphorst (2015) and the model of Charoensook (2015) satisfy the Partially Consistent

Partner Preference. Note that the results of De Jaegher and Kamphorst (2015) (Propo-

sition 1) generalizes the results of Bala and Goyal (2000) (Proposition 5.4). Note further

that the Proposition 1 of Charoensook (2015) generalizes the results of Billand et al. (2011)

et al. (Proposition 1), Galeotti et al. (2006) et al (Proposition 3.1), Bala and Goyal (2000)

(Proposition 4.2) because all these models have no decay and their cost structures satisfy

the Uniform Partner Ranking condition, which is assumed in Charoensook (2015). Conse-

quently, our results in Lemma 1 and Lemma 2, which show that the model ofCharoensook

(2015) and the model of De Jaegher and Kamphorst (2015) respectively satisfy Partially

Consistent Partner Preference condition are general enough to conclude that these models

and their propositions satisfy the Partially Consistent Partner Preference condition. Then,

by the Proposition 1 above, the fact that Partially Consistent Partner Preference condition

is satisfied allow us to conclude that SNNs in these model are either Bi or branching.
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In the Discussion section, we show that PCPP is a sufficient but not necessary con-

dition that guarantees that every non-empty component of SNN is either branching or

minimal Bi. A natural question that follows is what a necessary and sufficient condition

that guarantees likewise is. We answer this question below.

Proposition 2. Every non-empty component of a minimal SNN is either Bi or branching if and

only if for any n-link chain i0, i1, ...., in−1, in where n ≥ 3 in this SNN such that i0 forms a link

with i1 one of the following holds true that:

• in−1 is not the most preferred partner of in

• in−1 is the most preferred partner of in and in−1 forms a link with in

The proof for this proposition is trivial and hence is omitted. Intuitively, though, this

proposition is a necessary and sufficient condition that guarantees the non-existence of

an inward-pointing chain with more than 3 agents in an SNN, which further guarantees

that every non-empty component of a network is either branching or minimal Bi. This is

why this proposition requires that once i0 forms a link with i1, either (i) in−1 is not the

most preferred partner of in so that forming a link with in−1 is not his best response and

hence the chain is not inward pointing, or (ii) in−1 is the most preferred partner of in and

in−1 forms a link with in for the same reason.

2.13 Discussion 1: New extensions of existing models that also satisfy PCPP
condition

This section introduces some extensions of models in existing literatures that also satisfy

PCPP condition introduced in this paper. Consequently it illustrates how the PCPP con-

dition can be applied in predicting the shapes of SNNS. Our first extension is based upon

the moel of De Jaegher and Kamphorst (2015), in which we now replace the assumption

of agent homogeneity with agent heterogeneity in terms of information decay as follows.

Example 1. In the model of De Jaegher and Kamphorst (2015) instead of assuming that informa-

tion decay is σ ∈ (0, 1) across all links we will assume that information decay of a link ij depends

on the identity of link sender i. That is, σij = σi. As before we assume that the degree of informa-

tion decay is sufficiently small so that no agent has an incentive to establish a link that allows him

to observe an agent whenever there exists another chain through which he can also observe this

agent. It is easy to prove that this extended model of De Jaegher and Kamphorst (2015) also satis-

fies PCPP condition, since the logic for proving that original model of De Jaegher and Kamphorst

(2015) (c.f. Lemma 1 in this paper) directly applies to this extended model. To elaborate on the

intuition, assume that two agents i and i′ are disconnected from a component such that agent i∗

is better informed than any other agent î in this component. Now due to our assumption of agent

heterogeneity in terms of information decay we know that σii∗ = σiî = σi and σi′ i∗ = σi′ î = σi′ .

Consequently, the fact that i∗ is better informed than î imply that both i and i′ prefer to establish

a link with i∗ than with î .
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2.14 Discussion 2: PCPP condition is a sufficient but not necessary condition
for a component of minimal SNN to be Bi or branching network.

In this discussion section, we show by mean of (counter-) examples that PCPP is a suffi-

cent but not necessary condition for the feature that every component of minimal SNN

to be Bi or branching network. Specifically we show that some models that do not satisfy

PCPP can result in this feature.

agent 1 2 3 4 5

1 - 0.4 0.3 0.1 0.2
2 0.1 - 0.2 0.3 0.4
3 0.1 0.4 - 0.3 0.2
4 0.1 0.3 0.2 - 0.4
5 0.1 0.2 0.4 0.3 -

Table 5: Cost Structure for Example 2

13

5

2

4

Figure 3: Example 2

Example 2. Let (i) the cost structure be represented by the above table, (ii) Vi,j = 1 for all i, j ∈ N

and i 6= j, (iii) the payoff is linear, and (iv) no decay is present. Consequently, an agent prefer

one agent over another based upon link formation cost that he bears alone. Figure 3 illustrates a

B1 network that is based upon these assumptions. Observe that in this network PCPP condition

is violated because for the chain between agent 4 and 5 we can observe that agent 4 prefers 3 to

2 but agent 5 prefers 2 to 3. However, this network is a minimal B1 network. To understand

why, observe that every agent (except agent 1) agrees that agent 1 is the most preferred partner.

Therefore, agent 2 and agent 3 choose their best responses by establishing links with agent 1 in

this network. Observe further that establishing links with 5 and 4 are also best responses of agent

2 and 3 respectively. As a result we have that this minimal B1 network is SNN.

1

3

5

2

4

Figure 4: Example 3
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Example 3. Let the model possesses all assumptions in Example 2 above. Consider the branch-

ing network rooted at agent 1 in Figure 4. It is easy to verify that PCPP condition is also not

satisfied although this network is SNN. Specifically let us consider the chain between agent 2 and

3, obviously agent 2 prefers agent 4 to agent 5 since c24 < c25 but agent 3 prefers agent 5 to 4

since c35 < c34. Therefore, PCPP condition is violated. However, it is also easy to verify that this

network is SNN by (tediously) confirming that each agent plays his unique best response.

Partner j

Player i









− 0.99 0.9 0.9
0.9 − 0.9 0.9
0.9 0.99 − 0.99
0.9 0.9 0.99 −









Table 6: Representation of agent heterogeneity in information decay in Example 4.

1 32 4

Figure 5: Example 4

Example 4. Consider the following model of two-way flow with agent heterogeneity in information

decay whose assumptions are as follows: (i) Vij = V = 1, (ii) Cij = c = 0.01, (iii) σij denotes the

information decay via the link ij (note that we allow for σij 6= σji), (iv) values of information

decay for every pair of agents are represented as a matrix in Table 6 above, (v) payoff is linear.

Let us consider the minimal B2 network illustrated in Figure above. It is easy to prove that PCPP

condition is violated yet this network is SNN. To confirm the violation of PCPP condition, consider

the chain between agent 1 and 4. We will confirm that 2 %1 3 but 3 %4 2. To confirm 2 %1 3,

observe that σ12 = 0.99 >> σ13 = 0.9. That is, it does not worth much for agent 1 to establish

a link with 3 compared to with 2 since information decay much more for the link 13 compared to

the link 12. Consequently 2 %1 3. Next let us confirm 3 %4 2. By the same analogy as the case

of 2 %1 3, observe that σ43 = 0.99 >> σ42 = 0.9. Consequently 3 %4 2. We have thus confirmed

that PCPP condition is violated.

Finally, we need to prove that this network is SNN. This can be done by tediously confirming

that each agent plays his unique best response.

2.15 Concluding Remarks

In this paper, we identify a generalized sufficient condition for every non-empty com-

ponent of minimal two-way Strict Nash network to be either minimal Bi or branching

network. This condition is called Partially Consistent Partner Preference condition in this

paper. We show that this PCPP condition is satisfied by many models in existing liter-

ature whose result is such that every non-empty component of minimal two-way Strict

Nash network to be either minimal Bi or branching network. Consequently, this paper
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contributes to the literature by building a bridge that merges together these existing lit-

eratures. A question that remains, though, is what intuitions drive them to satisfy this

PCPP condition and hence yield a similar characteristic of SNN. We use this section to

elaborate on this matter as follows.

First, let us try to understand again the intuition behind the PCPP condition. PCPP

condition is a restriction that requires that specific pairs of agents - every pair of agent i

and i′ connected through a chain with more than three agents - in the network have the

same preferences over some specific pairs of agents - i2 and in−1 that are adjacent to i and

i′ in the chain. Therefore, PCPP condition is a rather weak restriction in the sense that it

does not require that all agents have the same preferences. Simply put, it does allow for

the presence of agent heterogeneity in the network so long as the degree to which agents

are heterogeneous are not so extreme that those aforementioned pairs of agents - i and i′

- have different preferences on those aforementioned pairs of agents - i2 and in−1. This

explains why PCPP is satisfied in many models that allow for agent heterogeneity such

as those of Charoensook (2015), Billand et al. (2011), and Galeotti et al. (2006) et al.

We further remark that the degree to which agents are heterogeneous play an impor-

tant role in determining whether PCPP is satisfied by a two-way flow model. Indeed, this

remark is exemplified by several examples in the discussion sections above. In Example 1,

we introduce a specific form of agent heterogeneity in terms of information decay to the

model of De Jaegher and Kamphorst (2015) that assumes no agent heterogeneity, which

we show that PCPP condition is still satisfied. On the contrary, in example 3 we introduce

another specific form of agent heterogneity in terms of information decay, which we show

that PCPP condition is not satisfied. Another case in point is Example 2 that assumes a

specific form of agent heterogeneity in terms link formation cost without information de-

cay. Again, we have shown that PCPP is not satisfied. This is albeit the fact that Lemma

2 shows that PCPP is satisfied in the model of charoensook that also assumes a rather

generalized form of agent heterogeneity in link formation cost. Therefore, we conclude

that the degree to which agents are heterogeneous significantly determine whether PCPP

is statisfied in a model.

Thus, in a more general perspective the result of this paper implies that the degree

to which pattern of SNN can be predicted depends on how agents in the network are

different in terms of partner preferences. What remains to study, therefore, is to discover

other restrictions on partner preference of agents in addition to PCPP condition in this

paper that would also allow us to predict properties and/or shapes of SNNs.
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