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Abstract. Mitigating climate change will require innovation in energy technologies.

Policy makers are faced with the question of how to promote this innovation, and

whether to focus on a few technologies or to spread their bets. We present results on

the extent to which public R&D might shape the future cost of energy technologies by

2030. We bring together three major expert elicitation efforts carried out by researchers

at UMass Amherst, Harvard, and FEEM, covering nuclear, solar, Carbon Capture and

Storage (CCS), bioelectricity, and biofuels. The results show experts believe that there

will be decreasing returns to R&D and report median cost reductions around 20% for

most of the technologies at the R&D budgets considered. Although the returns to solar

and CCS R&D show some promise, the lack of consensus across studies, and the larger

magnitude of the R&D investment involved in these technolopgies, calls for caution

when defining what technologies would benefit the most from additional public R&D.

Indeed, the wide divergence of opinions suggests that it is still too early to pick winners

and that a broad portfolio of investments may be the best option.
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1. Introduction

Mitigating climate change will require innovation in energy technologies. There is

agreement that both government policies to limit carbon dioxide emissions and R&D

investments will be necessary (Jaffe, et al. 2005, Goulder & Schneider 1999) to spur the

innovation needed to mitigate climate change at reasonable cost (Hoffert, et al. 2002).

Policy makers are faced with the question of how to promote this innovation, and

whether to focus on a few technologies or to spread their bets. A key difficulty in making

decisions about public R&D investments is the uncertainty about the impacts of those

investments. In addition, budgetary constraints in governments create real tensions

between focusing on making significant progress in a small number of technologies as

opposed to experimenting with a wider set of options. Knowledge on how to foster

technological change in the right direction is still sparse. Moreover, questions on how

best to support R&D investment decisions when multiple areas compete for funds are

common to fields other than energy, including health, agriculture, and defense.

In the field of energy, the U.S. National Research Council (NRC 2007) has explicitly

recommended that the U.S. Department of Energy uses probabilistic assessment based

on expert elicitations of R&D programs in making funding decisions. A number of

studies of expert judgments on single technologies have been published in many places in

the literature by a range of researchers (Rao, et al. 2006, Curtright, et al. 2008, Chung,

et al. 2011, Zubaryeva, et al. 2012, Abdulla, et al. 2013, Jenni, et al. 2013, Usher &

Strachan 2013, Zubaryeva & Thiel 2013). However, due to widely differing assumptions

and methods it has been very difficult for decision makers to get a sense of what

conclusions can be drawn from the sum of these studies (Clarke & Baker 2011). This

study is the first attempt to collect, harmonize, and analyze the insights that can be

derived from a large number of expert judgment studies performed by different research

teams on different energy technologies. We examine to what degree the international

community is coming to consensus around the prospects of key energy technologies that

have been highlighted as crucial for climate mitigation (IPCC 2011) and the role that

public R&D can play. This rigorous and transparent methodology for analyzing the

results of multiple elicitations side by side may be used to inform decisions in other

fields where scattered knowledge on the impact of R&D investments exists.

In order to do so we bring together three major expert elicitation efforts carried out

by researchers at UMass Amherst, Harvard, and FEEM, (Baker & Keisler 2011, Baker

& Chon 2009, Baker, et al. 2009, Baker, et al. 2008, Anadon, et al. 2014, Anadon,

et al. 2012, Chan, et al. 2011, Fiorese, et al. 2014, Fiorese, et al. 2013, Bosetti,

et al. 2012), covering nuclear, solar, Carbon Capture and Storage (CCS), bioelectricity,

and biofuels, and aimed at evaluating the impact that public R&D investments in the

United States and the European Union could have on the cost of these technologies.

All the above mentioned studies were carried out by means of expert elicitations,

a structured process for eliciting subjective probabilities from experts (Henrion &

Granger Morgan 1990).
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It should be noted that the three studies were not designed to be combined or

compared. This is both the motivation for, and a challenge to, the present analysis.

The UMass Amherst, FEEM, and Harvard studies were funded, respectively, by the US

Government, the EU 7th Framework Program, and Doris Duke Charitable Foundation,

respectively. Each study could be taken alone and used to inform R&D decision making.

However, using a single study would not represent the best information available, given

that we do not have an understanding of whether any of the studies or data points

within the studies provides more predictive information or a better representation of

uncertainty. Thus, we develop and implement a methodology aimed at supporting

decision makers that represents the extent of this uncertainty. We note that this study

is not intended to be a meta-analysis evaluating the impact that the expert selection

process or other factors in the study design might have had on the median estimates

or the uncertainty range (see (Anadon, et al. 2013) and (?) for this approach), but

rather a presentation of the current state of information in as clear, transparent, and

comparable way as possible, given the challenges.

The differences between the surveys allow us to consider a variety of assumptions

and detect whether there are robust insights or common patterns on the relative

effectiveness and riskiness of R&D programs in these different technologies to be drawn

by these exercises taken together. We set out to answer the following question: is there

consensus regarding the technologies that would be most affected by R&D investment;

or, at least in terms of potential cost reductions, is the best strategy to keep options

open by investing widely and gathering more information on the potential evolution of

costs?

Each expert elicitation survey covers one technology area and provides information

on multiple experts’ views from multiple sectors (academia, industry, and other public

institutes) on the prospects for future costs conditional on specific R&D funding levels.

Funding levels are grouped into three broad categories, Low (which is consistent with

a business-as-usual (BAU) scenario for FEEM, an increase of 50% to 200% over BAU

for Harvard, small investments, independent from the BAU, into specific technologies

for UMass), Medium (ranging between an additional 50% to a 16-fold increase over

low) and High (ranging between an additional 30% to a 10-fold increase over medium).

While both Harvard and FEEM included demonstration expenditures, UMass asked

questions about smaller R&D scenarios that did not include demonstration expenditures.

Given these different approaches, the absolute values of the funding levels vary across

studies; moreover, each expert thinks about the impact of additional spending in a rather

different way. All studies provided significant materials to minimize biases, but it is not

possible to define what of these different approaches would work better. The intention

of this work is to summarize the full spectrum of information available in these three

groups of studies. Our analysis is based on a total of 114 experts’ views (see appendix for

a complete list) collected through expert elicitation (in person, via mail, or on-line) in a

time span of three years (2009-2011). The appendix reports common and heterogeneous

assumptions of different surveys on R&D scenarios, funding amounts, elicited metrics
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and protocols, and how the surveys were harmonized to produce common metrics at

common target dates.

2. Materials and Methods

The number of experts included in each study varied from 3, for the UMass solar study,

to 31, for the FEEM nuclear study. The average number of experts per study was just

under 13, a slightly larger than a typical Expert Elicitation study [USEPA 2009]. All 14

studies had experts from academia; 11 studies had experts from government or NGOs;

and 10 studies had experts from industry. Studies varied, with UMass having over 60%

from academia and only 10% from industry; FEEM had over 50% from government and

NGOs, the remainder divided evenly between academia and industry; Harvard had 40%

from government, and with 35%, had the largest percentage from industry.

See Table 2 for a summary by technology.

Technologies Government Academia Industry

Solar 32% 36% 32%

CCS 41% 29% 29%

Biomass 36% 45% 19%

Nuclear 51% 25% 25%

Both Harvard and FEEM surveys collected information on self-reported expertise.

However, we note that there is no evidence that weighting by self-reported expertise

significantly changes or improves reporting (Bolger & Rowe 2014). Moreover, while

some meta-analyses have found differences in assessments based on background (Anadon

et al. 2013, ?), these differences are not consistent across studies of different technologies

(e.g., in the two citations provided, private sector experts were consistently more

optimistic than academics in the future of solar technologies but more pessimistic than

academics for nuclear), nor is there any evidence on which category of expert are more

likely to be more accurate. Thus, this variation in background is another strong reason

for presenting a wide view of the data.

Experts had given their consent, either in written (Anadon & Chan 2014, Anadon

et al. 2012, Chan et al. 2011, Fiorese et al. 2014, Fiorese et al. 2013, Bosetti et al. 2012) or

verbal (Baker & Keisler 2011, Baker & Chon 2009, Baker et al. 2009, Baker et al. 2008)

form, and have agreed on having their names published. However, the data is reported

anonymously thus it is never possible to link data with individual experts. A total of

165 surveys/interviews with experts were completed by the three teams. The details

on the methods used by the three teams are presented in the separate papers. Some

experts participated in multiple surveys, and some survey results were not used in this

study due to missing data. This resulted in 114 distinct participating experts. The

complete list of experts is reported in the appendix.

As discussed in the appendix, a harmonization and aggregation protocol was
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developed to allow the expert estimates from different elicitations to be compared

alongside each other. This protocol involved converting data into comparable currencies,

as well as converting data to have consistent metrics and years. After the three studies

were harmonized, we aggregated them using a linear opinion poll with equal weights.

Thus, the “combined” results represent a pooling of the three studies which we always

present in parallel to the individual study data for the sake of transparency.

3. Results and Discussion

We first look at returns to R&D, with a formulation that accounts for possible negative

returns. We define Ri,j as the returns to R&D for technology metric i when R&D

funding increases from j − 1 to j

Ri,j =
Mi,j−1 −Mi,j

Mi,j−1

(1)

j represents the funding level of Low, Medium, or High, and j− 1 is the next lower

funding level; Mi,j is the value of the metric for technology i, for funding level j. For

example, MSolar,medium would give the value of a specific measurement of the Levelized

Cost Of Electricity (LCOE) for solar, say the median, at Medium funding.

In order to calculate the returns from increasing R&D funding levels, shown in

Figure 1, it is necessary to make an assumption about the correlation of outcomes

resulting from different funding levels. We focus on the results under one extreme

assumption: the outcomes from different funding levels are perfectly correlated. This

assumption would hold if (1) higher funding levels always fund the same projects as lower

funding levels, plus additional projects; and (2) the additional projects are perfectly

correlated with the initial projects. The first argument explicitly holds for the UMass

studies. It does not explicitly hold for FEEM and Harvard, where the experts may

have been thinking about different projects at different levels of funding. The second

assumption seems unlikely to hold, but may be an approximation if we believe that

there are underlying factors that impact success in an entire technology category. In

the appendix we consider the implications of a second, extreme assumption that the

outcomes from different funding levels are independent and find that the central insights

remain the same.

Figure 1 shows the distribution of the relative returns to R&D, Ri,j, moving from

the low-to-mid R&D (left) and from the mid-to-high R&D (right) for cost metrics for

five technologies (LCOE for solar ($/kWh); non-energy cost for bio-electricity ($/kWh)

and biofuels ($/gge), which considers both thermochemical and biochemical conversion

pathways; additional capital cost for CCS in coal power plants ($/kW); and overnight

capital cost for large-scale nuclear power ($/kW), which includes both Gen. III/III+

and Gen. IV systems). For each of the 5 metrics presented, we plot the results of

sampling from each of the aggregate distributions derived using data from the FEEM,
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Figure 1. Returns to increasing public R&D funding from low-to-mid R&D levels

and from mid-to-high R&D levels, assuming improvements from increments of R&D

are perfectly correlated. The box plot represents the 5th, 25th, 50th, 75th and 95th

percentiles of the distribution aggregated across teams (the combined analysis) the

dots represent samples (in increments of 5 percentage points from the 5th to the 95th

percentile) from the FEEM (red), Harvard (green), and UMass (blue) studies. The

solid diamond-shaped points refer to the median returns.

Harvard and UMass surveys. The solid diamonds depict the 50th percentile for each

of the three studies. We also include the box plot of the combined distribution, which

weights equally the results of the three studies. Here we summarize the findings.

Prospects for technologies in the combined analysis: The median returns to R&D tend

to be somewhat similar across the technologies, with all technologies except CCS having

median returns around 20% for the low-to-mid R&D scenario (low-to-mid). CCS has a

median return of 40% for low-to-mid, and has the highest return for that level of funding

in both studies that considered it. In the low-to-mid category, Nuclear follows CCS as

the highest return, while in the mid-to-high category, solar and CCS have the highest

return.
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Agreement among studies: Figure 1 also highlights the differences between the

aggregate distributions of the potential returns among studies. UMass estimates,

marked by the blue circles, are generally more optimistic than FEEM and Harvard,

with the exception of solar. We also note a greater agreement among the three studies

for the returns on the cost of biofuels and solar PV. This could be due to the fact that

there is more recent experience building PV panels and biorefineries than building CCS,

nuclear and novel bioelectricity plants.

Focusing on the median returns, we find that different technologies do better under

different teams, with each of the 5 technologies showing up in 1st or 2nd place in one

of the teams, and only CCS showing up twice in the top 2, as shown in Table A4 of

Appendix. We note that while biofuels is one of the technologies with the largest returns

for FEEM, it is among the lowest returns for the other two teams. This may be related

to the prominent investment in biofuels in the U.S. by the DOE and BP that was already

taking place at the time of the elicitations, which did not have an analogue in the EU

(Anadon & Chan 2014, Fiorese et al. 2013). This may have led U.S. experts to predict

a smaller impact for any additional funding. The teams also result in different ranges,

with UMass having the largest range among the returns, and FEEM the lowest.

In general, we stress that the disagreement about the impact of R&D on the

future cost of technologies in the different studies may result from different factors.

First, the technologies themselves may be at an early stage so that there has not yet

been enough time for the creation and circulation of a common knowledge pool. It is

possible that different experts have a different experiences with and knowledge of various

aspects of the technology, which could result in information being compartmentalized

and not widely available. Second, some of the estimates obtained might be more

reliable than others, but the science of expert elicitations at this point does not allow

us to discriminate among the existing data points. This disagreement can be addressed

by more technology R&D and by more research into the study of expert elicitations.

Certainly this analysis calls for retrospective research evaluating the extent to which

different elicitations were more or less predictive.

Agreement among experts. For the FEEM and Harvard studies we decompose

uncertainty into two parts: the contribution to the aggregated variance of individual

uncertainty and between-expert uncertainty. Table 1 shows that for most of the studies

over half of the uncertainty is due to disagreements between experts.

This may indicate that individual experts are over-confident and/or that information

about the technologies is not well-diffused through the community. Particularly striking

is the difference between FEEM and Harvard in the solar studies. It appears that

European experts are much closer to consensus, at least under the assumption of larger

than current R&D investments, than US experts.
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Table 1. Contribution (in % of variance) of between-expert uncertainty to the

aggregate variance (see S4 for more details).

R&D Level

Low Mid High

Bio-electricity non-energy cost

FEEM 53.5 49.2 46.1

Harvard 73.3 51.3 36.3

Biofuels non-energy cost

FEEM 64.8 65.9 63.1

Harvard 62.1 61.3 67.9

CCS additional capital cost

FEEM NA NA NA

Harvard 49.6 73.7 77.2

Nuclear capital cost

FEEM 68.7 69.5 71.5

Harvard 64.4 66.1 68.8

Solar LCOE

FEEM 60 40.4 17.2

Harvard 72.4 80.6 80.5

Decreasing marginal returns to R&D investment. One of the proposed models in the

literature of endogenous growth theory (Jones 1995) is that of decreasing returns to

R&D, following a fishing-out model. By plotting returns versus R&D efforts we see the

emergence of decreasing marginal returns in almost all of the technologies across the

surveys (see Figure 2) along with the wide dispersion of additional R&D investment

covered by the three elicitation teams.

Uncertainty of Returns. One way to think about uncertainty over the outcome of

R&D programs is to consider the range of possible outcomes, especially in the context

of the median outcome. When looked at this way in Figure 1, solar is the least risky,

since there is very little variation in the aggregate returns within each and between the

three elicitation teams. However, another, more rigorous way, to consider uncertainty

is through the idea of stochastic dominance.

Figure 3 shows the Cumulative Distribution Functions (CDFs) for the returns

distributions in Figure 1. From these we can see stochastic dominance relations. A

distribution First Order Stochastically Dominates (FOSD) another if all decision makers

(who prefer more to less) prefer it; visually, a distribution FOSD another if its CDF

lies entirely to the right. A distribution Second Order Stochastically (SOSD) dominates

another if all risk averters prefer it; visually, a distribution X SOSD Y if the area

below the CDF for X measured from left to right, is less than the area below the CDF
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Figure 2. Median return divided by additional R&D investment level

for different technologies and teams. The x-axis shows the additional R&D

investment in a logarithmic scale [million of $2010/year].

for Y measured from left to right. Using these definitions, the most risky investments

are all found in the mid-to-high funding level, including biofuels and nuclear, which

are FOSD by all the other distributions, and bio-electricity, which is SOSD by all other

distributions. When looking at the combined analysis, the least risky investments are for

solar mid-to-high, and nuclear and CCS low-to-mid. These three technologies FOSD all

other distributions (excepting a slight crossover for CCS with solar low-to-mid). Note,

however, that the sizes of the investments into these three technologies is higher than

those into biofuels, bio-electricity, and solar at the low-to-mid level. In addition, nuclear

does not dominate in either the FEEM and Harvard results. Thus, the dominance is

ambiguous. Solar and CCS are close to second order stochastically dominating in two

of the studies each (FEEM and Harvard for solar and Harvard and UMass for CCS),

indicating that the prospects for R&D returns in those two technologies may be more

robust than for others. Solar, at both investment levels, has very vertical CDFs across

the three studies, meaning it has a tight range with little variance. While the medians

for most of the returns tend to be fairly close - between 16-30% for most technologies

- the upside (the high percentiles) varies significantly — between 21-64% for the same

set of technologies. In looking at the individual team panels, we see that all the teams

follow the same patterns in riskiness, in terms of stochastic dominance, that they did in

the medians, except Harvard bio-electricity, which shows no stochastic dominance over

any of the technologies, despite having the 2nd highest median.

In order to best support decision-making, we show both the pooled results of the

three studies (in the upper left panel); and the results of each individual study. This
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is useful in many ways. For near-term decision making, the gold standard is to use the

best available information; thus the combined data provides a starting point to support

decisions about R&D investments by analyzing the impact of those investments in future

costs. However, where there is considerable disagreement or wide uncertainty across the

various studies, as in this case, it is important that decision makers focus on near term

decisions that maximize option value — that is, near term decisions that increase the

flexibility to respond to new information in the future.

Combined FEEM

U Mass Harvard
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Figure 3. Cumulative distribution functions for the returns distributions

in Figure 1 by study, technology, and increase in R&D investment. The

thickness of the lines denotes the additional R&D investment level associated with

that technology investment. For the combined panel R&D investments are mean

investments across studies.

4. Conclusions

We have consolidated what the scientific community across both sides of the Atlantic

believe will be the impact of public R&D investments on the 2030 costs of five key energy

technologies. Going back to our original question, we find that scientific knowledge on
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the impact of R&D investments on the future of energy technologies does not justify a

strategy of focusing on one or two technologies: no single technology stands out across

the studies as having consistently higher returns or being less risky. While this analysis

should be complemented by energy economic models to support decision making, the

wide range of uncertainty regarding the impact of R&D suggests it is best to focus

on the option value of investments, whether into R&D or into expert elicitation, and

that it is too early to pick winners. The finding of decreasing marginal returns to

investment in any one category further reinforces this conclusion, as increasing funding

significantly for only one technology in the short term is expected to result in relatively

small benefits. There is, however, some evidence to suggest that experts generally believe

that the greatest risks are in large investments in nuclear, biofuel, and bio-electricity

technologies; and that solar has relatively low risk at low investment costs.

Our results provide a unique overview, including the largest number of top

scientific experts to date, regarding the expected impact of public R&D investments

on technological change in key energy technologies. The results from the harmonization

of the three separate expert elicitation studies are important, because each of the

three studies, taken alone, indicates that some technologies are more promising than

others. Yet, when taken together, the results are not as clear. The process outlined in

this paper allows us to analyze all the evidence available; the results of this process

point to the necessity of maximizing flexibility, rather than focusing on a specific

technology. Further research — into the technologies themselves and into methods for

assessing the future prospects of the technologies, such as expert elicitations — should

be pursued before committing too strongly to one path over another. The reason for

this is that different expert elicitations point to different technologies having greater

potential for cost reduction.Thus, while harmonizing and combining disparate studies is

a considerable challenge, it provides a great deal of value over and above the individual

elicitation studies, which are themselves very labor and resource intensive.

It is important to note that in order to make R&D funding decisions to meet

particular goals, such as mitigating climate change or improving energy security, policy

makers need to combine the information on cost reduction potentials with an analysis

of the macroeconomic implications of these technological changes. Small changes in the

cost of key technologies may have a disproportional impact on the cost of mitigating

climate change (Rogelj, et al. 2013, Kriegler, et al. 2014). Thus, information on the

potential for success alone, although a key element of such analysis, is not enough to

fully identify a portfolio of investments to contribute towards a particular societal goal.

Nevertheless, this analysis using all expert data available across technologies suggests

the need to continue a portfolio approach.
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Appendix

Appendix .1. Elicitation and Harmonization Methodology

Surveys characteristics and assumptions to facilitate comparisons across survey results

in common units.

In order to compare and aggregate these values, we harmonized them, making

assumptions to convert currencies and currency years, endpoint years, and common

metrics. Key assumptions used to convert to common metrics are in Table A1. Note

in particular that the experts in the FEEM study indicated a 12% capacity factor, thus

the other studies used this to harmonize. But, most of the Harvard and UMass experts

were thinking about much higher capacity factors, and therefor much lower LCOE than

are reported here.

In order to adjust the UMass endpoints from 2050 to 2030, which was the time frame

used in the FEEM and Harvard studies, we backcasted the UMass 2050 estimates to 2030
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Table A1. Key survey characteristics and assumptions for harmonization.
Group Biofuels Bioelectricity CCS Nuclear Solar
UMass Capital cost per gge (gallon Various technical Various technical Various technical Manufacturing
metrics of gasoline equivalent), endpoints and cost endpoints and cost endpoints and cost cost per m2,
elicited capacity, efficiency, other efficiency lifetime
FEEM Cost per gge, Cost per kwh, N/A Overnight capital Manufacturing
metrics O&M cost O&M cost cost
elicited
Harvard Cost per gge, Cost per kwh, Overnight capital Overnight capital Module capital cost per
metrics yield yield cost ($/kW) cost ($/kW) Wp, module efficiency,
elicited (gge/dry ton (gge/dry ton generating fixed O&M cost, module efficiency,

of feedstock), of feedstock), efficiency, variable module efficiency,
plant life, plant life (HHV) O&M cost, inverter cost,
feedstock costs capacity factor, fuel cost, inverter efficiency,

book life thermal burnup inverter lifetime
Common Non-energy Non-energy Capital cost Overnight LCOE
Metrics cost per gge, cost per kwh per KW capital
Harmonized efficiency efficiency Energy penalty cost
Key Calculations assume Calculations assume See description See description Capacity 12%
Assumptions that the fraction that the fraction below needed below needed Factor

of non-energy costs of non-energy costs about assumptions about assumptions Discount 10%
at the mean is the at the mean is the to turn UMass 2050 to turn UMass 2050 rate
same across the same across the estimates to 2030 estimates to 2030 Lifetime∗ 20
distribution. See distribution. See estimates. estimates. BOS $/m2 75 UMass
description below description below 250 Harvard
about assumptions about assumptions See description
needed to turn needed to turn below about
UMass 2050 UMass 2050 assumptions
estimates estimates needed to turn
to 2030 estimates. to 2030 estimates. UMass 2050 estimates

to 2030 estimates

using Moore’s Law and parameters from (Nagy, et al. 2013). (Nagy et al. 2013) looked

at a large amount of data for many different technologies, and found that estimated

costs that used only time as a parameter performed nearly as well as the traditional

experience curve. Thus, we use the following relation based on Moore’s Law:

ct = tte
−m(t−τ) (A.1)

Where m is a parameter of this model calculated from B, the learning rate, and g,

the growth rate of production, as follows.

m = Bg (A.2)

Thus, we use this method to estimate the values for 2030, namely:

c2030 = c2050e
−m(2030−2050) = c2050e

m(2050−2030) (A.3)

In order to estimate the parameter m, we combine learning parameters B from the

literature, with the growth parameter g from (Nagy et al. 2013). Table A2 summarizes

the parameters used.

R&D funding levels

Each study asked experts to assess uncertain future costs and performance of energy

technologies conditional on the level of R&D funding by governments with the goal of

examining the effect of government R&D on reducing the costs of reductions in carbon
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Table A2. Parameters for backcasting.

Technology g B m

Solar 0.09 0.32 0.0302

Nuclear 0.025 0.086 0.0022

Liquid Biofuels 0.06 0.36 0.0215

Bio-electricity 0.046 0.34 0.0156

CCS 0.075 0.16 0.012

Table A3. Definition of R&D levels (bins) in each of the three studies (in

million of $2010/year).

UMass Low Mid High

Solar 25 140 NA

Nuclear 40 480 1980

CCS 12.75 48 108

Biofuels 12.5 201 838

Bio electricity 15 50 150

Harvard†

Solar 205 409 4091

Nuclear 942 1883 18833

CCS 1125 2250 22500

Biofuels† 293 585 5850

Bio electricity† 293 585 5850

FEEM

Solar 171 257 342

Nuclear? 753 1514 15140

CCS NA NA NA

Biofuels 168 252 336

Bioelectricity 169 254 338

Funding Levels $M/yr
†The Harvard low, mid and High R&D levels for biofuels and bioelectricity are the same because

the elicitation considered the bioenergy program at the U.S. Department of Energy as a whole and a

breakdown between RD&D for bioelectricity and biofuels was not provided by the experts. Thus, the

investment in biofuels and bioelectricity respectively in the three different R&D levels is a fraction of

the number included in the table.
?The Harvard numbers for the mid and high R&D scenarios and the FEEM numbers for the nuclear

mid and high R&D levels represent the average R&D investment across all the experts corresponding

to that R&D level.

emissions from energy production and use. The studies defined R&D funding levels in

different ways (see Table A3).

A key question is the relationship between government R&D funding in Europe,
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US, and other parts of the World, notably China. A further question is the

relationship between government and private sector R&D funding—and the effects of

government policy, such as feed-in tariffs, renewable tax credits, renewable portfolio

standards, government purchasing of renewables, on private sector R&D funding, and

manufacturing scale-up. It is hard for any analyst, including the experts selected by

each study, to disentangle these effects. Moreover, just as there is some evidence of

insensitivity to scale in contingent valuation studies, we felt that our experts may not

be well-calibrated to the specific funding amounts. Therefore, in order to avoid a sense

of over-specificity, we compare the results for low, medium, and high funding amounts

in each study, against each other.

Experts that participated

A total of 165 surveys/interviews with experts were completed by the three teams.

Due to missing data some of the survey results were not included in the final probability

distributions. Additionally, some experts participated in multiple surveys. This resulted

in 114 distinct participating experts. (Due the anonymity of the individual surveys, we

cannot narrow this number further). The complete list of experts is reported in Tables

A5–A17.

Differences between the expert elicitations among the three teams

The elicitations were conducted in various ways. Some were conducted face to

face, some were conducted via mail in a written form (in most cases with additional

interactions between researchers and experts over the phone), some were conducted

online (again, with access to researchers when needed), and some of the online surveys

were followed up by a group workshop. Below is a summary of the methods used by

the three research teams for each of the five technologies. For more details the reader

is referred to the papers describing the elicitation results (referenced in the main text).

• FEEM: biofuels (face to face); bioelectricity (face to face); nuclear (mail and group

workshop); solar (face to face).

• Harvard: biofuels (mail); bioelectricity (mail); nuclear (online and group workshop);

solar (online); and CCS (mail, face to face).

• UMass: biofuels (face to face, mail); bioelectricity (face to face, mail, phone);

nuclear (face to face and mail); solar (face to face with mail followup); and CCS

(face to face and mail).

In the case of the online and mail surveys, the elicitation protocols included phone

conversations and/or e-mail exchanges between experts and researchers as needed.

As discussed in the detailed papers and reports on the different elicitations, all

three teams took precautions to correct biases inherent to expert estimates.

The UMass and Harvard elicitations included US experts and the FEEM elicitations

included mainly experts from the European Union. And while Harvard and FEEM
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experts spanned academia, public institutions, and the private sector, the UMass

elicitations did not include industry experts with the rationale that the focus of the

UMass elicitations was on radical breakthroughs.

Appendix A.2. Methodology for fitting distributions

FEEM and Harvard asked their experts to provide 10th, 50th, and 90th percentiles

for each quantity to be assessed as a probability distribution. We examined three

approaches to fitting probability distributions to the specified 10th, 50th, and 90th

percentiles (x10, x50, x90): Triangular, shifted Weibull, and a piecewise cubic fit to

the cumulative distribution, and settled on the piecewise cubic fit. The piecewise cubic

fits a cubic polynomial between successive percentiles, x0, x10, x50, x90, x100, on

the cumulative distribution. We specify the minimum (x0 or zeroth percentile) and

maximum (x100 or hundredth percentile) such that the ratios:

• x0/x10 = x10/x50

• x100/x90 = x90/x50

We also limit the minimum to be positive (including for CCS additional capital cost,

which included a small chance of being negative according to the U Mass fitted

distributions).

The UMass elicitations asked experts to assess two to four points on the cumulative

probability distribution, with specified value and probability. They use a piecewise

cubic to fit the selected points. This required additional assumptions in some cases,

particularly on high and low values.

Appendix A.3. Methodology for aggregating

There has been considerable research on methods for aggregating probability

distributions obtained from different experts (Berry, et al. 1996, Hammitt & Shlyakhter

1999). The simplest and most widely-used aggregation method is a weighted average or

linear opinion pool: The aggregate distribution is the weighted average of the probability

density (or cumulative probability) over the expert distributions. This method is

sometimes called “Laplacean mixing” after Pierre-Simon Laplace who described it in

Thorie Analytique des Probabilits (Hammitt & Shlyakhter 1999). For simplicity, we use

equal weighting of the experts assessing each quantity in each study.

In order to avoid specious irregularity and multiple modes due to overconfidence of

the experts, we smooth the distributions so that they are nearer “bell-shaped” with a

single mode with tails on each side. We do this by fitting a piecewise cubic to the 0th,

10th, 50th, 90th, and 100th percentiles from the Laplacean mixing distribution.

Between-expert uncertainty to the aggregate variance
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In order to calculate the between-expert uncertainty σ2 we use the equation

σ2 = (µi − µx)
2, where µi is the mean of each expert distribution and µx the average of

the aggregate distribution.

Appendix A.4. Returns to R&D assuming independence

Each dot in Figure A1 represents equation 1 in the main text for random draws from

the two relevant distributions, assuming the distributions are independent. Thus, we

see a number of negative returns to R&D.

Biofuels non−energy cost Bio−electricity non−energy cost CCS additional capital cost Nuclear capital cost Solar LCOE

−2000

−1500

−1000

−500

0

Mid to Low High to Mid Mid to Low High to Mid Mid to Low High to Mid Mid to Low High to Mid Mid to Low High to Mid

Figure A1. Boxplots of the returns to R&D assuming improvements

from increments of R&D assuming independence between R&D funding

levels. The boxplots show the 5th, 25th,50th,75th and 95th percentiles of the combined

distribution.

Appendix A.5. Highest median return for each study by technology

Table A4 shows the Highest median return for each study by technology.

Appendix A.6. List of experts for each study by technology

Tables A5–A17 show the experts and their respective affiliations.
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Table A4. The rankings of the returns to R&D technologies, by median, for

each analysis. We consider the highest median return for each technology.

Combined FEEM Harvard UMass

CCS Solar CCS Nuclear

Nuclear Bio-fuels Bio-electricity CCS

Solar Nuclear Solar Bio-electricity

Bio-electricity Bio-electricity Biofuels Biofuels

Bio-fuels Nuclear Solar

Table A5. Bioenergy Experts for Harvard.

Harvard Bioenergy (bioelectricity and biofuels)

Name Affitiation

David Austgen Shell

Joe Binder UC Berkeley

Harvey Blanch UC Berkeley

Andr Boehman Penn State University

Robert Brown Iowa State University

Randy Cortright Virent

Eric Larson Princeton

Lee Lynd Dartmouth

Tom Richard Penn State University

Phillip Steele Mississippi State University

Bob Wallace Penn State University

Bryan Willson Solix
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Table A6. Nuclear Experts for Harvard.

Harvard - nuclear

Name Affitiation

John F. Ahearne NRC, NAS nuclear power, Sigma XI

Joonhong Ahn University of California at Berkeley

Edward D. Arthur Advanced Reactor Concepts

Sydney J. Ball Oak Ridge National Laboratory

Ashok S. Bhatagnar Tennessee Valley Authority

Bob Budnitz Lawrence Berkeley National Laboratory

Douglas M. Chapin MPR Associates

Michael Corradini University of Wisconsin

B. John Garrick U.S. Nuclear Waste Technical Review Board

Michael Warren Golay Massachusetts Institute of Technology

Eugene S. Grecheck Dominion Energy, Inc.

Pavel Hejzlar TerraPower USA

J. Stephen Herring Idaho National Laboratory

Thomas Herman Isaacs Stanford University,

Lawrence Livermore National Laboratory

Kazuyoshi Kataoka Toshiba

Andrew C. Klein Oregon State University

Milton Levenson Retired (previously at ORNL, Bechtel, and EPRI)

Regis A. Matzie RAMatzie Nuclear Technology Consulting,

LLC (previously at Westinghouse)

Andrew Orrell Sandia National Laboratory

Kenneth Lee Peddicord Texas A&M University

Per F. Peterson University of California at Berkeley

Paul Pickard Sandia National Laboratory

Burton Richter Stanford University

Geoffrey Rothwell Stanford University

Pradip Saha Wilmington, North Carolina

Craig F. Smith Livermore/Monterey Naval Post Graduate School

Finis H. Southworth Areva

Temitope A. Taiwo Argonne National Laboratory

Neil Emmanuel Todreas Massachusetts Institute of Technology

Edward G. Wallace Pebble Bed Modular Reactor (Pty) Ltd.
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Table A7. CCS Experts for Harvard.

Harvard - CCS

Name Affitiation

Janos Beer Massachusetts Institute of Technology

Jay Braitsch U.S. Department of Energy

Joe Chaisson Clean Air Task Force

Doug Cortez Hensley Energy Consulting LLC

James Dooley Pacific Northwest National Laboratory

Joint Global Climate Research Institute

Jeffrey Eppink Enegis, LLC

Manoj Guha Energy & Environmental Service International

Reginald Mitchell Stanford University

Stephen Moorman Babcock & Wilcox

Gary Rochelle University of Texas at Austin

Joseph Smith Idaho National Laboratory

Gary Stiegel National Energy Technology Laboratory

Jost Wendt University of Utah

Table A8. PV Experts for Harvard.

Harvard - PV

Name Affitiation

Allen Barnett University of Delaware

Sarah Kurtz NREL

Bill Marion NREL

Robert McConnell Amonix, Inc.

Danielle Merfeld GE Global research

John Paul Morgan Morgan Solar

Sam Newman Rocky Mountain Institute

Paul R. Sharps Emcore Photovoltaics

Sam Weaver Cool Energy

John Wohlgemuth NREL

Table A9. Biofuels Experts for U MASS.

U Mass - Biofuels

Name Affitiation

Richard Bain National Renewable Energy Lab

Robert Brown Iowa State University

Bruce Dale Michigan State University

George Huber University of Massachusetts, Amherst

Chris Somerville and Harvey Blanch University of California, Berkeley

Phillip Steele Mississippi State University
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Table A10. Nuclear Experts for U MASS.

U Mass - Nuclear

Name Affitiation

Robert Budnitz Lawrence Berkeley National Laboratory

Darryl P. Butt Boise State

Per Petersen U.C. Berkeley

Neil Todreas MIT

Table A11. CCS Experts for U MASS.

U Mass - CCS

Name Affitiation

Richard Doctor Argonne National Laboratory

Barry Hooper Cooperative Research Centre for Greenhouse Gas Technologies

Wei Liu Pacific Northwest National Lab

Gary Rochelle The University of Texas at Austin

Table A12. PV Experts for U MASS.

U Mass - PV

Name Affitiation

Nate Lewis The California Institute of Technology

Mike McGehee Stanford University

Dhandapani Venkataraman (DV) University of Massachusetts, Amherst

Table A13. Bio-eletricity Experts for U MASS.

U Mass - Bio-eletricity

Name Affitiation

Bruce Folkdahl University of North Dakota

Richard Bain NREL

Dave O’’connor EPRI

Evan Hughes EPRI
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Table A14. PV Experts for FEEM.

FEEM - PV

Name Affiliation

Rob Bland McKinsey

Luisa F. Cabeza University of Lleida

Roberta Campesato Centro Elettrotecnico Sperimentale Italiano

Carlos del Canizo Nadal Universidad Politecnica de Madrid

Aldo Di Carlo UniRoma2

Ferrazza Francesca Ente Nazionale Idrocarburi

Paolo Frankl International Energy Agency

Arnulf Jger-Waldau European Commission DG JRC

Roland Langfeld Schott AG.

Ole Langniss FICHTNER GmbH & Co. KG

Antonio Luque Universidad Politecnica de Madrid

Paolo Martini Archimede Solar Energy

Christoph Richter German Aerospace Center

Wim Sinke Energy Research Centre

Rolf Wstenhagen University of St. Gallen

Paul Wyers Energy Research Centre

Table A15. Bio-electricity Experts for FEEM.

FEEM Bio-electricity

Name Affiliation

Alessandro Agostini JRC - Joint Research Centre

Gran Berndes Chalmers University of Technology

Rolf Bjrheden Skogforsk - the Forestry Research Institute of Sweden

Stefano Capaccioli ETA - Florence Renewable Energies

Ylenia Curci Global Bioenergy Partnership

Bernhard Drosg BOKU - University of Natural Resources and Life Science

Berit Erlach TU Berlin - Technische Universitt Berlin

Andr P.C. Faaij Utrecht University

Mario Gaia Turboden s.r.l.

Rainer Janssen WIP - Renewable Energies

Jaap Koppejan Procede Biomass BV

Esa Kurkela VTT - Technical Research Centre of Finland

Sylvain Leduc IIASA - International Institute for Applied Systems Analysis

Guido Magneschi DNV KEMA

Stephen McPhail ENEA - Agenzia nazionale per le nuove tecnologie,

l’energia e lo sviluppo economico sostenibile

Fabio Monforti-Ferrario JRC - Joint Research Centre



24

Table A16. Biofuels Experts for FEEM.

FEEM - Biofuels

Name Affiliation

David Chiaramonti Universit degli Studi di Firenze

Jean-Francois Dallemand Joint Research Centre (Ispra)

Ed De Jong Avantium Chemicals BV

Herman den Uil Energy Research Centre of the Netherlands (ECN)

Robert Edwards Joint Research Centre (Ispra)

Hans Hellsmark Chalmers University of Technology

Carole Hohwiller Commissariat l’nergie atomique et aux nergies alternatives (CEA)

Ingvar Landalv CHEMREC

Marc Londo Energy Research Centre of the Netherlands (ECN)

Fabio Monforti-Ferrario Joint Research Centre (Ispra)

Giacomo Rispoli Eni S.p.A.

Nilay Shah Imperial College London

Raphael Slade Imperial College London

Philippe Shild European Commission

Henrik Thunman Chalmers University of Technology
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Table A17. Nuclear Experts for FEEM.

FEEM - Nuclear

Name Affiliation

Markku Anttila VTT (Technical Research Centre of Finland)

Fosco Bianchi Italian National Agency for New Technologies,

Energy and sustainable economic development (ENEA)

Luigi Bruzzi University of Bologna

Franco Casali Italian National agency for new technologies, Energy and

sustainable economic development ENEA;

IAEA; University of Bologna

Jean-Marc Cavedon Paul Scherrer Institut

Didier De Bruyn SCK CEN, the Belgian Nuclear Research Centre

Marc Deffrennes European Commission, DG TREN, Euratom

Allan Duncan Euratom, UK Atomic Energy Authority, HM Inspectorate of Pollution

Dominique Finon Centre national de la Recherche Scientifique (CNRS),

Centre International de Recherche sur l’Environnement

et le Developpement (CIRED)

Konstantin Foskolos Paul Scherrer Institut

Michael Fuetterer Joint Research Centre - European Commission

Kevin Hesketh UK National Nuclear Laboratory

Christian Kirchsteiger European Commission, Directorate-general Energy

Peter Liska Nuclear Power Plants Research Institute

Bruno Merk Institute of Safety Research

Forschungszentrum Dresden-Rossendorf

Julio Martins Montalvo e Silva Instituto Tecnologico e Nuclear

Stefano Monti Italian National agency for new technologies,

Energy and sustainable economic development (ENEA)

Francois Perchet World Nuclear University

Enn Realo Radiation Safety Department, Environmental Board, Estonia;

University of Tartu

Hans-Holger Rogner International Atomic Energy Agency (IAEA)

David Shropshire Joint Research Centre - European Commission

Simos Simopoulos National Technical University of Athens;

Greek Atomic Energy Commission, NTUA

Renzo Tavoni Italian National agency for new technologies,

Energy and sustainable economic development (ENEA)

Andrej Trkov Institute Jozef Stefan

Harri Tuomisto Fortum Nuclear Services Oy

Ioan Ursu Horia Hulubei National Institute of Physics

and Nuclear Engineering (IFIN-HH)

Bob van der Zwann Energy Research Centre of the Netherlands (ECN)

Georges Van Goethem European Commission, DG Research, Euratom

Simon Webster European Commission, DG Energy, Euratom

William Nuttall University of Cambridge




