
















































6. Tables and Figures

Figure 1: Models of cookstoves

(a) Traditional three stone stove
(wood)

(b) Traditional metal stove (wood)

(c) Traditional metal stove (char-
coal)

(d) Improved cookstove (charcoal)

Figure 2: Geographical distribution of women with respect to drop-off point
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Figure 3: Experimental design
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Figure 4: Timeline of the study
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Note: The timeline refers to a typical woman who participated to the training session in a typical cluster

24



Figure 5: Timing of temperature measurements waves
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Note: time profile of missions initializations (left) and of measurements density (right), distinguished by wave. A mission
initialization denotes the beginning of up to 2048 measurements for a given SUM.

Figure 6: Distribution of pairwise distances between households
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Note: Only distances and connections between women participating in a same experimental session are considered.
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Table 1: Summary statistics and sample balance

Invited Non-invited Diff P-value
N. of observations 898 179
Participated to the training session 0.461
Participated in nudge experiment 0.393
Endline survey not administered 0.066 0.162 -0.096 0.000

Baseline characteristics
Respondent age 33.226 32.251 0.975 0.298
Live in couple 0.873 0.894 -0.021 0.431
Size of gwa 12.836 13.073 -0.236 0.721
No schooling 0.438 0.408 0.030 0.453
Primary school 0.147 0.151 -0.004 0.877
Secondary school 0.109 0.128 -0.019 0.445
High-school or above 0.306 0.313 -0.007 0.844
Have income generating activity 0.455 0.436 0.020 0.616
Weekly time working (hours) 6.373 5.056 1.317 0.108
Repondent monthly income (CFA) 19752 16538 3214 0.258
Wealth index 0.014 -0.068 0.082 0.632
Monthly fuel expenditure, gwa level (CFA) 13413 13574 -160 0.851
Personal savings 0.323 0.274 0.049 0.192
Risk averse, small stake 0.663 0.687 -0.025 0.514
Member of informal groups 0.546 0.536 0.009 0.803
ICS owned at the baseline 0.203 0.173 0.029 0.359
Know ICS 0.941 0.916 0.025 0.209
ICS is efficient, allows to save time and fuel 0.786 0.760 0.026 0.426

Outcomes
Purchase ICS at the session (Sat) 0.175
Purchase in five-day time (Thurs) 0.141
Purchase ICS after intervention (Sat+Thurs) 0.314
ICS owned after the session (Sat) 0.341 0.173 0.168 0.000
ICS owned in five-day time (Thurs) 0.455 0.173 0.282 0.000
ICS owned at the endline a 0.447 0.187 0.260 0.000
Know where one can buy ICS a 0.751 0.727 0.024 0.519
=1 if 20-40% expecteed saving from ICS usage a 0.241 0.213 0.027 0.458
ICS knowledge score, 0-4 a 2.741 2.553 0.188 0.017
Know people owning ICS a 0.535 0.373 0.162 0.000
Know people owning ICS: family or friends a 0.293 0.307 -0.013 0.725
Know people owning ICS: neigbours a 0.448 0.147 0.301 0.000

Note: Values reported refer to the whole sample (36 clusters), a refers to variables measured
only at the endline on the non-attrited sample.
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Table 2: Summary statistics and sample balance, experimental session

Info No info Diff P-value
N 164 189
Improved coal stove in the gwa 0.177 0.180 -0.003 0.922
Know ICS 0.951 0.958 -0.006 0.757
Efficient, allow save time and fuel 0.829 0.857 -0.028 0.463
Respondent age 35.354 34.709 0.645 0.604
Live in couple 0.872 0.868 0.004 0.889
Size of gwa 12.896 14.116 -1.220 0.187
No schooling 0.457 0.497 -0.040 0.445
Primary school 0.165 0.153 0.011 0.759
Secondary school 0.091 0.111 -0.020 0.533
High-school or above 0.287 0.238 0.048 0.296
Have income generating activity 0.470 0.434 0.036 0.493
Wealth index, all sample -0.299 -0.297 -0.002 0.972
Personal savings 0.341 0.317 0.024 0.621
Risk averse, small stake 0.689 0.667 0.022 0.642
Member of informal groups 0.579 0.540 0.040 0.447
Normalized distance from drop-off point 0.824 0.791 0.034 0.445
# of women known by sight in the session 6.423 6.101 0.322 0.573
# of women whose respect opinion in the session 3.550 3.911 -0.360 0.439
Peer owned, bought or left deposit at session 0.695
Relation with peer: known by sight 0.543
Relation with peer: respect opinion 0.287

Outcomes:
Purchase ICS or leave deposit at session (Sat) 0.671 0.646 0.025 0.607
Purchase at the session 0.384 0.365 0.019 0.699
Leave the deposit at the session 0.287 0.280 0.006 0.880
Purchase ICS after 5 days (Thurs) 0.323 0.317 0.0006 0.891
Purchase ICS within experiment (Sat+Thurs) 0.707 0.672 0.035 0.466
Usage data from SUMS 0.244 0.175 0.069 0.107
Share of days of usage (SUMS) 0.352 0.354 -0.002 0.959
Avg daily time of usage (SUMS), in mins 94.154 88.116 6.038 0.782
Endline survey not administered 0.049 0.026 0.022 0.263
Reported high frequency usage (every day) 0.439 0.471 -0.032 0.539
Reported share of time of usage 0.471 0.496 -0.025 0.619

Note: The sample is based on 32 sessions where the experiment was implemented and
353 attendants who participated the final phase of the experiment. Of those, 340 were
successfully tracked at the endline.
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Table 3: ICS Usage: summary statistics

N mean sd min max

Panel A: Monitored ICS Usage
Extensive margin:
Days of moniotoring 73 72.03 29.19 12.63 112.2
N. of days with at least one usage 73 23.25 20.72 0 62
Share of days of usage, over monitoring period 73 0.353 0.295 0 0.970
At least one usage event 73 0.726 0.449 0 1
Intensive margin:
Time of usage, mins per day of usage above 50◦C 53 267.5 114.9 111.1 698.2
N. of usage events per day of usage 53 2.791 0.830 1.048 5.016
Duration of usage event in day of usage, in mins 53 96.83 27.29 32.18 148.9

Panel B: Self-reported ICS Usage
ICS owned at endline 340 0.656 0.476 0 1
Self-reported ICS usage at endline 223 0.960 0.197 0 1
Frequency of ICS use: always 214 0.467 0.500 0 1
Frequency of ICS use: daily 214 0.285 0.452 0 1
Frequency of ICS use: 3-4 times/week 214 0.0561 0.231 0 1
Frequency of ICS use: 1-2 times/week 214 0.0421 0.201 0 1
Frequency of ICS use: rarely 214 0.0794 0.271 0 1
Frequency of ICS use: never 214 0.0701 0.256 0 1
Share of time of usage 214 0.799 0.364 0 1
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Table 4: Peer effects on ICS take-up

Purchase ICS or
left deposit

(Sat)

Purchase ICS
after 5 days
(Thurs)

Purchase ICS
within experiment

(Sat+Thurs)
(1) (2) (3) (4) (5) (6)

Received information on peer’s purchase -0.0758 -0.0940 0.0574 0.0249 0.0552 0.0569
(0.0773) (0.115) (0.0757) (0.112) (0.0752) (0.111)

Peer owned, bought or left deposit at session 0.142* 0.181 -0.0591 -0.00652 -0.0298 -0.0434
(0.0814) (0.124) (0.0798) (0.126) (0.0804) (0.123)

Relation with peer: known by sight 0.153 0.232 0.133
(0.169) (0.179) (0.145)

Sight*Peer owned, bought or left deposit at session, -0.265 -0.395* -0.218
(0.201) (0.203) (0.182)

Relation with peer: respect opinion -0.202 -0.292* -0.225
(0.173) (0.175) (0.157)

Respect opinion*Peer owned, bought or left deposit at session 0.352* 0.558*** 0.453**
(0.211) (0.211) (0.194)

Constant 0.732*** 0.722*** 0.471*** 0.459*** 0.725*** 0.720***
(0.122) (0.124) (0.173) (0.174) (0.141) (0.141)

Observations 353 353 353 353 353 353
R-squared 0.123 0.131 0.054 0.075 0.068 0.082
Controls Yes Yes Yes Yes Yes Yes
Mean Dependent Variable 0.646 0.646 0.317 0.317 0.672 0.672

Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. Mean dependent variable refers to the control group.
Individual controls include age, marital status, size of gwa, dummies for education levels, participation to informal groups, having an
income generating activity, any saving, an index for wealth, risk aversion, knowing about ICS and owning already an ICS.
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Table 5: Peer effects on ICS usage

Share of days
of usage (SUMS)

Share of time
of usage (SUMS)

High frequency
usage (reported)

Share of time
of usage (reported)

(1) (2) (3) (4) (5) (6) (7) (8)

Received information on peer’s purchase 0.106 0.332* 35.72 85.63 -0.105 -0.144 -0.0860 -0.101
(0.152) (0.178) (49.59) (71.09) (0.0770) (0.109) (0.0745) (0.105)

Peer owned, bought or left deposit -0.106 -0.366* -23.71 -87.90 0.101 0.143 0.0856 0.109
(0.144) (0.184) (44.02) (73.04) (0.0840) (0.124) (0.0809) (0.120)

Relation with peer: known by sight 0.0607 11.91 0.108 0.0474
(0.172) (50.80) (0.163) (0.157)

Sight*Peer owned, bought or left deposit -0.267 -0.213
(0.195) (0.187)

Relation with peer: respect opinion -0.628** -131.3 -0.0762 -0.0469
(0.258) (97.75) (0.173) (0.169)

Respect opinion*Peer owned, bought
or left deposit 0.663*** 173.0* 0.396* 0.362*

(0.237) (97.23) (0.219) (0.210)
Constant 0.419** 0.470*** 78.86* 93.61* 0.259 0.257 0.300* 0.293*

(0.163) (0.160) (45.66) (48.66) (0.177) (0.177) (0.165) (0.165)

Observations 73 73 73 73 331 331 331 331
R-squared 0.181 0.270 0.170 0.218 0.162 0.179 0.169 0.186
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Mean Dependent Variable 0.354 0.354 88.12 88.12 0.497 0.497 0.497 0.497

Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. Individual controls as in table 4. The coefficients
of "Sight*Peer owned, bought or left deposit" in columns 2 and 4 are omitted because of collinearity.
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Table 6: The impact of invitation to the session and spillover effects

ICS ownership at the endline

All Non-participant
& control

Non- buying
participants
& control

(1) (2) (3) (4)

Invited at the training session 0.310*** 0.0854** 0.207***
(0.0409) (0.0414) (0.0588)

Participated to the training session 0.671***
(0.0857)

Constant -0.0739 -0.0205 -0.0201 0.0769
(0.0951) (0.0857) (0.103) (0.152)

Observations 989 989 587 277
R-squared 0.150 0.264 0.231 0.235
Controls Yes Yes Yes Yes
Lee lower bound 0.197*** 0.00295 0.00581

(0.0427) (0.0487) (0.0638)
Lee upper bound 0.312*** 0.0826*** 0.145***

(0.0409) (0.0402) (0.0573)
Mean Dependent Variable 0.194 0.194 0.194 0.181
Weak identification F stat 374.6

Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. Individual controls
as in table 4. The mean dependent variable indicates the average share of women owning ICS
at the baseline for the sample considered. All specifications are obtained via OLS, but column
2 via IV.
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Table 7: Sample balance by density of neighbors in the radius

All invited
(n=839)

5-days delay visit
(n=258)

Non-buying
participants (n=127)

Non-participants
(n=437)

Above
median

Below
median

P
value

Above
median

Below
median

P
value

Above
median

Below
median

P
value

Above
median

Below
median

P
value

Panel A: α = 0.5
Respondent age 33.320 33.282 0.963 33.175 33.947 0.596 31.667 34.156 0.189 32.636 32.284 0.749
Live in couple 0.869 0.873 0.858 0.849 0.886 0.380 0.841 0.844 0.970 0.889 0.878 0.730
Size of gwa 12.311 13.565 0.035 12.952 14.318 0.236 13.508 12.547 0.560 12.029 12.770 0.354
Primary school 0.146 0.150 0.868 0.143 0.091 0.195 0.111 0.094 0.749 0.140 0.152 0.722
Secondary school 0.106 0.113 0.756 0.119 0.121 0.958 0.111 0.125 0.810 0.106 0.117 0.714
High-school or above 0.331 0.295 0.262 0.270 0.220 0.351 0.333 0.234 0.219 0.377 0.352 0.594
Have income generating activity 0.467 0.459 0.813 0.444 0.470 0.685 0.460 0.531 0.428 0.498 0.457 0.392
Wealth index, all sample 0.025 0.018 0.961 -0.341 -0.745 0.132 -0.677 -0.895 0.580 0.275 0.252 0.909
Personal savings 0.323 0.339 0.640 0.333 0.326 0.898 0.333 0.313 0.804 0.353 0.343 0.841
Risk averse, small stake 0.657 0.673 0.624 0.675 0.674 0.995 0.683 0.688 0.952 0.652 0.661 0.849
Member of informal groups 0.546 0.558 0.729 0.532 0.545 0.826 0.508 0.516 0.932 0.560 0.561 0.992
ICS owned 0.183 0.214 0.253 0.175 0.197 0.646 0.175 0.219 0.535 0.193 0.213 0.609

Panel B: α = 1
Respondent age 33.106 33.506 0.622 33.715 33.405 0.832 32.063 33.766 0.370 32.049 32.877 0.450
Live in couple 0.884 0.857 0.248 0.854 0.884 0.475 0.810 0.875 0.315 0.907 0.858 0.117
Size of gwa 12.789 13.140 0.556 13.080 14.298 0.292 14.048 12.016 0.217 12.516 12.316 0.803
Primary school 0.127 0.170 0.085 0.153 0.074 0.049 0.127 0.078 0.368 0.129 0.165 0.286
Secondary school 0.113 0.106 0.719 0.095 0.149 0.186 0.095 0.141 0.432 0.133 0.090 0.148
High-school or above 0.338 0.285 0.098 0.270 0.215 0.305 0.317 0.250 0.403 0.378 0.349 0.534
Have income generating activity 0.468 0.457 0.759 0.467 0.446 0.738 0.524 0.469 0.539 0.511 0.439 0.130
Wealth index, all sample 0.003 0.041 0.799 -0.475 -0.631 0.562 -0.782 -0.792 0.978 0.274 0.250 0.905
Personal savings 0.299 0.366 0.038 0.292 0.372 0.174 0.222 0.422 0.016 0.342 0.354 0.801
Risk averse, small stake 0.644 0.688 0.173 0.650 0.702 0.368 0.635 0.734 0.231 0.631 0.684 0.246
Member of informal groups 0.519 0.587 0.046 0.496 0.587 0.147 0.444 0.578 0.134 0.551 0.571 0.680
ICS owned 0.197 0.201 0.864 0.190 0.182 0.870 0.190 0.203 0.859 0.209 0.198 0.780

The table reports the mean characteristics of women with the number of neighbors invited at the session in the radius being above and below the
cluster-specific median number of neighbors. Radius is calculated as α*average pairwise distance in the cluster. Results are reported for α = 0.5
(Panel A) and α = 1 (Panel B).
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Table 8: Social interaction effects on ICS purchase with 5 day-delay, α = 0.5

Purchase ICS with 5-day delay
# of purchasing

neighbours
at session

# of neighbours
owning ICS
after session

OLS IV IV First stage
(1) (2) (3) (4) (5)

# of invited neighbours, mean=5.13 0.0277** 0.220*** 0.412***
(0.0116) (0.0567) (0.0615)

# of purchasing neighbours at the
session (Sat), mean=.94 0.126*

(0.0664)
# of neighbours owning ICS after
the session (Sat), mean=1.82 0.0673**

(0.0290)
Leave the deposit at the session 0.493*** 0.491*** 0.471***

(0.0652) (0.0618) (0.0607)
Discussed with other attendands about
purchase before Thurs 0.289*** 0.282*** 0.310***

(0.0827) (0.0837) (0.0742)
Constant 0.0439 0.157 0.0902 -0.898 -0.688

(0.309) (0.280) (0.289) (1.017) (0.838)

Observations 258 258 258 258 258
R-squared 0.385 0.337 0.376 0.277 0.488
Controls Yes Yes Yes Yes Yes
Mean Dependent Variable 0.484 0.484 0.484 0.891 1.694
Weak identification F stat 15.01 44.87

Standard errors clustered by sampling point in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. Neighbors
are considered as people living within a distance alpha*the average pairwise distance in the sampling point, with
alpha=0.5 Weak identification test is based on Kleibergen-Paap rk Wald F statistic.
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Table 9: Social interaction effects on ICS ownership, sample of buying participants, α = 0.5

ICS ownerswhip at endline
# of purchasing

neighbours
(Sat+Thurs)

# of neighbours
owning ICS

after the session
(Sat+Thurs)

OLS IV IV First step
(1) (2) (3) (4) (5)

# of invited neighbours, mean=5.13 0.00438 0.468*** 0.605***
(0.0114) (0.0577) (0.0557)

# of purchasing neighbours
(Sat+Thurs), mean=1.72 0.00936

(0.0230)
# of neighbours owning ICS after the
session (Sat+Thur), mean=2.46 0.00724

(0.0180)
Constant 0.322* 0.336* 0.327* -1.424 -0.668

(0.184) (0.182) (0.177) (1.063) (0.802)

Observations 275 275 275 275 275
R-squared 0.138 0.141 0.138 0.432 0.584
Controls Yes Yes Yes Yes Yes
Mean Dependent Variable 0.193 0.193 0.193 2.273 2.964
Weak identification F stat 65.72 117.7

See Table 8.
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Table 10: Social interaction effects on ICS ownership, sample of non-buying participants, α=0.5

ICS ownerswhip at endline
# of purchasing

neighbours
(Sat+Thurs)

# of neighbours
owning ICS

after the session
(Sat+Thurs)

OLS IV IV First step
(1) (2) (3) (4) (5)

# of invited neighbours, mean=5.13 0.0243* 0.505*** 0.627***
(0.0130) (0.0953) (0.104)

# of purchasing neighbours
(Sat+Thurs), mean=1.72 0.0481*

(0.0262)
# of neighbours owning ICS after the
session (Sat+Thur), mean=2.46 0.0388*

(0.0215)
Constant -0.468 -0.401 -0.423 -1.394 -1.153

(0.360) (0.313) (0.324) (1.599) (1.517)

Observations 127 127 127 127 127
R-squared 0.389 0.376 0.379 0.475 0.581
Controls Yes Yes Yes Yes Yes
Mean Dependent Variable 0.197 0.197 0.197 1.551 2.118
Weak identification F stat 28.14 36.27

See Table 8.
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Table 11: Social interaction effects on ICS ownership, sample of non-participants, α=0.5

ICS ownerswhip
at endline

# of purchasing
neighbours
(Sat+Thurs)

# of neighbours
owning ICS

after the session
(Sat+Thurs)

OLS IV IV First step
(1) (2) (3) (4) (5)

# of invited neighbours, mean=5.13 0.00283 0.355*** 0.550***
(0.00779) (0.0488) (0.0484)

# of purchasing neighbours (Sat+Thurs),
mean=1.72 0.00795

(0.0213)
# of neighbours owning ICS after the
session (Sat+Thur), mean=2.46 0.00514

(0.0137)
Constant 0.0477 0.0462 0.0467 0.184 0.177

(0.162) (0.157) (0.156) (0.731) (0.709)

Observations 437 437 437 437 437
R-squared 0.250 0.249 0.250 0.322 0.524
Controls Yes Yes Yes Yes Yes
Mean Dependent Variable 0.204 0.204 0.204 1.478 2.297
Weak identification F stat 53.05 129.1

See Table 8.
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Table 12: Information and knowledge about ICS

∆t Know
ICS

∆t ICS
is efficient

Know
where to
buy ICS

Correct
estimate of
fuel saving
(20-40%)

ICS
knowledge
score (0-4)

Know people
owning ICS

All Relatives
and friends Neighbours

(1) (2) (3) (4) (5) (6) (7) (8)

Invited at the
training session 0.0502 0.0770 -0.0113 0.0659 0.175 0.268*** 0.0691 0.337***

(0.0578) (0.0824) (0.0694) (0.0655) (0.143) (0.0781) (0.0735) (0.0736)
Constant 0.0515 -0.197** 0.573*** 0.162** 2.149*** 0.244*** 0.155* 0.0204

(0.0714) (0.100) (0.0795) (0.0755) (0.164) (0.0878) (0.0800) (0.0811)

Observations 989 989 989 989 989 989 989 989
R-squared 0.031 0.030 0.023 0.019 0.032 0.039 0.028 0.066
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Mean Dependent
Variable 0.937 0.793 0.727 0.213 2.553 0.373 0.307 0.147

Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. The outcomes in columns 1 and 2 are
calculated as difference between endline and baseline values. Outcomes in columns 3 to 8 are only measured at the
endline. Mean dependent variable for columns 3 to 8 is the unconditional mean for the control group at the endline.
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Table 13: Impact of ICS ownership on welfare

ICS owned
after the
session

∆t Monthly fuel
expenditure, gwa

∆t Has income
generating activity

∆t Weekly time
working (in hours)

∆t Individual
monthly income

Expecteed
over-saving from

ICS usage
(>40%)

1st stage ITT LATE ITT LATE ITT LATE ITT LATE ITT LATE
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Invited at the
training session 0.273*** -3,541 0.0192 -2.675 -7,350 0.168**

(0.0567) (2,626) (0.0811) (1.864) (6,317) (0.0772)
ICS owned
after the session -13,385 0.0703 -9.828 -28,660 0.615

(12,406) (0.464) (10.76) (31,628) (0.421)
Constant -0.0441 5,258* 4,577 0.277** 0.280** -3.579 -4.012 4,373 3,517 0.499*** 0.526***

(0.0857) (2,998) (3,009) (0.110) (0.121) (2.665) (4.151) (7,238) (7,738) (0.107) (0.116)

Observations 989 971 971 989 989 987 987 823 823 989 989
R-squared 0.395 0.031 -0.026 0.396 0.396 0.162 0.061 0.207 0.088 0.060 -0.195
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Lee lower bound 0.239

(0.0415)
Lee upper bound 0.353

(0.0411)
Mean Dependent Variable 0.167 13659 13659 0.453 0.453 5.409 5.409 15732 15732 0.467 0.467
Weak identification F stat 8.041 9.126 9.033 7.614 9.126

Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. Weak identification test is based on Kleibergen-Paap rk Wald F statistic
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Appendix

A. Sampling design and survey protocols

A.1. Selection of clusters
The first step in the sampling design is to subdivide each of the six communes of Bamako into

rectangular blocks covering the entire area of the commune. We use Google maps to delimit each of
the six communes and then overlay rectangles/clusters within each of them. It is worth noting that
non-residential areas such as industrial zones, parks, rivers, ponds, sports areas etc. are excluded
during this process. This exclusion takes place before the actual selection of clusters via simple
random sampling. In the course of overlaying the grids, we try our best to ensure that the rectangles
cover actual blocks of houses and are uniform in size.

Within each commune, each grid cell is then assigned a number, and a random number generator
is used to select the actual clusters involved in the experiment. The number of clusters selected for
each commune is proportional to the population of each commune according to the 2009 census of
Mali. Therefore, we select 6 clusters in commune 1, 5 clusters in commune 2, 4 clusters in commune
3, 9 clusters in commune 4, and finally 7 clusters in communes 5 and 6.

It is also worth mentioning that wealthy neighborhoods are excluded from the sampling, and
whenever a randomly selected cluster is deemed too wealthy to be relevant for the study of energy
poverty, a replacement cluster is selected within the same commune. Although such a scheme leads
to a sample which is not fully representative of the entire population of Bamako, we can safely
assume that selected clusters are representative of the population of interest for our study, i.e.
non-wealthy families using cookstoves.

A.2. Sampling starting points
Once a cluster is selected, we then proceed to the selection of a starting point inside it. The

selection of the starting point follows the second-best routine recommended in the Afrobarometer
survey manual. That is, in the absence of the list of households within the cluster, we use the map
of the commune to determine the starting point, by identifying it with its Cartesian coordinates.
First, a ruler with numbers on each dimension side is overlaid over the chosen cluster. Afterwards,
a random number generator provides a digit for each of the two dimensions. The intersection of
the two lines drawn at those digits is the sampling starting point.

The day before the survey, an advance team of supervisors uses first Google Earth and then
a GPS device to determine the starting point on the field. The advance team takes pictures and
notes landmark points for the subsequent deployment of the survey teams. When the designated
point does not correspond to a residential area, the team then moves to the nearest housing block.
In addition, to anticipate the possibility that the designated starting point or its vicinity may not
be suitable for the survey, the advance team always goes to the field with a back-up starting point
which we use in such circumstances.

A.3. Selection of households
The advance team proceeds with the selection of households which will be assigned to enumera-

tors in the next day. The direction in which to start the selection is chosen by turning away from the
closest line of the grid (border of the rectangular cluster) on the map, and looking right from that
position. We choose this method to ensure that in all neighborhoods, the selected households fall
within the starting point’s cluster. Since the starting point is chosen at random and in some cases
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is at the edge of the cluster, randomly choosing a direction could in practice lead to the selection
of households outside of the grid. In particular, this method also ensures that control households
fall within the same neighborhood (as described in the next paragraph). It is worth stressing that
this selection method is random since the starting point from which the closest side of the grid is
based on is itself random.

Once the first direction is chosen, the second direction selected is the opposite one. Starting
from the right hand side (first direction), contiguous, inhabited households on either side of the
walking direction are selected and assigned alpha-numeric IDs. 30 households are selected within
the neighborhood: 25 as initial sample and the remaining 5 as replacements. Half of the households
are selected from the right hand side and the other half from the left hand side. On each side, if the
desired number of households is not reached by the end of the housing block, the team always turns
right and continues its counting process. If this process leads to the initial starting point without
reaching the desired count, the team then moves to the end of the block where it initially turned
right and proceeds instead to the next block.

Once the household selection in the treatment cluster is complete, to determine the control area
the advance team goes back to the starting point, again facing away from the closest line in the
grid, and walks straight for 10 minutes. Whenever obstacles prevented the straight line walk, the
team alternated between turning right and left. The position at the end of the ten minutes walk
is the starting point for the control neighborhood. The direction to the right is the first one while
the one on the left is the second one. Five households are selected in either direction, for a total
of 10 households. Once again, an alpha-numeric numbering system is used to select contiguous
households, with a process analogous to the one described for the treatment cluster.

A.4. Baseline survey protocol
Few days after the identification work by the advance team, a team of enumerators reaches the

group of selected households, which are each identified by its GPS coordinates. The enumerator
entering a house, after introducing him/herself and shortly describing the aim of the project, asks
to talk with the women responsible of the cooking rotation (the women who is most knowledgeable
about the family’s meal decisions). He/she asks for the consent and proceeds with the survey. For
households in the treatment clusters, at the end of the survey he/she communicates that the women
is invited to attend a training session on the use and advantages of ICS. The sessions are held in
a venue of the neighborhood and women are told that will receive 1,000 CFA reimbursement upon
personal participation showing the nominal coupon which is given. For the control clusters, no
invitation is given to the interviewee.

If the targeted individual is not at home, the enumerator will inquire about an approximate
time when she will be home and return then for the interview. The enumerator can also request the
phone number of that individual and ask to speak to her for an appointment. After two unsuccessful
attempts to find the proper interlocutor within the household, a replacement procedure for the
household kicks in. The field supervisor replaces the household with the first household available
in the roster selected for that end by the advance team.

A.5. Endline protocol
The endline survey protocol follows three steps, performed in two consecutive days.
First, for each cluster, an advance team uses GPS coordinates of households along with personal

identification information (name, address, phone number) collected during the baseline to locate the
women who were surveyed at the baseline. Once the identification of households is completed in a
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given starting point and the women are identified, the advanced team notifies them about the visit
of enumerators in the next day. This process is completed for both control and treatment areas. The
enumerators spend the day in the neighborhood to ensure that women who were temporarily absent
are interviewed upon their return. When the targeted woman is absent for a long period, we use a
replacement procedure by looking for the oldest woman within the same gwa who is knowledgeable
about the cooking decisions.

In the second step, the advance team drops a team of enumerators at each starting point to
administer the follow-up questionnaire. A member of the advance team who reconstituted the
households the day before walks each enumerator to their respective assignments to ensure that the
women who have been previously identified are the ones surveyed.

B. Missing data, attrition and partial compliance

The study is characterized by different degrees of data completeness which influence the different
samples of analysis. In what follows all steps leading to the different samples considered in the
analysis are presented together with a discussion on their impact on internal and external validity.

As far as attrition is concerned, we find significant differential attrition rates in our invitation
treatment sub-samples: 16% of women not invited to the training session and 6.5% of those invited
were not reached at the endline. We are not aware of any systematic process of refusal going on
in control areas. The protocol for household and woman identification, using baseline information,
has been followed throughout the endline survey administration. The most common reasons for
attrition were related to the temporary or permanent displacement of women and a few cases of
death. Moreover, attriters are more likely to live in larger gwa, while they do not show other
unbalanced along other observable characteristics. This is shown in column one of table B.1. In
order to test the extent to which differential attrition has an impact on the internal validity of our
results, we implement Lee bounds (Lee, 2009) which are reported below the estimates of interest in
tables 6 and 13.

About 46% of women invited to the session actually attended, with an average of 11 women
per session. Participation is the outcome of a self-selection process. Column 2 of table B.1 shows
that participants were on average older, living in larger gwa, less educated and less wealthy than
those who did not attend. In order to identify the causal effect of the training/marketing session,
we estimate the Intention to Treat (ITT) and Local Average Treatment Effect (LATE), in order to
account for partial compliance.

In 32 out of 36 training sessions, the peer information treatment was not correctly implemented
due to technical issues. The specific sessions were concentrated in a particular date and in a
particular geographical area (commune 5). Such loss of data do not represent a threat to the internal
validity of the experiment related to the peer information treatment, because such cases are not
included in the sample for such exercise. Though, such exclusion has an impact on the external
validity. Column 3 of table B.1 shows that participants to marketing/traning sessions where the
peer information experiment was rightly implemented are on average older, more educated and
less likely to own ICS at the baseline. However, it turns out that none of these characteristics
systematically correlate with the outcome variables reported in tables 4 and 5 (results not shown
but available upon request).

Finally, 14 women (3.9%) who attended the training/marketing session were not involved in
the final phase when the peer information treatment was administered. This was mainly due to
two reasons. First, some women only partially attended the training session and left the venue in
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advance. Second, some women arrived late and could not be registered for the final phase. Column
4 of table B.1 shows that these women were slightly older and more knowledgeable about ICS. As
such, they are excluded from the analysis of the peer information treatment but are included in the
rest of the analysis.
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Table B.1: Attrition and partial compliance

Attriter
vs

whole sample

Attendedant
vs

Invited
to the session

Participant to
peer info experiment

vs
Attendant

Reached final phase
vs

Participant to
peer info experiment

(1) (2) (3) (4)

Invited at the training session -0.0968***
(0.0289)

Respondent age -3.45e-05 0.00375*** 0.00275** 0.00179**
(0.000760) (0.00144) (0.00123) (0.000733)

Live in couple -0.00430 -0.0969* 0.0201 0.0464
(0.0263) (0.0514) (0.0466) (0.0374)

Size of gwa -0.00209** 0.00549*** 0.00191 -0.00139
(0.000887) (0.00201) (0.00202) (0.00130)

Primary school -0.0168 -0.0287 0.0876** 0.0102
(0.0251) (0.0507) (0.0399) (0.0274)

Secondary school 0.000281 -0.0781 0.0119 0.0228
(0.0296) (0.0561) (0.0610) (0.0364)

High-school or above -0.0261 -0.123*** 0.0911** 0.0170
(0.0211) (0.0429) (0.0393) (0.0255)

Have income generating activity -0.0177 -0.0346 -0.00307 -0.0145
(0.0187) (0.0378) (0.0387) (0.0285)

Wealth index, all sample 0.00238 -0.0302*** -0.00415 -0.00456
(0.00438) (0.00861) (0.00789) (0.00581)

Personal savings -0.0204 0.00912 0.0561 -0.0121
(0.0199) (0.0413) (0.0419) (0.0289)

Risk averse, small stake -0.00375 -0.0246 0.0158 0.0232
(0.0180) (0.0356) (0.0342) (0.0229)

Member of informal groups -0.0152 0.0157 -0.000638 0.0362
(0.0197) (0.0382) (0.0359) (0.0293)

Know ICS 0.00623 0.0923 -0.0722 0.156*
(0.0372) (0.0763) (0.0519) (0.0897)

Improved coal stove in the gwa 0.0246 0.0410 -0.102** 0.00612
(0.0240) (0.0435) (0.0493) (0.0261)

Constant 0.219*** 0.328*** 0.771*** 0.696***
(0.0587) (0.102) (0.0922) (0.117)

Observations 1,077 898 415 367
R-squared 0.029 0.045 0.052 0.076
Mean Dependent Variable 0.081 0.462 0.884 0.961

Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. The first row in the header refers to
the outcome variable, while the second reports the sample of reference.
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C. ICS usage

C.1. Sampling and attrition
SUMs were installed on a random sub-sample (about 36%) of ICS that were sold at the session

(both Saturday and Thursday). In order to check the representativeness of the actually monitored
sample, we look at the determinants (along the observable baseline characteristics used throughout
the analysis) of SUM installation. This is done in column 1 of Table C.1. One can notice that none
of the characteristics, apart from the indicator for secondary school education, seem to significantly
predict SUM installation.

Out of 100 SUMs installed, we were able to successfully obtain data (from at least one wave58)
for 75 of them (25% attrition rate). The main reasons for the attrition are breakage (15 cases),
loss/inability to find the SUM (6 cases), absence of the ICS sold (4 cases). Several reasons could
justify the relatively high attrition rate we face. SUMs were installed on the bottom of the stove. A
special tape designed to resist to high temperature was used to secure SUMs to the stove. In that,
we followed the guidelines of the SUMs producer (Berkley Air Monitoring Group) and the best
practices from other studies. However, differently from what happens in many of those studies, the
particular model of ICS we consider is portable and suitable for both indoor and outdoor cooking.
As such, it is often moved from one place to another. This makes SUMs particularly vulnerable
to blows, which may cause their damage or loss. Column 2 of table C.1 reports the determinants
of SUM data availability in the sample of installed ones. One may notice that the only significant
predictor is the size of the extended household (negatively). The consequences of this fact on the
estimate of effective ICS usage depend on the correlation between gwa size and usage. If larger gwa
use ICS more often or more intensively, then our sample, by under-representing them, would lead to
under-estimating effective usage. Conversely, if ICS are used less, for example because more women
participate the cooking rotation, then we would over-estimate effective usage. The correlation
between high self-reported usage and gwa size on the sample of assigned SUMs is negative, which
makes the second explanation more credible.

In order to establish the relationship between ICS usage, as measured through SUMs, and
self-reported usage, as from the endline questionnaire, we assess survey data completeness. Self-
reported usage of ICS was asked to all women reporting to personally own and use ICS59. This
leads to some missing data (2.6%) for the cases when ICS was present at the level of gwa, but
not under the exclusive use and control of the respondent. Column 3 shows the determinants of
reported data completeness on the sample of women who purchased ICS at the session whose ICS
is still present at the endline. Once again, no systematic attrition process seems to arise along
observable characteristics. Finally, column 4 shows the extent to which the available data from
both the monitoring exercise and the self-reported variables are representative of the sample of
ICS purchasers at the session who still own it at the endline. One can notice that the sample
appears unbalanced with respect to the the size of gwa and the level of education of the respondent
(women with no schooling, the omitted dummy, are over-represented). However, ICS usage and
level of schooling appear relatively uncorrelated (considering both the samples for measured and
self-reported usage).

58Because of attrition between the first and the second wave, not for each SUM we have data from both waves, and
in total we have temperature measurements from 129 “missions”, where any mission is composed by measurements
from a given SUM in a given wave.

59This was done to maximize the precision of the responses.
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Table C.1: Sampling and attrition on ICS usage data

SUMS installed
vs

ICS purchasers
at session

SUMS data collected
vs

SUMS installed

Non-missing reported usage
vs

ICS owned at endline
from session participants

(1) (2) (3)

Received information on peer’s purchase 0.0761 0.0955 -0.00272
(0.0643) (0.0889) (0.0264)

Purchases after 5 days 0.0288 -0.116 -0.0132
(0.0677) (0.0925) (0.0306)

Respondent age -0.00319 0.00334 -0.000592
(0.00257) (0.00355) (0.000999)

Live in couple -0.170 0.105 -0.0352**
(0.107) (0.126) (0.0171)

Size of gwa -0.00218 -0.0105 -0.000441
(0.00405) (0.00655) (0.00232)

Primary school -0.0915 -0.214 -0.00126
(0.0916) (0.133) (0.0353)

Secondary school -0.326*** -0.128 -0.0905
(0.101) (0.253) (0.0742)

High-school or above -0.0700 -0.0749 -0.0227
(0.0849) (0.104) (0.0315)

Have income generating activity -0.0484 0.0658 0.00703
(0.0757) (0.105) (0.0275)

Wealth index, all sample 0.000636 -0.0163 0.0121*
(0.0170) (0.0254) (0.00624)

Personal savings 0.0647 0.0373 0.0353
(0.0823) (0.106) (0.0342)

Risk averse, small stake -0.0819 -0.0393 0.0155
(0.0739) (0.0991) (0.0341)

Member of informal groups -0.0583 0.00954 0.00160
(0.0817) (0.106) (0.0311)

Improved coal stove in the gwa 0.104 0.0698 0.0269*
(0.0926) (0.115) (0.0156)

Constant 0.797*** 0.709*** 1.006***
(0.179) (0.216) (0.0509)

Observations 236 98 223
R-squared 0.075 0.132 0.064
Mean Dependent Variable 0.415 0.745 0.960

Standard errors clustered by sampling point in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.
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C.2. Measurement of usage
We first observe that the distribution of maximum temperatures measured in each mission is

strongly bimodal (Figure C.1, left). We hence first classify as “clearly used” all SUMs reaching a
temperature above 80 degrees. We then focus on SUMs not included in such sample and observe
that temperature changes from one period to the next are, as expected, strongly concentrated
around 0, with 0.5%th and 99.5%th percentiles of respectively -1◦C. and 1.5◦C. We then define a
distinct usage as a temperature peak such that:

1. temperature is over 35◦C.,
2. two distinct usages are separated by at least 141 minutes in time (2 other measurements),
3. between two distinct usages, there are at least a drop and a raise of 4◦C. each between

subsequent measurements.

While condition 1 might seem too relaxed, its relevance is minor, since condition 3 is instead
very conservative, when compared to percentiles of temperature differentials.60 Figure C.1 plots the
intra-day distribution of measurements comparing SUMs featuring at least one instance of usage
with other SUMs.

The algorithm just described records cookstove usage at the extensive margin: we also derive
an intensive measure by looking at the raw share of measurements for which temperature is over
50◦C: Figure C.2 (right) features the distribution of such measure for missions in which at least one
use was recorded, highlighting the fact that the vast majority of used stoves was employed between
150 and 400 minutes per day.

Figure C.1: Peak and average temperatures
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Note: maximum temperature reached during each mission (left) and distribution of temperatures over time, classified
depending on whether at least one usage was detected over the whole mission, together with 90% confidence intervals
(right).

60On the other hand, the low threshold in condition 1 is justified by the clear evidence of cooking events reaching
peak temperatures some time in the 47 minutes between two subsequent measurements. Such events would go
uncaught if we raised the threshold.
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Figure C.2: Example of the use detection algorithm

03:00 15:00 03:00 15:00 03:00 15:00
Time of day

30

40

50

60

70

80

Re
co

rd
ed

 te
m

pe
ra

tu
re

0 200 400 600 800
Average usage per day (in minutes, for used stoves)

0

2

4

6

8

10

12

14

16

Fr
eq

ue
nc

y

Note: example of the output of the use detection algorithm, ran over three days of usage of a single stove, where
each circle denotes a detected use (left); average daily usage for used stoves (right).

C.3. Monitored vs self-reported usage
Table C.2 shows the results of a set of regressions where the dependent variables are different

measures of monitored usage, namely the share of days of usage, the probability of experiencing at
least one cooking event and the average time of usage. We use two measures of self-reported usage,
namely the six dummies obtained from the questionnaire and the continuous variable “share of time
of usage” as regressors, together with the usual controls used throughout the paper. We find that
reported usage significantly predicts monitored usage in all specifications.
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Table C.2: Monitored vs reported ICS usage

Share of days of usage
over monitoring period

Avg time
of usage

(1) (2) (3) (4)

Share of time of usage, reported 0.355*** 76.79***
(0.0797) (28.31)

Frequency of ICS use: always 0.339*** 62.03**
(0.0913) (30.04)

Frequency of ICS use: daily 0.481*** 110.3***
(0.107) (37.53)

Frequency of ICS use: 3-4 times/week 0.495*** 117.3**
(0.116) (45.11)

Frequency of ICS use: 1-2 times/week 0.168* 50.59
(0.0952) (34.68)

Frequency of ICS use: rarely 0.0140 -14.52
(0.0807) (39.09)

Constant 0.0968 0.0592 28.76 24.08
(0.172) (0.183) (51.30) (53.59)

Observations 73 73 73 73
R-squared 0.315 0.440 0.224 0.317
Controls Yes Yes Yes Yes
Mean Dependent Variable 0.353 0.353 91.42 91.42

Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.
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D. Placebo tests

We run placebo regressions to test the goodness of our instrument. We estimate regression 4
on a set of outcomes which are pre-determined to the social interaction dynamic we are studying.
In particular, we consider i. the individual participation to the session, ii. ICS take-up rate at the
end of the training/marketing session and iii. the probability of leaving the deposit. The exercise is
done on the different sub-samples of interest: all women invited (point i.) and participants (point
ii. and iii.). Results for α=0.5 are shown in Table D.1, while sensitivity analysis is presented in
Figure D.1. The instrument does not seem to have any significant influence on participation

Table D.1: Placebo regression on participation, ICS purchase at the training session and leaving deposit

Attended the
training session

Purchase ICS
at training session Left deposit

(1) (2) (3)

# of invited neighbours, mean=5.13 0.00981 0.0167 0.00988
(0.00988) (0.0122) (0.00796)

Constant 0.294 0.159 0.354
(0.187) (0.224) (0.215)

Observations 898 415 415
R-squared 0.048 0.086 0.079
Controls Yes Yes Yes
Mean Dependent Variable 0.462 0.378 0.282

Standard errors clustered by sampling point in parentheses, *** p < 0.01, ** p < 0.05, *
p < 0.1.
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Figure D.1: Social interaction effects on session attendance, propensity to purchase ICS and leave the deposit during
the session, sensitivity analysis on α
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Note: Coefficients are derived from estimations as in Table 9.
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E. Sensitivity analysis on α

Figure E.1: Social interaction effects on purchase with five-day delay (Thursday), sample of non-buying participants
at the session (Sat), sensitivity analysis on α
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Note: Coefficients are derived from estimations as in Table 8. The sample is restricted to women who participated
to the session and who did not buy on the spot.
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Figure E.2: Social interaction effects on ICS ownership, sample of buying participants (Sat+Thurs), sensitivity
analysis on α
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Note: Coefficients are derived from estimations as in Table 9.
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Figure E.3: Social interaction effects on ICS ownership, sample of non-buying participants (Sat+Thurs), sensitivity
analysis on α
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Note: Coefficients are derived from estimations as in Table 10.

62



Figure E.4: Social interaction effects on ICS ownership at the endline, sample of non-participants, sensitivity analysis
on α
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Note: Coefficients are derived from estimations as in Table 11.
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