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Abstract

In 2015, an estimated 429,000 deaths and 212 million cases of malaria occurred worldwide, while 70%
of the deaths occurred in children under five years old Changes in climatic exposure such as temperature
and precipitation makes malaria one of the most climate sensitive outcomes. Using a global malaria
mortality dataset for 105 countries between 1980 and 2010, we estimate that the global optimal temper-
ature maximizing all-age malaria mortality is 20.6℃, lower than previously predicted in the literature.
While in the case of child mortality, a significantly lower optimum temperature of 19.3° is estimated.
Our results also suggest that in Africa and Asia, the continents where malaria is most prevalent malaria,
mortality is maximized at 28.4℃ and 26.3℃, respectively. Furthermore, we estimate that child mortality
(ages 0-4) is likely to increase by up to 20 percent in some areas due to climate change by the end of the
21st century.
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1 Introduction
In 2015, an estimated 429,000 deaths and 212 million cases of malaria occurred worldwide, while 70% of
the deaths occurred in children under five years old (WHO, 2016). The balance between temperature and
precipitation is critical for breeding and transmission of malaria vectors and hence for the transmission of
malaria. Although, the fact climatic variables affect malaria transmission is known (Alonso et al., 2011), the
impact of climatic exposure on malaria mortality is less clear.

Malaria is one of the most widely transmitted vector-borne diseases, according to the World Health
Organization (WHO); the death burden of malaria has increased over the last decade (WHO, 2010). Vector-
borne diseases (VBD) are infections transmitted by the bite of infected arthropod species such as mosquitoes,
ticks, triatomine bugs, sandflies, and blackflies. These are among the major microbial causes of morbidity
and mortality in the world today affecting nearly half of the world’s population, the majority of who reside
in developing countries located in the tropical and subtropical climate (WHO, 2016).

Malaria is considered one of the most sensitive to changing environmental conditions (Martens, 1998;
Martens et al., 1999; Rogers and Randolph, 2000; and Kim et al., 2012); it is also the most deadly and
widespread. In 2014, ninety-seven countries and territories had malaria transmission while an estimated 1.2
billion people were at high risk 1. We utilize an annual global dataset over a span of 30 years to investigate
the relationship between climatic exposure (temperature and various measures of extreme precipitation) and
malaria mortality. The climatic data for this paper comes from the Global Land Data Assimilation System
(GLDAS), while the data on malaria deaths comes from the Institute for Health Metrics and Evaluation
(IHME). Combining these datasets, we compute optimal climatic conditions for malaria mortality and pro-
vide projections due to climate change. Using population-weighted climate data for the malaria season in
each country, we estimate that the optimal temperature to maximize mortality is significantly lower (20℃
20°C and 23℃) than previously estimated. Furthermore, our results suggest that malaria mortality among
children will increase by 11.5% by the end of 21st century due to climate change.

2 Determinants of Malaria Transmission
Changes in temperature influence the incubation period of malaria parasites and in turn malaria transmission
rates. Temperature also affects the lifespan, growth, and biting rates of mosquitos (Lindsay et al., 1998;
Craig et al., 1999; Grover-Kopec et al., 2005; and Gething et al., 2011); thus, the transmission rate of
malaria is likely to have increased with rising temperature (Githeko, 2008). Rainfall often leads to stagnant
water critical for breeding of mosquito eggs (Craig et al., 1999; Kiszewski et al., 2004; and Thomson et
al., 2005). This makes malaria one of the most climate sensitive outcomes. While extreme rainfall events
can synchronize vector host seeking and virus transmission, leading to increased malaria transmission and
mortality (Patz et al., 2003 and Ermert et al., 2012). The optimal temperature for malaria transmission
has often been considered between 20℃ and 30℃ (Casman and Dowlatabadi, 2002 and World Bank, 2012)
but Martens et al. (1997) estimated it to be 31℃. While Mordecai et al., (2013), using thermal response
functions conclude that the optimal temperature for malaria transmission is much lower at 25℃.

This paper computes the optimal conditions for temperature controlling for various indicators for extreme
levels of precipitation to understand the impacts of these variables on the entire distribution of malaria
mortality across countries over 30 years.

1Population at risk (High + Low): High=population living in areas (reported malaria incidence > 1 per 1000/year) defined
at administrative level 2 or lower. Low=population living in areas (reported malaria incidence < 1 per 1000/year)
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3 Literature Review
The relationship linking climatic variables and transmission of vector-borne diseases has been studied in
both the medical science and the health economics literature. Many papers including Anderson and May
(1992), Lindsay and Parson (1998,) and Lafferty (2009), used standard epidemiological models to study the
relationship between the vectors and pathogens of malaria and temperature to conclude that reproductive
rate of malaria vectors increases between 0.5 – 4.0% as temperature increases. A number of papers use
biological models to estimate the effect of changing climatic variables on malaria also found similar results.
Martens et al. (1999), controlling for vector specific information on malaria and dengue pathogens suggest
that extreme temperature and periods of heat stress aid the reproduction and transmission rate of malaria.
Chaves and Koenraadt (2010) use a similar model with data from four East African countries and found
that an increase in number of heat days during a season increases malaria outbreaks.

Mouchet et al. (1996) conclude that a decrease in rainfall in the Sahel Region of Africa results in a decline
in the transmission rate of malaria vectors. Thomson et al. (2005) controls for precipitation and sea-surface
temperature in Botswana and find that the variability of the climatic variables can be used to explain nearly
seventy per cent of the variability in the reported malaria incidences. While Singh and Sharma (2002) suggest
that decrease in rainfall in central-India has negatively affected the productivity rate of larva responsible for
malaria vectors and pathogens.

The existing literature on the relationship between climate change and transmission of vector-borne dis-
eases mostly focuses either on individual countries (Githeko et al., 2000) or on specific sites within countries
(Zhou et al., 2003). Moreover, quantifying the impacts of the climate variables has mostly involved incor-
porating changes in temperature in the models (Hoshen and Morse, 2004) despite the medical literature
increasingly suggesting that both temperature and precipitation affect the transmission of malaria (Zhou et
al., 2004 and Zhou et al., 2007).

Very few papers (e.g. Paaijmans et al., 2010 and Caminade et al., 2014) have studied the impact of climate
exposure on malaria mortality; even these two papers use simulated models. A critical contribution of this
paper is the estimation of global and continental optimal thresholds for temperature that maximizes malaria
mortality.

4 Data and Descriptive Statistics
The climatic data has been extracted from Global Land Data Assimilation System (GLDAS) version 2, a
land surface mode providing data at 1° by 1° and 3-hourly resolution (Rodell et al., 2004). GLDAS provides
reanalysis gridded climatic data obtained by ingesting satellite and ground-based observational data products
using advanced land surface modelling and data assimilation techniques to generate optimal fields of land
surface states and fluxes (Rodell et al., 2004). Four land surface models and integrates a huge quantity
of observation based data and executes globally at high resolutions (2.5° to 1 km) enabled by the Land
Information System (LIS) (Kumar et al., 2006). To obtain the annual data, we averaged the extracted data
by grid cell, aggregated the 3-hourly data into daily data, and then computed the annual measures.

4.1 Population Weighted Climatic Exposure
The high temporal-resolution of the climatic data allows us to control for the different lengths of transmission
seasons across countries. This is particularly important for comparing countries with shorter transmission
seasons (e.g. Burkina Faso and Mali) rather than year-round transmission (Congo and Cameroon). The
temperature in the off-season, with very low or no transmission, has very little relevance for malaria and has
been excluded from the analysis.
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Furthermore, we aggregate the grid cell estimates of temperature and precipitation to the country-year level
using gridded population weights using population weights for the year 2000 from the Gridded Population
of the World (GPW, v3). Population weighted climatic data are critical as they more closely estimate
the weather being experienced by the majority of the population and not the area. Population weighted
aggregation also reduces biases in sparsely populated areas and areas with complex terrains, ensuring that
the climatic data is more closely matched to locations where malaria morality occurs.

While we use mean temperature for malaria season, in the case of precipitation, we compute the Stan-
dardized Precipitation Index (SPI) at 3 and 6 months’ scales from the gridded GLDAS data. The SPI is
based on the probability of precipitation for any time scale. The major strength of SPI is that precipitation
is the only input parameter required and that it can be computed for different time scales (McKee et al.
1993). The SPI calculation is based on the long-term precipitation (at least 20 – 30 years). The long-term
record is fitted to a probability distribution, which is then transformed into a normal distribution so that
the mean SPI for the location and desired period is zero (Edwards and McKee 1997). Positive SPI values
indicate greater than median precipitation and negative values indicate less than median precipitation 2.

We also use the 90th and 99th percentiles of the distribution of precipitation for each country; starting
with the gridded data, we first compute the 90th/99th percentile of the distribution of precipitation for each
grid for each year. Then we choose the corresponding maximum value of the gridded data for each country.

4.2 Malaria Mortality Data
The malaria mortality data comes from IHME’s publication in The Lancet global estimates for malaria
mortality - Global malaria mortality between 1980 and 2010: a systematic analysis. These estimates are
based on data from 1,150 sites in 105 countries. Data from vital registration systems and from verbal
autopsy studies were used for these estimates. The study uses a number of predictive models to estimate
the malaria mortality with uncertainty by age, sex, country, and year – and includes critical predictors
of malaria mortality such as Plasmodium falciparum, antimalarial drug resistance, and vector control and
finally, out-of-sample predictive validity to select the final model.

4.3 Descriptive Statistics
Table 1 below provides the descriptive statistics. The average population weighted annual temperature in
the overall panel is 22℃ while the population weighted average precipitation is slightly over 1,100 mm per
year.

Variable Mean Std. Dev. Min Max
Malaria Mortality 13,139 43,247 0 525,116
Mean Temperature 22 6.9 -0.8 33
Mean Precipitation 1,111.80 747.1 6.8 4,328
SPI (3 months) 0.01 0.4 -1.8 1.5
SPI (6 months) -0.01 0.5 -2.6 2.1

Health Expenditure/GDP (%) 5.5 2.04 0.81 16.79
Table 1: Descriptive Statistics

2See Standardized Precipitation Index User Guide (http://www.wamis.org/agm/pubs/SPI/WMO_1090_EN.pdf) for more infor-
mation on SPI.
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The following figures show the classification (Figure 1, left-panel) and percentage of population at risk
of malaria by country (Figure 1, right-panel). The population-risk map shows that the high majority of
malaria cases occur in Africa (90% according to some estimates).

Figure 1: Malaria classification (left-panel) and percentage of population at malaria risk by country in 2014 (right-panel).

IPCC (2014) and WHO (2016) states that vector control is the single most efficient method of controlling
transmission of malaria and that changes in climatic patterns may have decreased the rate of decline in
mortality caused by malaria and at the same time may have increased the transmission rates in the years to
come. This paper investigates this particular linkage with respect to temperature and various measures of
precipitation.

5 Methodology
In order to estimate the impact of changes in the climatic variables of temperature and precipitation on
malaria mortality, we use the following fixed-effects specification:

γit = αi + φt + β1Tit + β2T
2
it + Pitβ3 + εit (1)

where the subscripts i and t represent country and year fixed-effects, respectively;

• γit is the natural log of population malaria mortality rate in country i in year t.

• Tit is the population weighted average temperature during the malaria season while T 2
it is the second-

degree polynomial of temperature; the relationship between the climatic variables and malaria mortality
is either concave or convex.

• Pit represents a vector of population weighted precipitation indices including SPI (3 and 6 months)
and 90th/99th of the distribution of precipitation during the malaria season.

• All time-invariant factors influencing countries’ malaria mortality such as health expenditure are ac-
counted for by αi (country specific fixed-effects), while the time variant factors such as malaria eradi-
cation and vaccination efforts are accounted for by φt (year specific fixed-effects)

• εit is a random error term.
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6 Results and Discussion
The first set of regressions investigates the impact of climatic exposure on all-age malaria mortality using
fixed-effects regressions with robust standard errors. As temperature increases, malaria mortality at first
declines but increases beyond the threshold or the optimum level of temperature. The marginal plots shows
a U -shaped relationship between temperature and malaria mortality in line with the literature. We find that
country-level malaria mortality is a smooth, non-linear, and convex in temperature (Figure 2). Equation 1
predicts that malaria mortality is maximized at an optimum temperature of 20.6℃, much lower than the
estimates by Mordecai et al. (2013) and Ryan et al. (2015).

Figure 2: Impact of temperature on all-age malaria mortality: Global non-linear relationship between average seasonal temperature
and log of malaria mortality (dark navy line, relative to the optimum) during 1980–2010 with 95% confidence interval (blue, with
robust standard errors). Specification includes country and year fixed effects, and 99th percentile of precipitation. Histogram
shows global distribution of temperature.

These results suggest although the malaria transmission rate declines with initial increases in temperature,
as the mean temperature crosses a certain threshold, further increases in temperature starts to positively
affect malaria mortality. This is a cause of concern, as the temperature continues to warm, malaria mortality
may occur in countries that are currently below but close to this threshold. In the case of the precipitation
controls, we find that an increase in 99th of precipitation results in a 1.1% increase in malaria mortality
(Appendix I: Table A1), while the SPI indices (3 and 6 months), increases malaria mortality by 11% and
13.4%, respectively.

We also compute optimal conditions for Africa and Asia, the continents where malaria is most prevalent.
In the case of all-age mortality, Equation (1) predicts that malaria mortality is maximized at 28.4℃ and
26.3℃ in Africa and Asia, respectively (Figure 3). These non-linear results will help in understanding the
effects of climate change on malaria mortality.
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Figure 3: Impact of temperature on all-age malaria mortality in Africa (left-panel) and Asia (right-panel): Non-linear relationship
between average seasonal temperature and log of malaria mortality (dark navy line, relative to the optimum) during 1980–2010
with 95% confidence interval (blue, with robust standard errors). Specification includes country and year fixed effects, and 99th

percentile of precipitation. Histogram shows distribution of temperature.

The above results suggest that malaria mortality decreases with initial increases in temperature until the
threshold is reached, beyond which malaria mortality increases. Results also show that increases in wetness
levels as measured by 99th percentile of precipitation and SPI (3 and 6 months) increases malaria mortality
significantly.

6.1 Infant Mortality
According to the IHME malaria mortality dataset, infants (ages 0 to 4) are at the highest risk of malaria
mortality. We find that the global optimal temperature maximizing malaria mortality among children is
19.3℃ (1.3℃ lower than the optimum for all-age mortality). While, the optimal temperature to maximize
malaria mortality in Africa is 28.2℃ (0.2℃ lower than that for all-age mortality). The marginal plots (Figure
4) show that the U -shaped relationship between temperature and malaria mortality continues to hold for
mortality in this age bracket as well.

Figure 4: Impact of temperature on child malaria mortality (0 – 4); Global (left-panel) and Africa (right-panel): Non-linear rela-
tionship between average seasonal temperature and log of malaria mortality among children (dark navy line, relative to the
optimum) during 1980–2010 with 95% confidence interval (blue, with robust standard errors). Specification includes country
and year fixed effects, and 99th percentile of precipitation. Histogram shows distribution of temperature.
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As for precipitation controls, increases in the 99th percentile of precipitation increases malarial mortality
in children by 1%, while increases in one unit in 3-months and 6-months SPI increase malarial mortality by
9.7% and 12.8%, respectively (Annex I: Table A3). These increases are slightly lower than the estimates for
all-age malaria mortality.

6.2 Spatial Analysis
It is likely that malaria transmission, hence malaria mortality, across countries is spatially correlated, thus it is
important to utilize spatial regression to incorporate this spatial dependence. We use a negative exponential
based spatial weight, where the spatial dependence between countries decreases as the distance between the
geographic centers of the countries increases. Building on Equation 1, we incorporate the spatial weight to
account for the spatial structure of the data, which can be expressed as Equation 2 below:

γit = ρW γij +Xβij + εij (2)

where ρ is a spatial autoregressive coefficient, εij is a vector of error terms, and W is the spatial weight
matrix, the rest of the variables remain the same from Equation 1.

In the case of all-age mortality, Equation 2 predicts that malaria mortality is maximized at between 21.5℃
and 22℃ (Appendix I: Table A4, columns 1-3), higher than that estimated (20.6℃) using the fixed-effects
regressions. In the case of child malaria mortality (age bracket of 0 to 4), we find that the optimal temperature
for malaria mortality is between 21.1℃ and 21.8℃3 (Appendix I: Table A4, columns 4-6), higher than the
optimal temperature predicted by Equation 1. However, these optimal conditions are still significantly lower
than predicted previously. The impact of precipitation controls are very similar to the estimates from the
fixed-effects regressions.

6.3 Burden of Climate Change
We estimate the impact of warming on global and national level malaria mortality (all-age and child) by com-
bining our non-linear estimations with Representative Concentration Pathway (RCP) 8.5 of future warming
by the end of the century. Our temperature changes are the population-weighted country level projections
averaged across all CMIP5 models. This particular approach assumes that the response of malaria mortality
to future warming is similar to that of today. The estimates of country-specific warming are the ensemble
mean projected warming for RCP8.5 across all global climate models contributing to CMIP5 4.

By the end of the 21st century, we estimate that unmitigated climate change will increase all-age malaria
mortality by 2.6%. All-age malaria mortality is projected to increase in all the countries where malaria is
currently present (Figure 5, left-panel), with Sri Lanka and Philippines experiencing the highest increases.
In the case of malaria mortality for the ages 0 to 4, our estimates suggest that malaria mortality in this age-
bracket is projected to increase by 11.6% on average (median of 11.4%) due to climate change by the of the
century (Figure 5, right-panel), with some countries experiencing 20% increases. The projected increase for
child mortality (70% of total malaria mortality) is significantly higher due to the lower optimal temperature.

3Depending on the precipitation control
4Multi-model mean RCP 8.5 experiments of ACCESS1-0, ACCESS1-3, bcc-csm1-1, BNU-ESM, CanESM2, CCSM4, CESM1-

BGC, CESM1-CAM5, CMCC-CM, CMCC-CMS, CNRM-CM5, CSIRO-Mk3-6-0, EC-EARTH, FGOALS-g2, FIO-ESM, GFDL-
CM3, GFDL-ESM2G, GFDL-ESM2M, and GISS-E2.
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Figure 5: Projected impact of climate change on malaria mortality; all-age (left-panel) and ages 0 to 4 (right-panel): Change in
malaria mortality due to temperature change (RCP 8.5) by the end of 21st. The median change in all-age malaria is projected
to be 2.5% (maximum increase of 6.2%); while the median increase in child malaria mortality is projected to be 11.4%, with a
maximum of 20.3%. Projections are computed using a population-weighted average of country-level temperature change under
RCP 8.5.%.

7 Conclusion
This paper examines the relationship between population weighted climatic exposure and malaria mortality

in a cross-country paradigm using panel data between 1980 and 2010. We find that the relationship between
temperature and malaria mortality is highly non-linear. As temperature increases, malaria mortality initially
declines but as temperature crosses a threshold, malaria mortality increases. Optimal temperature for
countries that the global optimal temperature to maximize all-age and child malaria mortality is 20.6℃,
lower than the estimates by Mordecai et al. (2013) and Ryan et al. (2015). This is a cause for concern, as it
would require lower degrees of increases in temperature to increase the malaria mortality in these countries
and most countries in Sub-Saharan Africa have annual mean temperatures between 20 and 28℃ - containing
the optimum conditions to maximize malaria related mortality. In the case of child mortality, we find a
significantly lower optimum temperature of 19.3°, this is highly critical as the majority of malaria related
mortality occurs among children. The continental specifications predict that malaria mortality is maximized
at 28.4 and 26.3℃ in Africa and Asia, respectively – the continents where malaria is most prevalent.

As for precipitation controls, we estimate that increases in one unit of 3 and 6 months SPI results in
approximately 10% increases in malaria mortality – suggesting that controlling for extreme precipitation
conditions is critical. Furthermore, combining our non-linear estimates with RCP 8.5, we estimate that due
to climate change, all-age malaria mortality will increase by up to 7% in some countries, while child mortality
will increase significantly by up to 20%.

Our U -shaped marginal plots suggest that increasing temperature up to a certain decreases malaria
mortality but beyond the threshold, any increases in mean temperature results in an increase in malaria
mortality. This finding is consistent with the biological models used to study the impact of climatic variables
on malaria transmission. Our results also are robust in that we use population-weighted climatic exposure
during the malaria seasons across countries to ensure that we are controlling for the exposure as experienced
by the population in a country. We also use spatial regressions to control for any spatial dependence of
malaria transmission to validate our results. The non-linear results will help in understanding the effects of
climate change on malaria mortality.
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Table A1: Global Regressions (All-age and child mortality) 
 (1) (2) (3) (4) (5) (6) 

Variables Log of Malaria Mortality (All age) Log of Malaria Mortality (Ages 0 - 4) 

Mean Temperature -1.013*** -1.017*** -1.016*** -0.750*** -0.749*** -0.747*** 
 (0.001) (0.002) (0.002) (0.001) (0.002) (0.002) 

Mean Temperature Squared 0.025*** 0.025*** 0.025*** 0.019*** 0.019*** 0.020*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

99th percentile of Precipitation 0.011***   0.010***   

 (0.000)   (0.000)   

SPI (3-months)  0.110*   0.097*  

  (0.054)   (0.064)  

SPI (6-months)   0.134***   0.128*** 
   (0.004)   (0.003) 

Observations 2,143 2,143 2,143 2,112 2,112 2,112 

R-squared 0.247 0.233 0.237 0.356 0.343 0.347 

Number of Countries 83 83 83 83 83 83 

Adj. R-squared 0.236 0.221 0.225 0.345 0.332 0.337 

Robust p-values in parentheses 

*** p<0.01, ** p<0.05, * p<0.10, + p<0.15 
 
 
 
 
 
 

Table A2: Continental Regressions – Africa and Asia (All-age malaria mortality)  
 (1) (2) (3) (4) (5) (6) 

Variables Africa Asia 

Mean Temperature -0.530*** -0.504*** -0.534*** -0.572*** -0.562*** -0.560*** 
 (0.002) (0.005) (0.003) (0.000) (0.000) (0.000) 

Mean Temperature Squared 0.009*** 0.009*** 0.009*** 0.011*** 0.010*** 0.010*** 
 (0.005) (0.008) (0.005) (0.001) (0.003) (0.004) 

99th percentile of Precipitation 0.002*   0.003*   

 (0.083)   (0.060)   

SPI (3-months)  0.049+   -0.042  

  (0.126)   (0.487)  

SPI (6-months)   0.022   -0.031 
   (0.336)   (0.480) 

Observations 1,064 1,064 1,064 644 644 644 

R-squared 0.358 0.358 0.357 0.789 0.788 0.788 

Number of iso3 37 37 37 29 29 29 

Adj. R-squared 0.314 0.313 0.312 0.767 0.766 0.766 

Robust p-values in parentheses 

*** p<0.01, ** p<0.05, * p<0.10, + p<0.15 

 
 

  



 
 
 
 
 
 
 
 
 
 
 
 

Table A3: Continental Regressions – Africa and Asia (Ages 0 - 4)  
 (1) (2) (3) (4) (5) (6) 

Variables Africa Asia 

Mean Temperature -0.850*** -0.816*** -0.836*** -0.137+ -0.132+ -0.128+ 
 (0.000) (0.000) (0.000) (0.104) (0.119) (0.130) 

Mean Temperature Squared 0.015*** 0.015*** 0.015*** 0.004* 0.003+ 0.003 
 (0.000) (0.000) (0.000) (0.062) (0.138) (0.157) 

99th percentile of Precipitation 0.002   0.001   

 (0.165)   (0.349)   

SPI (3-months)  0.046*   -0.047  

  (0.099)   (0.215)  

SPI (6-months)   0.025   -0.038 
   (0.198)   (0.160) 

Observations 1,064 1,064 1,064 632 632 632 

R-squared 0.279 0.279 0.279 0.923 0.924 0.924 

Number of iso3 37 37 37 29 29 29 

Adj. R-squared 0.229 0.229 0.228 0.915 0.915 0.915 

Robust p-values in parentheses 

*** p<0.01, ** p<0.05, * p<0.10, + p<0.15 

 
 
 
 
 
 

Table A4: Spatial Regressions (All-age and child mortality) 
 (1) (2) (3) (4) (5) (6) 

Variables Log of Malaria Mortality (All age) Log of Malaria Mortality (Ages 0 - 4) 

Mean Temperature -1.087** -1.089** -1.084** -0.998** -0.995** -0.988** 
 (0.036) (0.039) (0.039) (0.023) (0.025) (0.025) 

Mean Temperature Squared 0.025** 0.025** 0.025** 0.023** 0.023** 0.023** 
 (0.022) (0.023) (0.021) (0.012) (0.012) (0.011) 

99th percentile of Precipitation 0.006**   0.006***   
 (0.040)   (0.009)   
SPI (3-months)  0.075+   0.091*  
  (0.123)   (0.056)  
SPI (6-months)   0.086**   0.106** 
   (0.041)   (0.012) 

Observations 1,490 1,490 1,490 1,476 1,476 1,476 

R-squared 0.456 0.451 0.452 0.564 0.560 0.563 

Number of Countries 58 58 58 58 58 58 

Adj. R-squared 0.443 0.438 0.439 0.554 0.549 0.552 

Robust p-values in parentheses 

*** p<0.01, ** p<0.05, * p<0.10, + p<0.15 

 



Annex II – List of Countries

1 Afghanistan 43 Honduras 85 Sri Lanka
2 Angola 44 India 86 Sudan
3 Argentina 45 Indonesia 87 Suriname
4 Armenia 46 Iran 88 Swaziland
5 Azerbaijan 47 Iraq 89 Syria
6 Bangladesh 48 Kenya 90 Tajikistan
7 Belize 49 Korea, North 91 Tanzania
8 Benin 50 Korea, South 92 Thailand
9 Bhutan 51 Kyrgyzstan 93 Timor-Leste
10 Bolivia 52 Laos 94 Togo
11 Botswana 53 Liberia 95 Turkey
12 Brazil 54 Libya 96 Turkmenistan
13 Burkina Faso 55 Madagascar 97 Uganda
14 Burundi 56 Malawi 98 United Arab Emirates
15 Cambodia 57 Malaysia 99 Uzbekistan
16 Cameroon 58 Mali 100 Vanuatu
17 Central African Republic 59 Mauritania 101 Venezuela
18 Chad 60 Mauritius 102 Vietnam
19 China 61 Mexico 103 Yemen
20 Colombia 62 Morocco 104 Zambia
21 Comoros 63 Mozambique 105 Zimbabwe
22 Congo 64 Myanmar
23 Congo, the Democratic Republic of the 65 Namibia
24 Costa Rica 66 Nepal
25 Côte d’Ivoire 67 Nicaragua
26 Djibouti 68 Niger
27 Dominican Republic 69 Nigeria
28 Ecuador 70 Oman
29 Egypt 71 Pakistan
30 El Salvador 72 Panama
31 Equatorial Guinea 73 Papua New Guinea
32 Eritrea 74 Paraguay
33 Ethiopia 75 Peru
34 Gabon 76 Philippines
35 Gambia 77 Rwanda
36 Georgia 78 Sao Tome and Principe
37 Ghana 79 Saudi Arabia
38 Guatemala 80 Senegal
39 Guinea 81 Sierra Leone
40 Guinea-Bissau 82 Solomon Islands
41 Guyana 83 Somalia
42 Haiti 84 South Africa
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