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Abstract 

In the present paper we use the output of multiple expert elicitation surveys on the future cost of key low-carbon 

technologies and use it as input of three Integrated Assessment models, GCAM, MARKAL_US and WITCH. By 

means of a large set of simulations we aim to assess the implications of these subjective distributions of 

technological costs over key model outputs. We are able to detect what sources of technology uncertainty are 

more influential, how this differs across models, and whether and how results are affected by the time horizon, 

the metric considered or the stringency of the climate policy. In unconstrained emission scenarios, within the 

range of future technology performances considered in the present analysis, the cost of nuclear energy is shown 

to dominate all others in affecting future emissions. Climate-constrained scenarios, stress the relevance, in 

addition to that of nuclear energy, of biofuels, as they represent the main source of decarbonization of the 

transportation sector and bioenergy, since the latter can be coupled with Carbon Capture and Storage (CCS) to 

produce negative emissions. 
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1. Introduction  

Future costs of low-carbon technological options are a key factor in determining climate policy costs and 

feasibility. The recent Fifth Assessment report of the IPCC WG III (IPCC, 2014) stresses the relevance of 

assumptions concerning the availability and costs of future technologies in shaping the range of policy costs. 

This has long been recognized within the Integrated Assessment modeling (IAM) community (Edmonds et al., 

2012), and the quantitative analysis of the future availability/cost of carbon-free and low-carbon technologies 

has been at the center of a growing literature. The most commonly adopted approach relies on the use of an IAM 

and the running of climate-constrained scenarios with and without the availability of key energy technologies, in 

order to assess the increase in climate mitigation costs/carbon prices under each alternative. A few studies have 

comprehensively analyzed the impact of advances in future energy technologies on the cost of greenhouse gas 

mitigation by means of sensitivity analysis and using an individual model (McJeon et al. 2011; Lemoine and 

McJeon, 2013; Rogelj et al. 2012, Anadón et al. 2014.). In parallel to these pioneering works, a set of modeling 

comparison analyses has been performed. We recall the Energy Modelling Forum (EMF) 27 (Kriegler, 2014) 

and the Assessment of Climate Change Mitigation Pathways and Evaluation of the Robustness of Mitigation 

Cost Estimates (AMPERE) Project (Riahi, 2013). The latter studies are characterized by selected sensitivity 

analyses to extreme technology realizations and a focus on robust results across models. The findings that 

emerged from these and other studies, as summarized in the IPCC latest assessment report (IPCC, 2014) are that: 
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(a) Carbon Dioxide Removal (CDR) technologies, which can be used to generate negative emissions, are the 

most critical class of technologies, as they allow a modification in the time path of the emissions constraint (the 

possibility of negative emissions by the end of the century would allow postponing peak emissions later in the 

century); (b) bioenergy coupled with CCS would have a central role, and the unavailability of either component 

of this technology would result in an increase in policy costs between 18% and 300%, depending on the 

stringency of the climate scenario analyzed and whether the limitation of technology availability concerns 

bioenergy or CCS. Assumptions about the availability of other low-carbon energy technologies also matter (for 

example, the availability of low-cost renewables, CCS alone, and nuclear power), although their impact on 

mitigation costs are typically less pronounced. 

In this study, by building on this existing knowledge, we use a different approach to evaluate the extent to which 

uncertainty about future technology costs in key energy technologies translates to different model outcomes.  

Instead of switching on and off one technology at a time (or in combination) in various models, we explore the 

space of future technological costs and other parameters, parameterized by using a set of expert elicitation 

surveys. In particular, we take stock of extensive efforts that have been carried out independently by researchers 

at UMass Amherst (Baker & Keisler, 2011; Baker, et al., 2009b; Baker, et al., 2009a; Baker, et al., 2008), 

Harvard (Anadon, et al., 2011; Anadon, et al., 2012; Anadón, et al., 2014a; Chan, et al., 2011), and FEEM 

(Bosetti, et al., 2012; Catenacci, et al., 2013; Fiorese, et al., 2013). Each of these groups collected the opinions of  
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leading experts from the academic world, the private sector, and international institutions on the probabilistic 

distribution of future costs of the most promising clean energy technologies, conditionally to different levels of 

R&D efforts. The technologies include liquid biofuels, electricity from biomass, carbon capture (CCS), nuclear 

power, and solar photovoltaic (PV) power. All surveys were carried out by means of structured protocols aiming 

at minimizing potential biases and overconfidence that can characterized experts elicitations(Morgan, 2014). 

Although different groups carried out surveys covering the same set of technologies, each group worked 

independently, and thus asked questions using different formats, looking at different endpoints and cost metrics. 

Therefore, the effort of harmonizing the data across surveys has represented a complex endeavor which is fully 

described in Baker et al. (2014a). The resulting estimates span a wide array of uncertainties including those that 

might be related to different methodology employed to collect the data from experts.  

By using this data we can explore differences in the sensitivity of various models to parameter uncertainty as 

expressed by a vast collection of recently elicited subjective expert judgments.  

This is important per se, as it permits us to systematically explore the technological cost dimension as defined by 

experts (rather than only exploring the extremes of the cost space). In order to do so, we employ a combination 

of global sensitivity measurements and estimation methods that allow us to address in depth key questions about 

the behavior of the alternative models. In particular, we obtain quantitative insights about whether key-
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uncertainty drivers are the same across models and whether this is robust across alternative output of models (as 

for example cumulative emissions or technology penetration). 

Aside the modeling insights, this analysis is also an essential step toward the design of optimal energy R&D 

portfolios as described in (Baker et al. 2014b), because it improves our understanding of the extent to which 

technology assumptions drive results as well as of what other parameters affect differences across models. 

This paper is structured as follows: the next section provides a general overview of the experimental protocol 

and the methodology used to assess the sensitivity of the models, and in addition it introduces the integrated 

assessment models used and the ways in which they have been modified to incorporate the information coming 

from the expert elicitation surveys. Section 3 presents the main sensitivity results, while Section 4 states our 

conclusions. 

 

2. Methods 

Our objective is to assess the implications of changes in the future costs and performance parameters of a few 

key energy technologies in relation to important macro-economic and global environmental metrics. We set out 

using as an input to integrated assessment models the results from the aggregated expert elicitations data 

described in (Baker et al, 2014a).  
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In this section we present methodological details on the technology input specifications, the sampling strategy, 

the models used, the explored climate policy scenarios, and the metrics adopted for the evaluation of the 

sensitivity across models and technologies. 

2.1 Technology input specifications 

In the present analysis we focus our attention on the following technologies (and metrics): solar power (levelized 

cost of electricity), nuclear power (overnight capital cost), biofuels (cost and conversion efficiency), 

bioelectricity (cost and conversion efficiency) and carbon capture and storage (CCS) (capital cost and energy 

penalty). By harmonizing and aggregating the data across experts and across surveys by means of the process 

described in (Baker, 2014a), we obtain eight probability distributions representing the values of these uncertain 

metrics (summary statistics for the distributions are reported in Table 1). We generate 740 scenarios, 

representing combinations of technology performances drawn from these eight cost distributions. Each model is 

then set up to implement the assumptions of the 740 scenarios. 
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Table 1. Importance Sampling Distributions 

Quantities Distribution Units Min Median Max Mean St. dev 

Solar LCOE LogUniform $/KWh 0.02 0.09 0.45 0.14 0.12 

Nuclear  LogUniform $/KW 385 1534 5728 2017 1489 

Biofuels cost LogUniform $/GGE 0.22 1.57 10.56 2.56 2.54 

Biofuels efficiency Uniform % 19 52 85 52 19 

Bio-electricity cost LogUniform $/KWh 0.01 0.04 0.23 0.06 0.06 

Bio-electricity efficiency Uniform % 7 47 85 47 22 

CCS cost Uniform $/KW 5 2019 3920 2006 1142 

CCS energy penalty Uniform % 0 22 43 22 12 

 

2.2 Sampling method to define model runs and policy scenarios 

Instead of sampling the cost or parameter values space by means of an equally distanced sample, we use 

importance sampling (Glynn and Iglehart, 1989). Importance sampling has generally been used as a version of 

Monte Carlo-type analysis, when the area of interest in the distributions of cost and performance has a very low 

probability. In our case this is relevant because, for example, very low nuclear costs (which are also associated 

with low probabilities of occurrence) are expected to have a large impact on societal and environmental 

outcomes in the models, in particular in climate constrained scenarios which are at the heart of our analysis.  In 

other words, if we had sampled randomly, we might not have had enough runs covering the part of the 

technology cost distribution of interest. 
1
 

                                                           
1
 Importance sampling allows us to sample from a different distribution, and renormalize back to the actual distribution of 

interest. We use it here as in the portfolio analysis discussed in Baker et al. 2014b to limit the number of times we ran the 

three IAMs. Since we have four alternative distributions of technology costs and performance (one for each of the teams 

that conducted the elicitations—UMass, FEEM and Harvard—plus the combined distribution) and three to five possible 

R&D portfolios (as we consider three levels of R&D for each of the five technologies, the number of runs needed to capture 

the impact of technology uncertainty on model outputs in the IAMs would have been exceedingly large.  Thus, we defined 
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Each of the 740 runs is repeated for three policy scenarios: a baseline scenario where no climate policy is in 

place, and two climate policy scenarios where global emissions (US emissions for MARKAL-US) are 

constrained. The two constrained scenarios are in line with two of the four representative concentration pathways 

(RCPs) developed for the modeling experiments of the climate modeling community and spanning the range of 

radiative forcing values
2
 for the year 2100 from 2.6 to 8.5 W/m2 (International Institute for Applied Systems 

Analysis 2009, RCP Database). In particular, models run with emissions caps in line with scenarios imposing a 

radiative forcing of 2.6 and 4.5 W/m2 by 2100. In our experiment when-flexibility on emission reduction is not 

allowed, that is, the constraint on emissions is not only on the carbon budget but also on the emissions time 

profile (this allows greater comparability across models). The cap on emissions is however global and can be 

efficiently allocated across countries, except for MARKAL-US, where the cap is for the US only and is derived 

by the emission cap obtained for the US from the GCAM model. Each of the runs assumes immediate learning: 

i.e. full anticipation of the realization of technology costs/parameters in 2030 between 2010 and 2030. For the 

subsequent years we assume that additional learning will take place, but for each run this additional learning will 

be a function of the actual realization of the parameter and the assumed maximum learning rate, 𝛽,  following the 

asymptotic rule below: 

                                                                                                                                                                                                       
an “importance distribution” that defined the IAM runs. There is only one importance distribution, rather than 4 (for each 

team) * 35 (for each possible R&D portfolio).  
2
 When reporting radiative forcing values, it is assumed that they include the forcing of greenhouse gases and other 

forcing agents, but do not include direct impacts of land use (albedo) or the forcing of mineral dust. 
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where 𝑥𝑖,𝑡 is the cost (or efficiency level) for technology i at time t, t’ is the period for which information on 

cost/efficiency was elicited (namely 2030) and 𝛽 is the maximum additional technological change beyond t’, 

which we assume to be 20% (i.e., 80% of cost reduction occurs before 2030 and is in accordance with the 

realization from the elicited distribution. The remainder of 20% cost reduction occurs after 2030). In addition, 

we assume that the evolution of cost and performance parameters after 2030 is capped by a floor (ceiling) value 

for cost (efficiency) which is the minimum (maximum) provided with the sampling statistics. 

 

2.3 Description of models and implementation 

We assess the implications of the judgments of experts on the future cost of key energy technologies by using 

three integrated assessment models: GCAM, MARKAL-US and WITCH.  

The difference between the three models can be clustered in two groups: 

1) Structural differences: i.e. WITCH and MARKAL_US are solve through intertemporal optimization 

with perfect foresight; GCAM is a recursive dynamic simulation model. WITCH aggregates technologies via a 

constant elasticity of substitution functions, whereas in GCAM the aggregation is linear but the cost of 

technologies has a logistic distribution; system integration and flexibility is modelled in different ways in the 
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three models considered. GCAM and MARKAL-US are more detailed in their descriptions of technologies, 

while WITCH describes in greater detail the macro-economy component; MARKAL-US describes the US, while 

GCAM and WITCH have a global coverage. 

2) Parametrical: future costs and performance of technologies varies across models, as parameters 

controlling for technology adoption. Some of these key parameters were varied in a uniform way as an input to 

each simulations, but other parameters exist and influence the dynamics of the models in different way (an 

example could be the cost of capital or the cost of nuclear waste management).  

We did our best to harmonize the second source of variation (see the Appendix) in order to emphasize as much 

as possible the implication of the first source of variation (as an example the assumptions on nuclear waste 

management cost in WITCH were moderated in order to be comparable with those in GCAM).  

However, the distinction between sources of difference in the first and second group is not as clear cut as one 

might like and differences across models’ results presented later will certainly include part of both. 

 

These differences are key to the main purpose of this paper, namely that of assessing the robustness of findings 

with respect to different model specifications. The research groups involved in this work performed a thorough 

comparison of the models. In the Appendix we provide the synthesizing result of this comparison effort. Because 

of the existing structural differences, implementation of the sampling strategy had to be model specific. Details 
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on how costs and efficiency parameters were implemented are also provided at the end of each model 

description in the Appendix. 

2.4 Comparison methodology and sensitivity methods 

Each of the 740 model runs carried out for the various technology cost combinations constitute an uncertainty 

analysis (Helton, 1993). Thus, from the corresponding model input-output datasets it is possible to obtain an 

examination of the statistical properties of the output distribution. The analyst then obtains an indication about 

how much variability in the output of each model is induced by uncertainty in the same model inputs. 

To augment these insights, we make use of the post-processing or given data logic (Lewandowski, Cooke, & 

Duintjer Tebbens, 2007; Elmar Plischke, Borgonovo, & Smith, 2013). This type of approach to sensitivity 

analysis uses the results of Monte Carlo simulations to extract additional information that can help the analyst to 

obtain additional insights about the input-output mapping. In particular, we inspect the following two insights 

(Anderson, Borgonovo, Galeotti, & Roson, 2014): 

1) Key-uncertainty drivers 

2) Sign of change 

In sensitivity analysis jargon, these two types of insights are referred to as “sensitivity settings” (Andrea Saltelli, 

2002). In our case, the methods used to investigate the two families of questions above need to be probabilistic 

because we not only are testing for deterministic changes of parameters’ values but we have subjective 
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probabilistic information about these parameters. As regards the key-uncertainty drivers setting, we use global 

sensitivity methods (Emanuele Borgonovo, 2006; A Saltelli et al., 2008). The setup is as follows. The 

relationship that binds the model inputs (x) to the model output (y) is regarded as a generic mapping of the form 

   ,    :Ωy g g Xx R  (1) 

with Ω kX R  and k denoting the number of model inputs. To illustrate, in our case, we have k=8, ΩX  is 

Cartesian product of the eight ranges displayed in Table 1, g is the input-output mapping in WITCH, GCAM and 

MARKAL_US. 

Evaluation of key-uncertainty drivers 

As for the key-uncertainty drivers setting, we adopt the three global sensitivity measures synthetically illustrated 

in Table 2 [for a more detailed overviews the reader is referred to (Anderson et al., 2014; A Saltelli, Ratto, 

Tarantola, & Campolongo, 2005)]. 

Table 2: Sensitivity measures used in this work for the identification of key-drivers 

Sensitivity Measure Equation 

Variance-Based [ ( )] [ ] [ [ ]]

[ ] [ ]

i

i

iV Y x V Y V Y x

V Y V Y



 

E E[
 

Density-Based 
|| ( ) ( ) |[

2
]

1
i

Y

Y Xi Yf y f y dy


 E[  

CDF-based             |X |X
sup sup ,

ii ii

KU

y Y y YY Yi x x
F y F y F y F y

 
   E  
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These sensitivity measures are statistics of the form (E Borgonovo, Hazen, & Plischke, 2014): 

 
    [ , ]

iXi Y Y
s F y F y  E

 (2) 

where 
|{ ( ), ( )}

i iY Y X xs F y F y
 is some form of separation measurement between the unconditional ( ( )YF y ) and 

conditional model output distribution  | ( )
i iY X xF y  [we refer to (Glick, 1975) on the concept of separation 

measurement]. 

Variance-based sensitivity measures (second row in Table 2) quantify the separation as expected variance 

reduction. In particular, the sensitivity measure 
i is Pearson’s correlation ratio (Lewandowski et al., 2007; 

Pearson, 1905). Thus, according to 
i  the most important model input is the one that, when fixed, reduces the 

model output variance the most. Density-based importance measures (third row in Table 2), identify the most 

important model input as the one that shifts the model output density the most (E. Borgonovo, 2007). The CDF-

based sensitivity measure in the last row of Table 2 quantifies the influence of model input 
iX  through the 

Kuiper distance on cumulative distribution functions [see (Tygert, 2010) for properties of the Kuiper metrics and

(Baucells & Borgonovo, 2013) for properties of the sensitivity measure in the fourth row of Table 2]. It should 

be noted  that all these sensitivity measures are normalized between zero and unity. 
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The rationale for using a combination of sensitivity measures is as follows. Each sensitivity measure considers a 

different property of the model output distribution. Thus, if a model input is deemed irrelevant by all the 

measures, then we can have greater confidence that its influence is low. Second, each sensitivity measure has 

limitations. For instance, in using variance based sensitivity measures one is exposed to the risk of deeming a 

model input uninfluential when, indeed, Y is dependent on it (see the example in  (Elmar Plischke et al., 2013)). 

Conversely, density and CDF-based sensitivity measures are null if and only if Y is independent of 
iX , avoiding 

such risk.  

Evaluation of  sign of change 

As for sign of change, we rely on the first order effects of the functional ANOVA expansion of the model output. 

The rationale is explained in (Anderson et al., 2014), to which we refer for further details and mathematical 

aspects. We limit ourselves here to the following observations on the underlying intuition. Assuming that the 

multivariate mapping as in eq. (1) is integrable, we can expand it in the form  

 
0 , 1,2,..., 1 2

1

( ) ( ) ( , ) ... ( , ,..., )
n n

i i i j i j n n

i i j

g g g x g x x g x x x
 

     x  (3) 

where the terms in eq. (3) have the following meaning. 
0g  is the mean value of y. ( )i ig x is individual effect of 

ix , namely, the expected behavior of g  as a function of 
ix  alone. In formulae,  
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0 0

1,

( ) [ ( ) | ] ... ( )
n

i i i i s

s s i

g x g X x g g dF g
 

     x xE  (4) 

that is, ( )i ig x is the conditional expectation of g given xi, from which the mean value of g is subtracted. Note 

that in eq. (4) g is integrated over all variables but 
ix . The second order terms 

, ( , )i j i jg x x  account for the 

residual effects of the interactions of the corresponding model inputs, and so on. These terms are obtained 

through conditional expectations followed by proper orthogonalization, see (Rabitz & Aliş, 1999).  

By determining sign of change, we mean a generalization of the comparative statics question of (Samuelson, 

1947): it is hoped to formulate qualitative restrictions on slopes, curvatures, …(Samuelson, 1947). That is, we 

are interested in studying whether, on average, the variation in a model input leads to an increase or decrease in 

the model output. The literature has ascertained that, under uncertainty, this answer can be gained by considering 

the first order effects of the functional ANOVA expansion. In fact, it is proven in (Beccacece & Borgonovo, 

2011) that these effects retain the monotonicity of the original input-output mapping. To clarify, if g  is 

increasing in 
ix , then ( )i ig x  is increasing, see (Anderson et al., 2014) for further details. 

Finally, a note on the estimation. All sensitivity measures and functional ANOVA effects are obtained by using a 

post-processing logic (Lewandowski et al., 2007). A set of methods has been examined by the authors. For 

variance-based, we used the COSI method of (E Plischke, 2012) the given-data estimator of (Elmar Plischke et 

al., 2013),  the cut-HDMR estimator of (Ziehn & Tomlin, 2009), as well as a recent smoothing spline estimation 
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subroutine
3
. For first order effect interpolation, we also used the smoothing spline ANOVA metamodel of 

(Ratto, Pagano, & Young, 2007). For density- and CDF-based sensitivity measures, we used the given-data 

estimators of (Elmar Plischke et al., 2013) and (Baucells & Borgonovo, 2013).  

In the next Section, a selected subset of the numerical results obtained is presented and discussed. 

3. Discussion of Results 

3.1 Baseline Scenario 

In a baseline scenario, the model output on which it is most interesting to assess the effects of technology 

performance are fossil fuel emissions. Effects on GDP would also be relevant, as the future cost of energy 

technologies does affect the pace of growth, but we abstain from this type of analysis as it is not possible to 

perform it with all three models: GDP does not change in response to technology performance parameters 

changes in the GCAM model. As MARKAL_US has a US focus, we will compare results from MARKAL_US 

with those emerging from the WITCH model for the US region. 

Figure 1 reports the global (left hand side panel) and US (right hand side panel) emissions spanned by the runs 

performed with the GCAM and WITCH, MARKAL_US and WITCH (reporting the US region only) models, 

respectively. In addition, for the sake of comparison, we also report the RCP 2.6 and 4.5 global fossil fuel 

emissions that we impose on the models for the climate-constrained runs described later. 

                                                           
3
 By W. Becker, personal communication to the authors, and available at http://ipsc.jrc.ec.europa.eu/?id=756. 
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Figure 1: Global (left panel) and US (right panel) carbon dioxide emissions from Fossil Fuel combustion and Industrial processes 

(FFI). Different colors correspond to different policies, where the light color encompasses the minimum-maximum range, and the 

darker one encompasses the 25%-75% quantiles range. This color convention is adopted throughout the paper in all the time-

series figures. 

 

When looking at global numbers, it is interesting to note how the GCAM model spans a much wider range of 

variations in baseline emissions, both at the extreme and for the 25
th
-75

th
 percentiles (darker shaded area). In 

GCAM, for some extreme realizations of cost and efficiency parameters, emissions remain almost at their 2015 

levels throughout the century. For some other combinations they double by 2100. Conversely, the WITCH 

model is much less sensitive to cost and efficiency variations considered in this exercise and, in average, 

emissions grow more by the end of the century, even under the most optimistic realization of parameters. This 

difference in the response to energy costs realization, as will be unpacked even more in later discussions, mainly 

hinges on the structural set up differences between the WITCH model, that overall entails slower and more 

costly technological adoption and evolution, and the GCAM model. Looking at the right hand panel of Figure 1 
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we can immediately notice the difference between WITCH and MARKAL_US: though the magnitude of the 

variation is roughly the same, the timing is different. Indeed, both models are solved through intertemporal 

optimization, but in the WITCH model the anticipation effect allows for larger short term adjustments than are 

allowed for in the MARKAL_US model.   

Figure 2 portrays the extent changes in baseline emissions, both in sign and magnitude, are attributable, in a first 

order approximation, to the individual variations of each input. This type of analysis casts light on the sign of 

change setting discussed in the methods section. The lines in Figure 2 are the first order effects of the functional 

ANOVA expansion of g(x) obtained through numerical interpolation. These lines represent the expected 

variation of output y (in this case cumulative emissions) as a function of each individual model input. The top 

panels in Figure 2 show that the capital cost of nuclear energy is the factor that, when varying in the assigned 

range, influences the output of both GCAM and WITCH the most. In particular, WITCH reacts almost linearly 

to changes in the capital cost of nuclear energy, while the reaction in GCAM is non-linear, with a higher rate of 

change in the low-nuclear energy cost region. As before, the smaller extent of the reaction in WITCH can be 

explained by the model structure itself which is based on constant elasticity of substitution nested functions to 

mimic the energy sector (a detailed description of each of the three models is provided in the Appendix). Such a 

structure is inherently less flexible and implies slower pace of technological shifts than that of models, as for 

example the GCAM model, that assume other functional relations among technologies, as for example linear 
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aggregation across technologies (see Kriegler et al., 2014 for a comparative analysis and classification of 

alternative model types). In addition, WITCH includes a constraint on the flexibility of the energy sector 

technological mix that penalizes excessive penetration of low flexibility technologies (i.e. renewables as well as 

base load technologies as for example nuclear) versus high flexibility ones (i.e. gas power plants) (Sullivan et al., 

2013). A further potential difference between the WITCH and GCAM models is in the way nuclear waste 

management cost are treated (in WITCH nuclear waste management costs increase with the world cumulated 

capacity of nuclear capital installed to mimic some sort of saturation effect). However, as the objective of the 

analysis is to look deeply into model structures and how they might affect models’ reactions to input parameter 

variations, assumptions about nuclear waste management costs were harmonization across the two models. 

Notwithstanding these differences, the direction of change is clear; an increase in nuclear energy costs increases 

baseline emissions both in WITCH and GCAM
4
.  

In addition, in the GCAM model, bioelectricity efficiency and non-energy costs (and biofuels, to a lesser extent) 

do play a role in shaping emissions, in particular for high cost (low efficiency) realizations.  

                                                           
4
 The slightly oscillatory behavior is mainly due to the smoothing method adopted and the finite sample size.  
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GLOBAL 

 
US 

 
Figure 2: First order effects of the functional ANOVA expansion for the 8 model inputs on global (upper panels) and US (lower 

panels) cumulative FFI CO2 emissions over the century, according to a functional ANOVA expansion. The realizations of each 

input are ordered on the x-axis from their min (=0) to their max (=1). 

 

The lower panel of Figure 2 reports a similar analysis but with a US focus. Within this single region as well, the 

cost of nuclear energy is again the main player for WITCH. For MARKAL_US, an effect is registered for 

nuclear energy at the extremes of its variation ranges. However, MARKAL_US, while producing an emission 

variation range comparable to that of the WITCH model for the US (see Figure 1, right hand side panel), 
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displays a very low sensitivity to individual changes in technology costs and efficiency values.  The almost 

horizontal shape of the first order effects and the very overlapped curves practically indicate that the model 

inputs play the effects of numerical noise, when considered individually. Indeed, the MARKAL_US baseline 

includes a number of assumptions and policies, in the form of additional constraints, that contribute to a less 

clear sensitivity to technology costs and efficiency levels when considered as individual determinants of the 

model output. Conversely, these constraints increase the interaction effects, as confirmed shortly when 

considering the sensitivity measures in Table 2.  Let us describe in detail what these constraints are. First of all, 

the inclusion of state level renewable portfolio standards (RPS) and wind generation tax credits in 

MARKAL_US lead to a higher level of renewable generation already by 2020, and independently on the 

technological performance realization. Additionally, the assumed ability to apply for a second  20-year life 

extension for nuclear power plants and the assumption that fossil steam plants do not have fixed retirement 

schedules (instead the retirements are determined endogenously) also limits the potential market for new 

technologies. Furthermore, the inclusion of the renewable fuel standard (RFS), as legislated by the Energy 

Independence and Security act of 2007, requires 36 billion U.S. gallons of biofuels by 2022. Hence, while 

biomass-based fuels gain market share versus petroleum-based fuels in MARKAL_US, biomass-based power 

generation is relatively disadvantaged by other fuels in the electric generation market in MARKAL_US.  
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Figure 3 reports the ranking of the different parameters for their uncertainty importance. It can immediately be 

seen that for both GCAM and, to a lesser extent, WITCH nuclear capital costs are, as expected, the key-drivers. 

The three uncertainty importance indicators tend to agree on their ranking, especially for the first three positions, 

which are the most relevant for the analysis.  
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Global 

 
US 

 
 
Figure 3: Ranking of uncertainty drivers for global (upper panels) and US (lower panels) cumulative FFI CO2 emissions over the 

century (over the half century for the US metric). Inputs on the x-axis are ordered from most important to least important, 

according to a density-based measure. In other colors also CDF- and Variance-based indicators are reported. 

 

In the lower inset of Figure 3 a similar set of indicators with a focus on the US is displayed for WITCH and 

MARKAL_US. The latter shows an almost uniform sensitivity to the model inputs, as well as an almost null 

value for the first order variance-based sensitivity indices. However, distance-based sensitivity measures display 
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a non-null value. This combination indicates that individual effects are negligible in MARKAL_US, and that the 

relevance of model inputs is mainly due to their interactions. As noted before, this is likely to be caused by the 

inclusion of a number of concurrent policies and constraints in the baseline.  

3.2 Climate Constrained Scenarios 

Let us now move on to the analysis that includes a constraint on global emissions in line with a 4.5 and a 2.6 

RCP scenario. The first and most straightforward output to study is the cost of CO2 abatement policy as a share 

of baseline GDP. Policy costs are measured in slightly different ways in different models (for MARKAL_US 

only the price of carbon is available and will be discussed below). In WITCH policy costs are measured as the 

difference in global consumption in the policy case versus the baseline. In GCAM, as GDP is exogenous and 

independent of the climate policy, the policy cost is measured in the reduction of social surplus, i.e. the area 

under the marginal abatement cost curve. In both cases costs are discounted at 5% and reported as share of GDP. 

Although these two metrics are not entirely comparable, as a matter of fact they are typically used for relative 

effort comparisons across models (see for example Clarke, 2009). In particular here, as we are interested in the 

relative effect of each technology performance rather than on the estimates of climate policy costs per se, it 

seems appropriate to compare these two metrics. The two models produce fairly comparable cost estimates for 

the 4.5 RCP scenarios, while they vary widely for the 2.6RCP scenario (see Figure 4).  
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Figure 4: Abatement costs of the two implemented climate policies as percentage of Base GDP.  For GCAM, absolute costs are 

expressed as the area under the MAC curve. In WITCH they correspond to consumption losses. 

 

Notably, WITCH reports much higher costs and a much larger variation in cost realizations associated with the 

range of technology performance. Figure 5 shows that the models appear to respond monotonically to changes in 

the technological cost and efficiency space. Visually, we can also appreciate that the first order effect analysis 

shows a dominance of the nuclear cost realization for GCAM, while biofuels stand out in WITCH. 
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RCP 2.6 

 
 
Figure 5: First order effects of the functional ANOVA expansion of discounted abatement costs for the RCP 4.5 (upper two 

panels) and RCP 2.6 (lower two panels) policies, using a discount rate of 5%. 

 

The dominant technology, though different across the two models, tends to be robust across mitigation targets 

(upper and lower insets in Figure 5). This is an important insight that comes from a multi-model comparison. It 

suggests that what could be considered as a robust response for a single model becomes less clearcut when 
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including several models in the analysis. Obviously, the climate policy cost metric is sensitive to the choice of 

the discount rate. We also perform the ANOVA analysis for policy cost metrics computed with different 

discount rates. Although we are not reporting them, results are extremely robust for this additional layer of 

sensitivity analysis: the first two positions of the ranking do not vary for a wide range of discount rates (as low 

as 0%, i.e. costs are aggregated undiscounted). This is also true if we consider a different metric altogether, that 

is if we consider carbon prices. This is shown in Figure 6 for the 2.6 RCP scenario, where we can also include 

the results for the MARKAL_US model. 

 

Figure 6: Ranking of uncertainty drivers of Carbon Prices for the RCP 2.6 policy 
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To appreciate how the uncertainty in technology costs propagates in the shadow price of carbon before 2050, the 

full time series of carbon prices for the different models and for both the climate constrained scenarios 

considered are reported in Figure 7. Despite the structural differences across the models, several similarities can 

be identified: under the less stringent (RCP4.5) climate scenarios model tend to agree on the median level of the 

carbon price; uncertainty increases over time; the min-max bands for the two scenarios do not overlap; and the 

near-term growth rates in the stringent (RCP2.6) scenario are similar. 

 

Figure 7: Price of carbon up to 2050 for each of the models in the climate constrained scenarios. 

Another common result across models is that both policy costs and carbon prices are more sensitive to 

technological performance realization, and are so earlier in time, under scenario 2.6 RCP than 4.5 RCP. While in 

the latter case just a few advanced technologies are sufficient to reach the target, the feasibility and costs of the 

former scenario rely greatly on the availability of a wider portfolio of cheap and efficient technologies. 
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Notwithstanding these similarities, models’ structural difference account for the huge variation in the extent and 

timing of the sensitivity as discussed previously.  

Finally, in Figure 8 we show the results of different technology penetrations under the different technology 

performance realizations. This shows, from a different angle, that GCAM results are more sensitive to 

technology performance than those of WITCH. At the lowest cost and highest efficiency, GCAM results indicate 

that renewable and nuclear energies can take up to 60% and 75% of the world’s electricity supply in 2090, 

respectively. In comparison, WITCH results show smaller variance. For instance, at the lowest solar costs 

considered, the renewables’ share of electricity does not exceed 20%, while nuclear energy does not take more 

than 60% of the power production mix. These differences bring forward the fundamental structural differences in 

the model architecture. Given sufficiently low prices, GCAM’s flexible structure allows solar, nuclear, or CCS 

energy to saturate the electricity market. For instance, at $385/kW capital cost of nuclear energy, GCAM allows 

most electricity markets to be dominated by nuclear energy within a few decades. Conversely, at the very 

unlikely extreme of $5727/kW there are virtually no new nuclear plants being built in the future. Such built-in 

flexibility of the architecture results in a lower cost of abatement, as well as a large sensitivity to either extremes 

of the technology costs. 

On the other hand, WITCH results indicate a more limited role of each technology. For instance, the market 

penetration of renewables in WITCH is less sensitive to the cost, because of strictly binding constraint on grid-
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integration of intermittent renewables (the constraint on the flexibility of the power generation fleet mentioned 

early). Similarly, nuclear power generation is constrained in WITCH for a variety of reasons, as the built in 

flexibility constraint. As we have already mentioned, the greater presence of renewables requires more flexibility 

in the mix, which is not conveniently provided by nuclear power plants. Hence, instances when both solar and 

nuclear technologies realization are low cost are not necessarily particularly favorable.  
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Figure 8: Distributions of three key technology penetrations under the two climate policies and the baseline scenarios considered. 

Upper panels: Carbon dioxide captured & stored from fossil fuels and biomass plants with CCS Middle Panels: Wind and solar 

electricity production over total power production. Bottom panels: Nuclear power production as a share of total power 

production. 

 

CCS technologies are key to the decarbonization implied by the climate policy scenarios under consideration. 

Under the RCP 2.6 in particular, with both GCAM and WITCH the minimum level of carbon stored is a 

considerable 2-3 GtC by the end of the century (notice how this differ from many multi model analysis set up 

where CCS is considered fully unavailable in the worst case scenario). In WITCH storage of carbon is performed 

basically independently of its cost and variation is really modest (as said all low carbon technologies are 

basically required in the mix to comply with these climate targets). In GCAM the deployment of CCS is much 

more sensitive to the vector of cost realization as more substitution with other technologies is possible.  

4. Conclusions 

This paper investigates the impact that technology assumptions have on a set of alternative environmental and 

economic metrics across models by means of a well-defined framework taken from the sensitivity analysis 

literature. This effort is extremely important for improving the usability of models to support policy making. 

First, because this type of exercise helps unpack the model structure and address the “black box” critique by 

means of showing the drivers in operation. In addition, given that different metrics might be of interest to policy 

makers, depending on the focus of the policy under consideration, we explore sensitivity of different types of 

output of Integrated Assessment models, rather than concentrating on the sole objective function (or policy cost 
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metric). This exercise is also extremely important from the viewpoint of modelers, who can better understand 

what is driving the results of their complex models and, as a consequence, focus their modelling and calibration 

efforts where it is more crucial in terms of model responses. 

In unconstrained emission scenarios, low-carbon technologies have to compete with fossil fuels without 

accounting for the social cost of emissions. As such, within the range of future technology performances 

considered in the present analysis, the cost of nuclear energy is shown to dominate all others in affecting future 

emissions. Although different models imply different variations in baseline emissions, the predominance of 

nuclear energy cost as the main source of variation across models is a robust result. The variability across 

models in the magnitude of this effect reflects, in turn, the existence of structural model differences that affect 

the speed and ease of technology replacements.  

Climate-constrained scenarios, and in particular scenarios aiming at a stringent target such as RCP 2.6, stress the 

relevance, in addition to that of nuclear energy, of biofuels, as they represent the main source of decarbonization 

of the transportation sector, and bioenergy, since the latter can be coupled with CCS to produce negative 

emissions. The ranking of the different parameters for their uncertainty importance changes across models, while 

it is robust for each individual model to changes in the cost metrics and in the stringency of the climate scenario. 

Some key policy implications may be drawn out of these results. Since climate policy costs are found to be 

mostly sensitive to the possibility of very cheap or very costly nuclear options, the importance of exploring 
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advanced nuclear possibilities, as well as of better understanding the social acceptability of such technology, 

cannot be neglected by energy R&D investors and policy makers alike. This will be crucial not only for the 

climate policy maker who intends to minimize policy costs, but also for the one who wants to reduce the 

uncertainty surrounding those costs. The same considerations hold for fuels and electricity produced from 

biomass. In this case, the appetite for research in these technologies, while hindered by potential concerns of 

economic competition with food production, may be supported by the key role of this technologies in reaching 

stringent climate targets, related in particular to the possibility of  achieving negative emissions.  

Looking at available statistics for the United States, a certain attention to nuclear development is already 

reflected in recent R&D spending, with around 1 billion USD yearly allocated to nuclear over a total R&D 

budget of 5 and 6.5 billions in 2010 and 2011 respectively (IEA RD&D Database). Moving to biofuels, these 

figures show a marked drop between 2010 and 2011, decreasing from 0.8 to 0.3 billion USD spent in related 

R&D. This may denote a need to strengthen the R&D efforts in this direction, potentially combined with a 

synergistic development in technologies like CCS, in order to avoid ruling out technologies that may make a big 

difference in future. Developing the models to include other technologies, like advanced energy storage 

solutions, and introducing important synergies, like the one between storage and solar generation, may increase 

the role of technologies which were assessed to have minor roles in this analysis, like solar.  
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A further important policy insight that we gain from the MARKAL_US model is that the existence of a complex 

system of energy policies, which might aim at different objectives and might be designed as independent, but 

which end up interacting and overlapping, might make the energy system reacting in unexpected ways to the 

potential improvement of the performance of a single technology. 

Regarding the methodology, several lessons may be learned from the analysis performed in the present paper, 

which allow for potential improvements in similar future exercises. In particular, a finer resolution in the 

sampling would enable a deeper understanding of the mechanisms involved in a models such as MARKAL_US. 

Results show that a key role is played by the way and extent models mimic technological adoption and 

penetration, transition costs and inertia, thus calling for a new set of expert elicitations covering better these 

topics. Furthermore, the sampling design could account for an analysis of interactions, thus allowing the 

investigation of potential synergies across pairs of inputs. Nonetheless, the results obtained so far may already 

inform an initial screening of relevant parameters to be considered in similar sensitivity analyses. 
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Appendix: IA Models Description 

 

GCAM 2.1 Model 

 

Table A1: Summary of GCAM features. 

Model Concept 

Integrated assessment model of Energy-Land-

Climate. Detailed market equilibrium model for 

energy and agricultural goods. Embedded simple 

climate model. 

Solution Method 

The model is solved for a set of market clearing 

prices for each period using a combination of 

Bisection and Newton-Raphson methods. 

 

Welfare Concept 

Net present value of consumer and producer 

surplus. 

Parametric Specification 

Discount rate = 5% 

Markets and Trade 

Emission permits, primary energy, and agricultural 

products traded on a single worldwide market. 

Regional markets for secondary energy. 

Model anticipation 

Static Foresight 

 

Model Regions: 14 

Africa 

Australia and New Zealand 

Canada 

China 

Eastern Europe 

Former Soviet Union 

India 

Japan 

Korea 

Latin America 

Middle East 

Southeast Asia 

USA 

Western Europe 

Base year 

2005 
Time horizon and step 

2005-2095, 5 years 

Climate 

Greenhouse gases: 

CO2, CH4, N2O, HFCs, PFCs, SF6, CO, 

NOx ,VOC, SO2, BC, OC. 

Aerosols Considered: yes 

Climate Change 

Model for the Assessment of Greenhouse Gas 

Induced Climate Change (MAGICC 5.3) 

CO2 concentration (ppm) 

Radiative forcing (W/m2) 

Temperature change (°C) 

Mitigation options 

Abatement cost functions for non-CO2 GHGs 

Land use 

Decarbonization options in the energy system 

(renewables, nuclear, biomass, ccs) 

Climate Impacts 

Not modeled 

Land use 

Emissions from land use change are considered 
Resources considered 

Coal, Oil, Gas, Uranium, Biomass, Carbon Storage 
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Overview 

The Global Change Assessment Model (GCAM) is a global integrated assessment model of energy, 

economy, land-use, and climate. GCAM is originated from the Edmonds and Reilly model (Edmonds & Reilly 

1983, Edmonds & Reilly, 1983). 

In this paper, we use the standard release of GCAM 2.1 with elicited technologies specifically modified to 

reflect the common assumptions on the future technology performances. GCAM is an open-source model
5
 

primarily developed and maintained at the Joint Global Change Research Institute. The full documentation of the 

model is available at GCAM wiki page (available at http://wiki.umd.edu/gcam/).), and the following description 

is a summary of the wiki documentation. 

GCAM is a long-term global model with particular emphasis on the representation of human dimensions of 

the Earth system. GCAM integrates representations of the global economy, energy systems, agriculture and land 

use, with representation of terrestrial and ocean carbon cycles, a suite of coupled gas-cycle and climate models.   

The climate and physical atmosphere in GCAM is represented by the Model for the Assessment of 

Greenhouse-Gas Induced Climate Change (MAGICC) version 5.3 (Wigley and Raper, 2002). The emission 

trajectories of greenhouse gases are modeled in GCAM’s energy and land-use components.  

The global economy of GCAM is represented in 14 geopolitical regions, explicitly linked through 

international trade in energy commodities, agricultural and forest products, and other goods such as emissions 

permits. The scale of economic activity is driven by population size, age and gender, and labor productivity that 

determine economic output in each region. The energy and land-use market equilibrium is established in each 

period by solving for a set of market-clearing prices for all energy and agricultural good markets. This 

equilibrium is dynamic-recursively solved for every 5 years over 2005-2100. Table A1 above provides an 

overview of the other key features of GCAM.  

 
Fig. A1 Overview of the GCAM model. 

 

GCAM combines representations of the global economy, energy systems, agriculture and land use, with 

representation of terrestrial and ocean carbon cycles, a suite of coupled gas-cycle and climate models. 

Source: Wise et al. 2009.  

 

Modeling energy system 

In GCAM, the energy system represents processes of energy resource extraction, transformation, and 

delivery, ultimately producing services demanded by end users. Resources are classified as either depletable or 

renewable; in either case, the extraction costs of a given resource are assumed to increase as economically 

                                                           
5
 GCAM Source Code and Data (available at http://www.globalchange.umd.edu/models/gcam/). 
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attractive resources are employed, but are also subject to technological progress which can lower extraction costs 

for a given resource grade. In each time period, the market prices of energy goods and services, including fossil 

fuel resources, are determined within the market equilibrium. 

Fossil fuel energy is produced from a graded, regionally disaggregated depletable resource base. 

Renewable energy forms are also disaggregated by region, and resource grade; however, by their nature the 

resource is not consumed by use. Primary energy forms can be transformed into final energy products, including 

electricity, processed gas products, refined liquids, and so on.  

Energy transformation sectors convert resources initially into fuels consumed by other energy 

transformation sectors, and ultimately into goods and services consumed by end users. Multiple technologies 

compete for market share; shares are allocated among competing technologies using a logit choice formulation 

(Clarke & Edmonds, 1993). The cost of a technology in any period depends on two key exogenous input 

parameters—the non-energy cost and the efficiency of energy transformation—as well as the prices of the fuels 

it consumes. The non-energy cost represents all fixed and variable costs incurred over the lifetime of the 

equipment (except for fuel costs), expressed per unit of output. For example, a gas-fired electricity plant incurs a 

range of costs associated with construction (a capital cost) and annual operations and maintenance. The 

efficiency of a technology determines the amount of fuel required to produce each unit of output. The prices of 

fuels are calculated endogenously in each time period based on supplies, demands, and resource depletion. The 

depletion of economically available energy resources are explicitly tracked throughout the modeling period.  

 

Modeling CO2 emissions 

GCAM tracks 16 different greenhouse gases, aerosols and short-lived species. Fossil fuel CO2 emissions 

are modeled according to the following method:  

1. The total emission in the base year is calibrated to the Carbon Dioxide Information Analysis Center 

(CDIAC) database (Boden et al, 2009) The fossil fuel consumption in the base year is calibrated to the 

International Energy Agency (IEA) Energy Balances Database 2007. 

2. The average emission coefficients are derived from the ratio of the total emission and the total fuel 

consumption for each fuel (Coal, Oil, and Gas). 

3. These emission coefficients are applied to each sector in the base year. 

4. For future periods, GCAM solves for market shares of each fuel in each sector, and the emissions are 

calculated by the product of emission coefficients and the fuel consumption in each sector. 

 

 

Modeling key TEAM Technologies 

 

Capital costs, fuel costs, and other non-energy costs are amortized to yield the levelized cost of electricity 

(LCOE) for each technology. Multiple technologies compete for market share; shares are allocated among 

competing technologies using a logit choice formulation (Clarke & Edmonds, 1993).  

 

 

Renewables integration is limited to 30% of grid capacity, at which point each additional unit of renewable 

power requires either an equivalent unit of gas0fired backup or battery backup. Fuel costs are determined 

endogenously by the model. The cost of biomass is endogenously determined by the land-use module. CCS is 

available for all fuel types starting in the year 2020. The additional capital cost and the additional fuel 

requirement is amortized and added to the standard powerplants powered by fossil fuel or biomass. CO2 storage 

can also be treated as a finite geographically distributed resource in GCAM. In this mode GCAM distinguishes 

five candidate geologic storage reservoirs types: (i) On-shore deep saline formations; (ii) Off-shore deep saline 

formations; (iii) Depleted oil fields; (iv) Depleted gas fields; (v) Unminable coal deposits. Each type of reservoir 

is associated with a cost of storage ranging from $0.036/tCO2 to $100/tCO2, depending on the difficulty of 

access (http://wiki.umd.edu/gcam). 
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All non-energy inputs evolve according to the learning equation presented in the paper, where the 2005 value is 

chosen in consistency with the previous 2005 calibration of the model and are summarized in the table below. 

Nuclear capital cost and CCS additional capital cost are amortized assuming 15% FCR and 90% capacity factor. 

Solar LCOE, and bioelectricity and biofuel additional capital cost do not require any conversion as they’re 

already elicited in levelized costs. Efficiencies are converted from HHV to LHV. See (Baron et al. 2014) for a 

detailed discussion of the conversion process. A fixed fee of 1 mill/kWhr (0.1 cent/kWhr) is charged to nuclear 

electricity generated for the development and eventual disposal of spent fuel in Yucca Mountain. We apply a 

fixed cost for waste disposal based on the US disposal fee and utilize a range of assumptions for the potential 

availability of repository capacity. Uranium supply curve is an upwards sloping curve documented in 

(http://wiki.umd.edu/gcam). At moderate levels of nuclear deployment, they cost of uranium is around $100/kg 

(about 0.3 cents/kWh), but as more nuclear power is deployed, it could drive up the cost of uranium to $250/kG 

or more. 

 

 

 

Table A2: Summary of TEAM Technologies characteristics in GCAM  

Technology  2005 value  Unit 

Bio-electricity efficiency  38.29  %HHV 

Bio-electricity non-energy cost  0.0511  2010$/KWh 

Biofuels efficiency  44.76  %HHV 

Biofuels non-energy cost  0.91  2010$/GGE 

CCS additional capital cost  3353.05 2010$/KW 

CCS energy penalty  42.8  % 

Nuclear capital cost  2859.89 2010$/kW 

Solar LCOE  0.592  2010$/KWh 
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WITCH Model 

 

Table A3: Summary of WITCH features. 

Name and Version:  WITCH 2014  Model developer and main users: 

Fondazione Eni Enrico Mattei  

Model objective:  
WITCH evaluates the impacts of climate policies on global and 

regional economic systems and provides information on the optimal 

responses of these economies to climate change. The model 

considers the positive externalities from leaning-by-doing and 

learning-by-researching in the technological change.  

Model concept:  Hybrid  

Economic optimal growth model, 

including a bottom-up energy sector and 

a simple climate model, embedded in a 

game theoretic setup.  

Solution Method:  
Regional growth models solved by non-linear optimization and 

game theoretic setup solved by tatonnement algorithm (cooperative 

solution: Negishi welfare aggregation, non-cooperative solution: 

Nash equilibrium)   

Base year: 2005  

Time Horizon, and time steps:  2005-2150, 5-year period.  Model anticipation:  Perfect Foresight  

Coverage and regions:  
Global. 14 regions.  

cajaz: Canada, Japan, New Zeland  

china: China, including Taiwan  

easia: South East Asia  

india: India  

kosau: South Korea, South Africa, Australia  

laca: Latin America, Mexico and Caribbean  

indo: Indonesia  

mena: Middle East and North Africa  

neweuro: EU new countries + Switzerland + Norway  

oldeuro: EU old countries (EU-15)  

sasia: South Asia  

ssa: Sub Saharan Africa  

te: Non-EU Eastern European countries, including Russia  

usa: United States of America  

Policy implementation:  
Quantitative climate targets (temperature, 

radiative forcing, concentration), carbon 

budgets, emissions profiles as 

optimization constraints.  

Carbon taxes.  

Allocation and trading of emission 

permits, banking and borrowing.  

Subsidies, taxes and penalty on energies 

sources.  

Economic sectors (represented separately in terms of value 

added):  
 

☐ Agriculture  

☐ Industry  

X Energy  

☐ Transport  

☐ Services  

X Other  

   

If other, please list or give number. If no separate sectors please 

give brief explanation of economy:  
A single economy sector is represented. Production inputs are 

capital, labor and energy services, accounting for the Energy sector 

split into 8 energy technologies sectors (coal, oil, gas, wind&solar, 

nuclear, electricity and biofuels).  

Exogenous Model Drivers:  

☐ Exogenous GDP  

X Total Factor Productivity  

X Labour Productivity  

X Capital Technical progress  

☐ Energy Technical progress  

☐ Materials Technical progress  

☐ GDP per capita  

☐ Other  

 

If other types or endogenous drivers, 

please describe:  
In the energy sector: endogenous 

Learning-By-Doing and endogenous 

Learning-By-Researching.  

Development:   Behaviour and behavioural change:  
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X GDP per capita  

☐ Income distribution in a region  

☐ Urbanisation rate  

☐ Education level  

☐ Labour participation rate  

☐ Other  

If other, please briefly describe:  

 Production function with constant 

elasticity of substitution.  

Cost measures:  

   
X GDP loss  

X Welfare loss  

X Consumption loss  

☐ Area under MAC  

X Energy system costs  

☐ Other  

If other, please briefly describe:  

Trade:  

   
X Coal  X Oil  

X Gas  ☐ Uranium  

☐ Electricity  

☐ Bioenergy crops ☐ Food crops  

☐ Capital  

X Emissions permits  

☐ Non-energy goods  

☐ Other  

 

If other, please briefly describe:  

Resource Use:  
X Coal  

X Oil  

X Gas  

X Uranium  

X Biomass  

☐ Other  

 

If others, please give brief details or number:  

Electricity technologies:  

   
X Coal X Gas  

X Oil  X Nuclear  

X Biomass X Wind  

X Solar PV  X CCS  

☐ Others  

 

If others, please give brief details or 

number:  

Heat and other conversion technologies:  

☐ CHP  

☐ Heat pumps  

☐ Hydrogen  

☐ Fuel to gas  

☐ Fuel to liquid  

☐ Others  

 

If others, or if necessary,  please give brief details or number of 

each technology:  

Grid and infrastructure:  

   
X Electricity  

☐ Gas  

☐ Heat  

☐ CO2  

☐ H2  

☐ Other  

If other, please briefly describe:  
 

 

(Optional) Provide summary (3 lines) of 

main aspects of grids and pipelines 

modelling?  

Energy Technology Substitution:  

☐ Discrete technology choices  

X Expansion and decline constraints  

X System integration constraints  

☐ Other  

Energy Service sectors  
X Transportation  

☐ Industry  

☐ Residential and commercial  
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If other, please give brief details or number:  
   

If others, please give brief details or 

number:  

Land-use  

Please list land use types:  
 

Bioenergy related cost and emissions are obtained by an soft linking 

with the GLOBIOM model.  

Other Resources  

☐ Water  

☐ Metals  

☐ Cement  

☐ Other  

 

If others or specifics, please give brief 

details  

Emissions and climate  
 

Greenhouse Gases coverage:  
          X CO2  X CH4 X N2O X HFCs X CFCs X SFs  

(F-gases (HFCs, CFCs and SFs) are aggregated in 2 categories: 

short-lived and long-lives gases)  

 

Pollutants and non-GHG forcing agents:  

             X NOx X SOx X BC X OC ☐ Ozone ☐ Other  

  

 

Modelling of Climate indicators:  
X CO2e concentration (ppm)    

X Radiative Forcing (Wm
2
 )  

X Temperature change (C
o
)    

X Climate damages (%GDP)  

 

 

Overview 

WITCH (www.witchmodel.org) consists of a dynamic global model that integrates in a unified framework 

the most important elements of climate change. The economy is modeled through an inter-temporal optimal 

growth model which captures the long term economic growth dynamics. A compact representation of the energy 

sector is fully integrated (hard linked) with the rest of the economy so that energy investments and resources are 

chosen optimally, together with the other macroeconomic variables. Land use mitigation options are available 

through a soft link with a land use and forestry model (GLOBIOM). A climate model (MAGICC6) is used to 

compute the future climate. Climate change impacts the economic output through a damage function, depending 

also on the rate of investments in adaptation. This allows accounting for the complete dynamic of climate change 

mitigation and adaptation. 

WITCH represents the world in a number (currently 13) of representative native regions (or coalitions of 

regions); for each it generates optimal mitigation and adaptation strategies for the long term (2005 to 2100), as a 

result of a maximization process in which the welfare of each region (or coalition of regions) is chosen 

strategically and simultaneously to other regions. This makes it possible to capture regional free-riding behaviors 

and strategic interaction induced by the presence of global externalities. In this game-theoretic set-up, regional 

strategic actions interrelate through GHG emissions, dependence on exhaustible natural resources, trade of oil 

and carbon permits, and technological R&D spillovers. The endogenous representations of R&D diffusion and 

innovation processes constitute a distinguishing feature of WITCH, allowing todescribe how R&D investments 

in energy efficiency and carbon free technologies integrate the currently available mitigation options. The model 

features multiple externalities, both on the climate and the innovation side. The technology externality is 

modelled via international spillovers of knowledge and experience across countries and time. This formulation 

of technical change affects both decarbonization as well as energy savings. Figure A2 provides an overview of 

the key features of WITCH. 

http://www.witchmodel.org/
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Fig. A2 Overview of the WITCH model. 

 

Each of the model native regions solves a dynamic optimization problem with respect to the key economic, 

energy and climate variables. Regions interact over climate, technology and resource externalities, modeling the 

strategic dimension of the climate change policy problem. 

 

 

 

 

Modeling energy system 

In WITCH, the energy sector is fully integrated with the rest of the economy. It is distinguished in an 

electric sector, a transportation sector, and an aggregated non-electric (industry and residential) sectors. The 

energy sector is described by a production function that aggregates different factors at various levels and with 

associated elasticities of substitution. All the main energy carriers and technologies are included. 

Natural gas is used in the industry and residential sector as well as for generating electricity. Gas power is 

available with and without carbon capture and storage. WITCH also tracks methane emitted in the non-energy 

sector. The marginal price of natural gas, along with the other energy carriers, is determined by cumulative 

global extraction and available resources. Gas is traded among the 13 regions, which can buy or sell it from a 

common pool (e.g. bilateral trade across each region couple is not accounted for). 

 

Modeling Greenhouse gas emissions 

The model generates the greenhouse gases reported in Table A3, either directly or via exogenous assumptions. 

Mitigation can happen through technology substitution or storage, direct reduction via Marginal Abatement Cost 

Curves (MAC) or end of pipe via Emission Factors. Emissions are fed to the MAGICC6 climate model, which 

calculates all the climate outcome.  

 

Modeling key TEAM Technologies 

Capital costs for power plants appear directly in the capital update equations, where they translate investments in 

new capacity additions, which cumulate with previous depreciated capital. While part of them is influenced by 

learning-by-research endogenous processes in a standard WITCH setup, for this exercise all of them are enforced 

exogenously. Given this setting, nuclear capital costs can be input in a straightforward way. For the sake of 

harmonizing the models the most according to the TEAM protocol, the modelling of nuclear was further 

simplified by assuming constant nuclear waste management unit costs, which normally increase with world 

cumulated nuclear capacity 

Since LCOEs are an output of the model, resulting from the assumptions on capital costs, depreciation rates, 

interest rates, and load factors, these are first translated in corresponding capital costs, and then input to the 

model. In the case of solar LCOEs, these will affect both PV and CSP capital cost, considering an extra 20% cost 
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for the latter. The same approach is used in the case of bio-electricity non-energy costs, affecting the capital cost 

of both traditional and new IGCC+CCS biomass power plants. Here, the extra capital cost of the more expansive 

CCS plants is directly given from the CCS capital cost input. CCS capital cost is also included in the capital cost 

of IGCC+CCS coal plants. 

Another type of parameters that appears directly in the structure of the model is the efficiency of power 

technologies, which translates primary energy consumed into power produced. Thus, the bio-electricity 

efficiency input can be accounted directly for traditional and new biomass plants. In the case of CCS energy 

penalty, this input affect in an inversely proportional way the original efficiencies of IGCC+CSS plants, fueled 

either by coal or biomass. 

Finally, biofuels non-energy costs are combined additively with average unit biomass costs to determine average 

unit price paid for advanced biofuels. Similarly to what was done for nuclear, in this exercise the learning-by-

researching and learning-by-doing dynamics, which normally determine advanced biofuels, are replaced by 

exogenous assumptions consistent with the sampled biofuels costs. The efficiency, as in the case of the CCS 

energy penalty input, is accounted multiplicatively, so that a 50% efficiency entails a doubling of the unit price. 

All these inputs evolve according to the learning equation presented in the paper, where the 2005 value is chosen 

in consistency with the previous 2005 calibration of the model and are summarized in Table A4 below. 

 

Table A4: Summary of TEAM Technologies characteristics in WITCH 

Technology  2005 value  Unit 

Bio-electricity efficiency  19.0  % 

Bio-electricity non-energy cost  0.2  $/KWh 

Biofuels efficiency 
6
 31.5  % 

Biofuels non-energy cost  10.6  $/GGE 

CCS additional capital cost  3781.2  $/KW 

CCS energy penalty  42.8  % 

Nuclear capital cost  4250.9  $/KW 

Solar LCOE  0.335  $/KWh 

 

 

                                                           
6
 WITCH just distinguishes between traditional and advanced biofuels. For this exercise, we took the maximum value of the range for the 

non-fuel cost of biofuels, and associate it just to the advanced category of biofuels, being the one that is more likely subject to potentially 

breakthrough learning rates. Using these assumptions, resulting prices are more consistent with the usual advanced biofuel prices of the 

standard version of the model. 
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BNL Multi-region MARKAL_US model 

 

Table A5: Summary of MARKAL_US features. 

Model Concept 

Partial equilibrium model of U.S. energy system.  The model 

was run with elastic demands for the various energy service 

demands. 

Solution Method 

Linear optimization based on minimizing total discounted 

energy system costs. 

 

 Parametric Specification 

System wide discount rate = 5% 

Markets and Trade 

Emission permits, coal and natural gas are traded nationally.  

Electricity includes trade with Canada and Mexico.  Oil is 

traded globally 

Model anticipation 

Perfect Foresight 

 

Model Regions: 10 

California 

East North Central 

East South Central 

Mid-Atlantic 

Mountain 

New England 

Pacific 

South-Atlantic 

West North Central 

West South Central 

Base year 

2010 
Time horizon and step 

2010-2050, 5 years 

Mitigation options 

Abatement cost functions for non-CO2 GHGs 

Decarbonization options in the energy system 

(renewables, nuclear, biomass, ccs) 

Climate Impacts 

Not modeled 

Land use 

Not modeled 
Resources considered 

Coal, Oil, Gas, Uranium, Biomass, Carbon Storage 

Notes 

Full MARKAL documentation available at http://www.iea-

etsap.org/web/Documentation.asp 

 

 

 

 

Introduction 

The BNL Multi-Region US MARKAL model (US MRM) is a 10 region model of the US energy system 

designed using the MARKet ALlocation (MARKAL) framework. MARKAL-based models are partial 

equilibrium models that incorporate a description of the physical energy system (Fishbone and Abilock, 1981, 

Hamilton et al. 1992). They are thus bottom-up models and are typically solved as cost-minimization problems. 

MARKAL models are currently used in around 70 countries around the world to analyze a wide array of issues 

such as environmental policy, energy policy, subsidy and tax regimes, efficacy of R&D programs and associated 

benefits, assessment of energy efficiency programs, energy market forecasts and many more (ETSAP, 2010).  

 

MARKAL has been developed by the Energy Technology Systems Analysis Program (ETSAP) for over 30 

years. ETSAP is an Implementing Agreement of the International Energy Agency (IEA), first established in 

1976. It functions as a consortium of member country teams and invited teams that actively cooperate to 

establish, maintain, and expand a consistent set of analytic tools.  

 

BNL has been involved in ETSAP and the development and application of MARKAL models since the 

beginning in the 70s and has continually kept a set of models that have been applied to energy technology and 

policy issues. This document describes the latest incarnation of BNL's main US analytical tool, the BNL Multi-

Region US MARKAL model (US MRM). 



50 
 

 

Reference energy system 

MARKAL models represent the components of the physical energy system. At the heart of any MARKAL 

model is a technology database which holds the definition of a set of energy resource, conversion and end-use 

technologies. These energy technologies are assigned properties and attributes such as fuel consumed and 

produced, conversion efficiency, investment and operating costs etc.  

 

The model structure can best be illustrated by a Reference Energy System (RES), which is a flow chart that 

shows how energy flows through the energy infrastructure as represented in the model. The RES thus show how 

the components of the energy system are linked together in a flow network where the technologies form the 

nodes and energy carriers represent the links (arrows). This is illustrated in Errore. L'origine riferimento non è 
stata trovata., which shows an aggregated energy system representative of most MARKAL models.  

 

 
Fig. A3 Overview of the MARKAL_US Energy System 

 

By representing individual technologies, MARKAL provides a bottom-up approach to study the energy system. 

The whole energy system, from resource extraction to service demand, is included, which allows for full “well-

to-wheel” comparison of technology options. 

 

Objective function 

MARKAL models are generally solved as a cost minimization problem where future states of the energy system 

are determined by identifying the most cost-effective pattern of resource use and technology deployment over 

time (Loulou et al. 2004). The MARKAL objective is thus to minimize the total cost of the system, discounted 

over the planning horizon. Each year, the total cost includes the following elements: 

 

 Annualized investments in technologies; 

 Fixed and variable annual Operation and Maintenance (O&M) costs of technologies; 

 Cost of exogenous energy and material imports and domestic resource production (e.g., mining); 

 Revenue from exogenous energy and material exports; 

 Fuel and material delivery costs; 

 Welfare loss resulting from reduced end-use demands. 

 Taxes and subsidies associated with energy sources, technologies, and emissions. 

MARKAL models are demand driven, which means that, for any feasible solution, exogenously specified energy 

service demands are met. The model then determines the least cost configuration of capital stock and utilization 

rates that will meet these demands over the full projection period. This is done while obeying a set of user-
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defined constraints, such as natural resource availability, technology and capital availability, environmental 

limitations. 

 

The model is dynamic, meaning that the capital stock in any period is equal to the capital stock in the preceding 

period plus/minus any additions or retirements. The model thus keeps track of capital stock, and the solution in 

one period is directly linked to the solution for other periods.  

Optimization is inter-temporal, which means that the optimization is performed for all periods concurrently, 

implicitly giving decision-makers foresight. 

 

Technology data 

Since the US MRM is a bottom-up model that individually represents thousands of energy technologies the data 

requirements are substantial. Costs and performance characteristics for all technologies are needed as well as 

information on policy, regulation, resource constraints, environmental constraints, expansion and growth 

constraints.  

The main source of technology data for the US MRM is the EIA. Much of the relevant information is published 

annually as part of the AEO  and the associated NEMS documentation. Other information was gathered from the 

residential, commercial and manufacturing energy consumption surveys, the annual coal, natural gas and 

petroleum annual reports, the refinery report  and the electricity generator database. A range of other sources, too 

numerous to include here, have been consulted as well. 

 

Like electricity prices the prices for liquid fuels are determined by the interaction of the technologies that 

produce them as well as the cost of the input feedstocks. Liquid fuels however, are not subject to time-of-use 

pricing and capacity markets which makes the price formation process less complex than for electricity. 

Marginal cost pricing is still used and most fuels will be priced at the crude oil price plus a cost of upgrading the 

crude oil (refinery margin) to the fuel in question. Alternative fuels such as corn ethanol, biodiesel or other 

advanced bio- and synthetic fuels are also available and will impact the pricing of marketed fuels.   

 

 

Modeling key TEAM Technologies 

 

The technologies in MARKAL that correspond to the technology classes as described in table 1, which are 

sensitized in terms of cost and performance parameters, include for solar power all centralized solar pv, for 

bioelectricity the biomass integrated gasification combined cycle power plants with and without carbon capture 

and sequestration (CCS), for nuclear the currently available light water reactors as well as the generation III/ III+ 

reactors and for biofuels the biomass to liquids fuel plants. Furthermore, the additional capital and energy cost 

sensitivity for carbon capture is also applied to coal integrated gasification combined cycle and natural gas 

combined cycle power plants with CCS. 

In order to harmonize the input data sample with MARKAL’s default input parameters  all cost data for each 

sensitized technology had to be converted to investment cost, a total cost of investment for new capacity. Of 

particular interest are solar power and bio-electricity as their investment cost calculation requires factoring in the 

capacity factor and the charge rate for each technology; while for solar power, investment cost is also adjusted 

for the available investment tax credit, as currently set at 10%. Nuclear power investment cost is calculated as 

the product of the overnight capital cost with the technology’s capital interest factor. All investment costs are the 

regionally adjusted by a cost multiplier. For the coal and gas power plants with CCS the price premium for the 

carbon capture is applied on top of the investment cost of the model’s corresponding baseline technology 

without CCS. Efficiency is a direct input for MARKAL technologies, therefore the integration of the data sample 

in the model only required the proportional adjustment of the carbon emission factors for each technology. 

Finally the CCS energy penalty was applied as an incremental efficiency penalty for all relevant technologies. 
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Table A6: Summary of TEAM Technologies characteristics in MARKAL_US 

Technology Start Year Efficiency Cost Units       

Biomass to Liquids 2015 69.80% 1.297 (non-energy) 2010$/GGE 

Biomass to Liquids with CCS 2015 60.40% 1.516  (non-energy) 2010$/GGE 

Biomas IGCC 2025 25.30% 0.0486 (non-energy) 2010$/KWh   

Biomas IGCC with CCS 2025 22.70% 0.0559 (non-energy) 2010$/KWh   

Solar PV 2015 N/A 0.294 (LCOE)  (2010 US) $/KWh   

Gen III Nuclear LWR capital cost 2020 N/A 1650.36 (Capital)  (2010 US) $/KW   
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