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1 Introduction

This paper presents a model of network formation game that is built upon the two-way

flow model with imperfect information transmission of Bala and Goyal (2000a), hence-

forth BG. It envisages a situation in which information decays due to the agents’imperfect

ability to communicate as opposed to the imperfect connection/link, which is an assump-

tion in most of the existing literature. It thus assumes that information decays as it tra-

verses through each agent, hence the term nodewise decay. Moreover, aiming to shed light

on the realism that agent’s effort to communicate tends to be limited, it assumes that

nodewise decay level is strictly concave in the amount of agent’s links. Each agent thus

knows that whenever he establishes a link with another agent both of them transmit in-

formation less efficiently, causing a decline in the value of information that flows through

them. This paper aims to understand how this assumption may affect link-formation de-

cision of agents and hence the shape of equilibrium networks. To this end it identifies the

shapes of equilibrium networks and analyzes why they differ from those of other models

in the literature. Finally, the paper discusses how the results in the analyses may explain

some features of real-world networks.

We argue that this paper’s assumption is worth studying. Consider a firm in which

employees’task is to communicate with each other. In this network, there may be a center-

like agent whose role is to collect and distribute information of other agents. Such an

agent is important because the degree to which the information is lost depends on his

ability to communicate. This is likely to decline as there are more contacts between him

and other agents. This fact has two consequences. First, each agent has to take into

account that contacting the center damages the information flow. Second, the value of in-

formation that he receives in turn may not worth the efforts to contact. Consequently, he

may avoid contacting the center by contacting another agent or choosing to be completely

disconnected. The fact that the center finds more difficulties in transmitting information

as he has more links may be considered as a form of network congestion, and the fact that

other agents may avoid contacting the center may be considered as a form of congestion

avoidance. However, how this realism affects agents’ linking decision has not been in-

vestigated in the literature of game-theoretic network formation to our knowledge. This

paper’s attempt to address this issue is therefore the central contribution to the literature.

With this situation in mind, this paper modifies the two-way flow model of BG as

follows. In a network g we let the decay factor be nodewise: as information is transmitted

through agent i, a fraction of information equal to 1 − σ (i; g) is lost. Moreover, σ (i; g)
is decreasing and strictly concave on the amount of i’s links. The strict concavity is

assumed for two reasons. First, it reduces mathematical difficulties. The strict concavity

assumption implies that information decays completely if an agent possesses a sufficiently

large number of links. Second, nodewise decay can be considered as a productivity of

an agent in transmitting information. While there is no theoretical support, the following

examples show that the difficulties that an agent face is transmitting information tend to

increase at an increasing rate. Suppose that an agent stores all pieces of information in one

place, then due to the limitedness of space, the chance that multiple pieces of information
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get mixed up, and hence cause more difficulties in communicating accurately, is arguably

likely to increase at an increasing rate. Another example is when the pieces of information

are very similar to one another. Then, the chance that an agent does not know which is

which, as he has more pieces of information to transmit, is also arguably likely to increase

at an increasing rate.

Besides these two assumptions this paper retains all assumptions of two-way flow

of BG, which are briefly described here for unfamiliar readers. Each agent possesses a

piece of information that is nonrival. He can choose to sponsor costly links to any agents

without their agreements. All links together form the network. If there is a link or a series

of links between two agents, they are obliged to share their private informations. Thus,

the decision of agent to form a link represents his decision to make his private information

available to other agents in exchange of receiving their information, and concurrently his

willingness to be an information transmitting device. In BG, the decay factor is assumed

to be geometric and linkwise: each link causes a fraction of information loss equal to

1 − σ, where σ is constant.

Since this paper models network congestion in a stylized way, we provide two jus-

tifications. First, this model makes observing the effects of congestion avoidance easier.

The original model of BG and this model permit each agent to access others without

their agreements. This implies that each agent decides on his own as to how to avoid the

congestion he finds in the network, hence easing the observation. This advantage is also

facilitated by the assumption that agents’information are nonrival. If it is assumed oth-

erwise, it may be difficult to distinguish whether an agent decides not to access another

as a result of the congestion or the rival nature of information. Second, because links are

formed in a noncooperative way, Nash equilibrium in pure strategies can be applied as

the solution concept. This eases the analysis.

Admittedly, the assumption of unilateral link formation has a disadvantage. It entails

that agent cannot defend against an access by another agent, even when the access lowers

his payoffs. This implication is not realistic in many cases. For example, in a file sharing

network, one agent may decline an access by another agent if the access lowers his internet

speed. Hence, our model does not provide an insight to this side of reality. We believe,

however, that there are some situations in which this model can be applied. These are

such as workplace environment in which agent is obliged to disseminate all information

he receives even when his productivity is declining, or friendship and kindred networks

in which agents voluntarily feel obliged to welcome link formation due to psychological

and peer pressure.

Based on the observation from the main results, two insights on the structure of real-

world networks can be learned. First, through nodewise decay assumption equilibrium

network tends to be fragmented, consisting of disconnected components. The intuition is

that agent in one component may avoid entering another in order to avoid the network

congestion. This may explain why empirical literature finds that disconnected networks

are common in the real world. Second, moving from a smaller network to a larger one (a

network with more agents) does not imply that the moving agent will improve his pay-

offs. The intuition is that agents in a larger network may be more congested (having more
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links), causing information to flow better in a smaller network. This may explain why

real-world networks often consist of fragmented communities of notably different sizes.

For example, in a friendship network, some students may prefer to keep their friendship

within a small group rather than joining the crowd because they enjoy a stronger friend-

ship that provides a better flow of benefits. These insights can be observed in our first

proposition, which finds that no Nash network is connected if information decays at least

by half whenever it is transmitted through an agent that has two links. This disconnect-

edness stands in contrast to the result in the original model of BG that all non-empty

Nash networks are connected.

Beside the above disconnectedness, two results are also different from BG’s. First,

Nash Network (in pure strategy) does not always exist. This result is shown by an ex-

ample. Second, no stars are Nash except a center-sponsored star if the network has more

than three agents 1.

This paper contributes to the literature in game-theoretic network formation, which

is pioneered by the work of Jackson and Wolinsky (1996)2. Their model assumes that

two agents must share a mutual consent in order that a link is established. A seminal

work that contrasts to this model is that of BG in which one-sided link formation is

assumed. Since it assumes several simple assumptions such as agent homogeneity and

linkwise decay, it has spawned a vast literature that questions how certain realisms, when

incorporated as assumptions, influence the shape of equilibrium networks.

A strand of this literature which this paper belongs studies various forms of ineffi-

ciency in information flow. Interestingly, most models in this literature focus on link,

which is a connection between agents, as a source of inefficiency in information flow

rather than agents themselves. For example, Bala and Goyal (2000b), Haller and Sarangi

(2005) and Billand et al. (2011) extend the two-way flow model of BG by assuming that

link formation may fail with a positive probability. Also, Billand et al. (2010) studies the

insider-outsider model of Galeotti et al. (2006), which is an extension of BG, by varying

the level of linkwise decay. Among this group of literature, noteworthy is that of Bloch

and Dutta (2009) and Deroian (2009), which assume that the decay level of each link varies

based upon the extent to which the agents are willing to spend their limited resources.

These models share a similarity to the model of this paper in the sense that in this paper

each agent is also assumed to have limited ability to communicate. However, a major

difference does exist. Unlike the model of Bloch and Dutta (2009) and Deroian (2009),

this model assumes that the decay is nodewise in the sense that the decay occurs each

time information traverses through an agent. Thus, it perceives agent, rather than link, as

a direct and primary cause of inefficiency in information flow. This difference entails a

major interpretation of realism. If the decay is assumed to be linkwise, as most papers do,

then the major cause of the decay is the connection or the relationship between agents.

1a star is a network such that there is a unique center-like agent who connects to all other agents. But all
other agents have no links with each other. A center-sponsored star is a star such that the center sponsors
the link to every other agent.

2Jackson (2007) and Jackson (2008) provides an overview of network formation literature and an overview
of network studies in economics respectively.
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On the other hand, if the decay is nodewise, then what causes the decay is the inability

of agent to communicate perfectly.

Another paper that shares a certain extent of similarity to this paper is Feri and Me-

lendez (2013), which also assumes that the decay is nodewise. Indeed, to our knowledge,

apart from this paper Feri and Melendez (2013) is the only paper that assumes nodewise

decay. However, a major difference exists in terms of how the nodewise decay is mod-

eled. In Feri and Melendez (2013), the decay level is an outcome of the coordination game

played between two agents who shares the same link. Thus, it can be interpreted that the

decay depends on the compatibility of technology adopted by the two agents. On the

other hand, this paper assumes that the decay level depends on the quantity of links that

each agent possesses. Thus, our concern is on the limitedness of the efforts of agent to

communicate, rather than the technology that he adopts.

The paper proceeds as follows. In Section 2, the model and all assumptions are in-

troduced. Subsequently Section 3 introduces the main results. It consists of two propo-

sitions. The first proposition fully characterizes Nash networks under the restriction that

information decays at least by half if it traverses through an agent that has more than two

links. Admittedly, due to the mathematical difficulties full characterization of Nash net-

work is not achieved when this restriction is removed. The second proposition, instead,

discusses certain properties of Nash networks given the removal of this restriction. We

also provide some examples of Nash network and their supporting parameters. Subse-

quently Section 4 uses the analysis from these results to provide some insights to certain

features of real-world networks. Finally, section 5 concludes.

2 The Model

N = {1, ..., n} is a set of agents. i and j are typical members of this set. Each agent

possesses a nonrival piece of information that is valuable both to himself and any other

agent who has an entry to it. Information flow in this model is two-way in the following

sense. If i has an entry to j information, then j also has an entry to i’s information. An

entry to information is made possible through the existence of a link or a path, a series of

multiple links, between two agents.

Link establishment is costly and one-sided. i can choose to form a link with any other

agent without his consent so long as he bears the link formation cost c. A strategy of

i is a set gi = (gi,1, ..., gi,i−1, gi,i+1, ..., gi,n) where gi,j ∈ {0, 1} and gi,j = 1 if and only if i

forms a link with j. In this case, it is said that i accesses j. Throughout the entire paper the

our analysis is restricted to pure strategies. Let g = (g1, ..., gn) be a strategy profile. The

strategy space of i is Gi and the set of all pure strategy profiles is G = {×Gi}n
i=1.

To visualize how information flows among agents, a strategy profile g can be repre-

sented by a network. Pictorially, a network consists of a set of nodes, each represents an

agent, and a set of arrows pointing from one node to another. There exists an arrow from

node i to node j if and only if i accesses j in a strategy profile g. As a consequence of

this symbolization the term network g and strategy profile g are used interchangeably
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onwards. Figure 1 depicts an example of a network.

54321

Figure 1: A network with five agents. n = 5, g1 = {1, 0, 0, 0} , g2 = {0, 1, 0, 0} , g3 =
{0, 0, 1, 0} , g4 = {0, 0, 0, 1} , g5 = {0, 0, 0, 0}

Because a link between i and j can be sponsored by either i or j, to distinguish the link

sponsorship let D (i; g) =
{

k ∈ N|gi,k = 1
}

be the set of all agents whom i accesses and

µ (i; g) = |D (i; g)| be the number of links that i establishes. To indicate whether there is

a link between i and j, let ḡij = max
{

gi,j, gj,i

}

so that ḡi,j = 1 if and only if there is a link

between i and j. Similarly, let D̄ (i; g) =
{

k ∈ N|ḡi,k = 1
}

and µ̄ (i; g) =
∣

∣D̄ (i; g)
∣

∣ so that

µ̄ (i; g) represents the number of i’s links.

Based upon these notations, information flow is formalized as follows. i’s infor-

mation flows to j if there exists an ij-path. Formally, an ij-path, Pi,j (g), is a sequence

ḡi,j1 , ḡj1 ,j2 , ..., ḡjm ,j whose each element is 1. If Pi,j (g) exists, it is said that i observes j. The

set of all agents observed by i is N (i; g) =
{

j ∈ N|Pi,j exists
}

. Note that if i observes j

then j also observes i.

To maintain a comparison with the original two-way flow model with linear payoff in

BG, the value of each piece of information that is perfectly transmitted and received is 1.

However, in the process of transmitting and receiving this value may decay. In this paper,

the decay is incurred nodewise. That is, for each agent k a decay factor σ (k; g) is assigned.

As information traverses through k, a fraction of information equal to 1 − σ (k; g) is lost.

That is, σ (k; g), is the percentage rate at which the value of information is preserved.

Therefore, if the information of j is transmitted to i through a path Pi,j, the value of j’s

information that i receives is V
(

Pi,j (g)
)

= ∏k∈N(Pi,j(g)) σ (k; g), where N
(

Pi,j (g)
)

is the

set of all agents in Pi,j (g). Figure 2 illustrates how the values of information of other

agents flow to agent 1 in a network.

54321

Figure 2: In the above network, V̄1,2 (g) = σ (1; g) σ (2; g) , V̄1,3 (g) =
σ (1; g) σ (2; g) σ (3; g) , V̄1,4 (g) = σ (1; g) σ (2; g) σ (3; g) σ (4; g) , V̄1,5 (g) =
σ (1; g) σ (2; g) σ (3; g) σ (4; g) σ (5; g)

Naturally, if multiple ij-paths exist the value of j’s information received by i is given

by the optimal path(s). Formally, let Pi,j (g) =
{

P1
i,j (g) , P2

i,j (g) , ..., PL
i,j (g)

}

be the set of all

paths, each enumerated by the superscript, through which i observes j in a network g.

The value of the information of j that i obtains in this network is V̄i,j (g) = max
k∈1,..,L

V(Pk
i,j; g).

An optimal ij-path, P̄i,j, is thus a path that solves maxk∈1,..,L V(Pk
i,j; g). The set of all optimal

paths is P̄i,j (g). Similarly, the value of i’s own information is Vi,i = σ (i; g) if i has a link

and Vi,i = 1 if i has no link. This assumption is justified as follows. As the amount of i’s

links increases, so is the amount of information that arrives to him. This decreases his
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ability to correctly process each piece information before he transmits it to other agents.

This in turn affects his ability to process his own information. Alternatively, if he has no

link, then he can consume his own information with no decay. That is, Vi,i = 1 if i has no

link.

Having defined the value of information, we are now ready to define the payoff of

player i from the strategy profile g in a game with n players. It is:

U
(

i; g
)

= V̄i,i

(

g
)

+ ∑
j∈N(i;g)

V̄i,j

(

g
)

− c · µi

(

g
)

To adjourn this section a major difference between our model and BG’s is pointed out.

This difference is in how information decays. In BG, the decay is assumed to be linkwise

and geometric. For example, let λ be this decay. If an ij-path consists of m links, then the

information of j decays to λm when it arrives to i. Hence, the aggregated decay of a path

depends solely on its length. In contrast, the decay in our model is defined nodewise, σ (),

which depends on the amount of links of each agent who lies on the path. Consequently,

two ij-paths with the same length may not provide the same value of information to i. We

remark that this is a major cause of mathematical difficulties in the analysis of equilibrium

characterization.

2.1 Assumptions on decay

Our key assumption is that the decay factor σ (i; g) depends solely on the number of i’s

links. This is formalized as follows.

Assumption 1 (Concave Decreasing Nodewise Decay). Let ς : N → [0, 1] be a function such

that:

1. ςx be the value at x

2. ς1 = 1

3. there exists K > 1 such that σx = 0 for all x > K. Moreover, for x ≤ K, ς is decreasing and

strictly concave.

Throughout this paper we assume that σ (i; g) = ςµ̄(i;g) for all i ∈ N.

Certain remarks on these assumptions are worth elaborating. First, σ (i; g) = ςµ̄(i;g)

implies that an agent’s decay factor depends solely on the number of links. Moreover, two

agents have the same decay factor if they have the same amount of links. That is, agent

homogeneity is assumed. Second, ς1 = 1 entails that perfect information transmission

occurs if an agent has exactly one link. Finally, the existence of K in the last part warrants

that the nodewise decay factor becomes zero, rather than being negative, once the amount

of agent’s link reaches a certain extent.
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2.2 Network-related Definitions

This subsection introduces some properties of networks and definitions of some particular

patterns of network that are used in the analysis. A network is minimal if every ij-path

is unique. If an ij-path exists for any i, j ∈ N; i 6= j, a network is said to be connected. Let

g1 and g2 be networks and N1 and N2 be their set of agents, g1 is a subnetwork of g2 if

N1 ⊂ N2 and g1 ⊂ g2. g1 is said to be a component of g2 if g1 is a maximally connected

subgraph of g2.

The particular patterns of network that are used in the equilibrium analysis are intro-

duced as follows. A network is a line if there are exactly two agents that have one link and

every other agent has two links. A network is a wheel if every agent has exactly two links.

Note that if a link is removed from a wheel the resulted network is a line. A network is

empty if every agent has no link. In such a network, each agent is said to be a singleton. A

network is a star if it is a minimally connected network such that there is a unique agent

i∗ that has exactly one link with every other agent. A star is a center-sponsored star if i∗

sponsors all links. A star is a periphery-sponsored star if i∗ sponsors no links.

3 Main Results

The goal of this section is to identify Nash networks and their properties. For ς2 ≤ 1
2 ,

Proposition 1 guarantees the existence of Nash network regardless of the values of ς2 and

c. It also provides an expansive equilibrium characterization.

Proposition 1. 1. If ς2 ≤ 1
2 , Nash network exists for any cost c and number of players n.

Moreover, each component of a Nash network is one of the following three types.

1.1 A three-agent periphery-sponsored star , ie., network (a) in Figure 3

1.2 A pair, ie., network (b) in Figure 3

1.3 A singleton, ie., network (c) in Figure 3

(a) (b) (c)

Figure 3: Three types of components in a Nash network, given that ς2 ≤ 1
2

2. Using the network (a), (b) and (c) in Figure 3, the set of Nash networks for each set of

parameters c and ς2 is given below.

2.1 If c > 1 and ς2 ≤ 1
2 , then the empty network is a unique Nash network.

2.2 If c ≤ 1 and ς2 = 1
2 , then Nash network is either the empty network or the network that

contains at most one component that is a singleton, and every other component is either a

three-agent periphery-sponsored star or a pair.
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2.3 If c = 1 and ς2 < 1
2 , then the set of Nash networks consists of all networks that have the

following architectures:

• the empty network

• the network that has at most one component that is a singleton, and every other com-

ponent is a pair.

2.4 If c < 1 and c > 2ς2, then Nash network has at most one component that is a singleton,

and every other component is a pair.

2.5 If c < 1 and c ≤ 2ς2, then Nash network is

• the network that has at most one component that is a singleton, and every other com-

ponent is a pair.

• the network such that each component is either a three-agent periphery-sponsored star

or a pair.

A particular feature of Nash networks in Proposition 1 is that none of them are con-

nected, given that n > 3. This is a contrast to Proposition 5.3 in BG which shows that

every non-empty Nash Network is connected. What drives this contrast? In BG, if i

finds that the component that he accesses provides more benefits than the component

that j accesses, then j always finds likewise. Since BG assumes that link formation cost

is homogeneous, it follows that j has a positive deviation by removing his link with his

component and access i’s component instead. However, under the concave decreasing

nodewise decay assumption this reasoning is not valid. Whenever j enters the compo-

nent of i, he reduces the decay factor at the agent with whom the link is formed. This

entails that the value of information that j receive may be sufficiently low that it does

not cover his link formation cost. Consequently there is no guarantee that his payoff will

improve. The following example clarifies this intuition by showing what happens when

the linkwise decay assumption in BG is replaced by our nodewise decay assumption.

Example 1. Consider the Nash network for c = 2ς2 and c < 1 in Figure 4. It is easy to check that

i’s payoff does not improve if he removes his link with j and imitate the strategy of k by forming

the link with l. Indeed, his benefit from accessing l is 0 since ς3 = 0.

On the other hand, suppose it is assume that the decay is geometric, linkwise, and the decay

factor is λ as in BG, then k’s benefit from accessing l is λ + λ2 and i’s benefit from accessing j

is merely λ. As a result, i has a positive deviation by removing his link with j and accessing l

instead.

Contrary to Proposition 1, for ς2 > 1
2 Nash network does not exist for some parameters

c and n. An example is given below.

Example 2. Let 1√
2
> ς2 > 1

2 , ς3 = 0, and c = 0.98, no network with 5 agents is Nash 3.

3The proof tediously consists of proving that in each possible network there is at least one agent that finds
a positive deviation. It is thus omitted.
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i

j

k

l

m

Figure 4: A Nash network with five agents for c = 2ς2 and c < 1

A remark is that the nonexistence of equilibrium originates stems from the fact that

nodewise decay assumption causes agents’s payoffs to change discretely. Indeed, due

to this complication the provision of full equilibrium characterization for ς2 > 1
2 is not

attained. Instead, Proposition 2 below describes some properties of Nash network for

ς2 > 1
2 . It states that no two agents who have exactly one link want to access the same

agent in Nash network. The intuition, which is a result of congestion avoidance, is

straightforward. Let i and j have exactly one link with k, and i accesses k. Then i is

better off avoiding the link formation with k and accessing j instead. Such avoidance is

profitable because initially j has only one link. The link addition by i thus increases the

amount of j’s links from one to two.This fact and the fact that ς2 > 1
2 guarantee that

information loss that is incurred by j is sufficiently low. Formally, let an agent who has

exactly one link be called end node and the agent who is his neighbor parent.

Proposition 2. Given that ς2 > 1
2 and n > 3 4. In a minimal Nash network g, let j be an end

node and i be his parent,

1. if j accesses i, j is the only end node of i;

2. if i accesses j, i accesses all his end nodes.

A corollary of Proposition 2 which is establish below is straightforward: no star is a

candidate for Nash network, except center-sponsored star. A notable remark is that this

result differs from Proposition 5.3 in BG which shows that all kinds of stars are Nash if

decay falls within a certain range.

Corollary 1. Given that ς2 > 1
2 and n > 3, no star is a candidate for Nash network, except

center-sponsored star.

Beside center-sponsored star, line is also a candidate for Nash network. Figure 5

shows some Nash networks and their supporting parameters.

4 Discussions

This section points out two particular features of equilibrium networks in this model.

It questions why they arise and provide intuitions as to what causes agents to make

such link formation decision. Finally it discusses how these intuitions may explain some

features of real-world networks.

4if n ≤ 3, this proposition does not apply. Every component of Nash network is either a line or empty.
The proof is trivial and is omitted
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(a) n = 6, c = 0.2, ς2 = 0.97, ς3 =
0.2, ς4 = ς5 = ς6 = 0

(b) n = 4, c = 0.3, ς2 = 0.9, ς3 = 0.5, ς4 = 0

(c) n = 5, c = 0.5, ς5 =
0.9, ς4 = 0.969, ς3 =
0.9799, ς2 = 0.99, ς1 = 1

Figure 5: Two lines and a star that are Nash

4.1 Network congestion may lead equilibrium networks to be disconnected

The first observation comes from the fact that all Nash networks for ς2 ≤ 1
2 are discon-

nected, as in Proposition 1. The intuition, which is made clear by Example 1, can be

summarized as follows. While establishing a link to an agent is a way to reach a compo-

nent, it also increases the congestion at the agent who receives the link. This congestion

may cause much loss in the information transmitted via the agent. When such congestion,

or inefficiency in information transmission, is sufficiently high, an agent may be better off

avoiding the congestion altogether and staying disconnected from the component.

How does this observation help us understand real-world phenomena? This obser-

vation may serve as a hypothesis that explains why empirical evidence finds that real-

world networks are often disconnected. If a community is considered as a network in

which information is exchanged among agents, it is likely that it is fragmented into sub-

communities if agents find that avoiding connection between each sub-community is a

way to reduce inefficiency in information flow. For instance, sociologists have long ob-

serve that a common feature of friendship networks is that there are agents who are

social isolates, disconnecting themselves from the principal component (Ennett and Bau-

man (2000)). Also Kumar et al. (2010) gives a surprising remark that several online social

networks contain isolated communities and singletons.

4.2 Connecting to a larger component does not imply larger benefits

Our second observation is that a smaller component may provide higher benefits to their

members than a larger one. The is evident through the fact that many Nash networks in

Proposition 1 consist of components whose sizes, or the numbers of agents, are not equal.

Consider, for example, the equilibrium network in Example 1. Observe that i chooses to

access an isolated agent j rather than an agent in the larger component. If i accesses j, j’s

productivity is ς1. If i accesses someone in the larger component, the productivity of the

accessed agent is at most ς2. Hence, if ς2 is sufficiently lower than ς1, then his strategy

to abandon the smaller component that contains j and enter a larger one gives i relatively
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lower benefits compared to his strategy to maintain the link with j.

This observation may explain why there are agents who prefer to reside in a rela-

tively smaller component rather than a relatively larger one that contains most of agents.

Consider the following hypothesis. While a larger component contains more agents, and

hence more information, each agent may possess relatively more connections than his

counterpart in a smaller component. If the increase in connections is further assumed to

increase inefficiency in information flow, then an agent may prefer to stay in a smaller

component rather than joining a larger one. Put differently, when choosing between

joining a smaller component or a larger component, an agent faces a tradeoff between

the quantity of information and quality of information that he receives. If the quality

of information prevails, then he is better off being in a smaller component. A friend-

ship network among adolescent students may serve as an example of this hypothesis.

Some students may choose to be ‘social isolates,’ defined as students who are alone or

those who maintain their friendships within a smaller group and avoid contacting the

major group (Ennett and Bauman (2000)). This model thus hypothesizes that such behav-

ior arises because by avoiding the crowd the social isolates enjoy higher benefits shared

among one another.

Noteworthy is how the above insight relates to literature in Sociology. This model

proposes that the existence of social isolates may be explained by a reason that is not

agent heterogeneity, which appears to be the most natural reason. The insight from this

model, therefore, stands in contrast with a vast literature in Sociology that places agent

heterogeneity in terms of ethnics, attitude or physical appearance as a primary cause of

social isolates. For example, Haas et al. (2010) assume that poor health in adolescent

such as substantial physical handicap may be a cause of social isolation, and Kennedy

and Kennedy (2004) suggest that individuals with anxious resistance have a higher risk

of becoming social isolates.

5 Conclusion

This paper provides a stylized model of network formation with two key assumptions.

First, link can be formed without a mutual consent between agents. Second, link addition

increases the congestion, or more information loss, at the agent who receives the link

and the agent who forms the link. The model allows an ease of observation on how

an agent may avoid forming links with other agents due to increasing congestion. As

shown in Proposition 1, under a large set of parameters the two key assumptions lead

to equilibrium networks that consist of disconnected components. In some cases these

components also have different sizes.

While it is difficult to make generalization from this simplified model, the link-formation

behavior of agents in equilibrium networks may provide some insights to two common

features of real-world networks. First, the fact that real world networks are often dis-

connected may be explained by the fact that agents choose to avoid forming a link that

bridges two components since the link addition increases congestion, and hence increas-
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ing inefficiency in information flow. Second, an agent may prefer maintaining a link with

an agent in a smaller component rather than with an agent in a larger component. This is

because he takes into account the tradeoff between receiving less quantity of information

with higher quality of transmission in a smaller component and more quantity of infor-

mation with lower quality of information in a larger component and finds that the former

prevails.

This model can be extended in several ways. First, to move closer to reality an exten-

sion may assume that an agent can choose to vary his nodewise decay for each link that

he possesses. Second, since in this model agent homogeneity is assumed, an extension

may be to assume a certain form of agent heterogeneity. For example, some agents may

have nodewise decay that incurs less information loss than that of other agents. Third, it

may be interesting to apply an equilibrium prediction criterion that assumes that link is

formed under mutual consent (eg., pairwise stability of Jackson and Wolinsky (1996)).
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6 Appendix

6.1 The Concepts of Marginal Cost and Marginal Potential Benefit and a Use-
ful Lemma

In this subsection, two useful definitions and a lemma for the proofs of Proposition 1 and

2 are introduced. The first two definitions - Marginal Potential Benefit and Marginal Cost

- concern the (potential) gain and loss to an agent whenever he adds or removes exactly

one link. Subsequently we introduce a lemma that states that an agent has an increasing

(decreasing) payoff if the Marginal Potential Benefits are higher (lower) than the marginal

cost. Naturally, in Propositions 1 and 2, this lemma is used to show whether a deviation

of an agent by adding/removing a link is positive.

Consider an agent i in network g. Let g + ij (g − ij) be the network that results from

the addition (elimination) of the link gi,j by i. In g + ij, the set of all agents that i observes

can be partitioned into three sets. The first set contains all agents that i observes in g, and

the addition of gi,j does not generate a new optimal path. On the other hand, the second

set contains all agents that i observes in g, the addition of gi,j generates a new optimal

path to these agents. The third set contains all agents that i observes in g + ij but not in g.

These three sets are formalized as follows.

• N1
(

i; gi,j → g
)

=
{

j ∈ N|j ∈ N (i; g) ∧ j ∈ N (i; g + ij) ∧
[

Pi,j (g) = Pi,j (g + ij)
]}

• N2
(

i; gi,j → g
)

=
{

j ∈ N|j ∈ N (i; g) ∧ j ∈ N (i; g + ij) ∧
[

Pi,j (g) 6= Pi,j (g + ij)
]}

• N3
(

i; gi,j → g
)

= {j ∈ N|j /∈ N (i; g) ∧ j ∈ N (i; g + ij)}

Consider all agents in N1
(

i; gi,j → g
)

. Although i can use the same optimal paths to

observe them, in g + ij the value of information that he receives from these agents are

lower than what he receives in g because σ (i; g + ij) = ςµ̄(i;g)+1. This decline in i’s benefits,

and the link formation cost c, are together called Marginal Cost of i for adding gi,j to g.

Definition 1 (Marginal Cost). Let N1
(

i; gi,j → g
)

be defined as above, the marginal cost of i for

adding gi,j to g is MC
(

i; gi,j → g
)

= c + ∑l∈N1(i;gi,j→g)
(

V̄il (g)− V̄il (g + ij)
)

= c + ∑l∈N1(i;gi,j→g)

(

V̄il (g)− V̄il (g)
ςµ̄(i;g)+1

ςµ̄(i;g)

)

The last inequality follows from the fact that the only difference between g and g + ij is

the addition ofgi,j. As a result, σ (i; g + ij) = ςµ̄(i;g)+1, σ (j; g + ij) = ςµ̄(j;g)+1 and σ (k; g + ij) =

ςµ̄(k;g) for all k 6= i, j.

Consider all agents in N3
(

i; gi,j → g
)

. Because i can observe in g + ij but not in g,

The value of information from these agents that i receives are considered as i’s benefit

from the link gi,j. Moreover, consider all agents in N2
(

i; gi,j → g
)

. These are agents that

i does observe in g. But by adding gi,j he is able to find new optimal paths to reach

them. Observe, however, that these new paths in g + ij may yield benefits to i that are

higher, lower, or equal to the optimal paths in g due to the concave decreasing nodewise

decay. The gain from being able to observe N3
(

i; gi,j → g
)

and the potential gain/loss
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from finding new paths to observe agents in N2
(

i; gi,j → g
)

are together called Marginal

Potential benefit of i for adding gi,j to g.

Definition 2 (Marginal Potential benefit). the marginal potential benefit of i for adding gi,j to

g is MPB
(

i; gi,j → g
)

= ∑l∈N3(i;gi,j→g) V̄il (g + ij) + ∑l∈N2(i;gi,j→g)
(

V̄il (g + ij)− V̄il (g)
)

.

Having defined the marginal cost and marginal potential benefit, we are ready to

introduce the following Lemma.

Lemma 1. Let MPB
(

i; gi,j → g
)

and MC
(

i; gi,j → g
)

be defined as above. We have:

1. U (i; g + ij)− U (i; g) = MPB
(

i; gi,j → g
)

− MC
(

i; gi,j → g
)

2. (link addition proofness) If MPB
(

i; gi,j → g
)

> MC
(

i; gi,j → g
)

, then g is not Nash

3. (link deletion proofness) If MPB
(

i; gi,j → g − ij
)

< MC
(

i; gi,j → g − ij
)

, then g is not

Nash

Proof. The first part is a direct consequence of how MPB
(

i; gi,j → g
)

and MC
(

i; gi,j → g
)

are defined. The second part directly follows the first part, stating that i has a positive

deviation from his strategy in g by adding gi,j if his marginal potential benefit for adding

gi,j is higher than the marginal cost. The third part is analogous to the second part, stating

that i has a positive deviation from his strategy in g by eliminating gi,j, if his marginal

potential benefit for adding gi,j to g − ij is higher than the corresponding marginal cost.

6.2 Proofs of the Propositions

Proof of Proposition 1. The proof consists of four steps. In the first three steps, we eliminate

certain set of networks from being candidates for Nash networks. First, all networks

that contains an agent that has more than two links are eliminated. This follows that

a non-empty component of Nash network is either a wheel or a line. We subsequently

eliminate the wheel in the second step. In the third step, all lines that contain an agent

that receives one link and also establishes a link are eliminated. As a result of these three

steps, a component in Nash network is a three-agent periphery-sponsored star, a pair, or

a singleton. Finally, in the fourth step we identify the exact combinations of these three

types that are Nash for each pair of c and ς2. This is achieved through direct substitution.

Step 1: A network that contains an agent that has more than two links is not Nash.

Let this agent be i. Observe that ς3 = ς4 = ... = 0 because ς2 ≤ 1
2 and ς is strictly concave.

Therefore, σ (i; g) = ςµ̄(i;g) = 0. It follows that if i accesses an agent in this network, he is

strictly better off removing the link to save the cost c. Conversely, if i is accessed by an

agent j, for the same reason j is better off removing the link. Due to these deviations this

network is not Nash.

Step 2: A network that contains a component that is a wheel is not Nash. Consider

an agent i who establishes a link in a wheel. Without loss of generality enumerate the
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agents in gwheel according to Figure 6. Let i = 1. Observe that his direct neighbors are 2

and n′. Observe further that if he removes the link g1,n′ this wheel becomes a line. Denote

this wheel and line by gwheel and gline respectively. In what follows it is shown that he is

strictly better off removing the link g1,n′ .

Consider an agent k 6= 1. There are two 1k-paths through which 1 observes k. One

contains g1.n′ and the other one does not. Observe that the latter coexists with 1k-path

in gline but the former does not. Denote these two paths by Pwheel
1,k and Pline

1,k respectively.

Observe further that:

• V1,1

(

gwheel
)

= ς2 and V1,1

(

gline
)

= ς1 = 1

• for k 6= 1, n′, V
(

Pwheel
1,k ; gwheel

)

= ςn′−k+2
2 , V

(

Pline
1,k ; gwheel

)

= ςk
2 and, V

(

Pline
i,k ; gline

)

=

ςk−1
2

• for k = n′, V
(

Pwheel
1,k ; gwheel

)

= ς2
2, V

(

Pline
1,k ; gwheel

)

= ςn′
and, V

(

Pline
1,n′ ; gline

)

= ςn′−2
2

As a result, V
(

Pwheel
1,k ; gwheel

)

= ςn′−k+2
2 > V

(

Pline
1,k ; gwheel

)

= ςk
2 for k > n+2

2 . This in turn

entails that in this wheel Pwheel
1,k is a unique optimal path for k > n+2

2 . Based upon these

observations, the marginal potential benefits and marginal cost are expressed below:

MPB
(

1; g1,n′ → gwheel − 1n′
)

= ∑
k> n′+2

2

V̄1,k

(

gwheel
)

− ∑
k> n′+2

2

V̄1,k

(

gline
)

= ∑
k> n′+2

2

V̄1,k

(

gwheel
)

−





 ∑
n′−1>k> n′+2

2

V̄1,k

(

gline
)

+V̄1,n′

(

gline
)







= ∑
k> n′+2

2

ςn′−k+2
2 +





 ∑
n′−1>k> n′+2

2

ςk−1
2 + ςn′−2

2







MC
(

1; g1,n′ → gwheel − 1n′
)

= c + ∑
k≤ n′+2

2

V̄1,k

(

gline
)

− ∑
k≤ n′+2

2

V̄1,k

(

gwheel
)

= c + ∑
k≤ n′+2

2

ςk−1
2 − ∑

k≤ n′+2
2

ςk
2

Because ς2 < 1
2 , it holds true that MC

(

1; g1,n′ → gwheel − 1n′
)

> MPB
(

1; g1,n′ → gwheel − 1n′
)

.

Consequently, through Lemma 1 gwheel is not Nash.

Step 3: if a component of a network is a line that is neither a three-agent periphery-

sponsored star nor a pair5, then this network is not Nash. The proof is by contradiction.

Suppose that the component is neither a three-agent periphery-sponsored star nor a pair,

so that the component has at least three agents. It is straightforward to check that in such

a component there exists an agent who has two links such that one of the links is formed

5three-agent periphery-sponsored star and pair are lines
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i = 1 j = n’2 n’-1
b

Figure 6: A wheel with n′ agents, enumerated from left to right.

by himself. Let this agent be i and the link be gi,j. In what follows it is shown that i is

strictly better off deleting gi,j.

First, observe that without gi,j i is disconnected from the line that contains j. g − ij

thus consists of two components - one contains j and the other one contains i. Denote

these two components by gj and gi respectively. Suppose that there are n′ agents in gj, i’s

marginal potential benefits for adding gi,j to g − ij are:

MPB
(

i; gi,j → gline − ij
)

= σ
(

i; gline
)

σ
(

j; gline
)

= ς2

if n′ = 1, and for n′ > 1

MPB
(

i; gi,j → gline − ij
)

=
n′−1

∑
k=1

V̄i,k

(

i; gline
)

+ V̄i,n′

(

i; gline
)

=
n′−1

∑
k=1

ςk
2σ

(

i; gline
)

+ ςn′−1
2 σ

(

i; gline
)

=
n′−1

∑
k=1

ςk
2ς2 + ςn′−1

2 ς2

To compare the marginal potential benefits with the marginal cost, in what follows we

identify a lower bound of MC
(

i; gi,j → gline − ij
)

. Beside the cost c, i’s nodewise decay

drops from ς1 to ς2 if he establishes gi,j. Therefore, the lower bound MC
(

i; gi,j → gline − ij
)

is MC = c + (ς1 − ς2) = c + (1 − ς2).

Because ς2 ≤ 1
2 , MC > 1

2 and MB
(

i; gi,j → gline − ij
)

≤ 1
2 . Therefore, MC

(

i; gi,j → gline − ij
)

>

MPB
(

i; gi,j → gline − ij
)

. Applying Lemma 1 to this inequality, it is concluded that i is

strictly better off deleting gi,j.

Step 4: Equilibrium Characterization for each pair of c and ς2. As a result of the

three steps above, every Nash network is a combination of components that are a three-

agent periphery sponsored star, a pair, or a singleton. Therefore, it is straightforward to

identify which combination constitutes a Nash network. First, all deviations that arise

from every combination are categorized. Each deviation is further coupled with the de-

viating agent’s payoff as a result of deviation and his payoff when he does not deviate.

We then substitute the value of each pair of c and ς2 to identify whether the deviation

is positive. The combinations that have no positive deviations are concluded to be Nash

networks accordingly.

To minimize the tedium, Step 4.1 and 4.2 below eliminate some types of deviations by

pointing out that they are never positive.
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Step 4.1: In a network where each component is a three-agent periphery-sponsored

star, a pair, or a singleton, a deviation that causes the deviating agent to have more

than one link is never a positive deviation. This result is a direct consequence of Step

2 and 3. Let i be an agent that does this deviation. This entails that i forms a link with

an agent j. If j is in the same component as i, then this component becomes a wheel.

However, in Step 2 it is shown that i’s payoff in a line is higher than his payoff in a wheel.

Consequently this deviation does not make i better off.

Step 4.2: if c < 1, then a network that contains more than one singleton is not Nash.

Let i and j be singletons. If i accesses j, his payoff is 1 + (1 − c). If i does not access j, he

remains isolated and his payoff is 1. Therefore, if c < 1 i has a strictly positive deviation

by accessing j.

Step 4.3: Equilibrium Characterization for each pair of c and ς2. Using Step 4.1 and

4.2, we classify all networks that remain candidates for Nash networks into seven classes

as follows.

1. At least one A, at least one B, exactly one C

2. At least one A, at least one B, no C

3. At least one A, no B, exactly one C

4. No A, at least one B, exactly one C

5. All A

6. All B

7. All C (only for c ≥ 1)

Finally, identification of Nash network is achieved in the following manner. For each

agent in each type of component, all deviations except those eliminated by Step 4.1 and

4.2 are listed and coupled with their deviation-based payoffs and no-deviation payoffs.

Figure 7 and 8 and 9 illustrate such. By substituting the value of c and ς2 into the payoffs

and subsequently comparing them, we reach the result of Proposition 1.

a1

c1

b2

b1

a3

a2

(a)

Deviator Deviation from-deviation payoff no-deviation payoff

a1 ga1 ,a2 = 0; ga1 ,b1
= 1 2ς2 + 1 − c 2ς2 + 1 − c

a3 ga3 ,a2 = 0; ga3 ,b1
= 1 2ς2 + 1 − c 2ς2 + 1 − c

a1 ga1 ,a2 = 0; ga1 ,b2
= 1 2ς2 + 1 − c 2ς2 + 1 − c

a3 ga3 ,a2 = 0; ga3 ,b2
= 1 2ς2 + 1 − c 2ς2 + 1 − c

a1 ga1 ,a2 = 0, ga1 ,c1
= 1 2 − c 2ς2 + 1 − c

a3 ga3 ,a2 = 0, ga3 ,c1
= 1 2 − c 2ς2 + 1 − c

a1 ga1 ,a2 = 0 1 2ς2 + 1 − c

a3 ga3 ,a2 = 0 1 2ς2 + 1 − c

Figure 7: Deviations by agents in a three-agent periphery-sponsored star.
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a1

c1

b2

b1

a3

a2 b2′

b1′

(a)

Deviator Deviation from-deviation payoff no-deviation payoff

b1 gb1,b2
= 0; gb1,c1

= 1 2 − c 2 − c

b1 gb1,b2
= 0; gb1,b1′ = 1 1 + 2ς2 − c 2 − c

b1 gb1,b2
= 0; gb1,b2′ = 1 1 + 2ς2 − c 2 − c

b1 gb1,b2
= 0; gb1,a1

= 1 1 + ς2 + 2ς2
2 − c 2 − c

b1 gb1,b2
= 0; gb1,a3

= 1 1 + ς2 + 2ς2
2 − c 2 − c

b1 gb1,b2
= 0; gb1,a2

= 1 1 − c 2 − c

b1 gb1,b2
= 0 1 2 − c

Figure 8: Deviations by agents in a pair. Without loss of generality, it is supposed that

deviations are caused by agent b1. Notice that deviations from b2 are not listed as a result

of Step 4.1

a1

c1

b2

b1

a3

a2

c1′

(a)

Deviator Deviation from-deviation payoff no-deviation payoff

c1 gc1 ,c1′ = 1 1 − c 1

c1 gc1 ,b1
= 1 1 + 2ς2 − c 1

c1 gc1 ,b2
= 1 1 + 2ς2 − c 1

c1 gc1 ,a3 = 1 1 + ς2 + 2ς2
2 − c 1

c1 gc1 ,a1
= 1 1 + ς2 + 2ς2

2 − c 1

c1 gc1 ,a2 = 1 1 − c 1

Figure 9: Deviations by an agent that is a singleton. Without loss of generality, it is

assumed that all deviations are from agent c1

Proof of Proposition 2. In a minimal network g, let i∗ be an agent that has a link with an end

node. Let j1, ..., jn̂ be the end nodes that have a link with i∗. Suppose that i∗ is accessed

by j1. We partition the set of all neighbors of j1, N (j1; g), into three subsets as follows:

(i) N1 (j1; g) = {i∗}, (ii) N2 (j1; g) = {j2, ..., jn̂}, and (iii) N3 (j1; g) = {k ∈ N (j1; g) |k 6=
i∗and k 6= j2, ..., jn̂}. For each of these subsets, the value of information that j1 receives in

g is identified. Subsequently, it is again identified under the assumption that j1 removes

gj1 ,i∗ and accesses j2 instead. We then compare the payoff of j1 in g with his payoff in g′,
where g′ is the network resulted from the removal of the link gj1,i∗ and the addition of the

link gj1,j2 (See Figure 10 for an illustrated example). Finally, it is shown that his payoff in

g′ is higher than his payoff in g. This is the strategy of this proof.

To identify the value of information that j1 receives, the number of links that agents

have in g and g′ are identified as follows: since the only difference between g and g′ is

that in g j1 accesses i∗ but in g′ j1 accesses j2, we have µ̄(i∗; g′) = µ̄(i∗; g) − 1 , µ̄(j2; g) = 1

but µ̄(j2; g′) = 2, and µ̄(jk; g) = µ̄(jk; g′) = 1 for k 6= 2.

Using the above information, j1’s payoff in g is:
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i∗

k2

k1

j3j2j1

(a) g

i∗

k2

k1

j3j2

j1

(b) g′

Figure 10: The networks g and g′ in Proposition 2. Observe that in g′ j1 accesses j2 instead
of i∗, unlike in g. Observe that in g, n̂ = 3, N1 (j1; g) = {i∗}, N2 (j1; g) = {j2, j3}, N3 (j1; g) =
{k1, k2}.

U
(

j1; g
)

= V̄j1 ,j1

(

g
)

+ ∑
l∈N1(j1;g)

V̄j1,l

(

g
)

+ ∑
l∈N2(j1;g)

V̄j1 ,l

(

g
)

+ ∑
l∈N3(j1;g)

V̄j1 ,l

(

g
)

− c · µ
(

j1; g
)

= 1 + σ(j1; g)σ(i∗; g) + ∑
l∈N2(j1;g)

σ(j1; g)σ(i∗; g)σ(l; g)

+ σ(j1; g)σ(i∗; g) ∑
l∈N3(j1;g)

V̄j1 ,l

(

g
) [

σ(j1; g)σ(i∗; g)
]−1 − c · µ

(

j1; g
)

(1a)

Therefore,

(1b)U
(

j1; g
)

= 1 + ςµ̄(jk ;g) + (n̂ − 1) ςµ̄(jk ;g) + ςµ̄(jk ;g) ∑
l∈N3(l;g)

V̄j1,l

(

g
)

[

ςµ̄(jk ;g)

]−1
− c ·

(

j1; g
)

Next, j1’s payoff in g′ is identified below. It makes use of the fact that information of

i∗ flows to j1 via j2. Moreover, for any agent l ∈ N2 (j1; g) ∪ N3 (j1; g) and l 6= j2, notice

that l’s information flows to i∗, j2 and j1 in sequential order. As a result, j1’s payoff in g′

is:
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(2a)

U
(

j1; g′
)

= V̄j1,j1

(

g′
)

+ ∑
l∈N1(j1;g)

V̄j1,l

(

g′
)

+



V̄j1,j2

(

g′
)

+ ∑
l∈N2(j1;g)\{j2}

V̄j1,l

(

g′
)



 + ∑
l∈N3(j1;g)

V̄j1 ,l

(

g′
)

− c · µ
(

j1; g′
)

= 1 + σ(j1; g′)σ(j2; g′)σ(i∗; g′)

+



σ(j1; g′)σ(j2; g′) + ∑
l∈N2(j1;g)\{j2}

σ(j1; g′)σ(j2; g′)σ(i∗; g′)σ(l; g′)





+ σ(j1; g′)σ(j2; g′)σ(i∗; g′) ∑
l∈N3(j1;g)

V̄i∗ ,l

(

g′
) [

σ(j1; g′)σ(j2; g′)σ(i∗; g′)
]−1 − c

· µ
(

j1; g′
)

Therefore, applying the fact that µ̄(i∗; g′) = µ̄(i∗; g) − 1 , and µ̄(j2; g) = 1 but µ̄(j2; g′) = 2,

we have:

(2b)

U
(

j1; g′
)

= 1 + ς2ςµ̄(jk ;g)−1 +
(

ς2 + (n̂ − 2) ς2ςµ̄(jk ;g)−1

)

+ ς2ςµ̄(jk ;g)−1 ∑
l∈N3(j1;g)

V̄i∗ ,l

(

g′
)

[

ς2ςµ̄(jk ;g)−1

]−1
− c · µ

(

j1; g′
)

To be able to compare Equation (1b) with (2b), in what follows, it is shown that:

∑
l ∈N3(l;g)

V̄j1 ,l

(

g
)

[

ςµ̄(jk ;g)

]−1
= ∑

l∈N3(l;g′)

V̄j1 ,l

(

g′
)

[

ς2ςµ̄(jk ;g)−1

]−1

First, notice that j1l-path is unique for any l ∈ N3 (l; g) because g and g′ are minimal. This

in turn necessitates that i∗has at most one link with an agent that is not an end node. Let

this agent be k. Thus, for any l ∈ N3 (l; g′) the sequence of agents in Pj1,l (g) and Pj1 ,l (g′)
are l, ..., k, i∗, j1 and l, ..., k, i∗, j2, j1 respectively. Consequently,

(3a)

V̄j1,l

(

g
)

= ∏
x∈Pj1,l(g)

σ
(

x; g
)

=



 ∏
x∈Pl,k(g)

σ
(

x; g
)









 ∏
x∈Pi∗ ,j1

(g)

σ
(

x; g
)







= V̄l,k

(

g
)





 ∏
x∈Pi∗ ,j1

(g)

σ
(

x; g
)







= V̄l,k

(

g
)

ςµ̄(jk ;g)ς1
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and

(3b)

V̄j1 ,l

(

g′
)

= ∏
x∈Pj1,l(g′)

σ
(

x; g′
)

=



 ∏
x∈Pl,k(g′)

σ
(

x; g′
)









 ∏
x∈Pi∗ ,j1

(g′)

σ
(

x; g′
)







= V̄l,k

(

g′
)





 ∏
x∈Pi∗ ,j1

(g′)

σ
(

x; g′
)







= V̄l,k

(

g′
)

ς2ςµ̄(jk ;g)−1ς1

Since the only difference between g and g′ is the fact that j1 removes his link with i∗ in

g and accesses j2 instead in g′, it holds true that V̄l,k (g′) = V̄l,k (g). Applying this fact to

Equation (3a) and (3b) above, we have:

(3c)∑
l ∈N3(l;g)

V̄j1 ,l

(

g
)

[

ςµ̄(jk ;g)

]−1
= ∑

l∈N3(l;g′)

V̄j1 ,l

(

g′
)

[

ς2ςµ̄(jk ;g)−1

]−1

Finally, since σ() is strictly concave, ς2ςµ̄(jk ;g) > ςµ̄(jk ;g)−1. This inequality, coupled with

the Equation (3c) above, entail that U (j1; g′) > U (j1; g) when Equation (1b) is compared

with (2b) . This completes the proof.
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