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1. Introduction

Investigating volatility in metal markets is an attractive subject for financial traders and
manufacturers. Metal prices are generally subject to a lot of speculative trades (Moore and Cullen,
1995), especially that in recent years increasing speculative activities in emerging economies lead to
more uncertainty and volatility in these markets (Gil-Alana and Tripathy, 2014). Volatility can
affect the decision of investors for portfolio allocation and Value at Risk management, as well as
the industrial production of manufacturers and therefore the economic growth pattern of nations. As
a result, the correct modeling of volatility in metal markets is a crucial issue, which on one side
increases the ability to generate more accurate out-of-sample forecasting of prices for policymakers,

and on another side facilitates the Value at Risk management strategies for financial traders.

The topic of investigating volatility in non-energy commodity markets, metals and agricultures, are
less considered in the literature comparing to stock and energy markets. In this context, Mckenzie et
al. (2001) investigate the volatility of precious metal prices using the univariate power ARCH
model and do not find an asymmetric effect in metal markets, Hammoudeh and Yuan (2008) apply
the univariate GARCH-type models to examine the volatility of gold, silver and copper prices while
controlling the shocks by including oil price and the US interest rate. They find an inverse leverage
effect in the gold and silver markets and a leverage effect in the copper market, Hammoudeh et al.
(2011) examine the volatility of precious metal prices using the GARCH-type models and develop
the corresponding risk management effect. Morales and Bernadette (2011) investigate the volatility
of precious metal prices before and after the global and the Asian financial crises, applying the
GARCH and the EGARCH models. They show strong evidences for the volatility persistence in
metal markets during the global financial crisis; however, this effect was very weak during the
Asian financial crisis, Chkili et al. (2014) assess the asymmetry and long memory effects in

modeling the volatility of crude oil, natural gas, gold and silver prices, employing the GARCH-type
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models. They find a leverage effect in oil and natural gas markets and find an inverse leverage
effect in gold and silver markets; furthermore, their results reveal that there is lower persistence for
the gold and silver markets compared to those of oil and natural gas, Gil-Alana and Tripathy (2014)
analyze the volatility persistence and the leverage effect for non-precious metal markets in India,
using the GARCH-type models. They find a high degree of volatility persistence for all metals, the
asymmetric effect is found for seven metals according to the TGARCH model and for ten metals
according to the EGARCH model. Finally Todorova et al. (2014) examine volatility spillovers
between non precious metals, applying the multivariate Heterogeneous Autoregressive (HAR)
model. They reveal that the volatility of other industrial metals contain useful information for the
future price volatility; however, the own dynamics of each metal are mostly sufficient to explain the

future daily and weekly volatility.

Another critical issue is the effect of oil price shocks on commodity markets, Ji and Fan (2012) state
that in recent years the substitution of fossil fuels by biofuels as well as hedge strategies against
inflation caused by higher oil prices have increased. These reasons surge the linkages between
crude oil and non-energy markets, including agricultures and metals. In this context, some studies
focus on volatility spillovers between metals and energy markets, using the bivariate or
multivariate GARCH-type models (see e.g., Choi and Hammoudeh, 2010; Ji and Fan, 2012; Mensi
et al., 2013; Ewing and Malik, 2013; Charlot and Marimoutou, 2014); some apply volatility indices
to examine uncertainty transmission between oil, non-energy commodities and stocks using the
cointegration and the Granger causality approaches (see e.g., Liu et al., 2013); a number of studies
examine the relation between oil and metal prices applying the cointegration and the Granger
causality procedures (see e.g., Soytas et al., 2009; Zhang and Wei, 2010; Sari et al., 2010; Jain and

Ghosh, 2013; Mensi et al., 2013); and finally a few studies apply the univariate GARCH-type



models to examine volatility of metals while including oil prices as the control variable to the mean

and variance equations (see e.g., Hammoudeh and Yuan, 2008).

However, none of the above mentioned studies take into account the role of exogenous events on
volatility of metal prices. As Charles and Darné (2014a) state, financial markets are affected by
specific incidents that can impact on modeling financial time series. These events, such as wars,
natural disasters, political conflicts, etc., that are mostly unpredictable, are the so-called outliers.
Outliers can affect identification and estimation of the GARCH-type models (Carnero et al., 2007
and 2012); they can wrongly suggest conditional heteroscedasticity or hide true heteroscedasticity
(see e.g., Balke and Fomby, 1994; Dijk et al., 1999; Franses and Ghijsels, 1999; Aggarwal et al.,
1999; Carnero et al., 2007); they can bias the GARCH parameters estimation (see e.g., Sakata and
White, 1998; Mendes, 2000; Charles, 2008); and they can affect out-of-sample forecasts (see e.g.,

Franses and Ghijsels, 1999; Carnero et al., 2007; Charles, 2008).

To solve the problem of outliers, Ané et al. (2008) examine the price volatility of Asia-Pacific
stock market after detecting outliers in a GARCH model, using their own proposed approach.
Moreover, Charles and Darné (2014a and 2014b) estimate the price volatility of crude oil and Dow
Jones industrial average index, respectively, after detecting and correcting outliers in the GARCH-
type models, applying the Laurent et al. (2013) outlier detection method. However, to the best of
our knowledge, there is no study in the literature that takes into account the presence of outliers in

volatility of non-energy commodity markets.

The current study sought to achieve two main objectives. The first one is to examine the persistence
of volatility and the leverage effects in four precious and six industrial metals, employing the
GARCH and the GJR models, considering outliers. To achieve this goal we use two alternative
approaches to capture outliers in the series, one is employing the widely used approach of Student-t

distribution suggested by Bollerlev (1987), and the second one is identifying and correcting outliers
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in the GARCH-type models applying the Doornik and Ooms (2005) outlier detection procedure.
The second objective is to examine the effect of oil price shocks on the price volatility of metals,
taking into account the presence of outliers; moreover, we allow for the asymmetric responses of
price volatility to the changes of oil returns. These investigations provide two original contributions
to the existing commodity markets literature: investigating the effect of extreme events on modeling
of volatility, and estimating the asymmetric responses of volatility to the negative and positive oil

price shocks in metal markets, which have not been investigated in the relevant studies.

The rest of this paper is organized as follows. The methodology is given in section 2. Data
description and summary statistics are provided in section 3. Section 4 describes the results. Finally

section 5 concludes.

2. Methodology
2.1. Persistence of volatility and leverage effect

In order to estimate the volatility persistence in metal markets we apply the GARCH model

developed by Bollerslev (1986):

yt = ﬁ,xt + gt , gt:Zt h’t’ St~N(0, \/h_t ), Zt""i. i. d, N(O,l) (1)

p a
hy = aq +Z“i Er-i +Zﬁi he_j
i-1 i-1

(2)

Where £Z ; denotes the ARCH term and h,_; denotes the GARCH term. The parameters should
satisfy ap >0, Y_ a; >0 and ¥, B; =0, to guarantee the non-negativity of the conditional

variance. The necessary and sufficient conditions for the second order stationarity of the
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GARCH(p,q) model is ¥7_, a; + Y.L, B; < 1. This condition is sufficient for the QMLE" to be
consistent and asymptotically normal. However, later Nelson (1990) obtains the necessary and
sufficient conditions for strict stationarity, E(log(an? + ) < 0 as the log-moment condition,

which allows for a + f = 1 if Ec}=co.

In the next step, we apply the Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model
proposed by Glosten et al. (1993) to analyze the asymmetry and the leverage effects in the GARCH

process:

1 if g <0 3
he = o + X0y el + S byt Thma vileosele where fy=fg o S0 O

In this model, the parameters should satisfy ay > 0, X7_, a; + Xk—1vx /2 =0 and T, B; =0, to
guarantee the non-negativity of the conditional variance. Moreover, the second order stationarity
condition should be satisfied as X!, a; + X v, /2 + Xl Bi<1l. Ling and McAleer (1999)
develop the second order stationarity of the GJR(1,1) model as a sufficient condition for
consistency and asymptotic normality of the QMLE. Nevertheless, later McAleer et al. (2002)

obtain the necessary and sufficient condition for strict stationarity by extending the log-moment
condition for the GJR(1,1) model, as E (log((a+yI(n:))n? + B)) < 0, this allows for a + % +p >

1if Eg?=00.
2.2. Outlier detection

The existing methodologies to detect outliers are divided into two categories: methods to detect

outliers in linear models (see e.g., Tsay, 1986; Chang et al., 1988; Chen and Liu, 1993) and

! Quasi Maximum Likelihood.



methods to detect outliers in nonlinear models (see e.g., Sakata and White, 1998; Hotta and Tsay
1999; Franses and Chijsels, 1999; Charles and Darné, 2005; Zhand and King, 2005; Doornik and
Ooms, 2005; Laurent et al., 2013). In this study we apply the Doornik and Ooms (2005) procedure
to detect the additive outliers in the GARCH-type models. Their proposed approach is inspired by
Chen and Liu (1993) who develop an outlier detection procedure in a standard time series model. In
the process of detecting additive outliers, it is important to distinguish between level outliers and
volatility outliers. The additive level outliers affect the level of the series and the additive volatility
outliers affect the future conditional variances, meaning that outliers in the series affect underlying
conditional variances (see Sakata and White, 1998; Hotta and Tsay, 1998). In this context, Doornik
and Ooms (2005) introduce a nesting model for generalized additive outliers (gao), which nests
both the additive level and the additive volatility outliers in the GARCH process. Based on this

approach the following five steps procedure is applied:

The first step is to estimate a GARCH model to obtain the log likelihood I, residuals ¢, and

Zt|. The second step is
t

volatility h;, and the largest standardized residuals in absolute value, max; -

to re-estimate a GARCH generalized additive outlier model with adding a single-observation
dummy variable, d;, in the mean equation as well as adding a single-observation lagged dummy

variable, d;_, in the variance equation. The first dummy, d;, corresponds to the date of the largest

standardized residuals, (max; |—|), obtained from step one, in which d; equals one where t=

3
ht
max.|&;/h:| and zero otherwise, and the second dummy, d,_,, relates to the date of the largest

standardized residuals(max; [—|) with one period lag, in which d;_; equals one where

&
ht
t=(max|e;/h:| )+1 and zero otherwise. The GARCH generalized additive outlier model can be

written as;



Yt = B,xt +yd: + & (4)

p q (5)
he = ay + Z @ et + Zﬁi he_j+tde—q
i=1 i=1

The reason of adding the lagged dummy variable in the variance equation, is well described by
Doornik and Ooms (2000). The authors show that in a GARCH(p,q) model with only a single-
observation dummy variable in the mean equation, maximum likelihood estimation can be
problematic due to the potential for the bimodality in the likelihood function, while including the
lagged dummy variable in the variance equation solves the problem. Doornik and Ooms (2000)
prove that if the dummy variable enters to both the mean and variance equations without lag,
bimodality remains a potential issue 2. In this model the dummy variable in the mean equation sets
the corresponding residuals to zero when y is estimated by maximum likelihood.

The above described generalized additive outliers (gao) GARCH(p,q) model nests both the additive

level and the additive volatility outliers without the problem of the bimodality of the log-likelihood.

This gives estimates for the added parameters 7 and £, and a new log likelihood Zgao.

In the third step, we detect the potential outliers in the series. The null hypothesis is that the largest

standardized residuals absolute value (max; |=|) is an outlier date if Z(igao-i)>C%; however, the

£t
ht

alternative hypothesis is that the date with (max, |=£|) is not corresponding to an outlier if Z(igao-

£t
he

[)<C£. Doornik and Ooms (2005) suggest an approximation of the asymptotic distribution of this

test as Cr ~ 5,66+1,88 logT, where T indicates the sample size, at a significance o of 5%. If the null

? For more information about the mathematical proof of this assertion, please see the original article by Doornik and
Ooms (2000).



hypothesis is confirmed and the first largest standardized residuals absolute value (max; |%|) can
t

be identified as an outlier, we correct it by replacing this value with a new one, which is the
corrected value, in this study the new value is obtained by forecasting. This procedure is recursive,
meaning that after identifying and correcting the first outlier, we re-estimate the GARCH model
with the new dataset and we repeat the three above-described steps to identify the second outlier,
the third one, and so on. This process will be repeated until the null hypothesis is rejected and no
more outlier is identified, thus the procedure should be terminated. Consequently, we have a time
series in which all dates containing outlier values are replaced by our forecasted values and we have
a new time series that is so-called outlier corrected dataset. We extend this procedure to the

GJR(p,q) as well as to the GARCH(p,q) models.

This approach has some advantages over the existing outlier detection methods. Doornik and Ooms
(2005) suggest an appropriate procedure to compute the p-values for the test that does not need
simulation. It is a likelihood-based test and the related tests are similar to the GARCH parameters. It
is a nested test for the additive level and the additive volatility outliers. Finally, the procedure has
the advantage of being extendable to the other types of the GARCH models, such as the EGARCH

and the GJR, as well as being expandable to the higher orders of these types of models.
2.3.The effects of oil price shocks on volatility

In this section, we analyze the asymmetric effects of oil price shocks on the price volatility of
metals by including oil price returns to the variance equation of the GJR model. We apply both the

original and the outlier corrected data. The new variance equation is given by:

he =ao+ X ai ety + X0 Biheoj + Xhe1 Vi Ik 8- +@10PF + 0,0P7 (6)
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where OP; denotes the positive oil price returns and OP; denotes the negative oil price returns.
We follow the Mork (1989) method to separate out the positive and negative shocks, as OP} = OP;
if OP; > 0 otherwise 0 and OP; = OP; is OP, < 0 otherwise 0. To find the asymmetric reaction of
metal prices to the oil price shocks, we apply the Wald test. The null hypothesis is Hy: 0, = @,
suggesting no asymmetric reaction and the alternative hypothesis is H;: @, # @, confirming the

asymmetric reaction of each metal price to the oil price shocks.
3. Data description and summary statistics

We use daily spot closing price series for six industrial metals, including aluminum, copper, lead,
nickel, tin, zinc; and four precious metals, comprising gold, silver, palladium and platinum, traded
on the LME (London Metal Exchange). Moreover, we apply daily spot closing price series for
Brent crude oil, traded on ICE (Intercontinental Exchange). The time span is from July 1993 to
January 2014,which has the advantage of covering the 1997 Asian financial crisis, the 2008 and the

2012 oil price shocks, the 2008 global financial crisis and the 2008 stock market crash. The prices

are converted to log returns by means of R; = log(Pi), where R; is the corresponding returns and
t—-1

P, is the corresponding price series.

All return series have the Kurtotis statistics greater than three representing the existence of fat tails,
they have the negative skewness statistics suggesting the presence of left fat tails, expect for nickel
that shows a small right tail. Moreover, the Jarque-Bera statistics indicate non-linearity for all return
series at the 1% level of significance. The residual diagnostics tests suggest that there is an ARCH
effect for all returns at the 1% level of significance, thus returns of metals suffer from
heteroskedasticity, the results are shown for one lag. Furthermore, according to Ljung-Box Q-test
for residuals there are enough evidences for presence of serial correlation up to 20 lags.

In order to check for stationarity properties of the series we apply the Augmented Dickey and Fuller
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(1979) (ADF) and the Phillips and Perron (1988) (P-P) unit root tests. According to the both tests
the level of metal prices contain unit roots and their returns are stationary; hence, they are suitable

for subsequent tests in this study. The description of returns are shown in Table 1.

[TABLE 1 HERE]

4. Results

4.1. Outliers in metal markets

Tables 2a and 2b report the date of detected outliers for each metal, using the Doornik and Ooms
(2005) approach under the GARCH and the GJR models, respectively. We detect outliers applying

both normal and Student-t distributions.

The results indicate that under the GARCH model with normal distribution, for aluminum, copper,
lead, nickel, zinc, gold, palladium and silver, the number of detected outliers are seven, nine, three,
two, three, five, two and nine, respectively; however, under the GARCH model with Student-t
distribution no outlier could be detected for lead, nickel and zinc, and only one outlier, which is the
biggest one, is identified for aluminum, copper, gold, palladium and silver. Under the GJR model
with normal distribution, for aluminum, copper, lead, nickel, zinc, gold, palladium and silver, the
number of detected outliers are six, nine, three, two, two, three, one and six, respectively; while
under the GJR model with Student-t distribution no outlier is identified for lead, nickel and
platinum, one outlier is detected for aluminum, gold, palladium and silver, and three and two
outliers are detected for copper and zinc, respectively, which are the biggest outliers. Moreover,
under the GARCH and the GJR models with normal and Student-t distributions no outlier could be

identified for tin and platinum.

Among the corresponding events that occurred in the same or around the time of identified outliers

and can have roles in arising of outliers, we can mention e.g., to the Schengen agreement; a fierce
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attack by a hedge fund in June 1996 resulting in copper price falling; the 1997 Asian financial
crisis; the 11 September 2001 terrorist attack; Cyprus, Czech Republic, Estonia, Hungary, Latvia,
Lithuania, Malta, Poland, Slovakia, and Slovenia joined the EU in 2004; the 2005 South Asian
tsunami; the 2007 tsunami warnings in the Pacific Ocean; the 2008 global crisis; the September
2008 stock market crash; the 2008 and the 2012 crude oil price shocks; the 2010 Earthquake in
China; the 2010 Mexican oil spill; and the start of the Wall Street protests in the United States in
2011.

[TABLES 2a-2b HERE]

Next, we apply the GARCH and the GJR volatility models to examine the persistence of volatility
(section 4.2) and the leverage effects (section 4.3) in metal markets using the "original data" and the
"outlier corrected data". We compare the estimation of the models under four different conditions:
(1) original data-normal distribution; (2) original data- Student-t distribution; (3) outlier corrected
data-normal distribution; and (4) outlier corrected data- Student-t distribution. Then, we investigate
the effects of oil returns on the price volatility of metals, allowing for the asymmetric responses to
the negative and positive oil price shocks, using the original and the outlier corrected data (section

4.4).

4.2. Persistence of volatility

4.2.1. Empirical results

We apply the ARMA(p,q)-GARCH(2,2) model to estimate the persistence of volatility among
metals. Selection of the appropriate models is based on the ARCH test and the Akaike Information
Criteria (AIC). For each metal the best model is shown in bold representing the lowest value of the
AIC. Furthermore, the residual diagnostic tests results are informed to check for the fitting of the

chosen volatility models. The results are reported in Tables 3a-3c.
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The results indicate that for all metals the non-negativity conditions are observed. The moment
conditions state that for aluminum, copper, nickel, platinum and silver the second moment condition
is satisfied within every one of the estimated models, but for lead, tin, zinc, gold and palladium the
second moment condition is violated for some of the models. However, the log-moment condition
is satisfied for every one of the estimated models for all metals. Therefore, there are sufficient

evidences in favor of consistency and asymptotic normality of the QMLE for all metals.

We continue the discussion by comparing the GARCH models in terms of their information criteria
to conclude which model shows the highest performance in capturing volatility for each metal.
First, for all metals, removing outliers improves the performance of the GARCH model using
original data with normal distribution, except for tin and platinum, for which no outlier is detected.
Thus, for all metals the GARCH model using the outlier corrected data-normal distribution

outperforms the GARCH model using the original data-normal distribution.

Second, we go further to compare the ability of two solutions for capturing the fat tails in returns.
One is using Student-t distribution; and another is using the outlier corrected data. Accordingly, the
results suggest that, for seven metals, the model using original data-Student-t distribution
outperforms the model using the outlier corrected data-normal distribution, except for aluminum
that the model using the outlier corrected data-normal distribution outperforms the one using the

original data-Student-t distribution; and that no outlier is detected for tin and platinum.

Third, in the next step, we develop the performance of the GARCH models using the original data-
Student-t distribution by detecting and correcting the remaining outliers. We find that for
aluminum, copper, palladium and silver some outliers can still be detected under the GARCH
model with Student-t distribution, this means that Student-t distribution is not able to capture some

big shocks in returns of the above-mentioned metals. The results show that the new GARCH model
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using the outlier corrected data-Student-t distribution increases the performance of the GARCH

model using the original data-Student-t distribution.

In the variance equation, the ARCH term (a; + a,) captures the short-run persistence and the
GARCH term (B, + B,) captures the contribution of the shocks to the long-run persistence; hence,
if (81 + B>) is high, the shocks to volatility do not disappear rapidly. Moreover, Zf=1 a; + Z?=1,8i
captures the volatility persistence, if its value is close to one, the volatility is persistence.
Accordingly, we find that for all metals, either before or after removing outliers, this value is high.
Moreover, for all metals, except palladium, under the GARCH model with normal distribution,
when the data are cleaned up from outliers the values of the ARCH term decrease and the values of
the GARCH term increase; however, the values of Y7_, a; + Y.]_, B; remain unchanged or change
insignificantly. These results are in line with Franses and Ghijsels (1999) for stock markets and

Charles and Darne (2014) for crude oil markets.
[TABLES 3a-3c HERE]
4.2.2. Discussion

The empirical results achieved three main conclusions. The first one is that for all metals the effect
of past volatility on the current volatility is much greater than the effect of past shocks on the
current volatility. This indicates that the past volatility are better factors to use for the prediction of
the future volatility among metals rather than the past shocks. The second conclusion is that for all
metals either before or after removing outliers, the values of Zle a; + Z?zlﬁi are high, indicating
the high degree of persistence in volatility, and that their volatility converge to the long-run

equilibrium slowly®. Furthermore, the third conclusion is that after removing outliers from the data,

> Among them, gold does not meet the second moment condition under any of the four estimated models and is
excluded from this description.
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the values of the ARCH term decrease and the value of the GARCH term increase, Carnero et al.
(2001, 2007) explain these biases as a result of some big isolated outliers. This means that one
isolated outlier at time t affects the estimation of the conditional variance at time t+1, then this
variance will be used in the estimation of the conditional variance at time t+2 and so on.
Consequently, an isolated outlier behaves as a patch of outliers for the estimation of the conditional
variances and the GARCH parameters. This explains the different behavior of the QMLE estimator
for the GARCH model with and without outliers. Within the time span of this study, the 11
September 2001 terrorist attack, the 2010 China Earthquake, and the 2005 South Asian tsunami are
some examples for big isolated outliers that can affect metal markets. Moreover, the biases in the
GARCH parameters can be a result of some sequential outliers. This suggests that the area of
outliers due to the uncertainty associated with an extreme event period such as wars have a
successive effect on the parameters of the GARCH model (Carnero, 2001 and 2007; Charles and
Darner, 2014). Although no war occurred during the time span of this study, we can still indicate
the 1997 Asian and the 2008 world financial crisis and the 2008 and the 2012 crude oil price shocks
as examples of sequential outliers in metal markets that affect the parameters estimations of the

GARCH models.

4.3. Leverage effects

4.3.1. Empirical results

We apply the ARMA(p,q)-GJR(2,2) model to estimate the existence of leverage effect among metal
markets. The selection of appropriate models is based on the ARCH test and the Akaike

Information Criteria (AIC). For each metal the best model is shown in bold, representing the lowest

16



value of the AIC. Furthermore, the residual diagnostic tests results are informed to check for the

fitting of the chosen volatility models. The results are reported in Tables 4a-4c.

We start with the assumptions that in a GJR model, if the y>0 there is a leverage effect. The
leverage effect refers to the relationship between returns and volatility, indicating that volatility
increases when the returns fall (bad news) as debt-to-equity ratio increases; and volatility decreases
when the returns increase (good news). Moreover, a indicates the effective coefficient linked to the
positive shocks (good news) and a + y represents the effective coefficient related to the negative
shocks (bad news) and if o« +y > a then there is an asymmetric effect. The asymmetry
phenomenon declares that bad news increase volatility more than good news decrease it. In this
section, the aim is to show if there is a leverage effect in metal markets while taking outliers into

account.

The results in Tables 4a-4c reveal that for all metals the non-negativity condition is observed. The
second moment condition is satisfied for aluminum, copper, lead, nickel, platinum and silver under
all estimated models, but it is violated for some estimated models of tin, zinc, gold and palladium.
Nevertheless, the log-moment condition is satisfied for all metals. Consequently, there are sufficient
evidences in favor of consistency and asymptotic normality of the QMLE for all metals under the

ARMA(p,q)-GJR(2,2) model.

In order to evaluate the existence of the leverage affect in metal markets, we compare the results
under the four estimated models. First, under the GJR model using the original data-normal
distribution, for eight metals the y term is statistically significant. However, for seven of them the y
term is negative, including aluminum, lead, tin, zinc, gold, platinum and silver, indicating the
existence of an inverse leverage effect. Conversely, for copper the y term is positive suggesting the
existence of a leverage effect. Moreover, for nickel and palladium the y term is not statistically

significant under this model. These findings are in line with Hammoudeh and Yuan (2008) who
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suggest the leverage effect only for the copper market and the inverse leverage effect for the gold
and silver markets, and in line with Chkili et al. (2014) who find an inverse leverage effect for the
gold and silver markets. Accordingly the authors suggest that gold and silver can be good
investments in prospect of bad news, In another study Carpantier (2010) finds the leverage effect
for the stock markets and the inverse leverage effect for commodity markets, including metals and
agricultures. Moreover, Engle (2011) provides evidences in favor of a negative sign of the y term
for gold, some exchange rates, some interest rates and some volatility index return series and
interprets this as a hedge effect. Nonetheless, our results are in contrast with Gil-Alana and Tripathy
(2014) who find the leverage effect in Indian non-precious metal markets, including aluminum,
copper, lead, tin and zinc. The only exception is nickel, for which neither our study nor the study by
Gil-Alana and Tripathy (2014) find any asymmetric behavior. These contradictory results lead us to
the different behaviors of international exchange markets, meaning that the LME as a developed
market, and the Indian commodity exchange market, as a less developed market, are not alike.
Perhaps the Indian commodity exchange market still suffers from some imperfections such as

governmental controlling and domestic traders with lack of sufficient trading experiences.

Second, under the GJR model using the outlier corrected data-normal distribution, for five metals,
including copper, lead, zinc, gold and silver, the y term still is statistically significant but for
aluminum, detected outliers have been the sources of the leverage effect, as cleaning the data from
outliers removes the asymmetry evidence. However, for tin and platinum no outlier is detected:;
therefore, the GJR model is not estimated for them. Finally, for palladium and nickel the results are

the same as the first model and no leverage effect is detected for them.

Third, under the GJR model using the original data-Student-t distribution, the results suggest that
for five metals, including copper, tin, zinc, platinum and silver, the y term is still statistically
significant, and for lead, nickel and gold, it is no longer statistically significant. This indicates that
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Student-t distribution is capturing the outliers that were leading to an asymmetric effect in these

three metals.

Fourth, under the GJR model using the outlier corrected data-Student-t distribution, the y term is
statistically significant only for copper, zinc and silver. This means that, correcting the data from
outliers, as well as using Student-t distribution remove the sources of asymmetry in the rest of

metals.

[TABLES 4a-4¢c HERE]

4.3.2. Discussion

The results suggest the existence of inverse leverage effect for seven metals, including aluminum,
lead, tin, zinc, gold, platinum and silver. As the existence of a leverage effect in stock markets is
well known in the literature, evidences in favor of an inverse leverage effect is supported for
commodity markets. This reflects that in commodity markets, volatility tends to be high when
returns increase; in this case, supplies or inventory levels of commodities tend to be scarce. For
instance, Carpantier (2010) explains that an increase in price potentially represents the decline of
the commodities inventories, consequently the author suggests that this phenomenon can be called
"inventory effect”. Moreover, the results suggest the existence of leverage effect and asymmetry in
favor of bad news in the copper market, which emphasizes developing financialization and

departing from the characteristics of a commodity market for copper.

When comparing the results from the GJR and the GARCH models to capture the pattern of
volatility, according to the Akaike Information Criteria, there are strong evidences in favor of
priority of the GJR model over the GARCH model. This means that the price volatility of metals

can be better explained by a model that contains the asymmetry features.
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To check the validity of normal distribution, the results show that for all metals there are evidences
for the existence of skewness and excess kurtosis, the Jarque-Bera tests are significant as well.
These results confirm the findings of Bollerslev (1989) and Trasvirta (1996) who show that the
GARCH models cannot fully capture excess kurtosis in high frequency financial data. However,
after cleaning up the data from outliers, skewness, excess kurtosis and Jarque-Bera are substantially
reduced, but still they are statistically significant®. This indicates that outliers can lead to excess
kurtosis in the data (see Balke and Fomby, 1994; Fiorentini and Maravall, 1996; and Charles and

Darne, 2005 and 2014).
4.4.The effects of oil price shocks on volatility of metal markets
4.4.1. Empirical results

The results of the volatility estimations in previous section suggest that the GJR model outperforms
the GARCH model to capture the pattern of volatility in metal markets. Hence, we use the ARMA-
GJR(2,2) model with normal distribution, using both the original and the outlier corrected data to
estimate the effects of oil price shocks on the price volatility of metals. We allow for the
asymmetric responses to the oil price changes by splitting up the oil price increases and decreases as

the separate variables®. The results are reported in Table 5.

We start by analyzing the effects of oil price shocks on the volatility of metals, using the original
data. For aluminum, the sign of negative oil price shocks on volatility is negative, representing that
they increase volatility. However, the positive oil price shocks do not impact on the volatility of
aluminum. For copper, nickel and palladium, the sign of negative oil price shocks is negative and

the sign of positive shocks is positive meaning that either the negative or the positive oil price

* These results are available upon request from the authors.

® For robustness check we perform the same analysis using the GARCH model as well, which confirms the results of
the GJR model for the majority of metals, the results are available upon request from the authors.
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shocks increase their volatility. For lead, tin and platinum, the sign of negative and positive shocks
on volatility is negative indicating that the negative oil price shocks increase volatility and the
positive oil price shocks decrease it. For zinc and gold, the sign of negative oil price shocks on
volatility is positive, specifying that the negative oil price shocks decrease volatility; however, the
positive oil price shocks do not affect their volatility. Finally the negative shocks do not affect the
volatility of silver, while the sign of positive oil price shocks on volatility is negative, meaning that
these shocks decrease the price volatility of silver. However, even for metals with statistically
significant oil shocks effect, the values of coefficients are insignificant, indicating a very small and

negligible effect of oil price shocks on those volatilities.

Then, we go further to understand the existence of asymmetric reaction from metal prices
volatility to oil price shocks. We use the Wald test with the null hypothesis of Hy,: @, = @,
suggesting no asymmetric reaction and the alternative hypothesis of H;: @; # @, conforming the
asymmetric reaction. The results show that there are evidences of an asymmetric effect in favor of
the positive shocks for lead, tin and silver, and in favor of the negative shocks for aluminum, zinc,
gold and palladium. Moreover, no asymmetric reaction is identified for copper, nickel and platinum,

The results are reported in Table 5.

Next, we analyze the effects of oil price shocks on volatility, using outlier corrected data. The
results reveal that for lead, zinc, gold and palladium the estimation using the outlier corrected data
is equal to those using the original data, and for tin and platinum no outlier could be detected from
the previous section. However, for aluminum and nickel the effects of oil price shocks are not
statistically significant after removing outliers from the data; besides, for copper and silver only the
effect of positive shocks remains significant after correcting the data from outliers. The results are
reported in Table 5.

[TABLE 5 HERE]
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4.4.2. Discussion

One main conclusion is that the negative oil price shocks increase volatility of seven metals, except
gold, silver and zinc, and second, the positive oil price shocks decrease the volatility of lead, tin,
platinum and silver, and increase the volatility of copper, nickel and palladium. This transmission
can occur through two main channels. The first one is that the negative oil price shocks or bad news
in the oil market push the traders away from oil toward other commodities, i.e. metals and
agricultures. The second channel is that the negative oil price shocks are actually good news for the
economy, it stimulates economic activities and industrial production in oil importing countries. This
again boosts demand for metals with industrial application. Consequently, the negative oil price
shocks increase the financial and the physical demands for metals with industrial application. This
decreases their inventory levels and following the existence of inverse leverage effect in these

markets, their price volatility increases.

Nevertheless, gold and silver as the main precious metals are excluded from the above described
transaction channels. Gold has less industrial application and it is mainly applied in jewelry
industries. There is a general consensus that the prices of gold and oil are positively correlated,
the main idea behind it is due to the inflationary effect of oil prices. Moreover, oil is a significant
direct and indirect cost input to the gold production process; hence, the lower oil price helps the
bottom lines of gold mining companies. These prove that the negative oil price shocks reduce the
gold price, which is good news for the gold market as a commodity. Therefore, this good news
calms the gold market and reduces the volatility of the gold price. However, silver as a precious
metal has more industrial applications than gold, in fact this metal is used in both the
jewelry and industrial sectors. This can be the reason why the negative oil price shocks
has less effect on the price volatility of silver; the shocks have a negative effect as they have on

gold, but it is statistically insignificant.
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On another side, the results show that explaining the effects of positive oil price shocks on
metal markets is more complicated than explaining the negative ones. The positive oil price
shocks do not affect the volatility of aluminum, gold and zinc. However, they decrease the
volatility of lead, tin, platinum and silver. The first channel of this transmission is that good
news in the oil market push the traders away from other commodity markets to oil.
Moreover, the positive oil price shocks can be interpreted as a depreciation of the world
economy. This leads to a reduction of industrial production and a lower
consumption of industrial metals. Finally their prices may decrease and according

to the inverse leverage effect that exists in these markets, their volatility decrease as well.

In the case of copper, nickel and palladium, the results are different from those of other metals,
as both the negative or the positive oil price shocks increase their volatility. The interesting
point is that the results from the previous section indicated that seven metals showed an
inverse leverage effect; however, these three metals were excluded from this effect, as
copper showed a leverage effect, while for nickel and palladium the asymmetry term was not
statistically significant. One can conclude that the properties of the leverage effect as well as

the effect of oil price shocks on these markets change over time.

Furthermore, after correcting the data from outliers, we find that for aluminum and nickel the
oil price shocks no longer affect their volatility, while only the positive shocks remain
significant for copper and silver. This means that some of the effects of oil price shocks on the
volatility of these metals are removed after cleaning up the data from outliers. The reason is
that some detected outliers in metal markets can be due to the shocks in the oil market, another
reason is that volatility in both markets could be effected by the same events, some examples of
these events are the 1997 Asian and the 2008 world financial crisis; the 2008 and the 2012 oil

price shocks; the 2010 Mexican oil spill, etc.
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5. Conclusion

The price volatility of metals is an interesting subject for financial traders and manufacturers.
Volatility affect the decision of investors for portfolio allocation and Value at Risk
management strategies, as well as the industrial production of manufacturers and therefore the
economic growth pattern of nations. As a result, the correct modeling of volatility in these
markets is a crucial issue, which on one side increases the ability to generate an accurate out-
of-sample forecasting for policymakers, and on another side facilitates the Value at Risk

management strategies for financial traders.

In this study we have two main objectives: (i) the first one is to examine the persistence of
volatility and the leverage effect, taking into account the exogenous shocks and sudden events
as outliers in the data. To achieve this goal we use two alternative approaches to capture
outliers. The first one is Student-t distribution; and the second one is identifying and correcting
outliers in the GARCH and the GJR models applying the Doornik and Ooms (2005) procedure.
Furthermore, (ii) the second one is to examine the effect of oil price shocks on t h e price
volatility in metal markets, using the GJR model while allowing for the asymmetric responses

to the oil returns changes.

The main findings are that: first, for all metals outliers bias the estimation of parameters of
the GARCH model; second, for all metals removing outliers improves the performance of
the models; third, for all metals, except for aluminum, the model using the original data-
Student-t distribution outperforms the model using the outlier corrected data-normal
distribution; fourth, for all metals either before or after correcting outliers returns show a high
degree of persistence in volatility; fifth, there is evidence of the inverse leverage effect in seven
metals, including aluminum, lead, tin, zinc, gold, platinum and silver and the leverage effect for

copper; and sixth, metal markets react to oil price shocks in different ways and there are
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evidences in favor of the asymmetric reaction of volatility to oil price shocks only in seven
metals. These findings can be used in further research for Value at Risk estimation and the risk
management purposes, as well as to improve the forecasting accuracy of out-of- sample

estimation, which is useful for policymakers and financial traders.
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Appendix

Table 1

Description of returns

Unit root tests

Data description Diagnostics ADF P-P  ADF P-P
Skewness Kurtosis J-R ARCH Serial . Levels Returns
correlation
F-stat Qstat(lag20) t-stat t-stat
Aluminum -0,275 5,56 1426,43%%% 61,65%**  32,62** 234 2,26 -T2,22%%%  7206%%*
Copper -0,159 7,68 4567,98*** 217,61%%%  7322%** 1,68 -1,60  -73,35%%*  -733Q%**
Lead -0,129 6,49 2535,51%%% 222,02%*%*  56,71*** 208  -1,92  -6691***  -66,86%**
Nickel 0,003 7,80 4779,09%** 206,39%** 49 43%** 1,88 -1,86  -69,66**  -69,66%**
Tin -0,108 10,45 11493,80%** 156,50%** 47, 74%** 1,93 -1,90  -68,69%**  -68,68%**
Zinc -0,247 6,98 3329,96%** 144,09%** 43 48*** 1,99 <191 -7168%F* 71 77Re
Gold -0,209 9,56 8939,31*** 153,52%%*  39,61%** 1,91 1,90 -71,28%%x 71 28%**
Palladium -0,158 8,86 7146,86%** 140,26%** 42, 33%** 1,83 -1,80  -67,44%** 67 40%**
Platinum -0,707 13,07 21421,98*** 182,11*** 2518 266 2,59 -70,97%%*  -71,01%**
Silver -0,454 12,23 17814,79%** 438,00%**  75,49%** 2,23 230  -76,53***  .76,53***

Notes: *** ** * jndicate statistical significance at 1%, 5% and 10% levels, respectively,
J-R denotes the Jarque-Bera test,

ADF denotes the Augmented Dickey Fuller unit root test,

P-P denotes the Phillips Perron unit root test.
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Table 2a

Date of detected outliers within GACRH models

Aluminum
Copper
Lead
Nickel

Tin

Zinc

Gold
Palladium
Platinum
Silver

GARCH-normal GARCH-t
26/10/1993,28/11/1994,21/04/2004,13/10/2004,04/01/2005,27/04/2010,16/11/2010 4/01/2005
17/09/1993,17/05/1996,05/06/1996,07/06/1996,14/06/1996,13/10/2004,04/01/2005,16/08/2007,22/09/2011  17/09/1993
24/07/1998,13/10/2003,14/10/2003 na
30/05/2000,13/10/2004 na

na na
06/08/1993,29/07/1997,08/07/1999 na
31/03/1995,07/07/1997,21/05/2001,11/09/2001,15/04/2013 15/04/2013
21/09/1995,28/08/2002 28/08/2002

na na

21/09/1995,24/01/1997,10/12/1997,21/04/2006,20/03/2008,15/08/2008,18/09/2008,15/04/2013,20/06/2013  15/04/2013

Note: na denotes no outlier is detected.
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Table 2b

Date of detected outliers within GJR models

Aluminum
Copper
Lead
Nickel

Tin

Zinc

Gold
Palladium
Platinum
Silver

GJR-normal

26/10/1993,28/11/1994,13/10/2004,04/01/2005,27/04/2010,16/11/2010
17/09/1993,17/05/1996,05/06/1996,07/06/1996,14/06/1996,13/10/2004,04/01/2005,16/08/2007,22/09/2011
24/07/1998,13/10/2003,14/10/2003

30/05/2000,13/10/2004

na

06/08/1993,29/07/1997

07/07/1997,11/09/2001,15/04/2013

28/08/2002

na

31/03/1995,21/04/2006,15/08/2008,18/09/2008,15/04/2013,20/06/2013

GJR-t

4/01/2005
17/09/1993,13/10/2004,04/01/2005
na

na

na

06/08/1993, 29/07/1997
15/04/2013

28/08/2002

na

15/04/2013

Note: na denotes no outlier is detected.
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Table 3a

ARMA(p,q)-GARCH(2,2) estimation results

Information criteria

Diagnostics tests

Variance equation Moment conditions

ol+o2 B1+p2 S-M L-M
Aluminum
Original data-normal 0,096 0,883 0,980 -0,032
Outlier corrected data-normal 0,028 0,965 0,990 -0,008
Original data-t 0,091 0,890 0,980 -0,029
Outlier corrected data-t 0,093 0,887 0,980 -0,030
Copper
Original data-normal 0,096 0,881 0,98 -0,030
Outlier corrected data-normal 0,080 0,893 0,97 -0,030
Original data-t 0,087 0,898 0,99 -0,030
Outlier corrected data-t 0,085 0,900 0,99 -0,020
Lead
Original data-normal 0,020 0,977 0,997 0,000
Outlier corrected data-normal 0,019 0,978 0,998 0,000
Original data-t 0,022 0,977 1,020 0,000
Outlier corrected data-t na na na na

AIC ARCH Serial correlation
F-stat Q-stat

-5,879 0,12 2,86
-5,923 0,02 2,72
-5,918 0,01 0,04
-5,924 0,05 2,54
-5,511 0,16 0,79
-5,570 0,06 0,68
-5,571 0,21 6,60
-5,579 0,98 7,09
-5,179 1,30 1,05
-5,1,95 0,46 117
-5,218 217 4,36
na na na

Notes: *** ** and * denote statistical significance at 1%, 5% and 10% levels,
L-M denotes log moment condition,

AIC denotes Akaike Information Criterion,

S-M denotes the second moment condition.
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Table 3b

ARMA(p,q)-GARCH(2,2) estimation results(continued)

Information criteria

Diagnostics tests

Variance equation Moment conditions

ol+o2 B1+p2 S-M L-M
Nickel
Original data-normal 0,015 0,980 0,996 -0,005
Outlier corrected data-normal 0,014 0,982 0,996 -0,004
Original data-t 0,014 0,983 0,997 -0,003
Outlier corrected data-t na na na na
Tin
Original data-normal 0,006 0,993 0,999 -0,000
Outlier corrected data-normal na na na na
Original data-t 0,013 0,987 1,000 0,000
Outlier corrected data-t na na na na
Zinc
Original data-normal 0,012 0,987 0,999 -0,001
Outlier corrected data-normal 0,007 0,992 0,999 -0,001
Original data-t 0,008 0,991 1,000 -0,001
Outlier corrected data-t na na na na

AIC ARCH Serial correlation
F-stat Q-stat
-4,866 0,00 1,48
-4,883 0,05 0,88
-4,920 0,06 8,58
na na na
-5,639 0,03 4,99
na na na
-5,776 0,00 13,94
na na na
-5,482 0,14 3,96
-5,502 0,01 3,06
-5,533 1,94 147
na na na

Notes: *** ** and * denote statistical significance at 1%, 5% and 10% levels,
L-M denotes log moment condition,

AIC denotes Akaike Information Criterion,

S-M denotes the second moment condition.
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Table 3c

ARMA(p,q)-GARCH(2,2) estimation results(continued)

Variance equation Moment conditions Information criteria Diagnostics tests
al+o2 B1+p2 S-M L-M AIC ARCH Serial correlation
F-stat Q-stat
Gold
Original data-normal 0,005 0,993 1,000 -0,002 -6,546 0,32 3,86
Outlier corrected data-normal 0,004 0,995 1,000 -0,001 -6,611 0,59 4,70
Original data-t 0,087 0,919 1,010 -0,006 -6,649 6,50%* 10,36
Outlier corrected data-t na na na na na na na
Palladium
Original data-normal 3,00E-04 0,999 0,999 -0,060 -5,094 0,33 5,77
Outlier corrected data-normal 4,00E-04 0,999 1,000 -0,050 -5,128 0,05 3,84
Original data-t 0,311 0,704 1,010 -0,092 -5,221 0,09 12,48
Outlier corrected data-t 0,006 0,993 1,000 -0,001 -5,229 0,47 17,63
Platinum
Original data-normal 0,042 0,954 0,997 -0,006 -5,916 0,03 2,64
Outlier corrected data-normal na na na na na na na
Original data-t 0,006 0,993 0,999 -0,001 -5,987 2,64 2,74
Outlier corrected data-t na na na na na na na
Silver
Original data-normal 0,079 0,918 0,998 -0,012 -5,233 0,29 5,43
Outlier corrected data-normal 0,036 0,962 0,998 -0,003 -5,299 0,73 4,20
Original data-t 0,023 0,975 0,999 -0,025 -5,320 0,03 8,68
Outlier corrected data-t 0,027 0,972 0,999 0,000 -5,326 0,63 8,18

Notes: ***, ** and * denote statistical significance at 1%, 5% and 10% levels,
L-M denotes log moment condition,

AIC denotes Akaike Information Criterion,

S-M denotes the second moment condition.
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Table 4a

ARMA(p,q)-GJR(2,2) estimation results

Variance equation Moment conditions Leverage effect
al+a2+Y/2 B1+p2 S-M L-M Y
Coefficient(t-stat)
Aluminum
Original data-normal 0,098 0,882 0,980 -0,032 -0,03(-3,48)***
Outlier corrected data-normal 0,030 0,963 0,994 -0,008 -0,002(-0,57)
Original data-t 0,105 0,887 0,981 -0,020 -0,022(-1,55)
Outlier corrected data-t 0,096 0,884 0,981 -0,030 -0,018(-1,27)
Copper
Original data-normal 0,102 0,871 0,975 -0,041 0,041(4,81)***
Outlier corrected data-normal 0,080 0,903 0,984 -0,024 0,031(3,61)***
Original data-t 0,088 0,894 0,983 -0,028 0,023(1,77)*
Outlier corrected data-t 0,087 0,898 0,985 -0,025 0,030(2,34)**
Lead
Original data-normal 0,018 0,979 0,998 -0,003 -0,008 (-2,66)***
Outlier corrected data-normal 0,021 0,976 0,998 -0,005 -0,01(-2,85)***
Original data-t 0,021 0,977 0,999 -0,003 -0,008(-1,52)
Outlier corrected data-t na na na na na

Information criteria

Diagnostics testS

AIC ARCH Serial correlation
F-stat Q-stat

-5,880 0,09 3,11
-5,923 0,02 273
-5,918 0,00 3,11
-5,924 0,02 2,64
-5,513 0,05 3,58
-5,571 0,01 0,64
-5,571 0,09 6,68
-5,583 061 6,56
-5,180 1,38 0,95
-5,196 0,39 1,06
-5,218 2,26 4,37
na na na

Notes: *** **and * denote statistical significance at 1%, 5% and 10% levels,
L-M denotes log moment condition,

AIC denotes Akaike Information Criterion,

S-M denotes the second moment condition.
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Table 4b

ARMA(p,q)-GJR(2,2) estimation results(continued)

X;Sg?gﬁ Moment conditions Leverage effect
al+a2+Y/2 B1+p2 S-M L-M Y
Coefficient(t-stat)

Nickel
Original data-normal 0,015 0,980 0,996 -0,004 -0,003(-1,31)
Outlier corrected data-normal 0,014 0,981 0,996 -0,004 -3E-04(-0,13)
Original data-t 0,013 0,982 0,997 -0,004 7E-04(0,20)
Outlier corrected data-t na na na na na
Tin
Original data-normal 0,007 0,992 0,999 -0,001 -0,006(-6,41)***
Outlier corrected data-normal na na na na na
Original data-t 0,012 0,988 1,00 -0,000 -0,006(-1,96)**
Outlier corrected data-t na na na na na
Zinc
Original data-normal 0,009 0,989 0,999 -0,000 -0,007(-3,96)***
Outlier corrected data-normal 0,010 0,988 0,999 -0,000 -0,007(-3,61)***
Original data-t 0,052 0,948 1,000 -0,003 -0,02(-2,48)**
Outlier corrected data-t 0,008 0,990 0,999 -0,003 -0,004(-2,31)**

Information criteria Diagnostics
testS
AIC ARCH Serial correlation
F-stat Q-stat
-4,866 0,00 154
-4,882 0,06 1,83
-4,918 0,09 9,27
na na na
-5,643 013 5,00
na na na
-5,777 0,03 13,75
na na na
-5,484 0,06 4,45
-5,491 0,10 411
-5,531 0,44 4,99
-5,537 0,60 4,75

Notes: *** **and * denote statistical significance at 1%, 5% and 10% levels,
L-M denotes log moment condition,

AIC denotes Akaike Information Criterion,

S-M denotes the second moment condition.
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Table 4c

ARMA(p,q)-GJR(2,2) estimation results(continued)

Variance equation

Moment conditions

Leverage effect

Information criteria Diagnostics test

Gold

Original data-normal

Outlier corrected data-normal
Original data-t

Outlier corrected data-t

Palladium

Original data-normal

Outlier corrected data-normal
Original data-t

Outlier corrected data-t

Platinum

Original data-normal

Outlier corrected data-normal
Original data-t

Outlier corrected data-t

Silver

Original data-normal

Outlier corrected data-normal
Original data-t

Outlier corrected data-t

al+o2+Y/2 Bl+p2 S-M L-M Y AlIC ARCH  Serial correlation
Coefficient(t-stat) F-stat Q-stat
0,007 0,992 1,000 -0,007 -0,002(-3,76)*** -6,544 0,37 2,26
0,018 0,982 1,000 -0,020 -0,01(-3,01)*** -6,613 1,10 5,63
0,044 0,958 1,000 -0,001 -0,02(-1,03) -6,651 6,50%* 10,06
0,048 0,954 1,000 -0,001 -0,02(-1,17) -6,654 3,64* 8,50
0,0005 0,999 0,999 -0,000 3E-05(0,83) -5,092 0,10 20,02
0,001 0,998 0,999 -0,000 -2E-04(-1,11) -5,110 0,00 24,87
0,309 0,706 1,015 -0,080 -5E-05(-0,41) -5,218 0,07 22,68
0,298 0,716 1,010 -0,080 -0,002(-0,15) -5,226 0,02 18,75
0,069 0,944 0,997 -0,007 -0,03(-4,40)*** -5,921 0,02 2,85
na na na na na na na na
0,015 0,988 0,999 -0,080 -0,09(-2,53)** -5,9907 1,50 2,95
na na na na na na na na
0,087 0,929 0,998 -0,009 -0,03(-6,70)*** -5,236 0,06 6,38
0,046 0,967 0,998 -0,002 -0,03 (-5,97)*** -5,295 0,62 493
0,047 0,970 0,999 -0,002 -0,03 (-3,35)*** -5,329 0,00 9,25
0,047 0,969 0,999 -0,003 -0,03 (-3,27)*** -5,333 035 9,38

Notes: *** **and * denote statistical significance at 1%, 5% and 10% levels,

L-M denotes log moment condition,

AIC denotes Akaike Information Criterion,
S-M denotes the second moment condition.



Table 5

The effects of oil price shocks on volatility of metal markets

ARMA-GJR(2,2)-outlier

ARMA-GJR(2,2)-original data Asymmetric effects corrected data
0P+ 0P~ Wald test-Fstat or* 0P~
Aluminum -6,E-06 -1,E-04 5,47** 1,E-04 -1,E-05
(-0,08) (-3,49)* 1,44 -0,17
Copper 2,E-04 -3,E-04 0,07 1,E-04 -8,E-05
(2,19)** (-3,91)* (1,73)* (-0,96)
Lead -1,E-04 -5,E-05 4,18** -1,E-04 -1,E-04
(-3,68)*** (-1,68)* (-3,61)*** (1,87)*
Nickel 4,E-04 -5,E-04 0,17 2,E-05 -4,E-05
(2,44)** (-3,36)*** (0,39) (-0,83)
Tin -2,E-05 1,E-05 28,24%** -2,E-05 1,E-05
(-2,52) 1,71)* (-2,52) (1,71)*
Zinc -6,E-05 1,E-04 740,46%** 4,E-06 1,E-05
(-1,22) (2,73)*** (-0,33) (1,80)***
Gold 6,E-06 1,E-05 135,92%** 4,E-06 1,E-05
(0,75) (1,83)* (1,00) (2,57)**
Palladium 4,E-04 -0,002 61,73%** 8,E-04 -0,001
(2,99)*** (8,61)*** 5,60%** -7,29%**
Platinum -1,E-04 -1,E-04 2,77 -1,E-04 -1,E-04
(-4,70)x** (3,78)*** (-4,70)x** (3,78)***
Silver -8,E-05 1,E-09 101,61%** -1,E-04 2,E-06
(-8,59)*** (0,0005) (-3,37)*** (0,084)

Notes: *** ** and * denote statistical significance at 1%, 5% and 10% levels. The values in parentheses are t-statistics.
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