
 

 



http://www.feem.it/
mailto:working.papers@feem.it


  1 

Knowledge Creation between Integrated Assessment Models and Initiative-Based Learning - 

An Interdisciplinary Approach 

 

Enrica De Cian
a
, Johannes Buhl

b
, Samuel Carrara

a
, Michela Bevione

a
, Silvia Monetti

b
, Holger Berg

b*
 

 
a 
Fondazione Eni Enrico Mattei (FEEM) and Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), 

Corso Magenta 63, 20123 Milan, Italy
  

b 
Wuppertal Institute for Climate, Environment, Energy, Doeppersberg 19, D-42103 Wuppertal, Germany 

* 
Corresponding author:  

holger.berg@wupperinst.org 

 

 

 

Abstract 

 

This paper explores the opportunities for integrating Initiative Based Learning (IBL) and Integrated 

Assessment Models (IAMs) in order to improve our understanding of learning in the context of societal 

transition pathways, and more specifically by focusing on solar PV as an energy transition technology. Our 

analysis shows that IAMs and IBL conceptualize learning in a very different way, and the two approaches 

have major structural differences with respect to the geographical as well as the temporal scale of analysis. 

This is also due to the different goals of the two methodologies. The aim of IAM is to develop long-term 

energy and technology scenarios for the next thirty to eighty years, and to describe learning processes mostly 

to account for future potential improvements in technologies, while IBL focuses on understanding the 

configuration of actors in specific institutional settings that legitimize and support specific technologies and 

ultimately lead to dynamics of social learning. Although ambitious forms of integration between IAMs and 

IBL are not feasible today, the two approaches can be used in parallel and lead to mutual enrichment via a 

process that we label a two-way recursive collaboration. 
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1 Introduction 

Addressing the global environmental and sustainability transitions poses analytical challenges that require 

integration across disciplines. Alternative integration strategies exist, ranging from more ambitious efforts to 

integrate insights from one discipline into another, to more modest forms of integration where multiple 

approaches are used in parallel, engage with each other, and enrich each other (Turnheim et al. 2015). An 

important dimension related to societal transition pathways is the process of learning entailed by the use of 

new technologies and innovations (Geels 2010, Geels et al. 2015, and Turnheim et al. 2015). Yet, different 

conceptualizations of learning across disciplines might delay insights that could arise from cross-disciplines 

fertilization. Clarifying these differences can facilitate the development of integrative approaches to 

sustainability.  

Quantitative system modelling, such as Integrated Assessment Models (IAMs), and case study research on 

Initiative Based Learning (IBL) are two approaches used to analyze sustainability transition pathways. 

Traditionally, they have been utilized by separate communities, but recent research has begun to build 

bridges across very diverse methodologies
1
. Integrated Assessment Models inform us about the technological 

requirements to achieve future goals by providing a forward-looking perspective of transitions. They can 

project the changes over time required to achieve predefined goals under specific sets of economic and 

technological scenarios, but they do not outline the conditions that enable the governance and actor dynamics 

which would support certain pathways.  

Case study research on Initiative Based Learning focuses on entangled social dynamics in local transition 

inititiatives, but pays less attention to the broader and long-term perspectives on transition dynamics. IBL is 

a qualitative approach that uses case study analysis to examine the mechanisms and dynamics in concrete 

projects and local initiatives involving a wide range of societal actors, such as citizens, businesses, civil 

society organizations and (local) government. It reveals the emerging properties in processes of system 

change ignored by approaches such as IAMs, and informs us of the configuration of actors and motives that 

lead to successful solutions that favor innovation (Turnheim et al. 2015). 

Both, IAM and IBL researchers address different learning mechanisms or drivers, which contribute to 

improving and spreading technology. They make a broad distinction between learning mechanisms involving 

the interaction among agents and actors – which we refer to as social learning – and learning mechanisms 

related to the process of production and use of specific technologies – which we refer to as technical 

learning. 

IAMs focus on replicating historical statistics on energy and mostly rely on learning curves to project future 

technology costs based on historically observed trends. They focus on technical learning, a reduced form of 

learning driven by technical drivers, such as cumulative capacity installed (Learning-By-Doing) and R&D 

expenditure (Learning-By-Research). IBL provides interesting insights into forms of learning that remain 

unobservable in IAM approaches. In the IBL approach, learning focuses on social learning, defined above as 

the processes and interaction among actors that determine the success or failure of a given initiative, and it 

includes technical, organizational, and cultural aspects. 

IAMs and IBL conceptualize learning in a different but complementary way, indicating that more insights 

can be gained by combining different approaches. Indeed, each method provides only a partial 

understanding, and a more comprehensive assessment can be achieved by developing a joint analysis.  

In this paper we explore the opportunities that exist for integrating IBL and IAMs as related to understanding 

learning in the context of transition towards cleaner energy technologies. We investigate whether the 

combination of these two methodologies can offer better insights into the role of learning in transition 

dynamics. Specifically, we examine the differences between IBL and IAM with respect to learning, and the 

extent to which they can complement each other in characterizing learning dynamics in energy transitions. 

We focus on solar photovoltaic (PV) technology both in IBL case studies and in IA modelling, since this 

technology will play a crucial role in future decarbonization pathways. Moreover, a wide empirical literature 

                                                      
1
 PATHWAYS project – http://www.pathways-project.eu/ 
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has been dedicated to the historical development of PV technology, so that at present it is rather well 

understood. 

The remainder of this paper is organized as follows. In Section 2 we begin our analysis by describing the 

frameworks used by IAMs and IBL to conceptualize learning. As an empirical context, studies on solar PV 

technologies are used. In Section 3 we review the empirical evidence in both fields of research. In Section 4 

we investigate whether the evidence emerging from the case studies can inform IA modelling and whether 

the framework used in IAMs can open new perspectives in analyzing case studies by IBL. Section 5 

concludes with some remarks on the opportunities for integrating IBL and IAMs.  

 

2 Learning: conceptual frameworks  

Different disciplines have formulated stylized representations of the learning process in relation to 

technological innovation and diffusion. Despite these different conceptualizations, S-shaped curves tend to 

appear in different fields of research. The diffusion of many innovations generally resembles an S-shaped or 

sigmoidal adoption distribution path, depending on the innovation (Roger, 2003). The literature on 

innovation research has introduced the “epidemic” diffusion model (Rogers, 2003, Geroski 2000, and 

Stoneman 2010), in which innovation spreads quite autonomously from a certain point in time, for example 

in an endogenous way through word of mouth. In “epidemic” diffusion models, the number of adopters 

increases over time as non-adopters get into contact with adopters. The process of technology diffusion relies 

very much on the model of the spread of diseases. In epidemic models, diffusion relies on the spread of 

information among potential adopters. Alternatively, “probit models” (Geroski 2000) consider adoption 

rather an individual choice (for example, adoption by firms), thus depending more on external, exogenous 

driving factors such as the relative price of competing innovations, or the technological improvements of the 

innovations and developments in competing or complementary technologies, respectively. For instance, if 

the price or the investment cost of the innovation falls over time, the adoption threshold lowers and more 

adopters appear, leading to a diffusion path.  

Although often criticized because of its theoretically weak analogy of biological evolution and socio-

technological change, Rogers’s diffusion of innovation is still a staple in diffusion research (Sarkar 1998). 

Rogers demonstrates that S-shaped adopter distributions closely approach a normal distribution. By making 

use of the mean and the standard deviation as the defining parameters of a normal distribution, he suggests 

differentiating between five categories, which vary generally from innovators to the early majority on the left 

side of the adoption mean time, and then from the late majority to laggards on the right side (see Fig. 1a). 

The categorization is asymmetrical. There are three categories left of the mean, but only two categories right 

of the mean. Rogers (2003) explains that “innovators” and “early adopters” are not combined because of the 

very different characteristics of each. Innovators are more adventurous and open to taking risks, in contrast 

to early adopters, who are rather role models which the majority follow and whose approval they seek. 

Unfolding the distribution into a diffusion path over time reveals the S-shaped diffusion of innovation, 

assuming complete adoption (100 Percent of Adoption) (see Fig. 1b). 

All models of epidemic, S-shaped diffusion curves suggest an exclusively positive learning experience, in a 

monotonic fashion. The adoption rate of innovation “accumulates” over time, sometimes faster at the 

beginning, sometimes slower at the end. People adopt an innovation sooner or later or never – but do not 

abandon it. On the contrary, Fenn and Raskino (2008) and Beers et al. (2014) stress the idea of a “learning 

cycle” in innovation research. Fenn and Raskino (2008) suggest a cycle to represent the adoption and social 

application of specific technologies as well as business strategies. The hype cycle introduced by Gartner Inc. 

in 1995 combines a more emotionally and irrationally-driven hype level curve with a technology S-curve 

adoption curve, resulting in a bell-shaped curve (see Figure 2). While the hype cycle received great attention 

in business consultancy, it still lacks academic recognition. According to Dedehayir and Steinert (2016), 

only eleven papers in the top twelve technology and innovation management (TIM) journals have dealt with 
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the hype cycle in sufficient depth in order to test its validity. They conclude that hyped dynamics should be 

captured by existing life cycle models on the order of  Rogers’s (2003).  

  

 
Figure 1: Rogers’s adopter categorization (a - above) and diffusion process (b - below).  

Source: Rogers (2003), pp. 34 and 306. 

 

 
Figure 2: The Hyple Cycle and its Stage Indicators.  

Source: Dedehayir and Steinert (2016, p. 30) based on Fenn and Raskino (2008). 
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Theoretically, the hype cycle highlights and accentuates an understanding in cycles that may be helpful for a 

better understanding of case studies in transition research: a technology triggers publicity until inflated 

expectations peak, following an S-shaped learning curve (see Figure 2 for stage indicators). However, in a 

“trough of disillusionment”, also described as a “valley of death” in related theories, and related to the idea 

of a creative destruction by Schumpeter (1939), implementation fails and interest wanes. People seem to 

adopt new ideas and abandon them after some time, and this gives rise to a cyclical pattern. If technology 

providers survive and improve their products to the satisfaction of early adopters, second and third product 

generations may appear where the technology is improved and more widely adopted. More funding 

opportunities emerge, the mainstream also adopts the innovation, and the diffusion takes off to broad level of 

market applicability, reaching a plateau of productivity again in a new S-shaped curve of learning, to 

resemble more an asymmetrical, slower Gompertz growth function.  

Schilling and Esmundo (2009) suggest that S-shaped curves can also be observed if instead of examining 

adoption over time we analyze performance improvements in a given technology over the effort allocated to 

that specific technology. S-shaped curves have been empirically observed for a large number of energy 

technologies. When performance is plotted against the amount of effort measured as cumulative R&D 

expenditure, several technologies show a slow improvement at the beginning, followed by accelerated and 

diminished improvement, as characterized in Rogers’s diffusion model (Figure 1). Generally, the initial 

phase of technology diffusion is associated with the innovation phase, during which greater effort might be 

made, especially in terms of R&D. Experience curves used in Integrated Assessment Models, which 

generally measure effort in terms of cumulative installed capacity, tend to capture the second phase of the 

diffusion process, after take-off, where the logarithmic shape prevails.   

Different learning mechanisms or drivers contribute to improving and spreading technology during the 

different stages of the innovation and diffusion phase (Kahouli-Brahmi 2008). Some learning mechanisms 

highlight the social learning processes as depicted above: Learning-By-Using (Rosenberg 1982, Lee, 2012) 

refers to the positive feedback that can be transmitted by user experience to the producer, who can then build 

on consumer reaction to improve his product. Learning-By-Interacting (Lundvall, 1988, Habermeier 1990, 

Lee, 2012) refers to the interaction among various actors, such as laboratories, industries, end-users, political 

decision-makers, etc., which can enhance diffusion and ultimately facilitate cost reduction. In this context, 

network relationships play a crucial role. The Learning-By-Doing (LBD) mechanism describes the 

improvement in the production process associated with experience, or the repetition of tasks, which can also 

involve changes in labour efficiency and administrative structure (Wright, 1936 in the aircraft industry, 

Arrow 1962 in the context of growth models). The Learning-By-Doing mechanism itself can be broken 

down further into different kinds of improvement, such as learning-by-manufacturing (e.g. in the process of 

manufacturing PV modules), learning-by-copying (e.g. by imitating competitors such as in PV cell 

development), learning-by-operating (e.g. the tacit skills gained by workers), and learning-by-implementing 

(e.g. learning about integrating PV modules into an efficient, well-functioning unit: see Sagar and van der 

Zwaan 2006 for a review). Learning-By-Researching (LBR) describes the learning effects stemming from 

R&D and the innovation processes (Cohen and Levinthal 1989). Other studies (see Baker et al. 2013 for a 

review) highlight the role of other factors, such as economies of scale, knowledge spillovers, organizational 

forgetting, and employee turnover (Argote and Epple 1990). Economies of scale are associated with a 

decline in average production cost in large-scale production activities characterized by high initial costs. 

Nemet (2006) finds that plant size accounted for 43% of the cost reduction in solar cells. Economies of 

scales are different from Learning-By-Doing effects because the former is driven by demand whereas the 

latter by cumulative capacity installed. Economies of scale are linked to the production process of typically 

capital-intensive industries, such as those in the energy sector. Knowledge or experience spillovers can occur 

across sectors, technologies, regions and countries, reinforcing the cost reduction stemming from the other 

forms of learning (Kahouli-Brahmi 2008). An example of cross-sectoral spillovers is the cost reduction in 

solar cells driven by events in the semiconductor market (e.g. decline in silicon costs, Nemet 2006). There is 

also a broader societal and institutional transformation necessary for supporting the spread of a new 
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technology, including systemic improvements and broader reductions in the cost of energy services (Sagar 

and van der Zwaan 2006).  

The above-mentioned learning mechanisms can be broadly grouped into drivers involving the interaction 

among actors – which we refer to as social learning mechanisms – and drivers related to the process of 

production and technology deployment – which we refer to as technology drivers or technical learning 

(Table 1).  

 

 

Social learning 

 

 

Technical learning 

Learning-By-Using  

(interaction between producer and end-users) 

Learning-By-Doing - LBD 

(cumulative production or cumulative capacity installed) 

Learning-By-Interacting  

(interaction between laboratories, industries, end-users, 

political decision-makers) 

Learning-By-Researching - LBR 

(R&D expenditure, knowledge stock) 

Spillovers (interaction between sectors, countries, 

producers) 

Economies of scales 

(Production) 

Table 1: Learning mechanisms. A summary.  

 

The remainder of this paper focuses on the two specific forms of learning that have become prominent in the 

two analytical approaches examined, namely social learning in IBL and technical learning in IAMs. Section 

2.1 presents the conceptual framework used by IBL, whereas Section 2.2 briefly summarizes the conceptual 

framework used in IAMs. The objective is to illustrate common and/or contrasting concepts in order to first 

establish a commoorganizn ground.  

2.1 Social learning in Initiative Based Learning (IBL) 

Initiative-Based Learning (IBL) focuses “on agency and interactions at the level of individual initiatives and 

projects. Legitimation of novelty and public participation are seen as crucial for radically novel socio-

technical configurations. These initiatives may be viewed as microcosms of future reconfigured systems. [...] 

Learning from initiatives on the ground is hence critical to the governance of transitions in the making, 

particularly effective forms of shaping and fostering transition efforts from the ground up” (Turnheim et al. 

2015, p. 244).  

Assuming that IBL consists of “microcosms of future reconfigured systems”, we focus on the first level of 

social learning that takes place between actors, and will not deal with structural changes that guide learning 

on a larger scale.  

IBL literature in transition research defines and addresses social learning in numerous different ways and 

from various perspectives. In this paper we focus on social learning as “learning that occurs when people 

engage with one another, sharing diverse perspectives and experiences to develop a common framework of 

understanding and basis for joint action” (Schusler et al., 2003). The literature consistently describes 

individuals interacting in social groups, forming a “community” that mediates individual interests that face a 

changing institutional and organizational setting in favour of a shared interest. Social learning is “a learning 

process in which actors meet, discuss, and start to develop a shared meaning” (Nykvist, 2014; also Wenger, 

2009). It is “an aspect of the adaptive management approach” (Albert et al. 2012), in which skills are 

needed to adapt to changing planning and implementation strategies on the basis of emerging knowledge. 

Axelsson et al. (2013) see stakeholders learning “how to steer the development towards sustainability” 

within a multi-level setting in social-ecological systems or landscapes. In addition to Albert et al. (2012), 

Axelsson et al. (2013) take note of issues such as trust and norms, which refer to an institutional setting 

rather than the learning capacities of individuals and groups. Though IBL puts social learning into 

perspective “from the ground”, it is acknowledged that social learning takes place in an institutional rather 

than an individual or single organizational setting, thus emphasising the multi-level notion of learning. We 
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understand research on IBL to be an integral part of multi-level transition analysis (see Turnheim et al. 2015, 

and Liedtke et al. 2015 for IBL as real experiments or Living Labs in transition research). 

Sol et al. (2013) have observed that learning is a “dynamic process,” in which knowledge is created in an 

ongoing fashion. The term “dynamic” incorporates the possibility that changing internal interaction between 

actors may affect the quality and effectiveness of learning. In addition to internal dynamics, external 

dynamics such as trends, hierarchy or money also play a crucial role and influence internal learning 

dynamics between actors. Internally and externally driven dynamics may cause learning patterns which face 

struggles that hinder, stop or even destroy learning efforts.  

On the one hand, social learning can be understood as part of our daily lives, occurring through social 

interactions and processes within a closer social network. On the other hand, social learning can become 

deeper learning in the sense of transformative learning, i.e. in the form of double-and triple loop learning. 

Learning in loops has the capacity to transform the frame of reference, call into question guiding 

assumptions (Nykvist, 2014), and, if successful, effectively neutralize commonplace notions. Whereas 

single-loop learning refers to the simple adaptation of new knowledge, double-loop (or deutero-) learning 

hence considers the ability to learn itself (Albert et al., 2012). In this respect Kemp et al. (1998) evaluate 

learning processes as most effective when they contribute not only to everyday knowledge but also to 

“second-order learning” where people question the assumptions and constraints of regime systems. Second-

order learning emerges when basic assumptions and values are challenged and become the very subject of 

learning. More recently, van Mierlo (2012) takes up Kemp’s and colleagues’ different orders of learning 

where first-order learning includes gaining experience about how to do things better within the framework of 

pre-existing goals and assumptions. In this view, first-order learning alone would not contribute to regime 

change, while second order learning is assumed to be essential for regime change (van Mierlo 2012). 

Moreover, van Mierlo (2012) further differentiates between the concept of convergent and divergent 

learning. Convergent learning occurs when “diverse actors develop visions on solutions and problems that 

complement one another, and change their roles and goals in close association with each other” (p.5). It 

highlights the “complementarity among the fundamentally different assumptions and values of the various 

project participants. They do not necessarily come to share a completely common view during the learning 

process; it suffices if their perspectives overlap partially or are mutually supportive” (p.7). Convergent 

learning takes place when visions and actions align as a result of experiences in the pilot project. Challenging 

a regime may require this type of learning. In contrast, divergent learning occurs in the individual 

participants’ thinking, such that it is purely actor bound. Individual learning experiences may deviate and  

contradict each other, though  divergence can nonetheless be seen as a learning process (van Mierlo, 2012).  

2.2 Technical learning and experience curves in Integrated Assessment Models (IAMs)  

Technical learning in quantitiative system models has been conceptualized mostly through experience 

curves, which, by focusing on Learning-by-Doing (LBD) and Learning-by-Researching (LBR), are used by 

IAMs and energy system models to describe the observed reduction of technology costs occurring with the 

increased experience documented for several energy technologies. In contrast to the literature that has 

examined social learning, which is much more oriented toward understanding the underlying processes and 

the role of governance and institutional factors, the approaches using experience curves focus on the drivers 

that are 1) easy to quantify (e.g. LBD and LBR) and 2) simple to represent in the models by reduced-form 

equations to project future technology costs.  

The purpose of learning curves in models is not to explain the complexity of the underlying processes (e.g. 

what are the drivers), as in IBL, but rather to project long-term technology costs by considering historically 

observed patterns (Wiesenthal et a. 2012). The simplicity of reduced-form approaches offers tractability 

within the context of complex IAMs. Simplicity, however, comes at the cost of not addressing what the 

“actual” drivers are that explain the observed reduction in future technology costs, and thus potentially 

omitting some important variables (Nemet, 2006; Nordhaus, 2009).  
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The Learning-By-Doing hypothesis describes the improvement in a technology performance occurring with 

the growing effort dedicated to that technology. Performance is generally measured by using indicators such 

as the reciprocal of capital costs or unitary investment costs. Effort is generally measured in terms of 

cumulative installed capacity. Specifically, a power function is used to describe a negative relationship 

between the cumulative capacity Kt,i, installed at time t in country i, and installation capital costs, CCt,i, 

where K0,i  and CC0,i  respectively represent the cumulative installed capacity and the installation capital cost 

at the beginning of the period: 

 

𝐶𝐶𝑡,𝑖 = 𝐶𝐶0,𝑖 (
𝐾𝑡,𝑖

𝐾0,𝑖
)
−𝑏

        Eq. [1] 

 

The parameter b measures the strength of the learning effect. It relates to the learning rate, LR, which 

measures the rate at which unit costs decrease for each doubling of the cumulative capacity, through the 

following relationship, LR= 1- 2
-b

. For instance, a 20% learning rate corresponds to a 20% cost reduction for 

each doubling in the cumulative installed capacity compared to the initial level. Some models include a floor 

cost (FC) to set a minimum price below which investment costs cannot fall: 

 

𝐶𝐶𝑡,𝑖 = 𝑚𝑎𝑥 {𝐹𝐶, 𝐶𝐶0,𝑖 (
𝐾𝑡,𝑖

𝐾0,𝑖
)
−𝑏

}       Eq. [2] 

 

Learning-By-Researching describes the improvement in technology performance occurring with an increased 

effort dedicated to R&D, measured in terms of either R&D expenditure or R&D knowledge stock. The 

models representing both LBD and LBR adopt two-factor learning curves, which separate the effect of 

experience from that of R&D:  

 

𝐶𝐶𝑡,𝑖 = 𝐶𝐶0 (
𝐾𝑡,𝑖

𝐾0,𝑖
)
−𝑏

(
𝑅&𝐷𝑡,𝑖

𝑅&𝐷0,𝑖
)
−𝑐

       Eq. [3] 

 

The power function form is the one most commonly used because it is generally a good fit for the data 

(Baker et al. 2013). When plotting an indicator of performance, such as the reciprocal of unitary investment 

costs, versus cumulative capacity installed as an indicator of effort, this functional form results in a 

logarithmic relationship, which can be seen as the second part of an S-shaped curve after technology take-off 

(see Figure 1). This is a good approximation when the focus is on Learning-By-Doing. In the case of 

Learning-By-Researching, where R&D investments are used as an indicator of effort, an S-shaped 

relationship seems to be a better fit for the data (Schilling and Esmundo 2009). Several models (e.g. WITCH, 

Bosetti et al. 2016 and Emmerling et al. 2016 IMAGE, Stehfest et al. 2014) do account for knowledge and 

experience spillovers, and assume that the cumulative capacity installed in any world region reduces 

technology costs everywhere. In regard to knowledge spillovers, models (e.g. WITCH) often assume only a 

limited degree of international spillovers.  

Models generally rely on history-based empirical evidence for calibrating the learning rate parameters. 

Understanding how the observed trends can be used in models for future scenarios is important because 

assumptions about the functional form, the learning rates, and the floor cost crucially affect the results of 

models and influence the future energy mix, as discussed in Section 4. 

 

  



  9 

3 Empirical evidence on Learning from Initiative Based Learning cases and Integrated 

Assessment Modelling 

Theoretical approaches from different disciplines seem to converge on a vision of the learning process 

associated with technology diffusion as having a sigmoidal, S-shaped form, or as a sequence of S-shaped 

alternating processes. This section summarizes the empirical evidence on learning that emerges from the 

case studies examined by the IBL approach and from Integrated Assessment Models. 

3.1 Social learning – Evidence from case studies  

In searching for “social learning”, “sustainability transition” as well as “sustainability learning”, “grassroots 

initiative learning” and “sustainable niches” in Google Scholar, we identified 208 studies addressing social 

learning. The whole study sample consisted of case studies as well as studies providing more conceptual and 

theoretical insights. In a subsequent step, we selected a sub-sample of studies that: 1) deal with social 

learning, 2) address one of the domains at stake in the underlying research project - mobility, energy 

(consisting of electricity and heating), or agri-food/land use, 3) focus on either the UK, Germany, Sweden or 

the Netherlands
2
. This process led to a final set of 17 IBL cases that systematically review the role of main 

actors involved and mechanics and dynamics of the learning process (e.g. how they learn and in what forms 

and dynamics, what drivers and barriers they encounter throughout their learning process.) 

Convergent learning is typically prevalent throughout the studies analyzed: a common idea/vision of the 

project seems to be central to social learning processes. Some studies stress the importance of the multi-actor 

framework and stakeholder involvement in learning processes. In all cases, multi-actors and stakeholders 

engage in a collaborative learning process. In this respect, hierarchical internal social networks as well as 

external hierarchies determined by power, money and time affect the individual’s behaviour and the social 

learning progress as a whole. Social learning involves the management of differing interests, understanding 

and skills in order to anticipate and adapt to possible actions and consequences resulting from internal and 

external hierarchies. The cases commonly stress that learning is highly affected by trust among the members 

within the learning network. As such, the social capital accumulated by the members of the network very 

much predicts the learning outcome. Equally important are more tangible characteristics of the members of 

the social network, such as expertise and skills that members can contribute in order to solve the issues at 

stake, and leaders can provide in order to organize the learning process and foster learning ties among 

members. In addition, a beneficial management of learning depends on a leadership of change-oriented 

agents with convincing visions and the capacity to come up with and communicate innovative solutions. A 

successful learning management needs to spread of consciousness-raising information and requires the 

involvement of group members in order to motivate them to participate in the learning processes. In this 

regard, small learning networks are more likely to show social cohesion and group affinity in personal 

contacts, which seems beneficial for social learning. Although small in size, a heterogeneous composition of 

the learning network, including actors across sectors and levels, seems to be helpful for social learning. In a 

nutshell, social learning in heterogeneous groups depends on the power structure of the network and trust-

relationships. 

 In order to foster inter-group learning between small but effective learning networks, personal contacts need 

to be forged across the network’s boundaries. It follows that in turn, a beneficial internal and external 

communication within and between social networks depends on the communication skills of the learning 

leaders. Typically, the key dimensions and variables that determine social learning in IBL studies interrelate 

with each other. The management of trust, social capital, expertise and skills among the members of the 

learning network depends on the size and composition of the network, and vice versa. The most frequent 

networks are heterogeneous ones, characterized by intimacy, smallness and social cohesion, managed by 

skilled leadership and consolidated by social capital. 

                                                      
2
 The research was conducted within the PATHWAYS project, which focuses on those selected European countries. 
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Case studies also inform us of how social learning proceeds. Some of the cases deal with forms and levels of 

learning occurring in initiatives and projects. We find that social learning takes time and is a dynamic 

process in which past learning experiences shape future learning processes (intertemporal dynamics). Within 

these dynamic forms, learning faces drawbacks, setbacks, radical processes and peaks, and may end on 

learning plateaus and thus show diverse, non-linear forms of learning. Also, destructive learning and 

conflicts are described in some cases, as discussed in Section 4. External and contextual factors, such as 

changes in financial schemes or legislation, may trigger a learning crisis and thus intervene in social learning 

processes.  

The importance of the local context (i.e. actors and networks from varying cultural, institutional, 

geographical and even climatic conditions) clearly emerges in the cases analysed, which show that a great 

diversity in nature and initiatives within the same domain or pursuing the same or similar goals can yield 

different learning results because of the different contexts (involving also different potentially unexpected 

events or external factors of influence) in which they are carried out. Indeed, projects might be understood as 

local reinterpretations and reinventions of a more generic, mobile concept of an emerging niche trajectory 

(Raven et al., 2008). The results of a learning processes depend on the kind of knowledge involved and on 

the way in which social relations and communication are carried out, which, in turn, depends on the kinds of 

social relations and knowledge people have (Lahtinen, 2013). 

It is possible to translate a generic concept into a local project, as well as transfer local lessons into general 

rules, but these processes are difficult and require careful analysis (Raven et al., 2008)
3
. Indeed, as the 

practical experiences are so variable and diverse, it might be very difficult to draw general conclusions 

beyond a certain level of abstraction. According to Axelsson et al. (2013), “a key challenge in social 

learning for sustainable landscapes is to move from local experiences and results to local tacit knowledge, 

and from tacit to explicit knowledge” (p. 242). Niche innovation occurs in relation to a particular local 

context; consequently, socio-technical innovation and the particular context within which it takes place 

mutually shape each other (Hodson and Marvin, 2007; Raven et al., 2008). Raven et al. (2008) found e.g. 

that the sensitivity to local context and the local nature of the project were key factors determining the 

success of the project. Local communication and participation are particularly significant, and “ready-made 

solutions cannot be dropped into a context without local negotiations” (Raven et al., 2008, p. 16).  

The analysis of the IBL cases points to a number of characteristics with respect to four main dimensions of 

social learning, summarized in Table 2, namely management, size and composition of networks, length and 

timing of learning, and local context. The management of learning depends on trust, social capital, expertise 

and skills among members of the network and its leaders. The size and composition of successful learning 

networks is typically small, heterogeneous, but socially cohesive and characterized by personal contacts. 

Typically, the length of learning extends only through the duration of the initiative or project (short time 

scale). This means that social learning takes place throughout the whole project time (within the project), but 

not between projects (e.g. follow-up projects on a medium to long-term time scale). Learning between 

projects is typically not observed. The timing of learning is dynamic and non-linear. Social learning typically 

passes through different phases and speeds of learning. Apart from typical variables and identified key 

dimensions of social learning, the cases emphasize the role of the local context. Depending on the context of 

the initiative, network members bring in and formulate a consensus on respective tacit knowledge. The cases 

are embedded in specific regional or national institutional contexts (politics and policies). Thus, external 

factors may cause intra-project crises and conflicts, depending on changing contextual circumstances. 

  

                                                      
3
 For further reading on generalising case study research, we refer to Flyvberg (2006) and Yin (2013). 
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 Management of Learning Size and composition of 

network 

Length and timing of 

learning 

Local context 

Trust 

Social Capital 

Leadership 

Expertise 

Skills 

Small 

Heterogeneous 

Personal 

Socially cohesive 

Extensive (within project, 

short-term) 

Dynamic 

Non-linear (drawbacks, 

setbacks, conflicts 

radical, peaks, plateaus) 

Tacit knowledge 

Local reinterpretation 

Institutional embedment 

External factors (crisis) 

Table 2: Summary of key dimensions of social learning in Initiative Based Learning (IBL). 

 

Of the 17 IBL case studies, van Mierlo (2012) focuses on photovoltaic energy projects in the Netherlands. 

She analyzed multiple stakeholders (companies, Dutch government and private households) in four different 

photovoltaic energy pilot projects in the Netherlands, and identified very diverse learning experiences. 

Compared to the other 16 cases, van Mierlo’s (2012) case combines the diversity of learning experiences by 

using the example of solar PV. 

The observed diversity stems from different levels of ambition of the projects, different negotiating 

processes, and different kinds of network management of different heterogeneous networks. Both convergent 

and divergent learning were observed in the case studies. Van Mierlo´s (2012) inquiries on four cases on PV 

are the most elaborate and extensive ones found in the literature. However, her results are still inconclusive. 

The author found convergent learning in three cases, whereas in one other no shared vision was observed. At 

the same time, divergent learning revealed non-contradictory learning experiences in one case to several 

contradictory learning experiences in another. When it comes to learning beyond the projects analyzed, in 

three cases almost all the participants were involved in new projects in the same market segment, whereas in 

only one case the architect was involved in a new project. When it came to exploring new market segments, 

again, in three cases new potential was explored, in one case no repeated use has been observed. In the end, 

the author calls for further inquiry into relationships between divergent, convergent and second-order 

learning. 

The evidence from the case studies highlights the importance of internal and external factors that shape and 

influence the learning process, such as the role of network size and composition and the importance of local 

context. Yet, the thin empirical evidence on social learning in the PV cases does not allow us to draw general 

conclusions on social learning in PV. Rather it highlights the diversity of learning experiences encountered 

in all of the cases. Learning occurs convergently and divergently, opening up to the possibility of 

“contradictory” (van Mierlo 2012) or “iterative” (Turnheim 2015) and potentially non-linear learning 

experiences.  

3.2  Technical learning – Evidence from the existing literature  

Continuity in learning is an assumption that characterizes the modelling of technical learning in IA models as 

well, and which is supported by historical data when statistics over longer time periods (e.g. annual time 

series) are considered.   

IA models rely on empirical evidence for the calibration of learning rate parameters. Several reviews have 

been done of the existing empirical literature on historical LBD and LBR learning rates for power generation 

technologies. Focusing on solar PV, Table 3 summarizes the estimates reported in the most recent reviews 

(Rubin et al., 2015, Baker et al. 2013, La Tour et al. 2013, Junginger et al. 2008, Kahouli-Brahmi 2008, Neij, 

2008) together with some new econometric analyses (Witajewski-Baltvilks et al. 2015, Lee 2012).  

LBD estimates a cluster around 20% of cost reduction for each doubling in the cumulative installed capacity, 

with a range from 9 to 47%. The broad range in estimates is due to the temporal and geographical 

characteristics of the data set used in the estimation (Soderholm and Sundqvist 2007), the empirical 

specification, and the extent to which endogeneity issues are addressed (Soderholm and Sundqvist 2007, 

Nordhaus, 2009, Witajewski-Baltvilks et al. 2015). Witajewski-Baltvilks et al. (2015) show how LBD rates 

can vary when statistical uncertainty is considered and when some of the variables that are generally omitted 
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from experience curves, such as policies and energy prices, are included. Soderholm and Sundqvist (2007) 

show that explicitly accounting for economies of scales reduces LBD rates, suggesting that if this driver is 

not modelled, LBD rates are upward biased. Soderholm and Sundqvist (2007) show that including a time 

trend so as to capture any underlying change in trend other than R&D knowledge stock or installed capacity 

absorbs all variation otherwise captured by the R&D stock, whereas LBD rates are quite stable, especially 

when endogeneity issues are taken into account. 

 

Source # Factors Rate LR (%) Timeframe Method 

 
 

 
min max mean 

  

Baker et al. (2013) 1 LBD 17 35 20 na Review 

Junginger et al. (2008) 1 LBD 10 47 22 1957-2006 Review 

Kahouli-Brahmi (2008)  1 LBD 18 35 23 1959-1998 Review 

La Tour et al. (2013) 1 LBD 10 30 21 1965-2005 Review 

Lee, conference proceeding (2012) 2 LBR 9 15 11 2001-2010 Regression analysis 

Lee, conference proceeding (2012) 2 LBD 10 10 10 2001-2010 Regression analysis 

Neij (2008) 1 LBD 10 47 20 1976-2001 Review 

Rubin et al. (2015) 1 LBD 10 47 23 1959-2011 Review 

Rubin et al. (2015) 2 LBR 10 14 12 1971-2001 Review 

Rubin et al. (2015) 2 LBD 14 32 18 1971-2000 Review 

Witajewski-Baltvilks et al. 2015, 

Mod 1 
1 LBD 9 33 20 1990-2012 Regression analysis 

Witajewski-Baltvilks et al. 2015, 

Mod 2 
1 LBD 10 46 27 1990-2012 Regression analysis 

Witajewski-Baltvilks et al. 2015, 

Mod 3 
1 LBD 10 29 19 1990-2012 Regression analysis 

Witajewski-Baltvilks et al. 2015, 

OLS 
1 LBD 10 14 12 1990-2012 Regression analysis 

Table 3: Learning rate estimates based on the empirical evidence. 

 

Most IA models use an approach based on endogenous technological change modelled through a one-factor 

learning curve (LBD) as described in Eq. [1]. This is the case for E3MG, IMACLIM, IMAGE-TIMER, 

REMIND and WITCH. A few models (MERGE-ETL, POLES) use a two-factor learning curve for 

endogenous technological change, considering both the effects of learning-by-doing and learning-by-

researching, whereas some other models (e.g. MESSAGE and GCAM) use an exogenous technical change 

by defining different investment costs for future periods (which vary according to reference/policy 

scenarios). Table 4 summarizes the learning rates and the floor costs used by the IA models with endogenous 

technological change. Since models rely on empirical literature, it is not surprising that the range of LBD 

rates in terms of minimum, maximum and mean values is similar to the range emerging from the empirical 

literature in Table 3. What has not been fully explored is how different learning rates interact with floor cost 

used by some models (Eq. [2]) to determine technology penetration. 
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Source # Factors Type LR (%) Timeframe Floor cost  

 
 

 
min max mean 

 
(2005$/kW) 

E3MG (Edenhofer et al. 2010) 1 LBD na na 30 Constant 1250 

IMACLIM (Bibas et al. 2012) 

  central station PV 

 

1 

 

LBD 

 

15 

 

25 

 

na 

 

Constant 

 

982 

  rooftop PV 1 LBD 15 25 na Constant 1715 

IMAGE-TIMER (Baker et al. 2013) 1 LBD na na 35 2000 0 

 
1 LBD na na 9 2100 0 

MERGE-ETL (Magné et al. 2010) 2 LBD na na 10 Constant 0 

 
2 LBR na na 10 Constant 0 

POLES (Criqui et al. 2015) 2 LBD na na 20 2010 1100 

 
2 LBR na na 45 2010 1100 

REMIND (Luderer et al. 2015) 1 LBD na na 20 Constant 500 

WITCH (Emmerling et al., 2016) 1 LBD na na 16.5 Constant 500 

Table 4: Learning rates and floor costs in IAMs. Miminum, maximum, and mean values for LR result from the survey of 

existing models with endogenous technological change. “Constant” means that the LR is constant over time, whereas in the 

other cases LR is varying over time and values for 2000/2010/2100 are provided. 

 

As discussed in Sagar and van der Zwaan (2006), it is not clear how learning rates should be extrapolated 

when moving into the future. Soderholm and Sundqvist (2007) find that learning rate estimates over more 

recent periods are larger than those calculated on the full sample because of the market power that 

characterizes the initial diffusion of the technology, whereas the increased competition that emerged during 

the diffusion stage led to a faster decline in technology costs. However, bias could also go in the other 

direction because of diminishing returns and the difficulty of further reducing costs beyond certain levels.  

Only a few estimates are available in the literature for future periods. OECD/IEA (2014) and Neij (2008) 

provide an estimate for LBD rates up to 2035 and 2050 respectively, whereas Bosetti et al. (2016) present a 

review on recent expert elicitation exercises about future cost reduction stemming from different levels of 

R&D expenditures, see Table 5. While LBR estimates tend to be lower than the few estimates reported in the 

empirical literature, LBD rates are not very different from the ones estimated from historical data.  

 

Source # Factors Rate R&D  LR (%) Timeframe Method 

   Level min max mean   

Bosetti  et al. (2016) CMU 1 LBR High -1 13 6 Future: 2030 Expert elicitation 

Bosetti  et al. (2016) FEEM 1 LBR High 4 12 7 Future: 2030 Expert elicitation 

Bosetti  et al. (2016) Harvard 1 LBR High -3 11 3 Future: 2030 Expert elicitation 

Bosetti  et al. (2016) CMU 1 LBR Low -2 13 5 Future: 2030 Expert elicitation 

Bosetti  et al. (2016) FEEM 1 LBR Low 1 10 6 Future: 2030 Expert elicitation 

Bosetti  et al. (2016) Harvard 1 LBR Low -2 8 2 Future: 2030 Expert elicitation 

Bosetti  et al. (2016) UMass 1 LBR Low -1 7 4 Future: 2030 Expert elicitation 

Bosetti  et al. (2016) FEEM 1 LBR Mid 2 11 6 Future: 2030 Expert elicitation 

Bosetti  et al. (2016) Harvard 1 LBR Mid -1 10 3 Future: 2030 Expert elicitation 

Bosetti  et al. (2016) UMass 1 LBR Mid -1 7 5 Future: 2030 Expert elicitation 

Neij (2008) 1 LBD - 15 25 20 Future: 2050 Expert elicitation 

/ Extrapolation 

from historical 

values 

OECD/IEA (2014) 1 LBD - 20 20 20 Future: 2035 Extrapolation 

from historical 

values 

Table 5: Learning rate estimates based on expert elicitation. 
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4 Exploring integration opportunities between IBL and IAM approaches: Results and 

Discussion 

Having laid out the different concepts of learning at the core of IBL and IAM approaches, in this section we 

explore whether forms of integration between IBL and IAMs exist, and whether they could lead to an 

improved characterization of learning dynamics in energy transition scenarios. 

Structural differences between IBL and IAM approaches make ambitious forms of integration between IBL 

and IAMs unfeasible. IAMs have been developed with the goal of integrating global climate, energy, and 

socioeconomic dynamics in a consistent framework and in a quantitative way. IAMs have so far adopted 

parsimonious representations of the human system and have not described societal dynamics and interactions 

because human behaviour such as power, agency, and social learning are difficult to capture in mathematical 

equations (van Vuuren and Kok 2012). However, the combination of IA models and multi-scale stakeholder 

processes seems a promising approach for improving the representation of complex human-technology-

environment systems (Pahl-Wostl 2005) and the incorporation of human behaviour and social influence 

effects into IA modelling is becoming increasingly attractive (e.g., for the introduction of consumer vehicle 

choices in the personal transport sector, see McCollum et al. 2016). IAMs are outcome-oriented and focus on 

the consequences of exogenously specified policies, with very limited attention to the processes leading to 

those outcomes. IBL, on the contrary, engages in concrete projects, where it is examined how actors with 

different views and motivations align themselves with technological opportunities, consumer preferences, 

infrastructure requirements, and policy frameworks into working configurations. IBL studies reveal the 

complexity and uncertainty of transitions in the making, but cannot capture the broader understanding of 

macroeconomic, systemic consequences as provided by IAMs.  

A more feasible method of integration is probably a “two-way recursive collaboration” (Turnheim et al. 

2015, p. 248), with which two methodologically distinct approaches are used to mutually inform each other. 

The in-depth analysis of social learning carried out by IBL through case studies highlights the role of 

important drivers commonly unrepresented in IAMs, which can address those drivers of social learning in 

the interpretation of their quantitative results and assumptions.  

Section 4.1 gives an example of how the two-way recursive collaboration between IAMs and IBL could 

work in practice. A thought experiment is carried out in which IBL practitioners make an effort to draw 

stylized shapes of learning from the theoretical frameworks and empirical evidence that could be translated 

into functional forms in IAMs. IBL results are first generalized by means of a conceptual framework 

common to IAMs. IAMs use IBL results to interpret sensitivity analysis on learning curves. Note that this 

form of integration differs from “one-off methodological enrichment” (Turnheim et al. 2015, p. 247) 

because both research communities have actively engaged in the process. 

In IAMs learning is driven by physical variables, such as capacity installed, and the learning rates are used to 

describe the relationship between capacity and costs. As discussed in Section 3, the actual value of learning 

rates is the result of interaction between observed measurable trends (e.g. the relationship between costs and 

capacity) and non-observable factors, which are not explicitly included in the analysis because not 

measurable. Issues such as trust, network structure, values, and norms are unobservable (from a quantitative 

point of view) but they do influence the empirical value of learning rates.  

In the collaborative effort described below, we have tried to conceptualize learning in a similar way between 

the two approaches by looking at the relationship between a performance indicator (the reciprocal of the 

investment cost, i.e. how many watts can be generated for each dollar invested) and effort or time
4
.  

                                                      
4
 It must be said that with time effort accumulates, so that having effort or time on the horizontal axis can lead to 

different shapes in learning. As discussed in Schilling and Esmundo (2009), if effort is relatively constant over time, 

plotting performance against time or effort would not make too much difference. 
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4.1 Stylizing learning dynamics from IBL case studies 

One of the results emerging from the IBL case studies reviewed in Section 3.1 is the existence of non-linear 

social learning in the form of either rapid learning or destructive learning. Rapid social learning can be 

operationalized through three alternative functional forms:  

1) An exponential function describing rapid learning processes at a late stage of the project or initiative, 

following an initial phase of limited learning. This may be the case when members join the social learning 

network, and the more members learn from one another, the faster learning accumulates. Indeed, the learning 

process is stimulated by the increasing skill and competence of its participants, and by an effective 

implementation of social learning management;  

2) A logarithmic function describing radical learning progress at the beginning of the initiative or project, 

followed by a flatter, still positive, learning experience that at some point only reveals marginal learning 

progress and approximates a learning plateau;  

3) An S-shaped function as proposed by Rogers (2005) and as also found by the empirical literature on 

learning curves (Section 3.2). Here, learning progresses slowly at the beginning and accelerates half way, to 

reach a learning plateau. This curve can be interpreted as the combination of the exponential (early stage) 

and the logarithmic (late stage) functions.  

Learning may proceed rapidly, destructively, with peaks, plateaus or loops that may cause rapid performance 

gains with peaks and plateaus (stagnation), which in turn may slip into loss of learning caused by destructive 

learning or regain learning in loop learning. Based on the evidence from the case studies, a linear pattern is 

less likely, as it implies constant learning over time (Figure 3). As time goes by, effort accumulates to realize 

the target of the projects, and also across projects, as described by van Mierlo (2012), giving rise to 

monotonic learning. As the learning gained with respect to time may peak, plateau or reduce, the 

accumulated learning is always positive with respect to the duration of the projects.  

 

 
Figure 3: Constant and “rapid” learning – linear, exponential, logarithmic and logistic learning. 

 

Destructive learning occurs when there is a loss of learning performance during the project and initiative (see 

Figure 4). This learning curve suggests steep learning at the beginning, leading to a peak from which 

learning may decrease (destructive learning), e.g. because of conflicts, crises or external shocks. Falling 

slopes eventually indicate a loss of learning, a loss of knowledge or, eventually, of performance. This may be 

the case when initiatives end and no inter-project learning is observed afterwards. That is, the project failed 

to implement a management that ensures that learning survives or even continues after the end of the project. 

This is neither implausible nor very likely in the short run (Albert et al. 2012). 

Still, it is more likely to observe some sort of “creative destruction”, when destructive learning paves the 

way for new learning and social learning occurs in learning cycles in which peaks, valleys and retreats take 

turns. Conflicts may be solved and external shocks may be adapted to (Feola and Nunes 2014). This stylized 

form of social learning is probably the most likely path to be observed in local initiatives. However, this 

applies to local initiatives with a short time horizon, which typically lasts between five and seven years, 

whereas in the long-run the local initiatives may last multiple generations or spread onto inter-project 
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learning lasting for more than ten years. The longest period covered in the case studies analysed was 13 

years (see Ornetzedera and Rohracher 2006 on Sustainable Buildings in Vauban, Freiburg, Germany). 

Analytically, at some point, IBL research is unlikely to grasp inter-project learning or learning in cycles in 

multi-generation projects, since those would require extensive qualitative historical research. 

 

 
Figure 4: “Destructive” learning – normal, sinus and “hype” learning (learning cycles). 

 

Van Mierlo (2012) characterizes learning outcomes in her case studies on PV in terms of number of houses 

equipped with PV technology, and total power in terms of kilowatt peak (kWp) generated. A major issue 

highlighted in the case study at the time of initiating the project was the high costs per kWh for PV. As a 

consequence large subsidies were paid to foster learning about the technical and social bottlenecks and 

possibilities of PV. Based on the van Mierlo’s (2012) PV case studies, we decided to use performance 

measured in watt-peak per dollar (Wp/$) as a bridging device to operationalize learning in terms of the 

learning outcome in the following Integrated Assessment of PV. The use of this concept makes it possible to 

integrate the more qualitative findings from case studies into dynamics and forms of learning used by IAMs, 

so that a more direct operationalization through learning curves can be pursued.
5
  

4.2 Exploring learning dynamics in IAMs. Evidence from the WITCH  model 

IAMs represent learning by means of S-shaped or logarithmic functions, therefore assuming positive and 

monotone learning. Destructive learning, which has emerged as a possible pattern from the case studies, 

especially in the short run, can hardly be applied in IA models as they have much longer time scales with 

time steps of at least one year. As previously discussed, while destructive learning is possible over the time 

horizon of individual initiatives, it becomes more unlikely over a longer time horizon and at broader 

geographical scales. 

We use the IAM WITCH (Emmerling et al. 2016)
6
 to illustrate learning dynamics of solar PV and perform a 

sensitivity analysis on the model’s assumptions on PV penetration and technology costs. The WITCH model 

uses a one-factor learning curve with a floor cost, as described in Eq. [2]. The default values adopted in this 

work for the learning rate and the floor cost are 16.5% and 500$/kW. Consistently with Table 4, throughout 

this section monetary values are expressed in US 2005 dollars. 

From the reciprocal of the investment cost as performance indicator (y-axis) and cumulative capacity as 

effort indicator (x-axis), the resulting learning curve for a baseline case is a logarithmic relationship between 

capacity and performance (see Figure 5, which compares the Business-as-Usual scenario to a climate policy 

                                                      
5
 However, it is crucial to note that none of the case studies operationalize or quantify any “amount” of social learning 

over time, but focus on how social learning may proceed over time and why. The graph depictions on forms of learning 

thus are to some extent hypothetical and stylized, only serving to illustrate social learning as described in the cases and 

to translate them into potential functional forms of social learning. This is partly due to the fact that different forms of 

social learning may occur on different levels of analysis, for example in terms of joint problem-solving, acquired 

knowledge, etc. An overview on this can be fond in Rodela (2011) as well as Schol et al. (2013). 
6
 http://doc.witchmodel.org/ 
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case)
7
. The time horizon is 2005 to 2100 and the model represents the massive deployment in solar PV 

observed over the last decade. Learning is very fast at the beginning but it slows down over time, finally 

approximating a learning plateau. As discussed in Section 2, an S-shaped relationship tends to prevail when 

the role of R&D during the early stages of innovation are considered. Since the time horizon of the analysis 

here starts in 2005, we are already in the deployment stage of the technology, or in the late stage of the S-

shaped curve, which is why a logarithmic behavior appears. When a climate policy is introduced, the 

installation of solar capacity is stimulated, which drives investment costs further down to achieve the floor 

cost.  

 

 
Figure 5: Performance of solar PV as a function of global cumulative capacity to 2100, Business-as-Usual and policy 

scenarios, LR=16.5%, floor cost = 500 $/kW (hence 2 W/$). 

 

The default learning value (16.5%) is close to the mean value estimates found across studies (see Tables 3-

5), and it has also been chosen to largely reproduce the actual cost path that took place over the decade from 

2005 to 2015. However, as discussed in Section 3, a broad range of values (9 to 47%) results from the review 

of the existing empirical literature. One of the arguments behind these different values is the presence of 

omitted variables, which could include forms of social learning. As discussed in Section 2, other forms of 

learning, more difficult to quantify, could accelerate and reinforce the impact of cumulative capacity 

installed on cost reduction. In the language of the model this would translate into different learning rates. 

Social learning, therefore, can be addressed in IAMs by varying the exogenous value assigned to learning 

rates. Furthermore, the floor cost is another important parameter that affects the extent and the speed of 

technology penetration.  

 Here we examine the sensitivity of the model’s results to the range of learning rate values identified by the 

empirical literature and examine twelve combinations of learning rates (9, 20, 35, 47%) and floor cost (0, 

587, 1349 $/kW) values for the solar PV technology. The values chosen for the learning rates correspond to 

the minimum, mean and maximum values from literature (9, 20 and 47 respectively, see Tables 3, 4, and 5), 

whereas 35% was selected as an intermediate value to cover the broad segment from the medium and the 

                                                      
7
 In the Pathways project two alternative decarbonization scenarios, Pathway A and Pathway B, have been considered. 

The two scenarios share the same mitigation policy targets: an 80% reduction in GHG emissions in 2050 compared to 

1990 levels in the European Union and an increase in global temperature in 2100 of less than 2°C relative to pre-

industrial levels with a likely chance. Pathway A focuses on technological substitution in the form of efficiency 

improvement and fuel switching as the main mitigation strategy, while Pathway B considers a reconfiguration of the 

social and economic regime, with behavioural and preference changes and the involvement of new actors. Pathway A is 

the considered policy case. A Business-as-Usual (BAU) scenario, where no policies or specific technological 

assumptions are implemented, has also been taken into account. 



  18 

maximum learning rates. Values for floor cost correspond to the minimum, mean and maximum values from 

the ones used in the IA models (see Table 4). The minimum value actually implies the absence of a floor 

cost. The analysis reveals that at increasing levels of learning rates, the curvature tends to progressively 

decrease, and the shape of the curve tends to converge to a linear learning (Figure 6, where two additional 

cases have been considered, i.e. learning rate equal to 25% and 30%, in order to show the progressive 

behaviour more clearly). 

 

          
Figure 6: Performance of solar PV as a function of global cumulative capacity to 2100, policy scenario, detail on minimum 

floor cost scenarios.  

Note: The right panel excludes the maximum LR scenario. 

 

Low values of learning rates correspond to a slow reduction in technology costs, so that the floor cost 

threshold is hardly reached by 2050 and different floor cost values have barely any impact on PV penetration 

(see LR9 cases in Figures 7 and 8). On the other hand, when learning rates are high (see LR35 and LR47 

cases in Figures 7 and 8) the cost decrease is fast and the floor cost threshold is soon reached: the floor cost 

represents the actual investment cost for a considerable part of the century and different floor cost values 

significantly influence PV penetration. 

 

 
Figure 7: Global average  PV investment cost to 2050, policy scenario, for different sets of learning rates and floor costs. The 

global average value has been computed as a regional average weighted over the regional PV capacity. 
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More in detail, the high floor cost is reached in 2020 under all values of learning rates except for LR9, where 

it is reached in 2030. In all these scenarios, world PV penetration tends to stabilize at about 3% of the 

electricity mix (Figure 8). The average floor cost is reached in the three highest learning rate scenarios (in 

2025 for LR47, in 2030 for LR35, in 2050 for LR20). When such a value is reached, PV penetration sets at 

about 8% and remains stable over time. The minimum floor cost hypothesis is relevant for the two high 

learning rate scenarios, where PV penetration can increase beyond the afore-mentioned 8% threshold. 

However, an analysis of the results after 2050 would show that, in any case, PV penetration would not 

exceed 25% even with investment costs close to zero. This is due essentially to two main factors. The first is 

related to the equations which model the system integration constraints of wind and PV in the electricity mix 

and which do not allow an indefinite penetration of those technologies. The second and main factor is related 

to the WITCH modeling structure, which is based on a Constant Elasticity of Substitution (CES) framework. 

According to the CES structure, the competition between technologies is not based on pure economic 

considerations only. It is complemented with additional constraints (such as the system integration 

equations) and follows a strict hierarchical sequence: PV competes with wind and CSP, then the renewable 

technologies compete with fossil fuel-based generation, and so on. Since this competition is not fully flexible 

(i.e. the substitutability across technologies is not infinite for modelling what in reality is experienced as a 

preference for heterogeneity), there is ultimately an implicit threshold to the penetration of each technology, 

even if it is installed free of charge, as would happen in the cases considered (see Carrara and Marangoni, 

2016 for more details). 

 

 
Figure 8: Global PV penetration rate in the electricity mix to 2050, policy scenario, for different sets of learning rates and 

floor costs. 

 

5 Conclusions 

In this paper we have explored opportunities of integrating two different analytical approaches used in the 

analysis of learning within the context of sustainable transition pathways, integrated assessment models 

(IAMs) and Initiative Based Learning (IBL). IAMs are quantitative systems modelling tools that provide a 

forward-looking perspective. They project the changes over time that are required to achieve predefined 

goals under specific sets of economic and technological assumptions. IBL is a qualitative approach in which 
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transition pathways emerge as the upscaling of successful solutions on a local scale. They reveal the 

emerging properties in system changes. 

IAMs focus on technical learning, namely a reduced-form of learning driven by cumulative capacity 

installed (Learning-By-Doing) and R&D expenditure (Learning-By-Research). The empirical values used to 

parameterize learning in models varies substantially. This broad range reflects omitted variables and the 

impossibility of observing and measuring less tangible forms of learning, such as social learning. Learning 

rates are generally estimated by fitting the observed data of investment costs and cumulative installed 

capacity or R&D expenditure. Factors such as spillovers or contextual factors such as policies, institutional 

frameworks, governance structure, etc., are generally not included. The omission of variables that reinforce 

or undermine learning lead to biased estimates.  

IBL refer to the learning that results when people engage with one another and consider the adoption and 

diffusion of a technology to be a function of social learning. Moreover, whereas IBL cases focus on how the 

dynamics of social interaction (e.g. social learning) influence the spread of technology, IAMs focus on the 

implications of the adoption/use of technology on technology performance measured in terms of reciprocal 

of unitary investment costs. IAMs refer to the learning that occurs when more technology capacity is 

installed, regardless of the underlying reason (e.g. imitation, cost competitiveness). Therefore IBL tend to 

see technology adoption as a function of social learning over time, while IAMs relate improvements in 

technology costs to cumulative deployment. While IAMs tend to view learning as a monotonic process 

because that pattern fits well with the empirical data on a national scale over a time horizon of a few 

decades, IBL’s case studies point to a richer description of the possible learning dynamics. S-shaped or 

logarithmic learning is one possible outcome, though less linear dynamics can also be observed, especially in 

the short term. The very different time scale of IAMs and IBL explain why such differences can be observed. 

IBL provides interesting insights into learning what remains unobservable in other approaches. Learning 

goes beyond the notion of the Learning-By-Doing used in IAMs, to include technical, organizational, and 

cultural aspects.  

This paper examines the potential for integration with respect to the characterization of learning in the 

context of energy transition for solar PV technology, which plays an important role in the future 

decarbonization strategies and has received wide consideration in the empirical literature, and whether the 

IBL-based empirical evidence highlights the diversity of learning experiences and the importance of key 

factors such as network composition and size, timing, and non-linearity in more local and short-run learning 

experiences. The case studies on initiatives suggest that a small, heterogoneous but cohesive social network, 

in which expertise is gathered and trust is built, fosters social learning. A skilful project management that 

organizes and maintains engagement of its network members is crucial to successful learning. However, 

social learning remains highly dynamic and non-linear. Learning may be progressive at some point of the 

initiative; at the same time, it may face retreats and setbacks that may even “destroy” learning when external 

effects, such as changing financing schemes, intervene and lead to intra-project crisis or to “lost” learning 

when inter-project learning or follow-ups are missing. An interesting result that emerged only in the specific 

case of learning in solar PV is the presence of learning across projects (e.g. spillovers), which might suggest 

a longer term and more stable prospect for learning in PV. Indeed, it should be kept in mind that the analysis 

of cases on PV covers a project period of up to seven years. 

Differences with respect to the scale of analysis, the time-horizon, the treatment of complexity, as well as the 

representation of innovation, make ambitious forms of integration between these two approaches non-viable. 

Moreover, the number and geographical coverage of the case studies examined in this paper are probably too 

limited to allow us to derive more general patterns. For this reason, a soft form of integration between IBL 

and IAMs has been explored. We consider the resulting form of integration an example of “two-way 

recursive collaboration”. First, IBL practitioners draw stylized shapes of learning from the theoretical 

frameworks of the literature and empirical evidence from the case studies that could be compared to the 

functional forms used in IAMs. Second, IAMs, and in this specific example the WITCH model, are used to 

compare the learning dynamics resulting from the IA modelling approach with the stylized shaped proposed 
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by IBL. The logarithmic learning assumed by WITCH is one of the likely learning dynamics identified by 

IBL. At the same time, the IBL cases stress the fact that learning may get lost and learning may continue 

non-linearly, leading to learning cycles between preceding and subsequent projects. However, this pattern 

might hold true only for the short time horizons covered by the IBL cases, up to 13 years. In the long-run, the 

ups and downs of learning cycles may be straightened into an S-shaped learning. This idea is underpinned by 

theoretical models of diffusion research.  

The sensitivity analysis using the WITCH Integrated Assessment Model illustrates that different 

parameterization of learning within the range of what was observed in the empirical and modelling literature 

has significant implications for the model projections of technology penetration and costs. The resulting 

learning dynamics always fall within the stylized patterns identified by IBL. Elements of social learning are 

implicit in the choice of the parameter values used in models, and therefore insights from IBL can be used to 

interpret the different learning dynamics, mostly in terms of speed, that result from different parameter 

choices.  

We conclude that a two-way collaboration between IAMs and IBL can lead to mutual enrichment. On the 

one hand, IAMs show the relevance the modelling of learning can have for future energy and technology 

pathways. On the other hand, IBL points out the importance of less tangible forms of learning, such as social 

learning, which can accelerate the speed of technical learning. In terms of future research directions, more 

research on inter-initiative learning cycles to grasp implications for long-term learning is needed within the 

IBL field of research. To be more relevant for future-oriented analyses, IBL could also be used to frame the 

analysis of case studies such as those provided in IAMs, which need to assess the sensitivity that learning 

dynamics have on energy and technology scenarios and interpret the results in light of the insights provided 

by other disciplines, such as IBL. 
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