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Abstract 
Mitigation-Process Integrated Assessment Models (MP-IAMs) are used to analyze long-term 

transformation pathways of the energy system required to achieve stringent climate change 

mitigation targets.  Due to their substantial temporal and spatial aggregation, IAMs cannot explicitly 

represent all detailed challenges of integrating the variable renewable energies (VRE) wind and 

solar in power systems, but rather rely on parameterized modeling approaches. In the ADVANCE 

project, six international modeling teams have developed new approaches to improve the 

representation of power sector dynamics and VRE integration in IAMs.  

In this study, we qualitatively and quantitatively evaluate the last years’ modeling progress and 

study the impact of VRE integration modeling on VRE deployment in IAM scenarios. For a 

comprehensive and transparent qualitative evaluation, we first develop a framework of 18 features 

of power sector dynamics and VRE integration. We then apply this framework to the newly-

developed modeling approaches to derive a detailed map of strengths and limitations of the 

different approaches. For the quantitative evaluation, we compare the IAMs to the detailed hourly-

resolution power sector model REMIX. We find that the new modeling approaches manage to 

represent a large number of features of the power sector, and the numerical results are in 

reasonable agreement with those derived from the detailed power sector model. Updating the 

power sector representation and the cost and resources of wind and solar substantially increased 

wind and solar shares across models: Under a carbon price of 30$/tCO2 in 2020 (increasing by 5% 

per year), the model-average cost-minimizing VRE share over the period 2050-2100 is 62% of 

electricity generation, 24%-points higher than with the old model version.  

 

Highlights: 
 We develop a comprehensive framework to evaluate power sector modeling in IAMs 

 We evaluate 6 new modeling approaches to represent variability of wind and solar 

 Most IAMs now represent key power sector dynamics, as shown by hourly model REMIX 

 Previous integration modeling was in many of the analyzed IAMs too restrictive 

 IAMs with new approaches show on average 24%-points higher wind/solar shares than 

before 

 

Keywords: 
Integrated assessment models (IAM); variable renewable energy (VRE); wind and solar power; 

system integration; power sector model; flexibility options (storage, transmission grid, demand 

response); model evaluation; model validation. 
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1 Introduction 
Mitigation-Process Integrated Assessment Models (MP-IAMs) are the main tool to analyze the long-

term energy system transformation pathways needed for stringent climate change mitigation 

(Clarke and Kejun, 2014; Fisher et al., 2007; Kriegler et al., 2014). One of their uses is the evaluation 

of the long-term role of technology classes, such as the variable renewable energy (VRE) sources 

wind and solar1, for climate change mitigation (Luderer et al., 2014; Pietzcker et al., 2014b). This 

knowledge provides useful policy advice and can help in setting targets for technology support and 

deployment, such as the 2020 target for renewable energy in the EU (Bertram et al., 2015; Lehmann 

et al., 2012). While IAMs are crucial tools for exploring mitigation pathways, they face a 

considerable challenge in modeling the short-term dynamics of the power sector: On the one hand, 

they have to span the whole century to cover the relevant decarbonization dynamics, while on the 

other hand, short-term dynamics down to an hourly scale matter for investment decisions in the 

power sector (see (Després et al., 2015) for a typology of different energy models and their time 

scales). 

Power systems must balance generation and demand in each moment, which is a challenge due to 

the variability of demand and possible outages of power plants and grid lines. When integrating 

VRE generation, their variability creates additional challenges, such as back-up capacity 

requirements (due to a low VRE capacity credit) or VRE curtailment2 (Holttinen et al., 2011; IEA, 

2014; Lew et al., 2013b; Schaber et al., 2012; Ueckerdt et al., 2015a). While these integration 

challenges do not pose an insurmountable technical limit to increasing VRE shares, they can 

increase total system costs and thereby decrease the economic value of VRE (Hirth et al., 2015; 

Ueckerdt et al., 2013). In addition, VRE and demand variability shape the economics of a power 

system as a whole, i.e. also the non-VRE part of the power system adapts in response to increasing 

VRE shares (IEA, 2014; Ueckerdt et al., 2015b). 

IAMs need to represent3 not only integration challenges but also options to mitigate these 

challenges. The most important technical options are i) adjustments in the non-VRE generation mix 

towards both more flexibility and less capital intensity, ii) expansion of long-distance transmission 

grids to reduce variability via pooling, iii) making demand response, and iv) storage technologies 

(suited for diurnal and seasonal time scales) (Becker et al., 2014; Haller et al., 2012; IEA, 2014; Mai 

et al., 2012; Rasmussen et al., 2012; Scholz et al., in this issue). Additionally, there are a number of 

system operation and market design options that can facilitate VRE integration, such as shortening 

dispatch intervals, allowing VRE to provide system services, or using up-to-date forecasting 

                                                             
1 For the purpose of this paper, we define variable renewable energy (VRE) as the sum of wind and 
solar electricity production, since both are characterized by variability. We also include 
concentrating solar power (CSP) in this definition, even though CSP can be combined with large 
heat storage facilities to reduce variability, or even become fully dispatchable if combined with gas 
or hydrogen co-firing. 
2 Throughout this paper, “curtailment” always refers to “production curtailment”, i.e. the reduction of output 
from power generators. 
3 “Representing integration challenges” means that aggregated models mimic features of the real world that 
inhibit or facilitate VRE integration, possibly informed by highly detailed models. 
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methods (IEA, 2014)4. All these options can reduce integration challenges and thus mitigate the 

economic impacts of variability. 

As VRE costs have strongly decreased over the last decade, integration challenges and options to 

mitigate them increasingly determine the role of VRE in climate change mitigation. In addition, 

scenarios show that the power sector is a centerpiece for climate change mitigation as it 

decarbonizes earlier and more extensively than the non-electric energy sectors (Krey et al., 2014; 

Luderer et al., 2011, 2012). Electrification is an important mitigation strategy for transport and 

residential heating (Krey et al., 2014; Pietzcker et al., 2014a). Hence, an accurate representation of 

the power sector with its specificities is crucial for deriving robust and credible mitigation 

scenarios. 

IAMs consist of very aggregated representations of real-world dynamics, it is therefore important to 

analyze the validity of their process representations and results (Parker et al., 2002; Schwanitz, 

2013; Weyant, 2009). As IAMs produce scenarios about the future, it is difficult or even impossible 

to validate them against the real world (Craig et al., 2002; Parker et al., 2002). Concerning the topic 

of this paper, there are no large-area power systems in the world where wind and solar generate 

more than 50% of electricity, thus it is impossible to validate the modeling of integration challenges 

at high VRE shares against real-world data. However, other approaches to evaluate IAMs have been 

developed over the last decades, as discussed in detail in (Schwanitz, 2013). For the purpose of 

evaluating power sector modeling, we here focus on the approach “evaluation with stylized 

behavior patterns” (Schwanitz, 2013). Building on the idea by Kaldor to analyze how well economic 

models represent a number of “stylized facts” of economic growth (Jones and Romer, 2010; Kaldor, 

1961), the approach can be generalized to testing how well an aggregated model reproduces a 

certain process or dynamic that is derived from experience or from more detailed analysis or 

modeling (Blanford et al., 2012; Schäfer et al., 2014; Wilson et al., 2013). 

The current study presents the first coordinated undertaking to comprehensively evaluate a 

number of IAMs with respect to how they model VRE integration. In a collaborative effort in the 

context of the EU FP7 project ADVANCE, six state-of-the-art MP-IAMs used for policy advice have 

developed new representations of power sector dynamics, most importantly the challenges of 

integrating solar and wind power (see Section 2). The modeling approaches used to represent 

variability cover a wide range, from implicit and explicit cost markups to flexibility and capacity 

equations, time slices, and residual load duration curves. Many of the approaches are based on 

residual load duration curves (RLDCs) developed within ADVANCE for different world regions 

(Ueckerdt et al., in this issue). RLDCs are the temporally reordered residual load that remains after 

VRE generation is subtracted from load, and that thus needs to be supplied by dispatchable power 

plants (see (Ueckerdt et al., 2015a) for a detailed description of RLDCs). All participating IAMs have 

global coverage and produce scenarios for the full 21st century. 

The goal of this study is to analyze and evaluate these newly-developed modeling approaches 

through a two-fold approach based on qualitative and quantitative analysis: We first develop a 

framework of fundamental principles governing power sector dynamics, and discuss how well 

                                                             
4 As IAMs do not represent the existing market structures and – possibly sub-optimal – system operation 
procedures and regulations, representing these options is not a focus of this paper. 
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these principles are covered by the different modeling approaches (Section 3). We then analyze 

how the last years’ improvement of VRE integration modeling affects the modeled VRE deployment, 

and compare the IAM scenarios to results from a detailed power sector model in order to test the 

quantitative plausibility of the different approaches (Section 4).  

2 Overview of the integrated assessment models  
In the following, we will briefly describe the power sector representation of the six participating 

IAMs as well as the power sector model REMIX. All the IAMs have full global coverage; POLES is the 

only model that explicitly represents 24 EU member states. All IAMs updated their wind and solar 

resource potential assumptions based on the country-level data in (Eurek et al., in this issue) for 

wind and (Pietzcker et al., 2014b) for solar. A cross-model comparison of resulting levelized costs 

of electricity can be found in the editorial of this special section (Luderer et al., in this issue). 

Sources for other technology assumptions can be found in the model-specific documentations 

referenced behind each model name. 

To provide a quick overview, we present a list summarizing the main power sector module 

characteristics (see Table 1) before discussing the models in more detail. For a later analysis of the 

impact of different representations of VRE integration challenges in Section 4.1, we also summarize 

the characteristics of the previous model versions that were used in the EMF27 study. Due to the 

complexity of power sector modeling and the number of different approaches taken, we can here 

only give a brief summary – for a detailed overview of changes between the model versions, see the 

individual model papers of this special issue as well as the EMF27 paper on renewables (Luderer et 

al., 2014). 

Table 1: Main characteristics of the power sector and VRE integration representations, once in the current 
ADVANCE model version, and once for comparison purposes in the older model version used for EMF27 

Model Current model version developed for ADVANCE (2016) For comparison: older model 
version used for EMF27 (2013) 

AIM/CGE  Electricity is a uniform good, technologies compete on LCOE 
in a multinomial logit (MNL) 

 Short-term storage and curtailment exogenous functions of 
wind and solar share, parameterized based on ADVANCE RLDCs 

Not applicable 

IMAGE  Investment based on ADVANCE RLDC (20 load bands) 

 Technologies compete on LCOE in a MNL  

 Capacity and energy backup requirements lead to LCOE 
markups for wind and solar 

 Exogenous curtailment derived from ADVANCE RLDC 

 Exogenous short-term storage facilitates integration 

 Investment on 10 time slices, 
technologies compete on LCOE 
in a MNL  

 Exogenous fix backup for VRE 

 Exogenous curtailment and 
spinning reserve 

MESSAGE  Electricity is a uniform good, technologies compete linearly 
on LCOE basis 

 Capacity equation with ADVANCE RLDC-derived parameters 

 Flexibility equation with ADVANCE RLDC-derived parameters 

 Storage investments driven by capacity & flexibility equation 

 Exogenous curtailment derived from ADVANCE RLDC 

 Endogenous hydrogen storage investments 

 Electricity is a uniform good, 
technologies compete linearly 
on LCOE basis 

 Generic capacity equation 

 Flexibility equation with fixed 
parameters 

 Generic exogenous curtailment 
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POLES  Investment based on combinatorial RLDC formed from 54 
days: 2 seasons x 3 demand levels (high/med/low) x 3 solar 
levels (high/med/low)  x 3 wind levels (high/med/low) 

 Technologies compete on LCOE in MNL  

 Additional “technology diffusion” markups  for wind/solar 

 Dispatch within EU calculated in dispatch model EUCAD 
between POLES investment calculations, on 12 hourly 
representative days from new cluster analysis  

 Endogenous within-day storage investment 

 Investment on 24 2h-time 
slices: 2 days (winter/summer) 

 Investment based on LCOE, 
using a multinomial logit 
function  

 Hard upper bounds on wind and 
solar share (region-specific) 

 Additional cost markups for 
wind and solar 

REMIND  Investment based on ADVANCE RLDC, implemented via 4 
load boxes with wind/solar-share-dependent heights 

 Technologies compete linearly on load-band LCOE  

 Introduced peak capacity equation based on ADVANCE RLDC 

 Exogenous curtailment and short-term storage capacities 
based on ADVANCE RLDC 

 Grid cost markups updated based on REMIX results 

 Endogenous hydrogen storage investments 

 Electricity is a uniform good, 
technologies compete linearly 
on LCOE basis 

 Integration cost markup for 
wind and solar to represent 
curtailment and storage costs 

 Grid cost markups 

WITCH  Electricity is a uniform good, technologies compete on LCOE 
basis in a nested constant elasticity of substitution (CES) 
system with medium flexibility (elasticity of substitution: 5) 

 Capacity equation with VRE-share dependent parameters 

 Flexibility equation with fix parameters 

 Exogenous storage investment driven by capacity and 
flexibility equations 

 Grid cost markups 

 Electricity is a uniform good, 
technologies compete on LCOE 
basis in a nested constant 
elasticity of substitution (CES) 
system with low flexibility 
(elasticity of substitution: 2) 

 Flexibility equation with fix 
parameters 

 Integration cost markup for 
wind and solar to represent 
curtailment and storage costs 

 

2.1 AIM/CGE 

The power generation sector in AIM/CGE (Fujimori et al., 2012) is disaggregated in great detail to 

reflect technological change in the power sector, and logit functions are used to determine the share 

of power supply technologies as a function of their generation costs. The power generation cost is 

determined by the cost of intermediate inputs and primary factor (capital and labor) cost. Some 

barriers to VRE integration, like curtailment and storage, are explicitly taken into account in the 

recent version of AIM/CGE model (Dai et al., in this issue). The storage service is treated as one of 

the intermediate inputs for the VRE production sectors, and it is produced by an explicit storage 

service providing sector. The required input of the storage service is calculated through an 

exponential function depending on VRE shares5, parameterized to the residual load duration curves 

(RLDCs) developed in the ADVANCE project (Ueckerdt et al., in this issue). Curtailment is 

represented as an additional demand in the electricity balance, and also takes the form of an 

exponential function depending on VRE shares and parameterized to the Ueckerdt et al. data. 

                                                             
5 Throughout this paper, “VRE share” always refers to the share of electricity generated from VRE in total 
electricity generation. “Net VRE share” specifies that curtailment has been deducted both from wind and solar 
generation and from total generation. 
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2.2 IMAGE 

In the integrated assessment framework IMAGE (Stehfest et al., 2014), region-specific RLDCs 

(Ueckerdt et al., in this issue) have been combined with a load band approach to capture integration 

constraints of VRE resources (De Boer and Van Vuuren, this issue). These constraints include 

curtailment, storage requirements, backup requirements, and system load factors that decline as 

the VRE share increases. The constraints have been translated to cost markups, which are added to 

a base levelized cost of electricity (LCOE) to form an all-in LCOE. Investments are rule-based and 

calculated recursively for each time step: a module calculates the required capacity additions to 

meet demand, and a multinomial logit equation is applied to distribute market share among the 

available technologies based on the all-in LCOE. Dispatch of technologies occurs according to the 

merit order. 

2.3 MESSAGE 

In the MESSAGE model (Messner and Strubegger, 1995; Riahi et al., 2012), region- and share-

dependent RLDCs (Ueckerdt et al., in this issue) are used to parameterize how flexibility of the 

residual non-VRE system, VRE curtailment, and wind and solar PV capacity values change with 

increasing VRE share (Johnson et al., in this issue).  These equations are translated into step-wise 

linear functions that describe the contribution of VRE to capacity adequacy and system flexibility 

constraints, where increasing VRE deployment requires more firm (backup) capacity and 

increasing flexibility from the non-VRE portion of generation.  In addition, electricity storage and 

hydrogen electrolysis technologies are included as options for repurposing both VRE and non-VRE 

production that would otherwise be curtailed.  Thermoelectric technologies are represented in two 

modes of operation, baseload and flexible, to better account for the cost, efficiency, and availability 

penalties associated with flexible operation and the consequences of VRE deployment for non-VRE 

plant utilization. Since MESSAGE is a least-cost optimization model with perfect foresight, the 

additional electricity system requirements for integrating VRE endogenously influence investment 

decisions within the power sector. 

2.4 POLES 

The new POLES (Mima, 2016) power module now includes several forms of storage technologies as 

well as load shedding and curtailment of surplus power (Després et al., in this issue). Each region 

has an endogenous RLDC of 648 time-slices built from demand, wind and solar variations. They are 

used to define the seven load bands in which the production technologies compete. Investments for 

each load band are rule-based and calculated recursively for each time step: a module calculates the 

required capacity additions to meet demand, and a multinomial logit equation is applied to 

distribute market share among the available technologies based on the curtailment-adjusted LCOE 

plus a multiplier representing technology maturity and other non-cost effects on investment. A 

storage investment mechanism is also implemented based on a computation of its expected 

economic value. In this way, each region takes into account the integration challenges linked to the 

gradual development of VRE sources.  

POLES is the only IAM that follows a model-coupling route and combines a long-term investment 

planning model with a dispatch model (EUCAD, European Unit Commitment And Dispatch) based 

on twelve representative days with hourly resolution (Després et al., in this issue; Després, 2015; 
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Nahmmacher et al., 2016). Such a model-coupling brings the advantage that it enables 

representation and analysis of short-term effects, but it also creates the challenges of a) creating a 

reliable interface to ensure that the results from one model influence the other model (e.g., 

investment decisions should be influenced by the revenues realized in the dispatch), and b) 

gathering sufficiently detailed data for the individual regions. Due to lack of data, the current 

version of POLES only uses the detailed model coupling for the European countries, while the other 

world regions rely on an aggregated RLDC-based investment and dispatch procedure. 

2.5 REMIND 

The energy-economy-climate model REMIND (Luderer et al., 2013, 2015) is a Ramsey-type general 

equilibrium growth model of the macro-economy in which inter-temporal global welfare is 

maximized, combined with a technology-rich representation of the energy system. Its power sector 

implementation is based on the region-specific RLDCs developed in (Ueckerdt et al., in this issue), 

which capture the effects of adding wind and solar power to the power sector on a) capacity 

adequacy, b) dispatch, c) storage and d) curtailment. The RLDCs are represented by four load bands 

plus a capacity adequacy equation. The height of these load bands is a polynomial function of wind 

and solar share, so their height endogenously adjusts with changing VRE shares. Investments into 

the different power technologies are optimized with perfect foresight over the full time horizon of 

the model. Dispatch is represented through the residual load bands. Short-term storage deployment 

and curtailment are prescribed by polynomial fits of the VRE-share-dependent RLDCs. As the model 

uses an optimization framework for investments into dispatchable and VRE technologies, the share-

dependent polynomial RLDC formulation enables the model to fully account for the changing 

marginal value of VRE in the investment procedure. 

2.6 WITCH 

WITCH (Bosetti et al., 2006; Emmerling et al., 2016) is a hybrid model that combines an aggregated, 

top-down inter-temporal optimal growth Ramsey-type model (with perfect foresight) with a 

detailed description of the energy sector. Energy technologies – divided between the electric and 

the non-electric sectors - are nested in a Constant Elasticity of Substitution (CES) framework, which 

represents the many economic and non-economic drivers leading to limited technology 

substitution in a stylized way. Energy demand is modeled in average terms over the year. System 

integration of variable renewable energies is explicitly modeled through two constraints, related to 

the flexibility and the capacity adequacy of the power generation fleet. A simple modeling of the 

electric infrastructure and a generic storage technology are implemented as well (Carrara and 

Marangoni, in this issue). 

2.7 REMIX 

REMIX is an energy system model with high spatial and temporal resolution developed at DLR to 

investigate cost-efficient integration of renewable energy into the energy system with a focus on 

power supply (Scholz et al., in this issue; Scholz, 2012). It can be used to either validate existing 

power sector scenarios, or to calculate cost-optimal power sector configurations from greenfield. In 

this second application, it simultaneously optimizes both investments into new power plants and 

their dispatch with hourly resolution over the full 8760 hours of a year in order to minimize total 

system costs. REMIX represents Europe in 15 regions with individual electricity demand and 
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renewable resources. Besides conventional and renewable power technologies, the model also 

represents a number of different short- and long-term storage technologies, and can invest into 

HVDC transmission lines to improve the connection between the different regions and thereby pool 

the variability from demand and VRE.  

Wind, solar and demand fluctuate on even shorter time scales than hours. As REMIX has an hourly 

resolution and does not additionally represent sub-hourly phenomena, it cannot cover the very-

short-term effects of managing a power system. However, the representation of hourly variability 

already results in substantial deployment of flexible technologies like gas turbines, hydro power 

and battery storage at higher VRE shares. These technologies can also provide flexibility on a sub-

hourly scale. Additionally, advanced VRE generators can increasingly supply active power control 

(Ela et al., 2014). We therefore do not expect that including sub-hourly details would have a large 

effect on the results at the aggregation level used for the current analysis. This view is supported by 

a power sector study that varied the modeling resolution between 1 hour and 5 minutes. It found 

that modeling sub-hourly features has an impact on cycling/ramping values, but is of low 

importance to the aggregated investment behaviour (Deane et al., 2014). 

3 Qualitative evaluation framework for the power sector representations 
In order to evaluate the suitability of the variety of different modeling approaches, this project 

follows a two-fold approach based on qualitative and quantitative analysis. The qualitative 

approach postulates 18 features of the fundamental dynamics and drivers of both the power sector 

in general as well as the effect of integrating VRE (see Table 2 for an overview of the framework). 

After describing each stylized power sector characteristic in detail, we evaluate the capability of the 

various IAM modeling approaches to represent this characteristic. The evaluation is based on the 

equation formulation, relevant model characteristics, as well as the adequacy of the used data. We 

thereby can determine strengths and limitations of different approaches, and prioritize areas with 

need for future improvements. To provide for better comparability and overview across models, we 

display the aggregated evaluation in table form (Table 3 - Table 5). For each category, a short text 

describes how the model represents this characteristic, as well as an estimation of how realistically 

this characteristic is covered, ranging from 0 to +++. 
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Table 2: Evaluation framework: 18 features of power sector dynamics clustered into five themes 

 

3.1 Investment dynamics 

Investment into dispatchable power plants differentiated by load band: Choice of technology 

depends on the expected capacity factor. Load is not constant, so one can distinguish base load (the 

load level required throughout the year), mid- and peak load (higher load levels only required in 

some hours of the year). The LCOE of power plants depends on their number of full-load hours per 

year. A given conventional power plant is usually built for a certain load-band (corresponding to a 

certain number of full-load hours per year). Power plants operating as base-load have low variable 

and high capital costs. Peak-load plants, in contrast, have low capital costs, because they have to 

recover their capital costs during only a few hours of the year.  

For revenue calculation in energy-only markets, the expected production is weighted with the 

prices expected for the hours that the plant produces. Accordingly, peaking plants usually have 

much higher LCOE than base load plants, and still both might be profitable investments pursued in 

parallel, because electricity prices in times of peak demand are higher (Hirth, 2013). 

As VREs have very low marginal costs, they usually get dispatched first and thus reduce the residual 

load that needs to be covered by dispatchable plants. As VRE plants do not run throughout the year, 

adding large shares of VRE can reduce or completely remove baseload, while keeping or increasing 

the share of mid- and peak-load. Accordingly, the total capacity factor of the dispatchable system 

decreases with high VRE shares (Hirth et al., 2015; Nicolosi, 2012; Scholz et al., in this issue; 

Ueckerdt et al., 2015a). In the short term, this leads to underutilization of existing base-load 

capacities, while in the long run the baseload capacities will be replaced by less capital-intensive 

technologies.  

 

Dispatch

Flexibility and ramping

Capacity adequacy

Curtailment

Wind/solar complementarity

Investment dynamics

Investment into dispatchable technologies differentiated by load band

Investment into VRE (incl. feedback on the system)

Expansion dynamics

Capital stock inertia and vintaging

Structural shift of generation capacity mix

Love of variety

Storage

Short-term storage

Seasonal storage

Demand response (incl. electric vehicles & V2G)

General transmission and distribution grid

Grid expansion linked to VRE

Demand profile evolution

Temporal matching of VRE 

and demand

Grid

Power system operation

Pooling effect from grid expansion
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Model representation of “Investment into dispatchable power plants differentiated by load band”:  

 AIM/CGE, MESSAGE and WITCH treat electricity as a homogeneous good, so there is no 

differentiation between high and low load. 

 To force the model to invest into mid- and peak load plants, MESSAGE and WITCH add a 

flexibility constraint and a capacity constraint, which represent the increasing demand for 

flexibility and possible backup requirements as VRE shares increase. In WITCH, each 

technology has a fixed flexibility parameter, and the capacity value of wind and solar 

decreases through the same function of wind/solar share in each region, therefore the 

accuracy of the representation of the actual region-specific RLDC is limited. In MESSAGE, 

both flexibility and capacity constraint consist of step-wise linear functions fitted to the 

region-specific ADVANCE RLDCs, thus the model more accurately represents the effect of 

VRE on the RLDC, and therefore on investments into dispatchable power plants. 

 POLES implements RLDCs with seven different investment blocks, which would allow for an 

accurate representation of the region-specific RLDCs. However, the current model version 

uses an RLDC that is derived in a very specific way that does not fully capture the regional 

correlation between demand, wind, and solar: 

a) It uses a combinatorial RLDC, which means that the RLDC is not based on the actual 

time series and the actual correlation between wind/solar/load, but rather takes a 

combinatorial approach of using every single combination of (summer/winter) x 

(low/medium/high wind) x (low/medium/high solar) x (low/medium/high load) to 

generate 2x3x3x3 = 54 representative days, from which the RLDC is formed. 

b) It uses "region-mixed data", meaning that POLES uses data from France and Spain for 

the summer/winter day profile for wind and sectoral demand. This profile is then 

scaled up/down with the capacity factor of wind production and the sectoral 

decomposition of load for each region. The RLDC is derived from this data together 

with the summer/winter solar profiles for each region. 

 IMAGE and REMIND directly implement the region-specific ADVANCE RLDCs using 4 

(REMIND) or 20 (IMAGE) load bands, thereby capturing the regional correlation between 

demand, wind, and solar and its effect on investments into dispatchable power plants.  

Investment into VRE (incl. feedback on the system) : The marginal value of electricity produced 

by VRE sources depends on the temporal correlation of the newly-added VRE plant with the 

existing load and VRE plants. If the new plant is well-correlated with load and anti-correlated with 

the existing VRE production, then it produces electricity of high marginal value, such as the first 

solar power plants in California, which contribute to meeting peak demand. If, in contrast, a new 

VRE plant is perfectly correlated with a large amount of existing VRE plants, the production from 

these VRE plants will already have decreased the residual demand during the time that the new 

VRE plant produces. Accordingly, the marginal value of the added unit of VRE electricity will be low 

(Hirth, 2013; Mills and Wiser, 2012; Ueckerdt et al., in this issue, 2013). To represent a well-

coordinated system, this effect has to be taken into account when determining the profitability of 

investment into VRE on a cost/LCOE-basis.   

A subtopic of the high/low marginal value is the contribution to capacity adequacy (Holttinen et al., 

2011; Ueckerdt et al., 2015a). If a VRE plant (possibly in combination with short-term storage) can 
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contribute to meeting peak demand, it also contributes to capacity adequacy and is therefore 

beneficial for the system operator. If its temporal correlation with load is less favorable and it does 

not contribute to peak demand (e.g., solar systems in regions with pronounced winter evening 

peaks in load), the system operator deciding on a VRE investment has to consider that additional 

costs may occur in order to guarantee capacity adequacy (e.g., building a backup gas turbine or 

contracting additional demand response (Hirth et al., 2015; Ueckerdt et al., 2013)). This would 

reduce the economic incentive to invest into VRE. 

Finally, if a model aims at calculating the long-term optimal investment into VRE, it also needs to 

take into account the effect that adding VRE has on the residual system. As mentioned before, 

increasing the VRE share will reduce the utilization of the conventional power plants, thus shifting 

to more mid/peak load plants, which have higher electricity costs. To arrive at a cost-optimal 

system, the VRE investment algorithm therefore needs to reflect this feedback on the residual 

system. 

Model representation of “Investment into VRE”:  

 In general, it is challenging to capture the effect that increasing deployment of one VRE type 

will decrease the market value of this VRE type due to the decreasing temporal correlation 

between generation from this VRE type and residual load, as it requires that the full 

information on the impact of VRE on residual load is reflected in the investment decision.  

 If investment decisions are embedded within an optimization framework using VRE-share-

dependent RLDCs, as in REMIND, the model automatically considers the marginal effect of 

adding new PV or wind on all other technologies when deciding upon investments into VRE. 

The VRE-share-dependent formulation of the flexibility and capacity equations within an 

optimization framework allows MESSAGE to also capture a large part of this effect. The 

lower detail of the flexibility and capacity constraints in the optimization framework of 

WITCH accordingly reduces the accuracy of representing this effect. 

 Models that do not optimize but rather invest based on decision rules face larger challenges 

to represent this characteristic, as the investment process does not automatically account 

for the impact of wind-solar-demand correlation on the VRE-share-dependent economic 

value of VRE electricity. To capture the effects in stylized form, these models have to 

calculate explicit cost markups to add them to VRE LCOE in the investment decision. All 

three rule-based models (AIM/CGE, IMAGE, POLES) have cost markups for curtailment; 

AIM/CGE also includes cost markups for storage costs, while IMAGE also represents 

generalized backup costs. 

Expansion dynamics: Technology diffusion is a complex process that often takes the shape of an s-

curve: it starts very slow, then builds momentum until it reaches a level close to the saturation 

level, and then slows down (Grübler, 1996). Relevant for accurate power sector modeling, and thus 

a realistic description of transformation scenarios, is the slow beginning of the s-curve: it 

represents that a new technology cannot be scaled up infinitely fast, but rather requires a continual 

market growth. 
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Model representation of “Expansion dynamics”:  

 AIM/CGE, IMAGE and POLES have no limits how fast a new technology can be upscaled. 

 WITCH uses hard constraints on the expansion rate, thereby limiting the relative growth of 

capacity additions from one time step to the next. It includes an offset to allow deployment 

of technologies that have never before been deployed.  

 MESSAGE and REMIND use soft constraints and non-linear adjustment costs that increase 

with the relative growth of new capacity additions from one time step to the next. They 

thereby represent the fact that it is possible to deploy technologies faster if one is willing to 

pay cost markups.   

Capital stock inertia and vintaging: The power sector features expensive, long-lived capital 

stocks, which limits the short-term adaptability of the system. Real-world depreciation tends to be 

concave, i.e. it accelerates with age: New power plants have very high utilization rates and lower 

failure rates, while aging power plants need to spend more time in maintenance. In addition to the 

technical lifetime restrictions, there is also the aspect of early retirement: if a power plant makes 

less revenue than its variable costs over a longer period of time, it will be shut down. While many 

models represent this aspect, models that at the same time a) assume fixed capacity factors for 

power plants and b) have no additional equations for representing early retirements will produce 

scenarios in which each technology is used until its technical lifetime is over, even if it does not 

recover its variable costs. 

Model representation of “Capital stock inertia and vintaging”:  

 Some models (AIM/CGE, WITCH) use exponential vintaging, in which the build year of a 

power plant is not tracked, but the model rather reduces the total amount of capacity of one 

technology by the same share in each time step (usually by 1/lifetime). While better than 

not tracking capacities at all, it has some drawbacks: In exponential vintaging, the total 

reduction of capacity is largest immediately after the capacity was built, and slows down as 

time progresses, while the engineering reality is exactly the opposite. This can create 

unrealistic effects in scenarios that analyze the effect of delaying climate policies. 

 The other four models use non-exponential vintaging: they track the build year for all 

capacities and decommission them after their lifetime, thus more realistically representing 

capital stock dynamics.  

All six analyzed IAMs represent possibilities for early retirement.  

Structural shift of generation capacity mix: On a time scale of decades, the power sector can 

undergo a paradigm shift and change substantially. For example, under a persistent inversion of the 

price differential between coal and gas (strongly reduced gas prices so that gas LCOE are below coal 

LCOE), the power system would evolve over 20-30 years into a "mainly gas" state, with almost no 

coal left in the system. The same would happen when introducing carbon prices – at ~50$/tCO2 

and unchanged coal and gas prices, freely-emitting coal power plants would be completely replaced 

in the long term.  
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Table 3: Evaluation of IAM approaches to represent VRE integration challenges – Investment dynamics 

 

1 combinatorial RLDC means that the RLDC is not based on the actual time series and the actual correlation between 

wind/solar/load in a region, but rather takes a combinatorial approach of mixing every single combination of 

(summer/winter) x (low/medium/high wind) x (low/medium/high solar) x (low/medium/high load) days to generate 

54 representative days (2x3x3x3), from which the RLDC is formed  
2 "region-mixed data": POLES uses data from France and Spain for the summer/winter day profile for wind and sectoral 

demand. This profile is then scaled up/down with the capacity factor of wind production and the sectoral decomposition 

of load for each region. The RLDC is derived from this data together with the summer/winter solar profiles for each 

region. Accordingly, the RLDC does not fully capture the regional correlation between demand, wind, and solar. 
3non-cost parameters for renewables decrease investments into RE compared to conventional technologies until 

2050/2060, although already the current market (2013&2014) showed higher global investments into RE than into other 

power technologies  
4CES (constant elasticity of substitution) functions result in love of variety, but also create a preference for base-year 

calibration shares (with low elasticities of substitution, this can result in lock-in), and can lead to physically implausible 

aggregation 

Abbreviations: CES – constant elasticity of substitution; flex&cap – flexibility and capacity; LCOE – levelized cost of 

electricity; RLDC – residual load duration curve; 

Model representation of “Potential for a structural shift”:  

 AIM/CGE, IMAGE, MESSAGE and REMIND have linear formulations that allow for a full 

structural shift. 

 Some IAMs use a constant elasticity of substitution function in the power sector, which can 

limit the substitution between different technologies and thus create an unrealistically 

strong tendency to reproduce the calibration year technology shares if the elasticity of 

substitution is too low (<3-4). WITCH uses a CES function, but as the new WITCH version 

Model

AIM/CGE 0 homogeneous good +
Curtailment and storage 

increase LCOE
0 na ++

exponential 

vintaging (+); early 

retirement (+)

++ possible ++ logit

IMAGE +++
region-specific RLDCs 

with 20 load bands
++

Curtailment and storage 

increase LCOE (+); backup 

cost markups partially 

emulate additional VRE 

interaction (+)

0 na +++

non-exponential 

(+) vintaging (+) of 

capacities;  early 

retirement (+)

++ possible ++ logit

MESSAGE ++

homogeneous good; 

share dependent 

flex&cap constraint 

partially reproduce RLDC 

shape (++)

++

Optimization provides 

feedback on effects of VRE 

on VRE-share-dependent (+) 

flex. & cap. equation (+)

++

 constraints on 

expansion rate 

that can be 

weakened at 

additional cost

+++

non-exponential 

(+) vintaging (+) of 

capacities;  early 

retirement (+)

++ possible +

intertemporal 

optimization 

& expansion 

constraints 

ensure variety

POLES +

RLDC load bands (+++); 

but combinatorial RLDC1 

(-) with region-mixed 

data2 (-); 

+
Curtailment increases 

investment LCOE
0 na +++

non-exponential 

(+) vintaging (+) of 

capacities;  early 

retirement (+)

+

possible, but 

l imited by slow 

convergence of 

non-cost logit 

parameters 3

++ logit

REMIND +++
region-specific RLDCs 

with 4 load bands
+++

Optimization provides full  

feedback of VRE investment 

on RLDC

++

adjustment costs 

that increase non-

linearly with fast 

expansion

+++

non-exponential 

(+) vintaging (+) of 

capacities; early 

retirement (+)

++ possible +

intertemporal 

optimization 

& adjustment 

costs ensure 

variety

WITCH +

homogeneous good; 

flex&cap constraints 

with fixed parameters 

creates demand for peak-

load technologies (+)

+

Optimization accounts for 

feedback of VRE on 

flexibility constraint and 

capacity equation (+)

+
hard constraints 

on expansion rate
++

exponential 

vintaging (+); early 

retirement (+)

+

possible, but 

l imited by CES4 

with elasticity 5

+ CES4

Investment dynamics

Investment into dispatch. 

technol. differentiated by 

load band

Investment into VRE (incl. 

feedback on the system)

Expansion 

dynamics

Capital stock inertia 

& vintaging

Structural shift of 

generation capacity 

mix

Love of variety
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employs a medium elasticity of substitution of 5, the model allows for substantial structural 

shifts (Carrara and Marangoni, in this issue).  

 Similarly, “technology-readiness”-premiums on LCOE in logit formulations can slow or even 

prevent a fundamental structural shift. In the current version of the POLES model, the 

technology-readiness premiums create a large valuation difference between VRE and 

conventional power plants, and only fully converge after 2050. These premiums reduce the 

investments into VRE over the next decades, even if VRE are cost-competitive on an LCOE 

basis in stringent climate policy scenarios. Given that investments into VRE are on par or 

have surpassed investments into fossil and nuclear power plants in 2014 and 2015, such a 

decade-long persistence of investor skepticism against VRE in the future seems highly 

unlikely. 

Love of variety: The revenues from a power plant are influenced by many factors that are 

unknown during time of construction, such as fuel prices, climate policies, demand evolution or 

competing technologies. As a result, investors may strategically invest into a portfolio of several 

different technologies, if the fundamentals are not so one-sided that all other technologies seem 

very unfavorable.   

Model representation of “Love of variety”:  

 Although MESSAGE and REMIND have a linear power system, the intertemporal 

optimization in combination with expansion rate constraints or adjustment costs leads to a 

certain love of variety in both of the models. The non-linear CES structure in WITCH 

additionally enhances these aspects. 

 AIM/CGE, IMAGE and POLES use a logit investment formulation, which automatically 

represents the “love of variety” aspect. 

3.2 Power system operation 

Dispatch: When determining which of the installed plants is used to meet the residual load in a 

given moment, a "cheapest variable cost takes all" logic is used – the merit order. Only ramping 

constraints and the variety of plant age and technology (leading to different efficiencies and 

variable costs) will lead to the effect that the resulting dispatch is not fully monotonous in fuel 

choice. 

Model representation of “Dispatch”: 

 AIM/CGE does not model dispatch at all. As AIM/CGE uses a fixed capacity factor per 

technology, the installed capacities fully determine electricity generation. Accordingly, 

electricity production is dictated by the logit formulation of the investment equation. 

 WITCH also does not explicitly model dispatch, but as the technology capacity factors are 

implemented as an upper limit, the model can choose to not use standing capacities. The 

flexibility and capacity constraints can force the model to decrease generation as the share 

of VRE increases, which reproduces dispatch-like behavior in a rudimentary way. 

 MESSAGE implements two modes of operation for each technology, a baseload mode and a 

flexible mode with lower capacity factor, so capacities do not fully determine electricity 
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generation. However, MESSAGE does not explicitly model dispatch into load bands. Instead, 

the flexibility and capacity constraints can force the model to use technologies in flexible 

mode as the share of VRE increases, which leads to a dispatch-like behavior. 

 IMAGE and REMIND dispatch into bins derived from the region-specific RLDCs, with IMAGE 

having a much higher granularity (156 time slices in IMAGE vs. 4 load bands in REMIND)  

 For the EU, the dispatch is best represented in POLES, as it is coupled to an explicit dispatch 

model that calculates hourly dispatch for each EU member state on 12 representative days. 

The representative days were derived with the help of a sophisticated clustering algorithm 

and contain the full correlation between wind, solar and load (Nahmmacher et al., 2016). 

Outside the EU, however, POLES uses a simpler RLDC-based dispatch over two days, relying 

on mixed-region data. 

Flexibility and ramping:  

We refer to flexibility as the ability of a power system to adjust supply or demand on short notice in 

order to balance the two. Traditionally, flexibility is provided by dispatchable power plants within 

the limits of  ramping and cycling constraints, minimum electric load, minimum heat load (in case of 

CHP), minimum up and down times, part-load efficiency, operating reserve requirements, and 

corresponding costs. 

While it is clear that flexibility requirements increase with VRE, the size of the effect is debated, 

with a range of studies finding reserve requirement increases of 2-9% of added VRE capacity (Hirth 

and Ziegenhagen, 2015). The regulation of balancing power markets can also have a substantial 

impact on the size of reserve requirements: although the VRE share in Germany almost tripled from 

2008 to 2015, reserves were reduced by 15%, with possible reasons including the establishment of 

a balancing power cooperation by the four German TSOs, and the fact that 15-minute trading on 

power exchanges has become more common (Hirth and Ziegenhagen, 2015). Additional sources of 

flexibility are currently in development, and include storage (batteries, flywheels), demand-

response, or the concerted control of wind and solar power plants (Ela et al., 2014; Van Hulle et al., 

2014). 

Model representation of “Flexibility and ramping”:  

 AIM/CGE has no representation of flexibility. 
 In IMAGE and REMIND, the explicit RLDC representation leads to increasing deployment of 

low-capital peaking technologies and storage with increasing VRE shares. As these 
technologies are more flexible than baseload plants, the deployment of flexibility-providing 
technologies increases with increasing VRE share, even if both models do not include 
explicit flexibility equations. 

 MESSAGE and WITCH include a so-called flexibility constraint (Sullivan et al., 2013), which 
represents the requirement for flexibility in a stylized way. As WITCH uses only a fixed 
parameter for each technology, the accuracy of the representation is necessarily limited. 
The more sophisticated step-wise linear formulation in MESSAGE allows a better 
representation, although still in an aggregated parameterized form. 

 POLES explicitly represents ramping constraints in hourly detail over the representative 
days for the EU. For all other regions, there is no explicit flexibility modeling, but the 
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scenarios were ex-post checked to ensure that sufficient flexibility is available in the power 
system. 

Capacity adequacy: For a stable functioning of a power system, load has to be met at all times. In 

order to ensure this even in the face of plant outages and forecast errors, the sum of reliable 

generation, storage output, demand reductions and imports has to exceed the sum of initial 

demand, storage input and exports by a non-negligible margin (“reserve margin”). 

Model representation of “Capacity adequacy”:  

 All models except for AIM/CGE include a capacity adequacy constraint, which ensures that 
peak demand can be met by the installed power system.  

 While WITCH uses a generic formulation for the decrease of the capacity value of wind and 
solar, IMAGE, MESSAGE and REMIND use the actual RLDC values that take into account the 
region-specific contribution from wind and solar to meeting peak demand. 

 POLES also implements an RLDC, but the above-described combinatorial formulation of the 
RLDC has the effect that the correlation of wind and solar with load is not fully captured, 
thus leading to an overly high demand for firm capacity. While this has the advantage of 
providing a particularly resilient system with high reserve margins, it also leads to higher 
system costs, thereby possibly penalizing the deployment of VRE. 

Curtailment: As the share of VRE increases, there will be times when VRE production is higher 

than load, thus there will be curtailment, which increases the per-energy cost of VRE (Lew et al., 

2013a). 

Model representation of “Curtailment”:  

 WITCH is the only model that represents curtailment in an implicit way through the CES 
function: When the model uses more of a technology that was not used much in the 
calibration year, e.g., wind, the economic output of the CES function increases less than 
linearly with increasing wind generation input. However, this is a rough representation that 
cannot take into account the regional differences and the dependence of curtailment on the 
correlation between demand and VRE.  

 For the EU, POLES has the best representation of curtailment, as it calculates curtailment 
endogenously in the dispatch model based on 12 representative days and can thus fully take 
into account the exact system design. However, it relies on the combinatorial RLDC with 
region-mixed data for all other regions, which is a much less accurate representation. 

 All other models implement the region-specific curtailment values contained in the 
ADVANCE RLDCs. 

3.3 Temporal matching of VRE and demand 

Wind-Solar complementarity: In most places of the world, the temporal profile of solar and wind 

is either uncorrelated or even anti-correlated. This is true both for short-term variability as well as 

for regular daily or seasonal time patterns. Using both sources therefore in most cases smooths 

total variability and results in a better matching to load. Put differently, the integration challenges 

of different technologies are not additive: Combining different VRE types (wind, solar) reduces the 

integration challenges compared to a case where only one type is used (Heide et al., 2010; Ueckerdt 

et al., in this issue).  
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Table 4: Evaluation of IAM approaches to represent VRE integration challenges: Power system operation and 
temporal matching of VRE and demand  

 

1 AIM/CGE uses fits of storage and curtailment based on VRE shares that have the form g(wind) + f(solar). Accordingly, 

there are no cross-product terms h(wind * solar) which could better represent the interaction  
2 ”combinatorial” RLDC: see footnotes for Table 3 
3 ”region-mixed” data: see footnotes of Table 3 

Abbreviations: CV –capacity value; CES –constant elasticity of substitution; RLDC – residual load duration curve; 
 

Model representation of “Wind-Solar complementarity”:  

 AIM/CGE uses the ADVANCE RLDCs, which contain the full wind-solar complementarity, but 

represents the resulting storage and curtailment through functions that depends only on 

the separate wind and solar terms (g(wind) + f(solar)) and does not contain a cross-term 

(h(wind * solar)). Accordingly, the functional form cannot fully account for the 

complementarity, but simply has a general preference for an even mix of wind and solar. 

 Similarly, the CES function in WITCH does not allow explicit accounting of complementarity, 

but only has a general preference for an even mix of wind and solar. 

 For the EU, the representative days in the POLES dispatch model contain the full temporal 

and regional wind-solar complementarity. Investment in POLES relies on the combinatorial 

RLDCs, which do not fully account for region-specific complementarity due to their design.  

 IMAGE implements the ADVANCE RLDC, thus incorporating the interaction of wind and 

solar on curtailment and capacity values. It however does not fully reflect the wind-solar 

complementarity when calculating cost markups due to backup requirements for VRE.  

 MESSAGE also relies on the ADVANCE RLDC. However, it does not represent the full RLDC, 

but first determines a region-typical mix of wind and solar to derive the parameters of the 

flexibility and capacity equation that are later used in the actual scenario runs.  

 REMIND replicates the ADVANCE RLDC through a third-order polynomial with three cross-

terms, thus managing to represent wind-solar complementarity to a large extent. 

Model

AIM/CGE 0 na 0 na 0 na ++
based on region-

specific RLDC
+

wind-solarRLDC (+++); 

no cross-product interation1 (-); no 

effect on capacity/dispatch (-)

0 na

IMAGE +++
dispatch on RLDC 

with 156 time slices
+

indirectly through RLDC-

driven switch to low-

capital technologies

++ RLDC-derived CV for VRE ++
based on region-

specific RLDC
++

wind-solar RLDC (+++); backup 

requirements don't fully emulate 

wind/solar correlation (-) 

0 na

MESSAGE +

 technologies can be 

used in flexible or 

baseload mode

++

flexibility constraint in 

combination with two 

modes of operation for 

dispatchable 

technologies

++ RLDC-derived CV for VRE ++
based on region-

specific RLDC
++

uses wind-solar RLDC (+++); relies 

on single wind-solar mix per 

region to parameterize flex. & cap. 

equations  (-)

+

basic 

representation of 

changing 

importance of 

different sectors

POLES ++

EU: hourly dispatch 

on 12 representative 

days (+++); 

Non-EU: dispatch on 

2 days (-)

++

EU: explicit ramping on 

hourly representative 

days (+++); Non-EU: only 

ex-post check of 

ramping/flexibility (-)

+

RLDC(++); combinatorial 

RLDC2 can lead to 

overcapacity in regions 

where VRE match peak 

demand (-)

+

EU: based on dispatch 

model (+++); Non-EU: 

based on combinatorial  

RLDC2 (-) with region-

mixed data3 (-)

+

EU: explicit W&S interaction in 

representative days for dispatch 

(+++); Non-EU: combinatorial RLDC2 

(-) with region-mixed data3 (-)

+

basic 

representation of 

changing 

importance of 

different sectors

REMIND ++

dispatch according 

to RLDC with 4 

loadbands

+

indirectly through RLDC-

driven switch to low-

capital technologies

++ RLDC-derived CV for VRE ++
based on region-

specific RLDC
+++

explicit wind-solar interaction 

from RLDC
0 na

WITCH +

capacity factor as 

upper limit allows 

output reduction

+
flexibility constraint with 

fixed parameters
+

CV for each VRE type 

decreases with VRE share
+

implicitly contained in 

the CES function
+

non-linear CES function favours 

mix of wind and solar
0 na

Temporal matching of VRE and demandPower system operation

Demand profile 

evolution
Dispatch Flexibility and ramping Capacity adequacy Curtailment Wind/solar complementarity
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Demand profile evolution: Demand profiles are not fixed, but rather depend on economic 

development, climate change, and the relative importance of different demand groups and 

technologies. Accordingly, they will change in the future, as some industries grow and others 

decline. Deployment of technologies can also influence the temporal pattern of demand and 

therefore the matching with different VRE sources: For example, as rising incomes lead to increased 

deployment of air conditioning in hot countries, the temporal matching between electricity demand 

and solar power will improve.  

Model representation of “Demand profile evolution”:  

 Only MESSAGE and POLES include a basic representation of demand profile evolution. Both 

track the ratio between industrial and residential electricity demand, and accordingly 

change peak demand (MESSAGE) or load profile (POLES). 

3.4 Storage 

Short-term storage: Short-term storage can reduce the challenge of short-term variability of VRE 

generation and help to align diurnal supply with diurnal demand profiles (Denholm and Hand, 

2011; Després et al., in this issue; Rasmussen et al., 2012; Ueckerdt et al., in this issue). Most short-

term storage in use today consists of pumped hydro storage, but there is limited geographic 

potential for a large up-scaling of existing capacities. Batteries such as lithium-ion or redox-flow 

batteries might become cost-competitive if cost reductions experienced in the recent past continue.  

Model representation of “Short-term storage”:  

 In AIM, IMAGE, REMIND, short-term storage is an exogenous requirement driven by VRE 

share, and the positive effect as calculated by the hourly-resolution dispatch and investment 

model DIMES (Ueckerdt et al., in this issue) is already included in the RLDCs used to 

parameterize the IAM. Depending on the detail of power sector representation, the 

represented effect of storage can either be limited to reducing curtailment (AIM/CGE), or 

also include capacity adequacy and RLDC shape (IMAGE, REMIND).  

 WITCH and MESSAGE endogenously calculate investments into storage, but due to the 

limited temporal resolution of IAMs, the effect needs to be parameterized. This 

parameterizations happens either in a simplified manner based on a fixed contribution of 

storage to the flexibility and capacity equations (WITCH) or in a more sophisticated manner 

based on a mix of a fixed contribution to flexibility and capacity equations with the 

capability to absorb curtailment parameterized on the regional RLDCs (MESSAGE). 

 POLES endogenously calculates investments into storage in a very sophisticated process. 

However, as it only models within-day storage, it underestimates the peak-reducing effect 

of storage. Outside the EU, the effect of within-day storage on the investment RLDC is 

implemented through less accurate heuristic rules.    

Seasonal storage: When VRE generation and load are anti-correlated on a seasonal scale (e.g., in 

Europe solar production is highest in summer and load is highest in winter), seasonal storage can 

become cost-efficient to accommodate high shares of VRE. Due to the large reservoir need, seasonal 
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storage is usually envisioned as power-to-gas, either in the form of hydrogen or further converted 

to methane (Ueckerdt et al., 2015b). 

Model representation of “Seasonal storage”:  

 MESSAGE models the conversion of electricity to hydrogen for seasonal storage, but 

assumes a constant capacity factor for the electrolysis technology, independent of 

curtailment. Moreover, seasonal storage can only address seasonal curtailment, which is 

parameterized for all regions using US-specific data. 

 Within the EU, POLES also models hydrogen electrolysis. As the usage is modeled in the 

dispatch model, it directly reacts to the different economic value of electricity at different 

hours and different VRE contributions. Outside the EU, POLES does not model seasonal 

storage.  

 REMIND models hydrogen electrolysis with a stylized representation of increasing capacity 

factor with increasing curtailment.  

Demand response (incl. electric vehicles and vehicle-to-grid): Demand that flexibly reacts to 

short-term changes electricity prices can help balance generation and demand (Gils, 2014). Due to 

transaction costs, short-term demand response was until now mostly restricted to large industrial 

consumers. However, with increasing communication capabilities and a potential increase in end-

user loads that can be shifted in time (electromobility), end-user demand response could become a 

relevant integration option in the future.    

Model representation of “Demand response (incl. electric vehicles and vehicle-to-grid)” 

 POLES is the only model that contains an explicit representation of demand response as 

well as vehicle-to-grid storage. Outside the EU, these flexibility options are represented less 

accurately through heuristic rules on the investment RLDC.  

 WITCH represents demand response from vehicle-to-grid in a simplified manner by 

reducing the flexibility and capacity requirements when electric vehicles are deployed. 

3.5 Grid 

General transmission and distribution grid: Due to the large scale of power plants, the benefit of 

pooling load variability over large areas, and the locational difference in availability of fuels and fuel 

transport infrastructure, most places of the world are connected to a large-area electricity grid. This 

long-lived capital-intensive infrastructure contributes to the price differential between wholesale 

and retail electricity prices. 

Model representation of “General transmission and distribution grid” 

 IMAGE and WITCH implement a requirement for transmission and distribution capital that 

is linearly proportional to total electricity-generating capacity.  

 MESSAGE and REMIND implement a requirement for transmission and distribution capacity 

that is linearly proportional to total final energy electricity demand. 

 The dispatch model EUCAD that is coupled to POLES endogenously represents net transfer 

capacities between EU member states. However, the grid deployment mechanism depends 
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heuristically on use, not economic value, and does not include possible peak-reducing 

effects from grid expansion. Outside the EU, no grid and no grid costs are modeled. 

Grid expansion linked to VRE: Generation from wind and solar is very heterogeneous in space: for 

VRE, the capacity factor and the matching with load can vary strongly in different locations. Pooling 

VRE generation over large geographical scales can mitigate much of the weather-related variability 

(IEA, 2014). However, such pooling requires additional investments to expand transmission grids. 

From an economic point of view, transmission grid expansion has been found to be a no-regret 

option for smoothing variability and thus reducing VRE integration challenges (Becker et al., 2014; 

Fürsch et al., 2013; Haller et al., 2012; Scholz et al., in this issue), making it a likely part of cost-

optimal climate mitigation scenarios. Although the costs for such a transmission expansion are 

much smaller than the costs for transforming the generation part of the energy system in a low-

carbon scenario, these additional costs should be reflected in IAMs (Scholz et al., in this issue). 

Model representation of “Grid expansion linked to VRE” 

 REMIND and WITCH include an aggregated representation of how grid costs increase with 

increasing VRE share. 

 As IMAGE and WITCH calculate their grid requirements based on capacity, VRE with usually 

low capacity factors automatically require more grid capital per produced kWh than the 

average electricity produced. Therefore, these models implicitly include additional grid 

costs for VRE. 

 The changing residual demand from VRE deployment will have an impact on the EUCAD 

grid representation for the EU. Outside the EU, no grid and no grid costs are modeled. 

Pooling effect from grid expansion: As mentioned in the previous category,  improving the grid 

connection over large areas leads to much lower gradients and smoother VRE generation due to 

pooling, and can therefore substantially reduce the integration challenges (Becker et al., 2014; IEA, 

2014; Scholz et al., in this issue). To our knowledge, aggregated energy-economy-models have often 

parameterized integration challenges using small-scale wind and solar time series on the level of 

existing balancing regions or even individual measuring stations, mostly because of limited data 

availability on a larger scale. As with any statement about the future, it is impossible to foresee if 

balancing areas will continue to expand in the future, or if they will fragment. However, as 

economic arguments speak in favor of expanding transmission grids to accommodate VRE, and as 

the ongoing deployment of ICT technologies facilitates national and international cooperation on 

balancing, it seems reasonable to expect a continued improvement of transmission grid 

infrastructure in the long-term scenarios developed by IAMs.  

To portray an equal level of long-term coordination and development across the different resources 

and markets represented in IAMs, it is thus advisable to include this pooling effect in the used wind, 

solar and demand time series: taking only time series from a small spatial area would project the 

fragmentation of the electricity grid, ignore the benefit of transmission grids and therefore 

overestimate integration challenges of VRE. 
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Model representation of “Pooling effect from grid expansion” 

 All models except for POLES and WITCH use the ADVANCE RLDC as parameterization basis, 

which assumes full region-wide pooling, e.g., through an overlay transmission grid. 

 POLES is more detailed when modeling the effect of pooling on dispatch, as the pooling 

effect of grid expansion between the EU member states is explicitly represented. For 

investment decisions, however, it only contains country-level pooling and does not allow for 

region-wide pooling through an overlay transmission grid. 

Table 5: Evaluation of IAM approaches to represent VRE integration challenges – Storage and grid 

 

1 combinatorial RLDC: see footnotes for Table 3 
2 "region-mixed data: see footnotes for Table 3 

Abbreviations: CF – capacity factor; DR – demand response; endog. – endogenous; exog. – exogenous; FE – final energy;  

RLDC – residual load duration curve; trans. & distr. – transmission & distribution; V2G – vehicle to grid;  

To summarize, the approaches span a wide range of model types and have different strengths and 

limitations. The difference in basic model typology (optimizing or rule-based) influences which 

parts of the integration challenges are easier to represent: optimizing models can more easily 

incorporate the effects on VRE investment decisions, while they are at the same time more 

computationally restricted than rule-based models, which usually can implement more 

technologies and more complicated functional forms. While AIM/CGE and WITCH use rather 

reduced-form approaches and have less technological detail, they still manage to incorporate 

several aspects of the influence of VRE on power sector dynamics. More explicit representations in 

models with higher technology detail, like those in IMAGE, MESSAGE, POLES or REMIND, come with 

Model

AIM/CGE +

Exog. storage investm. based 

on VRE-shares; effect on 

curtailment based on DIMES

0 na 0 na 0 na 0 na +

Region-wide 

pooling contained 

ex ante in the RLDC

IMAGE ++

Exog. storage investm. based 

on VRE-shares(+), effect on 

curtailment & capacity 

based on DIMES

0 na 0 na +

grid capital (trans. & 

distr.) l inearly 

proportional to total 

electricity capacity

+

implicitly included as grid 

capital requirement is based 

on capacity, not energy

+

Region-wide 

pooling contained 

ex ante in the RLDC

MESSAGE ++

Endog. storage investments 

driven by capacity & 

flexibility equation with fixed 

coeffcients (+) and by VRE-

share-dependent effect 

on curtailment  (+)

+

Endogenous (+) 

investment into 

hydrogen 

electrolysis (+), but 

relies on US data to 

model the effect (-)

0 na 0

grid capacity (trans. & 

distr.) l inearly 

proportional to FE 

electricity use

0 na +

Region-wide 

pooling contained 

ex ante in the RLDC

POLES +

EU: Endogenous storage on 

representative days (+++), but 

only within-day storage (-); 

Non-EU: exogenous within-

day storage on RLDC basis (-)

++

EU: Endog. (+) H2 

electrolysis (+), CF 

reacts to 

curtailment (+); Non-

EU: no seasonal 

storage (-)

+

EU: explicit V2G & 

DR modeling (++); 

Non-EU: heuristic 

modeling on comb. 

RLDC1 with region-

mixed data2 (-)

0

EU: endog. grid in 

EUCAD (++); investment 

heuristic from use (not 

value), peak reduction  

not modeled (-); 

Non-EU: no grid (-)

0

EU: endog. grid in EUCAD (++); 

investment heuristic based 

on use (not value), peak 

reduction not modeled (-); 

Non-EU: no grid (-)

+

EU-wide pooling for 

dispatch explicitly 

modeled (++); 

Investment RLDC 

only has country-

level pooling (-)   

REMIND ++

Exog. investm. into storage 

based on VRE-shares (+); 

region-specific effect on 

curtailment, capacity and 

RLDC shape from DIMES (+)

+++

Endog. (+) H2 

electrolysis (+) 

using curtailments; 

CF depends on 

curtailment (+)

0 na +

grid capacity (trans. & 

distr.) l inearly 

proportional to FE 

electricity use

+
aggregated grid costs 

depending on VRE share
+

Region-wide 

pooling contained 

ex ante in the RLDC

WITCH +

Endogenous storage investm. 

driven by capacity & 

flexibility equation with 

fixed coeffcients

0 na +

basic 

representation: 

reduction of cap. & 

flex. requirements 

from V2G 

+

grid capital l inearly 

proportional to total 

electricity-producing 

capacity

+

aggregated grid cost markups 

depending on VRE share; also  

included implicitly as grid 

capacity is calculated from 

capacity, not energy

0 na

Pooling effect from 

grid expansion

Storage

Short-term storage Seasonal storage

Demand response 

(incl. electric 

vehicles & V2G)

Grid expansion linked to 

VRE

General transmission 

and distribution grid

Grid
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higher computational challenges and data requirements, but represent the integration of wind and 

solar in a more comprehensive way.  

The developed framework helps to identify those aspects among the 18 power sector 

characteristics where future research is most needed. Demand profile evolution, transmission grid 

modeling (both the effect of pooling and the grid expansion requirements), and demand response / 

vehicle-to-grid modeling are areas that are represented in few models, and have only basic 

representations, thus in-depth research is most needed. In contrast, some other aspects that are not 

well covered by a few models, e.g. expansion dynamics, have more advanced representations in 

other models, so a knowledge transfer might be easier. 

4 Quantitative approach 
While a specific modeling approach is targeted at representing a certain dynamic, in a large-scale 

IAM it interacts with many other equations, possibly leading to non-intuitive results. It is therefore 

crucially important to not only discuss the equation structure and used data (as was the focus in the 

qualitative evaluation framework), but to also analyze the quantitative model results and validate 

them against the benchmark of a more detailed power sector model. The quantitative part of this 

study thus uses the results from the hourly-detail power sector model REMIX to check how well the 

IAM scenario results respect fundamental power sector characteristics and reproduce integration 

challenges.  

The sixty scenarios produced with REMIX for the ADVANCE project provide a detailed map of the 

impact of VRE on power system economics, featuring the following key aspects (Scholz et al., in this 

issue):  

a) hourly detail over a full year,  

b) national demand and VRE generation profiles for the 15 modeled EU regions, 

c) a green-field power system optimized to accommodate a given VRE share,  

d) coverage of VRE shares up to 100%,  

e) the inclusion of short- and long-term storage,  

f) endogenous representation of the benefits and costs from expanding the transmission grid 

between the modeled EU regions. 

To analyze the quantitative capability of the different modeling approaches to reproduce changes in 

the power sector in reaction to increasing VRE shares, we use five IAM scenarios (see Table 6). Two 

of these scenarios use the newly developed ADVANCE model versions and explore the policy 

dimension: The 2°C Policy scenario implements a constraint of 1550 GtCO2 on the cumulative 

2000-2100 budget of CO2 emissions from fossil fuels, industry, and land use. As discussed in the 

IPCC’s Fifth Assessment Report, this budget is broadly consistent with a long-term CO2e-

concentration of 480-530 ppm, limiting global warming below 2°C with a medium likelihood 

(Clarke and Kejun, 2014). In the Tax30 scenario, a fixed trajectory for the CO2-Price is prescribed, 

starting at 30$/tCO2 in 2020 and increasing exponentially at 5% per year. We use these two 

scenarios as they ensure that the results for each model cover a wide range of VRE shares, and thus 

provide a good testing range for the power sector modules. Also, the 2°C Policy scenario has the 
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advantage of representing a policy-relevant target, while the Tax30 scenario is better suited for 

comparing power sector decarbonization: A prescribed carbon tax creates a similar 

decarbonization pressure in the power sector of each IAM, whereas the different modeling of 

decarbonization of land use and other energy use in the various IAMs can lead to very different 

price signals in the power sector for 2°C Policy. 

To explore the question how important VRE integration modeling is for the resulting VRE 

deployment in IAMs, we use three scenarios that are all subject to the same carbon tax as the Tax30 

scenario but employ different model versions: The EMF27 scenario uses older versions of the IAMs 

that were used for the 2013 EMF27 study (Kriegler et al., 2014; Luderer et al., 2014)6. The EMF27 

NewCostRes/Old Integration scenarios use a mixed model version that combines the VRE 

integration modeling from the EMF27 models with the updated VRE cost and resource assumptions 

developed in ADVANCE. Finally, the counter-factual Full Integration scenario is based on the 

ADVANCE model version but treats wind and solar as dispatchable, thereby allowing to discern the 

effect of the currently implemented integration challenges.  

The results are compared across different IAMs and to REMIX results to test the plausibility of the 

IAM results. We use the following power sector indicators: 

 Capacity adequacy 

 Capacity factor of dispatchable power plants 

 Curtailment  

 Storage 

Table 6: Overview of IAM scenario definitions 

 

4.1 Aggregated effect of the model update for participating IAMs 

When subject to a carbon price in the Tax30 scenario, all of the participating IAMs show a strong 

deployment of wind and solar in the ADVANCE model version, with net shares7 of VRE in global 

electricity generation ranging from 33-80% in 2050 and further increasing until 2100 (see Figure 1 

left). The residual electricity is produced mostly from gas, nuclear, biomass or hydro, with each 

model showing different preferences. In all models except POLES, the biomass share stays below 

12%, as biomass is in strong demand from the other energy sectors, e.g. for the production of liquid 

transport fuels. All models increase their deployment of hydro power, but the share of hydro in 

                                                             
6 As AIM/CGE was not part of the EMF27 study, it could not be included in the analysis of changes between 
EMF27 and ADVANCE.  
7 “Net share“ refers to the share calculated after curtailment has be deducted both from the wind and solar 
generation and from the total generation. 

Scenario name Short name Climate policy Model version

2°C Climate Policy 2°C 2000-2100 CO2 budget limited to 1550 GtCO2 ADVANCE

Tax30 Tax30 30$/tCO2 tax in 2020, increasing by 5%/year ADVANCE

EMF27 EMF27 30$/tCO2 tax in 2020, increasing by 5%/year EMF27

EM27 NewCostRes / 

Old Integration
NuCoRes 30$/tCO2 tax in 2020, increasing by 5%/year

VRE integration modeling: EMF27; VRE 

costs and Resources: ADVANCE

Full Integration Full 30$/tCO2 tax in 2020, increasing by 5%/year
ADVANCE; wind and solar treated as 

dispatchable technologies 
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total electricity nevertheless decreases, as most world regions have limited potential for hydro 

power expansion. 

The comparison of the aggregated results from the IAMs with improved power sector modeling to a 

scenario with the same carbon policy but produced with older versions of these models show that 

the methodological advances (a more detailed representation of VRE integration challenges, 

updated VRE resource and VRE cost assumptions) lead to strongly increased VRE deployment and 

less variation across the various IAMs (Figure 1 left).  

To separate the effect of updating the representation of the power sector and integration challenges 

from the effect of updating costs and resources, we employ the four scenarios using the same 

carbon tax but four different model versions: Tax30, EMF27, NuCoRes, and Full (Figure 1 right). 

 

 

Figure 1: Net share of electricity produced from wind & solar in global net electricity generation for a Tax30 
carbon policy. Left: VRE shares over time. The colors denote the model version: blue is the 2013 model version 
used for the EMF27 study, black the newly developed implementations with updated costs, resources, and 
modeling of integration challenges. The model update has substantially shifted the range of VRE shares upwards 
and reduced the variation between models. Right: Influence of model versions on the average 2050-2100 VRE 
shares under a Tax30 carbon policy. The largest effect comes from the updating of integration modeling between 
NuCoRes and Tax30. In the diagnostic scenario Full, integration challenges are removed completely and wind and 
solar are treated as dispatchable technologies. 

The scenarios produced with the old EMF27 model version show large differences across models, 

with average 2050-2100 net shares of VRE in total power generation VRE shares ranging from 18-

20% (WITCH, IMAGE) over 34% (POLES) to 55-64% (MESSAGE, REMIND), and a model-average of 

38%. Updating costs and resources to the ADVANCE values in NuCoRes increases the model-average 

by 6%-points to 44%. It is not surprising that updating the costs and resources had a relatively low 

effect on VRE shares, because no model decreased the capital costs of PV by more than a quarter, 

and all models kept the capital costs for wind unchanged or even increased them, with only a slight 

increase of wind capacity factors for most models from the new wind energy resource potentials 

(Eurek et al., in this issue).  
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However, additionally updating the representation of VRE integration challenges to the newly-

developed ADVANCE version in Tax30 increases the model-average VRE share by a much higher 

margin of 18%-points to 62%. REMIND is the only model that experiences a decrease in VRE share 

with the new integration modeling, while apparently the other models previously had more 

pessimistic representations of VRE integration (see Table 1 and discussion below).  

While it might at first seem surprising that introducing more detailed integration challenge 

modeling increases the VRE share in all models except for REMIND, a closer look at the changes of 

the modeling approaches (as documented in Table 1) shows that the increase can well be explained. 

The VRE share increases most for IMAGE (40%-points) and MESSAGE (27%-points), models that 

already had relatively elaborate integration modeling in the EMF27 version. However, while being 

new and innovative when introduced in the IAMs, both previous approaches had certain 

weaknesses that lead the IAMs to underestimate potential VRE contributions.  

 The EMF27 version of IMAGE had excessive backup requirements that interacted with the 

capacity expansion modeling, leading to exaggerated cost markups for VRE; also, IMAGE did 

not represent any options to reduce integration challenges such as storage. Adding storage 

and rewriting the backup requirements to make them dependent on the actual VRE share as 

expressed in the RLDC removed this artificial barrier.  

 MESSAGE had integration equations that were calibrated to the results of a simplified unit 

commitment model focusing on a small area with limited integration options and little 

regional smoothing, resulting in a curtailment equation with 70% marginal curtailment for 

PV shares above 25% and wind shares above 47%, and a capacity equation with marginal 

capacity values of 0 above 25% wind or PV share. Given these numbers, it is of little 

surprise that introducing new parameters based on the regional RLDCs, which include the 

effect of short-term storage and transmission grid expansion, lead to a substantial increase 

of VRE share (Johnson et al., in this issue).  

 WITCH also showed a substantial VRE increase (22%-points), but here the effect is more 

based on improving the previous coarse representation of integration challenges. The 

EMF27 WITCH version nested wind and solar generation in a CES nest with a low 

substitution elasticity of 2, which forced the model to stay close to the shares in the 

calibration year, essentially restricting VRE to a low contribution. The new implementation 

added explicit capacity and flexibility equations, thus making VRE integration more 

expensive, but at the same time increased the elasticity of substitution to 5, thus relaxing 

the tie to the shares in the initial year. Furthermore, the introduction of storage gave the 

model flexibility in choosing options to supply firm capacity and flexibility (Carrara and 

Marangoni, in this issue). 

 POLES shows a VRE share increase of 11%-points – here the increase results mostly from 

an update of the time slices used for investment calculations, the introduction of storage, 

and the removal of previously-existing artificial upper bounds on the VRE share (Després et 

al., in this issue).  

 REMIND is the only model that sees a decrease of VRE shares (8%-points) upon introducing 

the new integration modeling. In REMIND, integration challenges were formerly 

represented via aggregated VRE-share-dependent integration costs, and the previous 
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parameterization apparently underestimated the actual integration challenges that are now 

directly represented via RLDCs in the current version (Ueckerdt et al., in this issue). 

Removing integration challenges completely in the diagnostic “Full Integration” scenario and 

treating wind and solar as dispatchable technologies increases the VRE share substantially, on 

average by 17%-points, to 79%. This shows that even though the improved representations of 

integration challenges are less restrictive than the barriers implemented in older model versions, 

they still have a strong effect on power sector development. 

In summary, the Tax30 scenario shows net VRE shares (averaged 2050-2100) between 46% and 

87%. In comparison to the EMF27 model versions, the ADVANCE improvements of the VRE 

representations reduced the model spread by 4 percentage points, and increased the model-

average net VRE share by 24 percentage points. 

4.2 Capacity adequacy  

Peak demand should be met by a given power system to avoid load shedding. In a system without 

VRE, capacity adequacy can be simply determined by dividing the sum of all dispatchable capacities 

by peak demand. To ensure reliable operation even if some generator experiences a failure, this 

value should be around 1.1-1.3, equivalent to a reserve margin of 10-30%. In a system with VRE, 

determining capacity adequacy is not as straight-forward: depending on the correlation between 

VRE incidence and load, VRE either can or cannot contribute to meeting peak demand. As an 

example, PV contributes to peak demand in California due to high midday peaks from air 

conditioning, but not to peak demand in Germany or France, where the yearly peak demand is on a 

winter evening.  

The RLDCs derived from REMIX (Scholz et al., in this issue) and the dispatch model DIMES  (see 

(Ueckerdt et al., in this issue)) contain the information regarding how well VREs contribute to peak 

demand. At low and medium VRE shares, capacity credits depend mostly on the region-specific 

seasonal and diurnal matching of VRE with demand, while at high VRE shares capacity credits 

continually decline and become more similar across regions (Ueckerdt et al., in this issue).  

Here we calculate a proxy for capacity adequacy, which we call “peak demand coverage” by dividing 

the installed dispatchable capacity plus the part of peak load that is supplied from variable 

renewables8 by the total peak load. This proxy allows us to check if a model manages to represent 

the demand for capacity, or largely over- or undersupplies dispatchable capacities. Figure 2 shows 

that for most of the models, the implied capacity adequacy is in a range that would allow stable 

operation of the system. Only for AIM/CGE, which at the current stage does not include a capacity 

adequacy equation, the covered demand drops below the level of one, which would imply that some 

load needs to be shed during peak hours. On the other hand, the power system modeling in POLES 

leads to high reserve margins, which means it is a very secure system with low risk of failure, but 

also with higher total system costs due to increased capacity redundancy. This result could be 

interpreted as a representation of a myopic world where the power sector transformation is not 

optimally coordinated, or a system where long-distance transmission is not optimally developed, 

                                                             
8 The contribution from variable renewables and short-term storage to meeting peak demand is calculated 
directly from the ADVANCE RLDCs. 
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thus the cost-efficient potential of peak-shaving through better international cooperation is not 

tapped. Looking at the substantial number of new coal power plant constructions in the EU over the 

last decade, which will never recover their investment costs if the EU ETS and the long-term 

emission targets remain in place, as well as the slow progress of increasing the transfer capacities 

between member states to fully capitalize on their different generation and demand profiles, a 

“non-optimal coordination” view may be in fact quite realistic.  

 

Figure 2: Proxy for capacity adequacy: peak demand coverage. The lines show model results for the EU in the 
Tax30 and the 2°C scenarios plotted over VRE share, spanning the period from 2010 to 2100, with each marker 
representing a ten-year time step. For comparison, REMIX results for an even mix of wind and solar (1:1) and 
different VRE-shares are also displayed. The beige rectangle represents a reserve margin of 10-30%, similar to 
many of today’s power systems. Lower values imply a higher chance that load cannot be covered and has to be 
shed; higher values imply possible overcapacities, leading to increased total system costs and difficulties for 
peaking plants to recover their investments. In all of the modeling approaches except AIM/CGE, peak demand is 
well-covered.  

 

4.3 Capacity factor of residual non-VRE system  

In a real power system, increasing the VRE share will reduce the capacity factor of the residual non-

VRE system, and thereby increase the demand for power plants with low capital intensity that 

operate only a small fraction of the year, such as gas combustion turbines or storage (Hirth et al., 

2015; Nicolosi, 2012; Scholz et al., in this issue). This effect is also called “utilization effect”, as the 

generating capacity is utilized less than would be possible in a system without VRE (Hirth et al., 

2015). We here calculate the capacity factor of the residual non-VRE system by summing the 

electricity output from all installed thermal, hydro and storage power stations, and dividing by the 

sum of their capacities. This allows for the fact that under certain technology cost assumptions, a 

model may prefer to invest into a baseload technology combined with a large amount of storage, 
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thereby still fulfilling the feature that the total capacity factor of the combination 

(baseload+storage) is lower than in a system without VRE, but the baseload plant itself still runs 

with a high capacity factor. 

Figure 3 shows that  the utilization effect is well-represented in most IAMs.

 

Figure 3: Capacity factor of the  residual non-VRE system for the EU in the Tax30 and the 2°C scenarios plotted 
over VRE share of electricity consumption, spanning the period from 2010 to 2100, with each marker 
representing a ten-year time step. For comparison, REMIX results for an even mix of wind and solar (1:1) and 
different VRE-shares are also displayed. In most of the modeling approaches, the capacity factor of the residual 
non-VRE system follows the expected trend and decreases as the contribution from wind and solar increases, 
well in line with the results from detailed modeling in REMIX.  

 

4.4 Storage and curtailment  

As the share of wind and solar in a power system increases, at a certain point investing into storage 

becomes economic. Also, as wind and solar produce more electricity than load in certain hours, 

curtailment increases (see Figure 4). The two effects are partially linked – with more storage 

installed, curtailment can decrease, and vice versa. Also, different assumptions about costs of 

natural gas combustion turbines and storage as well as gas prices will influence the amount of 

storage that is installed. Finally, the type of VRE can have a strong influence on both storage and 

curtailment, as the REMIX results with different solar-to-wind ratios displayed in Figure 4 show: In 

Europe, wind doesn’t have a strong diurnal pattern while solar does; therefore short-term storage 

is much less important in scenarios with high wind contributions compared to scenarios with high 

PV contributions. In the EU, PV is anticorrelated to aggregated demand both on the short as well as 
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on the long term, thus curtailment increases much more than for wind (Ueckerdt et al., in this 

issue). 

The IAMs fall into two groups: On the one side models with an almost even solar-wind mix in the 

second half of the century in Europe, namely AIM (50:50), REMIND (43:57) and POLES (38:62). On 

the other side models with very little solar contribution in Europe, namely IMAGE (12:88), 

MESSAGE (11:89) and WITCH (13:87) – results for these models should be compared to the results 

from the REMIX-Wind scenarios.  

 

Figure 4: Curtailment (left) and storage (right) for the EU in the Tax30 and the 2°C scenarios plotted over VRE 
share, spanning the period from 2010 to 2100, with each marker representing a ten-year time step. For 
comparison, REMIX results for different VRE-shares are also displayed, both with an even solar-wind ratio (“1:1”) 
as well as with a 20:80 (“Wind”) and a 80:20 (“Solar”) mix of solar to wind for each VRE-share. Curtailment here 
also includes the curtailment that is used for hydrogen generation in MESSAGE and REMIND. All models 
represent the general tendency of increasing curtailment and storage with increasing VRE shares, well in line 
with the results from detailed modeling in REMIX, but most of the models underestimate curtailment.  

For curtailment, the comparison of results shows:  

 Most IAMs reproduce the general tendency that increasing VRE shares increase curtailment. 

 All models show curtailment values that are at the lower end of or even a few percentage 

points below the REMIX values. This may be due to the fact that REMIX explicitly models the 

actual losses from long-distance transmission, while most IAMs only include cost markups 

for transmission grid expansion. This highlights the research need to improve the 

representation of grids in IAMs in the future. 

 WITCH does not explicitly model curtailment but rather represents the economic effect 

implicitly through the CES function, therefore the model values appear as 0. 
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For storage, the comparison of results shows:  

 The IAMs express a general tendency that increasing VRE share increases storage 

deployment, which is similar to the solar and the 1:1 REMIX scenario. 

 POLES and WITCH deviate from the green-field-optimized REMIX results by showing high 

storage capacities at medium VRE shares of 40-50%. 

 In WITCH, this can be explained by the limited detail of the fixed-factor flexibility equation 

and the capacity equation, whose parameters are based on the somewhat restrictive 2013 

MESSAGE parameterization of wind and solar which does not represent the finding from 

the RLDC analysis that wind requires less short-term storage than PV (Carrara and 

Marangoni, in this issue; Ueckerdt et al., in this issue).  

 In POLES, the development of storage is not only based on the economic value of arbitrage, 

but also of ancillary services, which can bring earlier development (Després et al., in this 

issue). The initial fast deployment of storage in the climate policy scenario can be traced 

back to the deployment of gas-CCS power plants, whose capacity factor can be increased in 

the model by deploying storage, so the high storage values are not directly attributable to 

VRE deployment. Also, storage in POLES is only modeled as “within-day storage”, so it 

cannot optimally reduce peak demand in the model investment logic, which could partially 

explain the overcapacity/high reserve margin seen in Figure 2.  

 The initial offset at low VRE shares is due to the fact that POLES is the only model that fully 

accounts for pumped hydro storage.   

 It should be noted that in a detailed power sector model, storage deployment depends 

strongly on assumptions about cost and availability of different flexibility options. In a 

REMIX version where no CSP with thermal storage could be installed, the deployment of 

short-term battery storage almost doubled. 

5 Conclusion and outlook 
Through the substantial cost reductions over the last decades, wind and solar power have become 

economically attractive options for generating low-carbon electricity. As the deployment of these 

technologies increases, integration challenges resulting from their variable nature become more 

and more relevant. To robustly analyze the long-term role of wind and solar for climate change 

mitigation, it is therefore of utmost importance to improve the representation of wind and solar 

integration challenges in IAMs. Newly-developed power sector modeling approaches need to be 

evaluated in order to determine how well they represent real-world dynamics. 

This study makes four important contributions to the literature:  

a) It develops a theoretical evaluation framework of features that describe the fundamental 

dynamics of the power sector and the effect of VRE. This framework enables transparent 

evaluation of the strengths and limitations of different modeling approaches, and helps 

determine the areas that are most in need of improvement. 

b) It applies the developed framework to discuss and evaluate six newly-developed modeling 

approaches for representing power sector dynamics and VRE integration challenges in 

IAMs of various types. 



32 
 

c) It compares results from the new ADVANCE model versions to results from older model 

versions used in the EMF27 model comparison study, and separates the effect of updating 

VRE costs and resources from the effect of updating VRE integration modeling. 

d) It analyzes the quantitative results of the six IAMs and tests how well they reproduce the 

results from a more detailed power sector model. 

We find that scenario results produced with the new model versions (updated VRE resource 

potentials, updated VRE investment costs, improved power sector modeling) lead to a more robust 

view on VRE deployment in climate policy scenarios, and project higher contributions from wind 

and solar. While global net VRE shares, averaged over the second half of the century in scenarios 

with a Tax30 climate policy, ranged from 18-64% (model-average: 38%) in the 2013 model 

versions used for EMF27, they now increased to 46-87% (model-average: 62%) with the new 

model versions – an increase of the model-average by 24 percentage points. Most of this increase 

(18%-points) comes from the update of integration challenge modeling, while 6%-points come 

from the update of wind and solar costs and resources. 

While AIM/CGE and WITCH use rather reduced-form approaches and have less technological detail, 

they still manage to incorporate several aspects of the effect of VRE on power sector dynamics. 

More explicit representations in models with higher technology detail, like those in IMAGE, 

MESSAGE, POLES or REMIND, come with higher computational challenges and data requirements, 

but represent the integration of wind and solar in a more comprehensive way.  

Also, the model span a range of different world views: Models like MESSAGE and REMIND with 

intertemporal optimization, region-wide pooling and detailed representation of flexibility options 

best describe worlds in which all institutions and actors cooperate and coordinate their actions to 

achieve a cost-optimal power system transformation. At the other end of the spectrum is POLES, 

with its myopic rule-based investment and a rather pessimistic view on the contribution from VRE 

and storage to peak demand, thereby representing a world where investments are not optimally 

coordinated, and different countries do not fully cooperate to reduce integration challenges. 

Clearly, all of the presented approaches have their limitations, and none of the models covers all 

aspects to the best extent possible. Further model developments both in IAMs and hourly energy 

system models will improve the robustness of the results and allow even more details, including the 

representation of various power-to-X (heat, liquids, chemical processes, etc.) technologies that link 

the different energy sectors, explicit modeling of demand response, and a more detailed 

representation of the pooling effect of grid expansion. However, the most important aspect to 

improve would in our view be the data basis for the region-specific implementation. Indeed, the 

hourly correlation between wind, solar and load is the main determinant for integration challenges, 

and strongly influences the results of the different modeling approaches. High-quality load data is 

missing for most world regions and should be a strong focus of future research to allow the creation 

of updated regional RLDCs (Ueckerdt et al., in this issue) – one would expect that transmission 

system operators and energy ministries around the world have an own interest in improved 

electricity sector research and should therefore be willing to make load data time series publicly 

available. 
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We conclude that a variety of different approaches to represent the integration challenges of 

variable renewable energies in IAMs exist, of which many manage to capture relevant non-linear 

feedbacks of VRE on the rest of the power sector. The analyzed approaches are a significant step 

towards more robust and reliable long-term scenarios useful for policy advice, as most IAM results 

are in decent agreement with power sector features and results from more detailed power sector 

models.  
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