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Abstract

Climate change is a phenomenon beset with major uncertainties and researchers should
include them in Integrated Assessment Models. However, including further dimensions in IAM
models comes at a cost. In particular, it makes most of these models suffer from the curse
of dimensionality. In this study we benefit from a state-reduced framework to overcome those
problems. In an attempt to advance in the modelling of adaptation within IAM models, we
apply this methodology to shed some light on how the optimal balance between mitigation and
adaptation changes under different stochastic scenarios. We find that stochastic technology
growth hardly affects the optimal bundle of mitigation and adaptation whereas uncertainty
about the value of climate sensitivity and the possibility of tipping points hitting the system
change substantially the composition of the optimal mix as both persuade the risk-averse social
planner to invest more in mitigation. Overall, we identify that including uncertainty into the
model tends to favour (long-lasting) mitigation with respect to (instantaneous) adaptation.
Further research should address the properties of the optimal mix when a stock of adaptation
can be built.
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1 Introduction

Climate change is all about uncertainty: uncertainty governing the natural processes involved, un-
certainty arisen due to its long-term nature, uncertainty on how agents react to those phenomena
or uncertainty on how every event is modelled. Most IAMs (including DICE) are deterministic and
way too complex to permit a proper incorporation of uncertainty. Monte-Carlo methods are the
most common approach to addressing uncertainty in the integrated assessment literature. However,
Monte-Carlo methods, as implemented in this strand of literature, do not model decision making
under uncertainty. They present a sensitivity analysis that averages over deterministic simulations.
The quantitative analysis of optimal climatic policies under uncertainty requires a recursive dynamic
programming implementation of IAMs. Such implementations are subject to the curse of dimensional-
ity. Every increase in the dimension of the state space is paid for by a combination of (exponentially)
increasing processor time, lower quality of the value or policy function approximations, and reductions
of the uncertainty domain. However, Traeger (2014) has recently delivered a state-reduced, recursive
dynamic programming implementation of the DICE-2007 model which, in its basic specification, has
only 4 state variables.1 This leaves us with some extra margin to enrich the model with new features
or include uncertainty. In contrast to Monte-Carlo approaches, this model solves for the optimal policy
under uncertainty. The present methodology incorporates uncertainty in every period and the decision
maker optimally reacts to the anticipated future resolution of uncertainty.

DICE deals explicitly with rational economic agents operating through time in stochastic environ-
ments. In this model, a decision maker must choose a sequence of actions through time subject to
some environmental restrictions. If the environment is subject to unpredictable outside shocks, it is
clear that the best future actions depend on the magnitude of these shocks. The way of deciding on
the immediate action to take as a function of the current situation is called a recursive formulation
because it exploits the observation that a decision problem of the same general structure recurs each
period.2 The use of recursive methods makes it possible to treat a wide variety of dynamic economic
problems-both deterministic and stochastic.

In the past some authors have managed to formulate the DICE model recursively. For instance
Kelly and Kolstad (1999, 2001) implement the DICE-1994 model as a recursive dynamic program-
ming model, analysing learning time in detail, but they do not consider the separate contributions of
uncertainty, learning and stochasticity on near term optimal policies. Some years later Leach (2007)
implements the same DICE version showing that learning slows down further under additional uncer-

1Basically, the reduction is achieved by simplifying the carbon cycle and the temperature delay equations.
2Recursive methods in economics were extensively introduced by Stokey et al. (1989).
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tainty. These papers are seminal contributions to uncertainty assessment in climate change and careful
implementations of the original DICE version. A different set of papers introduce uncertainty into
non-recursive implementations of integrated assessment models. Closest to our implementation, Keller
et al. (2004) introduce uncertainty and learning into an earlier version of DICE. However, the employed
non-recursive methodology only allows for a few discrete uncertain events, or exogenous learning over
three alternative scenarios. For many applications, such individual uncertain events deliver interesting
insights. However, these studies cannot replace comprehensive uncertainty evaluations using state
of the art stochastic dynamic programming methods. Finally, Monte-Carlo methods are the most
common approach to addressing uncertainty in the integrated assessment literature. Monte-Carlo
methods, though, do not model decision making under uncertainty as they are implemented in this
strand of literature. They present a sensitivity analysis that averages over deterministic simulations.

As noted in the earlier chapter, adaptation to climate change is key to confront climate change
impacts and the IPCC has made a plea for advancing in its comprehension and its integration within
IAM models. In the last chapter we analysed how different schemes of adaptation interfere with
the optimal amount of mitigation under deterministic conditions. Here we will expand the previous
analysis to include different sources of uncertainty that may affect the model. Including uncertainty
into the model may potentially distort results as we already know them. For instance, Lecocq and
Shalizi (2010) find on their partial equilibrium model, when uncertainty is introduced into the model,
the cost effectiveness of mitigation is found to increase with regard to adaptation.

In this study we conduct a series of experiments covering a wide menu of uncertainties that may
affect our model. We divide these uncertainties into four broad categories and provide an example
of each group. First, we identify uncertainties about the value of the parameters of the model
(epistemic). We will study how an unknown value of climate sensitivity would affect optimal policies
and basic magnitudes. Second, we allow the exogenous processes that govern the dynamics of the
model to behave stochastically. We will present stochastic labour-augmenting technology growth as
an example. Third, we will include uncertainties in the way individuals (social planner) learn from
the past. In particular we will equip our model with bayesian learning, by which policymakers have a
certain prior about the value of certain parameters of the model and update their beliefs in response
to the observation of realised variables. Fourth, we will study the possibility of the occurrence of
catastrophes, allowing for the existence of tipping points in an undetermined point of time.

The remainder of the paper is organised as follows. In Section 2 we will include uncertainty
generically into the AD-DICE model and state the benchmark Bellman equation. Section 3 will draw
some messages about the optimal adaptation decision if we are unsure about the outstanding climate
sensitivity. In Section 4 we will experiment how a stochastic technology growth affects the basic
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magnitudes of our model. Section 5 will address how optimal decisions vary if individuals learn over
the years about the uncertain parameters governing the model. Section 6 will explore the possibility
of having irreversible tipping points that compromise the stability of the system. Finally, Section 7
will conclude.

2 The AD-DICE model with uncertainty

Our IAM combines a growing Ramsey-Cass-Koopmans economy with a simple climate model. It is
based on the widespread DICE model by Nordhaus (2008) and its stochastic dynamic programming
implementation following Kelly and Kolstad (1999). Our formulation resembles closely that of Traeger
(2014), who extends the small set of existing state of the art implementations of stochastic dynamic
programming integrated assessment models. His main contribution is to reduce the number of states
needed to represent the climate side of the DICE model without sacrificing its benchmark in capturing
the interaction between emissions and temperature increase. Such reduction of the state space is
crucial to permit additional state variables needed to capture uncertainty and avoid the curse of
dimensionality.3 To model the adaptation behaviour, we rely primarily on the work by de Bruin et al.
(2009), which allows us to separately choose between mitigation and adaptation at every optimisation
stage. Check Figure 1 to have a glimpse of the detailed workflow of the model. The equations and
processes describing the model are fully described in Appendix A.

2.1 Bringing uncertainty into the picture

As noted, the power of dynamic programming, relative to an alternative such as nonlinear program-
ming, is most evident with stochastic problems. Suppose that the stochastic equation of motion

xτ+1 = g(aτ , xτ , ετ )

replaces the deterministic equation of motion xτ = g(aτ , xτ ). Here, ετ is the time τ realisation
of an independently identically distributed random variable with known distribution. The dynamic
programming equation reads now as

V s(x) = max
a

Eε
{
U(a, x) + βV s−1(g(a, x, ε))

}
3We cut the number of state variables almost to half with respect to DICE 2007 and DICE 2013.
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The approximation proceeds as in the deterministic case, except now we have to take expectations
at every stage. If ε is distributed continuously, Gaussian quadrature presents an efficient approxima-
tion to the expectation integral. Gauss- Legendre quadrature once more approximates a probability
weighted integral by a weighted sum. The L quadrature nodes and the L weights in the sum are
selected to match first 2L moments of the distribution

�
Z

zkp(z)dz =
L∑
l=1

ωlx
k
l for k = 0, . . . , 2L− 1

Hence we approximate the expectation

Eε
{
U(a, x) + βV s−1(g(a, x, ε))

}
≈ U(a, x) + β

L∑
l=1

ωlV
s−1(g(a, x, εl))

Given an estimate of the value function at stage s− 1, V̂ s−1(x) = φ(x)cs−1, at stage s we obtain

V s
j = max

a
U(a, x) + β

L∑
l=1

ωlφ(g(a, xj, εl))c
s−1

We calculate the stage s basis coefficients cs as described in the (Value) Function approximation
method in García-León (2015) to obtain an estimate of the stage s value function, V̂ s(x) = φ(x)cs,
and proceed to stage s + 1. This strategy goes on recursively up to a desired break criterion for the
vector of coefficients, c.4

2.2 The Bellman equation

An optimal decision under uncertainty has to anticipate all possible future realizations of the random
variables together with the corresponding optimal future responses. The Bellman equation reduces
the complexity of the decision tree by breaking it up into a trade-off between current consumption
utility and future welfare, where future welfare is a function of the climatic and economic states in
the next period. The best possible total value of present and future welfare is the so-called value
function V (kt,Mt, Tt, t).5 In the case of uncertainty, the value function generally relies on additional
states summarized in the vector Φt, capturing uncertain (possibly formerly) exogenous states. We
then would write the value function as V (kt,Mt, Tt,Φt, t).

4We set this break criterion at 10−4.
5For numerical considerations, we will work with the normalised version of this Bellman equation.
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V (kt,Mt, Tt,Φt, t) = max
Ct,µt,pt

Lt

(
Ct
Lt

)1−η

1−η ∆t+ βt,∆t E [V (kt+∆t,Mt+∆t, Tt+∆t,Φt+∆t, t+ ∆t)] (2.1)

Given the value function, we can analyse the control rules and simulate different representations
of the optimal policy over time. For the simulation, we either fit a continuous control rule, or we
forward-solve the Bellman equation, knowing the value function, starting from the initial state. Under
uncertainty, we can quickly simulate a large set of runs and depict statistical properties. Without
normalising capital to effective labour units we would need a much larger state space for capital to
cover at least a reasonably long time horizon, even without growth uncertainty.

We solve the model using the algorithm presented in García-León (2015). We run the resulting
code in Matlab using the compecon optimiser as presented in Miranda and Fackler (2002). Since each
of the optimisation at the different Chebychev nodes is independent conditional on the time step, we
can compute each of them independently. Hence, we make use of the Parallel Programming Toolbox
in Matlab to parallelise that process so that the whole process speeds up nearly 4 times.6

3 Uncertain climate sensitivity

A paradigmatic source of uncertainty is that arisen due to imperfect knowledge of the parameters
governing the dynamics of the model. We call it parametric (or epistemic) uncertainty. The present
system is represented by a very large set of parameters. One whose calibration arises more controversy
is climate sensitivity. The reader should recall that climate sensitivity is the equilibrium temperature
response to doubling of atmospheric CO2 concentration with respect to preindustrial levels and is
represented by s in our model. Despite significant advances in climate science, the “likely” range has
been 1.5◦C to 4.5◦C for over three decades, with a “most likely” value of 3◦C. In 2007, the IPCC
narrowed the likely range to 2-4.5◦C. It reversed its decision in 2013, reinstating the old range. The
AR5 also removed the 3◦C “most likely” value.

We start with a simple but powerful exercise. We ignore the actual value of climate sensitivity
but here we assume a likely distribution to describe its value. In particular, we believe that the true
climate sensitivity follows from the realisation of a normal variable

s ∼ N(µs, σ
2
s)

6In a Windows 10, Intel i7-2600 @3.40GHz PC. Matlab R2011a
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centered around µz = 3.08 and standard deviation σz = 2.7%.7 Typically, this parameterisation
will yield values belonging to the interval (1.5, 4.5).

We run a set of N = 100 simulations projecting the model forward for each of the respective
values of climate sensitivity. A description of some of the basic results can be found in Figure 2. The
model features essentially the basic properties of the standard AD-DICE model but now the degree of
variability of the basic magnitudes increase in response to climate sensitivity uncertainty. As depicted
in the various panels of FIgure 2 the main variables of the model behave similarly to the benchmark
specification and most of them fluctuate symmetrically around the median values.

Lower (higher) climate sensitivity will decrease (increase) mitigation relative to adaptation. The
rationale behind is that if emissions cause less climate change, there will be lower damages. This will
lead to lower levels of mitigation and adaptation. These latter results are gently summarised in Figure
3. Specifically, a slow climatic response diverts resources to instantly adapt to climate change in the
short-run (more than half of the resources are devoted to adaptation) although the long-term optimal
behaviour still yields a stable equilibrium of the mix (60% mitigation - 40% adaptation). Conversely,
if high climate sensitivity applies, mitigation is relatively more benefical to combat climate change. As
a result, a ratio of 75-25% quickly becomes optimal. In this case, we can find optimal full abatement
of emissions in the very long run.

4 Stochastic technology growth

Now we present an analysis of the optimal mix between mitigation and adaptation when major pro-
cesses governing the dynamics of the model are stochastic. In this area, we can find randomness in
shocks affecting the growth of technology, the accumulation of carbon, the evolution of temperatures,
etc. In order to preserve computability we will study only one random source of variation.

In the present environment, the most important uncertain variable for climatic outcomes is by far
the growth in total factor productivity (TFP). The reason is that TFP is the main driver of economic
growth in the long run, and output tends to dominate emissions trends and therefore climate change. In
this experiment, we will assume that the rate of technological progress is uncertain. The technology
level enters the Cobb–Douglas production function and determines the overall productivity of the
economy. A shock in the growth rate permanently affects the technology level in the economy. The
technology level At in the economy follows the equation of motion

7The social planner solves the problem as if she is certain about its value. More precisely, she assumes that climate
sensitivity takes a deterministic value of 3.08.
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Ãt+1 = At exp[g̃A,t] with g̃A,t = gA,0 exp[δAt] + z̃t (4.1)

Our set of simulations analyses the consequences of an iid shock

z̃t ∼ N(µz, σ
2
z)

We set the standard deviation to σz = 2.6% which corresponds to twice our initial technology
growth rate.

4.1 Normalised Bellman equation under stochastic technology growth

As in the benchmark formulation, it is convenient to normalise the Bellman equation 2.1 to ease
the numerical calculations. In this respect, we follow closely Jensen and Traeger (2014). To express
variables in effective labour units, we normalise by the deterministic technology level, Adet.8 Its
dynamic behaviour responds to the following equation

At+1 = Adett exp[ḡA,t] with ḡA,t = gA,0 exp[δAt]

If we define at = At
Adett

as the deviation of the current technology level away from its respective
deterministic value, then

ãt+1 =
Ãt+1

Adett+1

=
exp (g̃A,t)At

exp (gA,t)Adett
= exp (z̃t) at

which leads to a new normalised Bellman equation

V ∗(kt,Mt, Tt, at, t) = max
ct,µt,pt

c1−η
t

1− η
∆t+ βt,∆t E [V ∗(kt+∆t,Mt+∆t, Tt+∆t, ãt+∆t, t+ ∆t)]

At the same time and, for the sake of comparison between specifications, when calibrating the
model, we choose the mean of the technology shock so that the uncertain technology path would
match in expected terms the deterministic path. On the one hand, we have that

Ãt+j = ãt+jA
det
t+j = exp (z̃t+j−1) ãt+j−1A

det
t+j =

8Adet ≡ level of technology in the certainty scenario (zt = 0, ∀t)
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= exp (z̃t+j−1 + z̃t+j−2) ãt+j−2A
det
t+j =

= exp

(
j−1∑
j′=0

z̃t+j′

)
atA

det
t+j

so

E
[
Ãt+j

]
= E

[
exp

(
j−1∑
j′=0

z̃t+j′

)
atA

det
t+j

]
=

= exp

(
j−1∑
j′=0

(
µz +

σ2
z

2

))
atA

det
t+j =

= exp

(
j

(
µz +

σ2
z

2

))
atA

det
t+j

Hence, if we set µz = −σ2
z

2
, we have that

E
[
Ãt+j

]
= atA

det
t+j

which is not more than the deterministic value of technology at time t+ j.
After this renormalisation some equations will difer slightly from those presented in Chapter 2. In

particular, the gross product per effective unit of labour now reads

ygrosst = a1−κ
t kκt

where, it now incorporates the stochastic deviattions of technology away from its deterministic
level. Accordingly, yearly CO2 emissions derived from industrial emission will change so that total
CO2 emissions now follow

Et = (1− µt)σtAdett a
(1−κ)
t Ltk

κ
t +Bt

where Bt represent total emissions from land use change. The rest of equation hold as presented
in Chapter 2.
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4.2 Results

In Figure 4 we observe the overall results after running 100 simulations with σz = 2.6% and µz =

3.38 · 10−4.9 As it emerges from the upper left panel of FIgure 4,10 technology deviations do not
represent a major force to deviate from the optimal mix under a potential deterministic scenario. Only
subtle changes in response to transitory deviations are observed in the optimal allocation between
mitigation and adaptation. As a consequence, the observed atmospheric CO2 stock gravitates also
around the deterministic values, as noted in 5(b). The bottom panels of FIgure 4 depict the evolution
of the stock of capital in our simulated states of the world, which respond directly to the uncertain
path of technology

Meanwhile, Figure 5 compares the deterministic optimal path of the mix with the median values
resulting from our simulated series. In general, we may state that including uncertainty in the tech-
nology level favours adaptation as it derives from the parallel shift of the line downwards. Particular
levels of the mix will depend on the magnitude of the shocks.

5 Learning about uncertain climate sensitivity

In this section we will address how optimal decisions vary if individuals learn over the years about
the uncertain parameters governing the model. Similarly to Section 3 we will assume that climate
sensitivity is not known but in this case we will have a guess of its value.11 This guess will be updated
at each iteration through Bayesian learning once the stock of carbon and temperature are observed. In
particular we will assume that the social planner is unsure about the true value of climate sensitivity,
s, but holds the following prior

s̃0 ∼ Π(s) = N (µs,0, σ
2
s,0) (5.1)

In addition to its uncertain nature due to unknown climate sensitivity, atmospheric temperature is
also stochastic, insofar as it responds to random weather fluctuations. These “weather fluctuations”
are normally distributed with mean zero. Thus, for a given value of climate sensitivity, s, temperature

9This value is chosen so as to mimic on average the behaviour of technology under deterministic conditions.
10Each point in these pictures is visually weighted according its probability density, that is, darkest shaded areas

represent locations most probably visited whereas lighter areas denote less likely outcomes.
11Recall that climate sensitivity captures the equilibrium warming from doubling the CO2 concentration with respect

to preindustrial levels.
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behaves according to the following law of motion

T̃t+1 = (1− σforc)Tt + σforcs

[
ln Mt

Mpre

ln 2
+
EFt
ηforc

]
− σocean4Tt + ε̃t (5.2)

For a given value of s, since ε follows a normal distribution, so will do temperature

T̃t+1 ∼ N (µT,t+1(s), σ2
T )

with variance σ2
T , known and exogenous.12

The temperature mean is obtained from taking expectations in equation (5.2) is

µT,t+1 = sχt(Mt, t) + ξt(Tt, t)

where
χt(Mt, t) = σforc

(
ln

Mt
Mpre

ln 2
+ EFt

ηforc

)
,

ξt(Tt, t) = (1− σforc)Tt − σocean4 Tt

Assuming the above prior, and update rule for the prior as well as a predictive rule for temperatures
can be obtained.13 In particular, the mean of the prior at time t+ 1 is

µs,t+1 =
χ2
tσ

2
s,t
T̂t+1−ξt

χt
+ σ2

Tµs,t

χ2
tσ

2
s,t + σ2

T

(5.3)

whereas the variance is updated through

σ2
s,t+1 =

σ2
Tσ

2
s,t

χ2
tσ

2
s,t + σ2

T

(5.4)

As a result, the decision maker learns faster the lower the temperature stochasticity and the larger
the carbon stock. We must add to the state variables governing the model (k, M , T and t) those
responsible for updating the climate sensitivity prior Π(s), namely, µs,t and σ2

s,t. Meanwhile, the
predicitve equation of temperature governs the realisation of temperature in t + 1 accounting for
stochasticity and climate sensitivity uncertainty. More precisely, T̂t+1 ∼ N (χtµs,t, χ

2
tσ

2
s,t + σ2

T ).
The Bellman equation reads as follows

12Empirical estimates suggest annual volatility in global mean temperature in σv2T = 0.042
13See Jensen and Traeger (2013) for the full derivation of these results
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V ∗(kt,Mt, Tt, t, µs,t, σ
2
s,t) = max

ct,µt,pt

c1−η
t

1− η
∆t+βt,∆t E

[
V ∗(kt+∆t,Mt+∆t, T̃t+∆t, t+ ∆t, µ̃s,t+∆t+, σ̃

2
s,t+∆t)

]
(5.5)

The new Bellman equation has now six state variables: three physical state variables (k,M, T )
and three informational variables (t, µs,t, σ2

s,t) that characterise the state of the system.
As in the previous section, we simulate the system forward 300 steps using the optimal control

obtained in the estimation phase. In this exercise, we assume that the social planner holds a prior
about the mean of climate sensitivity equal to its actual value (µs,0 = 3) but she is unsure about her
belief (σ2

s,0 = 3). These beliefs are updated each period so that the social planner gradually learns
about how correct are her beliefs through the observation of realised variables. Additionally, each year
an exogenous, additive shock ε affect global temperature, εt ∼ N (0, σ2

T ) with σ2
T = 0.042. Random

fluctuations of temperature will add an extra degree of complexity to how the planner disentangles
the actual value of climate sensitivity.

The compendium of simulated optimal mix strategies are depicted in Figure 6. The risk-averse
social planner now decides to mitigate relatively more as she is uncertain about whether the desired
mitigation level will be able to cope with the expected increase in temperatures. As the prior becomes
more certain (decrease in the prior variance shown in Figure 7) the optimal mix returns to more
balanced values. However, it does not recover the values shown in the deterministic case. The
median behaviour of the optimal mix is shown in Figure 8, where a notable shift in the relative
importance of mitigation is observed.

6 Tipping points

The evolution of climate variables entails different sources of uncertainty inherent to the climate
system. Despite most climate change models predict an overall robust increase in global temperatures
at the end of the present century, it is not excluded that the occurrence of certain climatic phenomena
could provoke a series of abrupt, sudden changes in the system that may end being non-reversible.
Tipping points are understood as irreversible shifts in system dynamics that occur upon crossing a
threshold in the state space. In a climate change context, tipping points have been modelled differently
by several authors. Some examples are the work by Lontzek et al. (2012) and Diaz (2015). We will
follow the approach by Lemoine and Traeger (2014), in which the social planner does not know the
exact location of the threshold. The probability of a tipping point occurring, known as the hazard
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rate, is endogenous and depends on the evolution of the state variables, which in turn depends on
policy choices as well as on the stochastics governing the system. The social planner learns that
regions that she has already visited are free of tipping points. Crossing the threshold shifts the world
from the pre-threshold regime to a post-threshold regime with permanently altered system dynamics.
Optimal pre- and post-threshold policies together determine the welfare loss triggered by the tipping
point.

We evaluate a tipping point of prominent concern in the climate change literature: this tipping
point increases the climate feedbacks that amplify global warming, that is, it increases the effect of
emissions on temperature. In particular climate sensitivity will shift from 3ºC after doubling CO2

concentrations in the pre-threshold regime to 4ºC, 5ºC or 6ºC in the post-threshold regime. The new
dynamics include melted ice sheets, large methane releases, or disruptive forest ecosystems; lowering
temperature would not undo any of these changes. Optimal policy in the pre-threshold regime must
consider its effect on both the pre- and post-threshold value functions, but once the state variables
cross the threshold, optimal policy depends only on post-threshold dynamics. Therefore, we solve the
model recursively, starting with the post-threshold problem and then substituting the solution into the
pre-threshold problem

The system passes from the pre-threshold level (ψt = 0) into the post-threshold regime (ψt+1 = 1)
when cumulative temperature change T :t+1 crosses an unknown threshold T̂ . We assume a uniform
prior distribution for thresholds. This distribution recognises that more warming entails more threshold
risk. The uniform distribution for T means that every temperature between the maximum temperature
previously reached and an upper bound T̄ has an equal chance of being the threshold. The probability
of crossing the threshold between periods t and t+ 1 conditional on not having crossed the threshold
by time t is

h(Tt, Tt+1) = max

{
min

{
Tt+1, T̄

}
− Tt

T̄ − Tt

}
(6.1)

This expression is the hazard of crossing the tipping point. As the world reaches higher temper-
atures without reaching a threshold, the social planner learns that the threshold is above the current
temperature and updates his beliefs by moving probability density from the newly safe region to the
remaining unexplored temperatures.

In the post-threshold world the Bellman equation would be

V ∗1 (St) = max
xt
u(xt, St) + βt

�
V ∗1 (St+1)dP (6.2)
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whereas the pre-threshold Bellman equation reads as follows

V ∗0 (St) = max
xt
u(xt, St) + βt

�
[(1− h(Tt, Tt+1))V ∗0 (St+1) + h(Tt, Tt+1)V ∗1 (St+1)] dP (6.3)

and the usual restrictions. Because of the stochasticity in the equations of motion, we take
expectations over the next period’s value functions and over the hazard rate (via the integral).14

Once we have solved for V1 in equation (6.2), we find V0 as the fixed point in (6.3).

6.1 Deterministic

The first step of this exercise involves the resolution of the Bellman equation under deterministic con-
ditions. With this experiment we try to estimate the effect that the sole inclusion of this undetermined
trigger point may have in the inferred optimal policies, paying special attention to the composition
of the optimal mix. We will check whether the social planner insures herself against this potential
danger. Accordingly, the Bellman equation that the planner faces takes the form

V ∗0 (St) = max
xt
u(xt, St) + βt [(1− h(Tt, Tt+1))V ∗0 (St+1) + h(Tt, Tt+1)V ∗1 (St+1)] (6.4)

where V ∗1 represents the optimal response in the post-threshold scenario and V ∗0 corresponds to
the optimal pre-threshold response if we take into account the possibility of an undetermined tipping
point in time.15 We approximate both value functions, feeding the values of V ∗1 into the resolution of
V ∗0 and then simulate the system as if the tipping point never occurs. We also assume expected draws
of the weather shock. The mere inclusion of the possibility of tipping points in the model result in an
increase of the mitigation motive as shown in Figure 9. In this way, the social planner prevents the
occurrence of the tipping point by mitigating relatively more as compared to the benchmark scenario.

6.2 Stochastic temperature

In the next experiment, we include a new source of uncertainty represented by an exogenous random
additive shock which impacts global temperatures each period. This shock will be distributed as εT ∼
N (0, σ2

ε ) with σ2
ε = 0.04216 Each period, exogenous weather fluctuations affect global atmospheric

temperatures and thus, the law of motion of temperatures behaves analogously to equation (5.2).
The general Bellman equation described in equation (6.3) applies and temperature is stochastic.

14We approximate expectations using a Gauss-Legendre quadrature rule with 8 nodes.
15The post-threshold scenario involves an increase of climate sensitivity from 3 to 4.
16Further details in Lemoine and Traeger (2014).
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In general, and qualitatively similar to the results presented in Section 5, the social planner decides
to react to the uncertainty created by both tipping points and stochastic temperatures by favouring
emissions abatement with respect to adaptation to climate change impacts. This behaviour is clearly
visible in FIgure 10, where an upward parallel shift of the optimal mix curve is observed. Optimal
mitigation grows steadily relative to adaptation over the first years until it stabilises in later years
around a range of 75% of climate investments.

6.3 Stochastic Damage function

Lastly, we explore the possibility of facing an uncertain damage function. This would be the equivalent
of having an imperfect estimate of the functional form of the damage function. In this sense, we enable
some deviations in its realisation each period. With this experiment, we try to measure the degree of
sensitivity of the social planner against uncertainties in the effect on output of temperature changes.
Conceptually, this is very similar to the case where we are unsure about the true value of climate
sensitivity but this time the effect is manifested through the damage function. Hence, we modify the
shape of the climate damage function and let a multiplicative random shock in temperature intervene
each period. The new gross damage function reads

GDt = 1 + b1(εtTt)
b2 , (6.5)

where the independent, normally distributed multiplicative shock εt ∼ N (1, σ2
ε ) with σ2

ε = 0.006817

has probability measure P.
The results are qualitatively analogous to those derived with stochastic temperatures as it can be

observed in Figure 11. In this case, though, given the calibration of the damage shock, the planner
can acommodate easily the variations in the damage function so that results are numerically close to
those presented in the deterministic case.

7 Conclusion

Incorporating new features into IAM models is highly desirable but comes at a cost. In particular, it
makes most of these models suffer from the curse of dimensionality. To overcome this problem we
adapt a recent methodology proposed by Traeger (2014) which casts the well established Nordhaus’
DICE model in a recursive way, making it particularly suitable for uncertainty analysis. At the same

17See Lemoine and Traeger (2014) for further details on the calibration of this parameter.
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time, it reduces the state space to only 4 state variables, thus, making the model accessible to be
solved in a regular computer.

Adopting this methodology, we echo the IPCC’s call for greater integration of adaptation within
Integrated Assessment modelling and extend the original DICE model by incorporating adaptation à la
de Bruin, that is, specifying adaptation as a separate decision variable. Then we perform a thorough
analysis of the optimal balance between mitigation and adaptation under various stochastic scenarios.
First, we solve the model for an assorted amount of different climate sensitivities. Recall that climate
sensitivity is the reaction of the system, in terms of mean air temperature, to a doubling of the CO2

concentration. That climate sensitivity is an unknown parameter, reportedly said to be a positive
number around 3. We confirm that climate sensitivity is crucial in the way that the system behaves.
Very high values cannot be easily accommodated by efficiently mitigating nor adapting damages. On
a second exercise, we assume a random path for technology. Technology enters directly into the
production function and is reported to be the major source of distortion in the basic properties of the
DICE model. Our results suggest that, indeed, technology growth amounts to be a great source of
distortion. If we look at the mitigation-adaptation mix, we can infer that adaptation in more efficient
dealing with an uncertain technology scenario.

Next, we include the possibility of dealing with an unknown climate sensitivity. The planner,
though, holds a prior of its value and learns gradually about its certain value through time thanks
to the observation of realised climatic variables. Hence, we equip our model with bayesian learning
about climate sensitivity. We even add further complications to the planner by enabling temperatures
to oscillate randomly each period. Consequently, the observation of realised temperature will be itself
imperfect and so will be the updates of our priors. The results show that, the higher the degree of
ignorance of the social planner about the true value of climate sensitivity (higher variance), the more
will she try to protect herself with the help of more mitigation relative to adaptation.

Lastly, we feed our model with a very interesting feature in the context of climate change: the
possibility of crossing a determined (unknown) temperature threshold or tipping point after which the
dynamics of the system behaves notably different. In our example, this change in the dynamics is
manifested by an increase in climate sensitivity from 3 to 4. We analyse the effect in the optimal mix
under three different scenarios: deterministic, stochastic temperatures and stochastic damages. The
results are all qualitatively similar and all aim at favouring mitigation with respect to adaptation as a
method of insurance against potentially future adverse scenarios.

The present study represents a new approach to the dynamic analysis of adaptation to climate
change within a simplified recursive IAM model fed with various potential sources of uncertainty.
Many other additional features can be further incorporated into this model: uncertainty in the param-
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eters governing the damage function, alternative damage function specifications, persistent effects of
technology shocks,... Additionally, different types of adaptation could be jointly modelled. For exam-
ple, Bosello et al. (2010) construct a more involved framework in which different types of adaptation
can be found. In particular, they distinguish between anticipatory adaptation (modelled as a stock
variable), reactive adaptation (modelled as a flow variable) and accumulation of reactive adaptation
knowledge. These extensions are left for future research papers.
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A The benchmark AD-DICE model

Our IAM combines a growing Ramsey-Cass-Koopmans economy with a simple climate model. It is
based on the widespread DICE model by Nordhaus (2008) and its stochastic dynamic programming
implementation following Kelly and Kolstad (1999). Our formulation resembles closely that of Traeger
(2014), who extends the small set of existing state of the art implementations of stochastic dynamic
programming integrated assessment models. His main contribution is to reduce the number of states
needed to represent the climate side of the DICE model without sacrificing its benchmark in capturing
the interaction between emissions and temperature increase. Such reduction of the state space is
crucial to permit additional state variables needed to capture uncertainty and avoid the curse of
dimensionality.18 To model the adaptation behaviour, we rely primarily on the work by de Bruin et al.
(2009), which allows us to separately choose between mitigation and adaptation at every optimisation
stage. Check Figure 1 to have a glimpse of the detailed workflow of the model.

Exogenous processes

Six exogenous processes derive straight from DICE-2007. The exogenous processes in the economy
determine population growth, technological progress, the carbon intensity of production, and an
abatement cost coefficient. Population Lt simultaneously represents labour. We denote the annual
growth rate of labour and technology in period t by gL,t and gA,t, respectively. The difference equations
defining annual population growth in DICE have the continuous time approximation

gL,t =
g∗L

L∞
L∞−L0

exp(g∗Lt)− 1
(A.1)

corresponding to the analytic continuous time solution characterising period t population

Lt = L0 + (L∞ − L0)(1− exp(−g∗Lt)) (A.2)

Here, L0 denotes the initial and L∞ the asymptotic population. The parameter g∗L characterises
the speed of convergence from initial to asymptotic population.

The technology level At in the economy grows at an exponentially declining rate

gA,t = gA,0 exp(−δAt) (A.3)
18We cut the number of state variables almost to half with respect to DICE 2007 and DICE 2013.
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leading to the analytic continuous time solution

At = A0

(
exp gA,0

1− exp(−δAt)
δA

)
(A.4)

The DICE model assumes an exogenous decrease of the carbon intensity of production. The
decarbonization factor of production grows at the (decreasing) rate gσ,t = gσ,0 exp(−δσt), leading to
the continuous time representation

σt = σ0

(
exp gσ.0

1− exp(−δσt)
δσ

)
(A.5)

In addition, the economy can pay for abating emissions. The abatement cost coefficient Ψt falls
exogenously over time and is given by

Ψt =
σt
a2

a0

(
1− 1− exp(g∗Ψt)

a1

)
(A.6)

The parameter a0 denotes the initial cost of the backstop (in 2005), a1 denotes the ratio of initial
over final backstop, and a2 denotes the cost exponent. The rate g∗Ψ captures the speed of convergence
from the initial to the final cost of the backstop.

The exogenous processes on the climate side of DICE govern non-industrial CO2 emissions and
radiative forcing from non-CO2 greenhouse gases. In addition, our state space reduction introduces
an exogenous process governing the removal of excess carbon from the atmosphere and the cooling
due to the ocean’s heat capacity. DICE assumes an exponential decline of CO2 emissions from land
use change an forestry

Bt = B0 exp(−δBt) (A.7)

Non-CO2 greenhouse gases are exogenous to the model and cause the radiative forcing

EFt = EF0 + 0.01(EF100 − EF0)×min{t, 100} (A.8)

Endogenous equations of motion

In its benchmark formulation, the model is endowed with four state variables, namely, produced capital
Kt, the stock of atmospheric carbon Mt, atmospheric temperature Tt, and time t. Including time as
a state variable is particularly convenient for a number of reasons: it makes it possible to contract
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the Bellman equation to an arbitrary precision and, more importantly, enables us to solve the model
for an infinite time horizon with an arbirary time step.19

The production equation of the economy is a fairly standard Cobb-Douglas production function de-
pending on capital Kt, labour Lt, and labour augmenting technology At. Hence, the gross (potential)
output would amount to

Y gross
t = (AtLt)

1−κKκ
t (A.9)

where κ represents the share of capital in production. Given the current formulation, capital would
grow by an order if magnitude over the centuries, which would result in a poor approximation of Kt

along a constant, discrete grid. We therefore proceed by normalising capital and consumption in per
effective labour units by defining

kt =
Kt

AtLt
and ct =

Ct
AtLt

yielding our labour effective gross production ygrosst = kκt . Net production follows from gross produc-
tion by subtracting abatement expenditure and climate damages

yt =
1− Λ(µt)

1 +D(Tt)
kκt =

1−Ψtµ
a2
t

1 +D(Tt)
kκt (A.10)

One of the foundational components of the economic model of IAMs is the climate “damage
function”, which specifies how temperatures or other aspects of climate affect economic activity. For
example, in the DICE model, the damage function is of the form

D(Tt) =
1

1 + b1T b2
(A.11)

DICE calibrates the b parameters to match cross-sectional estimates of climate damages reviewed
in Tol (1999) and then adjusts damages up by 25% to incorporate non-monetised damages, such as
impacts on bio-diversity, and to account for potentially catastrophic scenarios, such as sea level rise,
changes in ocean circulation, and accelerated climate change.20 The DICE/RICE models use this
common proportional damage function for the entire world.

Net production not consumed is invested in capital, implying the equation of motion
19Bear in mind that Nordhaus’ DICE model is solved within a 10-year time step. However, given our time flexibility,

we will calibrate and solve the model in a more illustrative 1-year time step.
20See Nordhaus and Sztorc (2013) for further details
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kt+∆t = [(1− δk)∆tkt + yt∆t− ct∆t] exp[−(gA,t + gL,t)∆t] (A.12)

where δk is the annual rate of capital depreciation.
Anthropogenic emissions are the sum of industrial emissions and emissions from land use change

and forestry Bt.

Et = (1− µt)σtAtLtkκt +Bt (A.13)

Industrial emissions are proportional to gross production AtLtkκt , and the emission intensity of
production σt, and they are reduced by the emission control rate μt. The flow of CO2 emissions
accumulates in the atmosphere. Atmospheric carbon in the next period is the sum of preindustrial
carbon Mpre, current excess carbon in the atmosphere Mt−Mpre net of its (natural) removal, and
anthropogenic CO2 emissions

Mt+∆t = Mpre + (Mt −Mpre)(1− δM,t)∆t+ Et∆t (A.14)

The pre-industrial emission stock Mpre is the steady state level in the absence of anthropogenic
emissions. Equation (A.14) is our approximation to the carbon cycle in DICE-2007.

The atmpospheric temperature change is a delayed response to radiative forcing

Ft+∆t = ηforc
ln Mt+∆t

Mpre ind

ln 2
+ EFt (A.15)

which is the sum of the forcing caused by atmospheric CO2 and the non-CO2 forcing that follows
the exogenous process EFt. Note that the forcing parameter ηforc contains the climate sensitivity
parameter, which characterises the equilibrium warming response to a doubling of preindustrial CO2

concentrations. The temperature state’s equation of motion is

Tt+∆t = (1− σforc)Tt + σforc
Ft+∆t

λ
− σocean∆Tt (A.16)

The parameter σforc captures the warming delay and σocean quantifies the ocean cooling in a given
time step that derives from the atmospheric ocean temperature difference ∆Tt. This last term in
equation (A.16) replaces the oceanic temperature state in DICE-2007.
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Instantaneous adaptation

Adaptation would directly decrease the total damages of climate change. But this reduction comes
at a cost. These costs are referred to as protection costs. But adaptation choices are potentially
quite different to mitigation decisions and differ in cost. While the original DICE model assumes that
adaptation is included in the damage function and is implicitely assumed to be optimal, we rather
include adaptation explicitely in the model. Following de Bruin et al. (2009), we model adaptation
as a decision by the planner that has some benefits and costs. Accordingly, total damages of climate
change are split into the sum of residual damages and protection costs

Dt = RDt(GDt, pt) + PCt(pt) (A.17)

where residual damages RDt are the “unprotected” part of total damages21

RDt = GDt(1− pt)

whereas gross damages amount to

GDt = 1 + b1T
b2
t ,

and protection costs take the form
PCt = γ1p

γ2
t

with pt being the optimal level of protection chosen each period. In this setup, optimal mitigation
and adaptation are jointly modelled and both decisions are separable. In this setup, adaptation and
mitigation will behave as economic substitutes. In the original DICE model, mitigation is set by
the marginal damage cost. In this framework, the adaptation level is chosen so as to minimize net
damages plus adaptation costs, while the mitigation level is chosen to minimize the aggregate of net
damages and adaptation costs plus mitigation costs.

The Bellman equation

An optimal decision under uncertainty has to anticipate all possible future realizations of the random
variables together with the corresponding optimal future responses. The Bellman equation reduces
the complexity of the decision tree by breaking it up into a trade-off between current consumption
utility and future welfare, where future welfare is a function of the climatic and economic states in the

21We can play along with another alternative specifications of the damage function. For example, RDt =
GDt

pt
.
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next period. The best possible total value of present and future welfare is the so-called value function
V (Kt,Mt, Tt, t).22 In the case of uncertainty, the value function generally relies on additional states
summarized in the vector Φt, capturing uncertain (possibly formerly) exogenous states. We then
would write the value function as V (Kt,Mt, Tt,Φt, t).

V (Kt,Mt, Tt,Φt, t) = max
Ct,µt,pt

Lt

(
Ct
Lt

)1−η

1−η ∆t+ exp (−δu∆t)E [V (Kt+∆t,Mt+∆t, Tt+∆t,Φt+∆t, t+ ∆t)]

s.t.
Kt+∆t = [(1− δkAt)Kt + ytAt − ctAt] exp[−(gA,t + gL,t)At]

Mt+∆t = Mpre + (Mt −Mpre)(1− δM,tAt) + EtAt

Tt+∆t = (1− σforc)TtAt + σforc
Ft+∆t

λ
At − σocean∆TtAt + ε̃t

0 ≤ µt ≤ 1

0 ≤ pt ≤ 1

0 ≤ Ct ≤ Yt
(A.18)

Given the value function, we can analyse the control rules and simulate different representations
of the optimal policy over time. For the simulation, we either fit a continuous control rule, or we
forward-solve the Bellman equation, knowing the value function, starting from the initial state. Under
uncertainty, we can quickly simulate a large set of runs and depict statistical properties. Without
normalising capital to effective labour units we would need a much larger state space for capital to
cover at least a reasonably long time horizon, even without growth uncertainty.

22For numerical considerations, we will work with the normalised version of this Bellman equation. See Appendix A
for details.
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B Parameters

Table 1: Parameters of the model (Economic)

Economic parameters
η -2 Intertemporal consumption smoothing preference
b1 0.284% Damage coefficient
b2 2 Damage exponent
γ1 0.115 Protection coefficient
γ2 3.6 Protection exponent
βp 10% depreciation of Stock of Adaptation
α 20% percentage of unavoidable damage
r 1.43 Stock of Adaptation’s discount factor
δu 1.5% Pure rate of time preference per year
L0 6514 In millions, population in 2005
L∞ 8600 In millions, asymptotic population
g∗L 3.5% Rate of convergence to asymptotic population
K0 137 In trillion 2005-USD, initial global capital stock
δK 10% Depreciation rate of capital per year
κ 0.3 Capital elasticity in production
A0 0.0058 Initial labor productivity; corresponds to total factor

productivity of 0.02722 used in DICE
gA,0 1.31% Initial growth rate of labor productivity, corresponds to total

factor productivity of 0.9% used in DICE, per year
δA 0.1% Rate of decline of productivity growth rate per year
σ0 0.1342 CO2 emissions per unit of output in 2005
gσ,0 -0.73% Initial rate of decarbonization per year
δσ 0.3% Rate of decline of the rate of decarbonization per year
a0 1.17 Cost of backstop in 2005
a1 2 Ratio of initial over final backstop cost
a2 2.8 Cost exponent
g∗Ψ -0.5% Rate of convergence from initial to final backstop cost
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Table 2: Parameters of the model (Climatic)

Climatic parameters
T0 0.76 In ◦C, temperature increase of preindustrial in 2005
Mpre 596 In GtC, preindustiral stock of CO2 in the atmosphere
M0 808.9 In GtC, stock of atmospheric CO2 in 2005
δM,0 1.4% initial rate of CO2 removal from the atmosphere per year
δM,∞ 0.4% Asymptotic rate of CO2 removal from the atmosphere per

year
δ∗M 1% Rate of convergence to asymptotic rate of atmospheric CO2

removal
B0 1.1 In GtC, initial CO2 emissions from LUCF
δB 1.05% Growth rate of CO2 emission from LUCF per year
s 3.08 Climate sensitivity (equilibrium temperature response to

doubling of atmospheric CO2 concentration w.r.t.
preindustrial)

ηforc 3.8 Forcing of CO2-doubling
λ 1.23 Ratio of forcing to temperature increase under CO2-doubling
EF0 -0.06 External forcing in year 2000
EF100 0.3 External forcing in year 2100 and beyond
σforc 3.2% Warming delay, heat capacity atmosphere, annual
σocean 0.7% Parameter governing oceanic temperature feedback, annual
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C Figures

Figure 1: AD-DICE model workflow
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Figure 2: AD-DICE (uncertain climate sensitivity)

(a) CO2 level (b) Abatement rate

(c) Investment rate (d) CO2 Emissions
All pictures feature shaded areas according to probability density.
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Figure 3: Mitigation-Adaptation mix (uncertain climate sensitivity)

This figure depicts the median (N = 100) optimal response of the social planner. The mix is
defined as [mitigation/(mitigation+adaptation)]*100.
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Figure 4: AD-DICE (uncertain technology)

(a) Mitigation-Adaptation mix (b) CO2 level

(c) Investment rate (d) CO2 Emissions
All pictures feature shaded areas according to probability density. The mix is defined as [mitiga-
tion/(mitigation+adaptation)]*100.

31



Figure 5: Mitigation-Adaptation mix (deterministic versus stochastic technology growth)

This figure depicts the median (N = 100) response of the social planner against the optimal
response under the benchmark model. Each period technology deviates from its deterministic
path according to an additive shock of standard deviation σz = 2.6% and mean µz = 3.38 ·10−4.

32



Figure 6: Mitigation-Adaptation mix (Bayesian learning about climate sensitivity)

This figure depicts the median (N = 100) optimal response of the social planner. The mix is
defined as [mitigation/(mitigation+adaptation)]*100.
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Figure 7: Bayesian learning. Evolution of priors

(a) Prior mean (b) Prior variance

Figure 8: Mitigation-Adaptation mix (deterministic versus bayesian learning)

This figure depicts the median (N = 100) response of the social planner against the optimal
response under the benchmark model. The planner holds an initial prior centered at the true
value µs,0 = 3 and variance σ2

s,0 = 3. In addition temperatures oscillates each period in response
to a shock of mean 0 and variance σ2

T = 0.42.
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Figure 9: Mitigation-Adaptation mix (deterministic versus presence of tipping points)

We simulate a path that happens to never cross a threshold in order to see how the social planner
adjusts to the possibility over time. Results are for T = 3◦C.
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Figure 10: Mitigation-Adaptation mix (deterministic versus tipping & stochastic temprature)

This figure depicts the median (N = 100) response of the social planner against the optimal
response under the benchmark model. We simulate a path that happens to never cross a
threshold in order to see how the social planner adjusts to the possibility over time. Results are
for T = 3◦C.
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Figure 11: Mitigation-Adaptation mix (deterministic versus tipping point & stochastic damage)

This figure depicts the median (N = 100) response of the social planner against the optimal
response under the benchmark model. We simulate a path that happens to never cross a
threshold in order to see how the social planner adjusts to the possibility over time. Results are
for T = 3◦C.
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