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1. Introduction

To address the combined challenges of increasing energy security, mitigating climate change, and
reducing exposure to rising fuel prices, policymakers have demonstrated growing expectations on
boosting technological innovation in energy sectors, particularly with respect to promoting a rapid
and sustained deployment of renewable energy technology (RET) (Popp et al. 2009; Henderson and
Newell, 2010; Gallagher et al., 2006, 2012; IEA, 2014a,b).! To design relevant policy schemes for RET
deployment, the traditional well-established wisdom basically centres on bridging the cost gap of
using high-cost RET versus low-cost fossil energy technology (FET), as RET is still not cost-efficient
enough to compete with FET primarily due to the market failure to internalize the environmental
costs associated with environment-polluting FET. Without a specific policy mechanism established to
raise the costs of using FET or equivalently lower the costs of applying RET, environment-friendly
yet high-cost RET would find it struggling in energy market adoption and deployment (Neuhoff,
2005; Foxon and Pearson, 2007, 2008; Henderson and Newell, 2010; Newell, 2010, 2011). 2

Within such a traditional paradigm for RET deployment, various price-based policy instruments
have been put in place that serve to eliminate the cost gap of RET versus FET, commonly through
subsidizing the use of low-carbon RET or taxing the use of carbon-intensive FET (Menanteau et al.,
2003; Madlener and Stagl, 2005; Fouquet and Johansson, 2008; Jacobsson et al., 2009; IEA, 2014a,b).3 It
has to be acknowledged that policy instruments oriented toward the removal of cost gap are superior
policy approaches for their ability to provide financial “carrots” for RET developers that is not
currently cost-efficient enough to compete with FET incumbents, thus leveraging private incentives
to develop and deploy RET. By bridging the cost gap of using RET versus FET, a level playing field
may be established in the demand side that favours RET adoption, thus creating demands for RET
that otherwise would not exist at desired levels under current non-regulated market conditions

(Menanteau et al., 2003; Madlener and Stagl, 2005; Jacobsson et al., 2009; IEA, 2014a,b).

However, this traditional paradigm of RET deployment policy is not a panacea, which may not

1 There is also a growing consensus that RET deployment policies serve as a useful complement to
the emissions pricing policy like a cap-and-trade or tax system, in the sense that technology policies
tend to lower the allowance price associated with achieving a given aggregate cap level or increase
the total amount of emissions reductions achieved by a given tax (Jaffe et al, 2005; Newell, 2010).
2 In addition to the non-regulated market that fails to internalize the environmental externality, the
other factor that leads to the cost disadvantages of the newly emerging RET versus FET is that the
incumbent FET has already experienced technical improvement and cost reductions for a long period
of time (several decades or even centuries) prior to the commercialization of RET (Fouquet and
Pearson, 2012; Pearson and Foxon, 2012; Grubler, 2012).
3 More explicitly, existing energy policy for RET deployment has mostly relied upon financial
subsidies, and production tax credits to drive down the cost of installation and use of RET, thus
providing private incentive to generate electricity from renewable sources.
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suffice by itself to usher in a technological transition to a desired RET-oriented energy future. While
the conventional policy scheme based on the elimination of cost gap can appropriately correct for the
environmental externality associated with both distinct types of energy technologies, a characteristic
looseness inherent in the traditional policy paradigm is that it neglects the potential importance of
network externality that often occurs in energy markets. In fact, in addition to the cost disadvantage
versus incumbent FET,* the other significant barriers commonly encountered by the emerging RET
upon commercialization concerns the network externality in energy markets (Islas, 1997; Unruh, 2000,
2002; Unruh and Carrillo-Hermosilla, 2006; Shum and Watanabe, 2010). In general, the network
externality is referred to as an effect that occurs when the payoffs a user derives from the use of a
good/service depend upon the number of other users already using the same good or service (Arthur,
1989; Liebowitz and Margolis, 1994, 1995a,b). In this regard, energy technologies are subject to the
network externality on the ground that the payoffs derived by an agent from using a particular type
of energy technology are related to the size of energy generation, distribution, and service network
specific to that technology, which in turn are positively related to the number of other agents already

adopting that energy technology within the same network.5

Accordingly, as the incumbent FET - the first commercially available energy technology - has
accumulated its installed base and pervasive deployment within the pre-existing large-scale energy
production and distribution network, such a strong dependence would create a network externality
mechanism that makes it difficult to dislodge the dominant FET-based technological regime, leading
to an inertia against the emerging RET (Arthur, 1989; Cowan, 1990; Cowan and Hulten, 1996).¢ As a

result, the newly invented RET, once commercially available for market use, would face considerable

4 The short-run cost disadvantage encountered by RET may also exist in the long run, as innovation
in both energy technologies can improve technical efficiency and reduce costs at a similar rate over
time. For instance, the unconventional gas revolution has ripple effect on the entire fossil energy
system, and has dramatically driven down the cost of using fossil energy.

5 There are several reasons. First, a larger production network can harness the economies of scale to
produce more quality secondary energy using a given amount of primary energy input. Second, a
larger distribution network can gain more efficiency in delivering energy goods, allowing household
to gain convenient and stable access to energy use terminals. Third, a large service network facilitates
repair, maintenance, facility update, and other post-purchase service. Finally, in a decentralized
energy market with a large number of participants, an energy system with a larger network is more
robust to exist and operate, which facilitates interaction and trading among generators. For example,
once a household has installed a solar rooftop system, the other households connected to the same
grid would also like to follow, thus triggering a network effect (Shum and Watanabe, 2009, 2010).

¢ In particular, it is acknowledged that the electricity sector has become locked into centralized, large
FET-based systems that dominate human, financial and institutional resources, which creates intense

inertia to change. Furthermore, the decentralized RET-based technology may not be compatible with

the characteristics of the existing system and are often handicapped in market access and competition
because it serves as a threat to the established FET-based energy regime.
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obstacles for large-scale deployment in energy markets, even if policy regulations have been put in
place to eliminate RET’s cost disadvantage (Islas, 1997; Unruh, 2000, 2002). Take a concrete example,
even if China has launched initiatives to deploy the promising RET on a large scale, this largest
energy consuming country that specialized in energy-intensive manufacturing still has a large stock
of old and inefficient vintages of FET-based power plants that have expanded their installed base
with an expected lifetime of several decades. As a result, not only does this lead to skyrocketing fossil
energy uses in the short run, this FET-based installed network also comes with a formidable
long-term carbon lock-in inertia in energy system that merits additional policy regulation beyond
traditional price-based instruments like carbon pricing (Unruh and Carrillo-Hermosilla, 2006;

Kalkuhl, 2012; Karlsson, 2012; Nordensvard and Urban, 2015).

Therefore, to create a level playing field that facilitates RET deployment, the conventional
policy regimes based on the removal of cost gaps may not suffice. In this context, this paper is
intended to explore the missing role of energy network externality in the policy design for RET
deployment, based on a model of energy technology adoption that features network externality. In
particular, we aim to address two fundamental issues: why traditional regulatory regimes for RET
deployment are not sufficient to induce private incentive to adopt RET? And which factors related to
the network externality should be taken into account in designing a new policy framework for RET

deployment?

To our knowledge, the existing literature has seminal research efforts investigating the general
issue of technology adoption in the presence of network externality. For examples, Arthur (1989)
showed how an inferior technology that by chance gains an early lead in adoption may eventually
lock out other potential technologies due to the presence of network externality and path dependency.
In a series of articles, Liebowitz and Margolis (1994, 1995a,b) discussed the classification of different
forms of path-dependency as well as their implications regarding market efficiency and welfares.
Katz and Shapiro (1985) developed a simple static model of oligopoly to assess the private and social
incentives to achieve technical compatibility in the presence of consumption network externalities.
Katz and Shapiro (1986) examined the dynamics of industry evolution in a market with technological
change where there are two incompatible technologies subject to network externalities. Choi and
Thum (1998) explored how the intergenerational interdependency induced by network externalities
influences the pattern of technology adoption under various market structures. Farrell and Saloner
(1985, 1986) analyzed the private and social incentives for the adoption of a new technology that is

incompatible with the installed base.” Note that, while these classic works have a virtue of laying the

7 The empirical studies on network externality and technology adoption include, for example,
Gandal (1995), Brynjolfsson and Kemerer (1996), and Gowrisankaran and Stavins (2004).
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foundation for further studies in the field of network externality, the limitation is that an elaboration

of network externality in the specific context of energy technology innovation is somewhat lacking.

Meanwhile, in the field of energy economics and policies, there is a growing body of literature
having discussed the issue of energy technology innovation from the perspective of lock-in and
network externality, with some policy prescriptions on addressing network externality for RET
deployment (e.g., Unruh, 2000, 2002; van der Vleuten and Raven, 2006; del Rio and Unruh, 2007;
Shum and Watanabe, 2009, 2010; Vergragt et al., 2011; Karlsson, 2012; Nordensvard and Urban,
2015).8 However, a frustrating aspect is that all these policy studies lack a rigorous exposition of the
economics of network externality mechanism that shapes energy technological innovation and

adoption.

To fill this gap, this paper contributes to a rigorous economic analysis on the issue of RET
deployment in the presence of network externality, particularly with respect to the potential role of
network externality in the policy design for RET deployment. By doing that, we hope to stimulate
more economics-oriented efforts in future research, both theoretically and empirically, to explore the

issue of RET innovation and deployment from the standpoint of energy network externality.’

The rest of this paper is organized as follows. Section 2 presents a model of energy technology
adoption in the presence of network externality. Section 3 examines the incentive of private agents to
adopt energy technologies. Section 4 provides a reformulated policy paradigm for RET deployment.

Section 5 concludes.

2. A model of energy technology adoption with network externality

Given that the emerging RET with a higher cost of use is not cost-efficient enough to compete with

low-cost FET incumbents, the traditional policy scheme for RET deployment is typically designed to

8 More explicitly, Karlsson (2012) discussed the problem of carbon lock-in in China at the limits of
statism. Vergragt et al., (2011) assessed the lock-in reinforcement effect of adding carbon capture and
storage to the fossil fuel socio-technical regime. van der Vleuten and Raven (2006) analyzed the
lock-in and change on centralized electricity supply in Denmark. del Rio and Unruh (2007) applied
an evolutionary economics framework to analyze the factors leading to lock-out of wind and solar
photovoltaics in Spain. Shum and Watanabe (2009, 2010) discussed an innovation management
approach for renewable energy deployment from the perspective of network externality and lock-in.
Nordensvird and Urban (2015) examined the specific low carbon policy such as feed-in tariff for
wind energy in Germany can partly be a barrier to a comprehensive energy transition.

9 As an exception, the theoretical work by Kalkuhl (2012) examined a mechanism of the lock-in into
an inferior incumbent technology that dominates energy markets, at the expense of superior
competing energy technology. However, the mechanism of carbon lock-in explored in this work is
related to imperfection in innovation process and the competition between energy technologies, not
capturing the lock in resulting from energy network externality.
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bridge the cost gap of RET versus FET. Then a critical question arises: is this traditional regulatory
regime sufficient to stimulate RET adoption? This section is intended to examine this issue based on a

simple model of energy technology adoption that features network externality.

Consider that in the energy market there exist two distinct types of technologies that generate
end-use energy goods/services, say, electric utility. One is FET that uses traditional carbon-intensive
fossil primary energy like coal, oil, and gas, and it constitutes the incumbent energy technology that
currently dominates energy production, distribution and service system. The other is RET that uses
low-carbon primary energy like solar, wind, or biomass, and this new emerging technology becomes

recently available for potential deployment in energy markets.10

To describe the network externality in energy markets, we consider an infinite-horizon economy
with continuous time and admits a linear growth of household, i.e., for every period the economy has
anumber of n additional new households who enter energy markets sequentially and adopt energy
technologies for accessing energy use (i.e., electric utility) as the basic living necessities. Hence, the
size of the households adopting a particular type of energy technology would create an equivalent

size of that corresponding energy technology network that is given by
t
N(t)=.|.0n-ds=n-t ,

where it is suggested that at each point in time te[0,0) thereare 71 new households who enter
energy markets and adopt a particular type of energy technology, thus expanding the size of energy

generation, distribution and service network specific to that energy technology.

For the household’s payoffs from using a particular type of energy technology, we consider that
the payoffs depend on the size of energy technology network, i.e., the total number of households
connected to the same network for energy use. This is because the payoffs derived by a household
from using an energy technology is positively related to generation, distribution, and service network
specific to that energy technology, which in turn are related to the total number of household already
using that energy technology within the same network. In this line, we build on the model of network
externality developed by the seminal work of Kats and Shapiro (1985), and Farrell and Saloner (1986),

and consider energy network externality in an intertemporal dynamic framework.'! More explicitly,

10 More specifically, RET considered in this paper is referred to as the decentralized distributed RET
like solar, wind where large-scale market deployment and expansion potentially occurs as expected,
not corresponding to the mature carbon-free energy technology like nuclear or hydropower which
has already experienced considerable up-scaling and reached a saturation level of deployment.

11 The analysis in this paper extends the Kats and Shapiro (1985) static model of network externality
into a dynamic framework which incorporates a forward-looking household receiving intertemporal
6



a household who joins energy markets at each point in time T €[0,00) and adopts a particular type

of energy technology would receive intertemporal payoffs that take the form as,

V(T)= [ u(N(t)-exp(—r(t=T))-dt = [ (V(N(t) - p)-exp(=r(t=T))-dt (1)

where the instantaneous payoff u derived from using a particular type of energy technology is
equal to household’s willingness to pay (WTP) v minus the price charged for using that energy
technology p . In particular, the valuation or WTP a household attaches to that particular technology
depends on the network size of that energy technology which is in turn related to the total number of
households connected to that technology network for energy use N(t). This specification is due to
the fact that a household can gain more benefits from an energy technology with a larger network of
production, distribution, and service system, thus a higher level of valuation or WTP would be put
on the use of that energy technology.’2 Accordingly, the valuation function v(N(t)) is taken to be
an increasing function of N(t), with v'(N(#))>0, and limn)-. V'(N(t))=0.

Fig. 1 shows the timing of energy technological evolution. As the first-mover incumbent energy
technology, FET becomes available for adoption from the date of technology introduction T, and
the size of FET network continually grows until the date of technology maturity Ty, where the
superscript “I” and “M” corresponds to technology introduction and maturity, and the subscript
“FET” to fossil energy technology. Meanwhile, RET is a newly invented technology on the horizon
and would be available afterwards at some time Tggr, and the size of RET network grows until its
maturity time Tigr where the subscript “RET” to renewable energy technology. Accordingly, the

instantaneous payoffs from using FET and RET are written as piecewise functions respectively,

u(N(t))={ a+,3'n'(t_TFIET)_pFET if tE[TF[ET/TF]\gT] )

a+p-n-(Tgr —Teer) = peer if t €[Tir, )
and

a+ﬁ'n'(t_TI£ET)_pRET if tE[TIéET/TIé\I/EIT]
a+ﬂ'"'(T1§gT_T1£ET)_PRET if te[TIé\gT/oo)

u(N(#)) ={ 3)

payoffs from using energy technology throughout the technology lifecycle, in this sense, the basic
setup in our model is more closely related to the seminal work by Farrell and Saloner (1986).
12° As mentioned previously, the additional benefits attributable to a larger size of energy network
lies in three folds. A larger production network can harness the economies of scale to produce more
quality energy goods. A larger distribution network can gain more efficiency in delivering energy
goods with more convenient access to energy use terminals. A large service network facilitates repair,
maintenance, facility update, and other post-purchase service.
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where Eq. (2) suggests that the size of FET network grows from the introduction date Tier up to the
maturity date TjYr, and after that the FET network reaches a saturation size 7- (TF’\EIT - TFIET) .Eq. (3)
describes that the size of RET network grows from its introduction date Tapr until the maturity date

Tat , with the network size reaching a saturation level 7- (Té\gT — TéET) after the maturity ot

For the sake of model tractability, the instantaneous payoff function takes a linear form as the
network size grows, i.e.,, a+p-N(t)=a+p-n-t, where a> 0 is the network-independent basic
level of WTP that is irrespective of network size, f>XIN(t) is the additional network-generated WTP
attached to an energy technology with a network size N(t) attime f,and (> 0 is the marginal
effect of network externality on the household’s WTP. Fig. 2 illustrates the underlying intuition, the
basic network-independent WTP corresponds to the household’s WTP for the basic utility derived
from energy use terminal (i.e., thermal energy for cooking, heating, lighting etc).1* Beyond this
network-independent basic utility directly received from end use, an energy technology system with
a larger production, distribution, and service network that supports end use tends to provide
households with more indirect utilities, thus households are willing to attach additional valuation for
an energy technology with a larger network.1> Egs. (2)-(3) also suggest that the payoffs received from
using a particular energy technology are increasing in the network size until the date of network
maturity. After that, the payoffs reach a constant saturation level. This feature basically accords with
the general pattern of technology evolution over a lifecycle. That is, at the initial stage when new
technologies are introduced into markets, there is a large potential to grow and accumulate market
application. This leads to a period of sustained growth of technology deployment in the marketplace
with an expanding network size. At the end of lifecycle the new technologies are in widespread
deployment with the growth potential exhausted, thus leading to a saturated level of network size

(Masini and Frankl, 2002; Lund, 2006; Jacobsson and Johnson, 2000; Rao and Kishore, 2009).

13 As our model extends a static payoff specification into a dynamic framework with an intertemporal
payoff, we thus consider a simple linear form for instantaneous payoff function, since no analytical
solution of the model could be provided with a more general form.

14 In particular, no matter the energy technology is the simple self-sufficient biomass (without the
network) or coal-fired power plant (with a large and sophisticated generation and distribution
network), the basic functions and utility are the same - the thermal energy derived from the terminal,
which is irrespective of the network attributes associated with different types of energy technology.

15 A larger energy network creates a higher level of indirect utilities through the following channels.
First, a larger generation network can benefit from the economies of scale to generate more quality
secondary energy using a given amount of primary energy. Second, a larger distribution network can
gain more efficiency in delivering energy goods, allowing more convenient and stable access to
energy use terminals. Third, a large service network is more robust to provide post-purchase service
like repair, maintenance, and facility update etc.
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During the time period [TFIET, T%T] only the incumbent FET has been commercialized in energy
markets for end use, and RET is still in its infancy at research labs. Hence, a household who joins the
energy markets at time T e[Tgr, Tirr] would adopt incumbent FET and receive the intertemporal

payoff flows over the time frame, 16
Veer (T)= [ "la+B-n-(t=Ther) - prer |- exp(-r(t - T))-dt
= [ [a+ Bon-(t=Tier )~ pree - exp(-r(t~T)) - dt
+a+p-n-(Ti¥y —Tier) — prer |- L"’M exp(—r(t—T))-dt , (4)
_ a+p-n-(T—Tier)— prer

r
Installed Network Base Externality Potential Network Growth Externality

n p-n q1- exp(—i’(TFAgT -T))]
r

2

where the second line rewrites the payoffs Vrer(T) as a sum of two parts: 1) Payoff streams from
household entry date T to FET maturity date Ty¢; during which the size of FET network N(t)
expands linearly with time; and 2) payoff streams from FET maturity date Tir; to an infinite future
during which the size of FET network remains the saturation constant level N (Té‘gT) . The third line
explicitly derives the payoffs from adopting FET at time T € [TFIET,Té\fT], where the first term is the
payoffs attributable to installed network base externality: at the household entry date T € [Tier, Tirr],
FET has established an installed network base with a size of N(T)=n-(T — Tz ). The second term
denotes the payoffs attributable to potential network growth externality: at the household entry date

T e[Tier, Tirr ], FET still has a technology growth potential with network size expanding from T to

FET maturity date Tyyy (for a graphic illustration of network externality, see Fig. 3).

As Fig. 2 shows, the emerging RET is brought into energy markets at date Ty, and then the
network size of RET continually grows up to its maturity date Tgg; . Given this technology evolution
of RET, a household entering energy markets at any point in time T € [TéET, Té\gT] would receive

intertemporal payoffs from adopting RET,
Vier (T) = [ “[a+B-n-(t=Tier) — prer |- exp(—r(t —T))-dt

= J.TT’Q/EIT [a+ﬁ'n'(t_TéET)_pRET]'eXp(—T(t—T))-dt

+[a+B-n-(Taer —TéET)—pRET]-LM exp(—r(t=T))-dt ’ ®)
a+p-n-(T—Tger)— ‘n
_a+p-n( : Rer) ~Prer ﬁrZ 1 —exp(—r(T%; —~T))]
Installed Network Base Externality Potential Network Growth Externality

16 For the derivation of Eq. (4), see Appendix.



where the second line rewrites the payoffs Vker(T) asasum of two parts: 1) Payoff streams from
household entry date T to RET maturity date Tipr during which the size of RET network N(t)
expands linearly with time; 2) payoff streams from RET maturity date Tig; to an infinite future
during which the size of RET network remain at the saturation level N (T,QET) . The third line obtains
the explicit form of the payoffs from adopting RET at time T € [Taer, Trer |, where the first term is
the payoffs attributable to installed network base externality: at the date of household entry

T €[Tger, Toer ], RET has established an installed network base with a size of N (T)=n-(T —Ter)-
The second term denotes the payoffs attributable to potential network growth externality: at the
household entry date T € [TéET T ], RET still has a technology growth potential with its network

size expanding from T up to the RET’s maturity date Tpgy .

To summarize, the payoffs received by a household who joins energy markets and then adopts

FET at each point in time T €[Tjzr,) is given by

f— I —_— .
a +ﬁ n (T TFET) PFET + ﬁrzn I —exp(—T(TFAI:{IT _T))] if Te [TFIET,TFAI;{IT]

r
Installed Network Base Externality Potential Network Growth Externality
a+p-n-(Lrer — Lrer ) — Prer .
P if Te[T, o)
7

Installed Network Base Externality

and the payoffs received by a household who joins energy markets and chooses to adopt RET at any

pointin time T e [TéET,oo) takes the form as

E— I p— .
avpen (L Teer) =prer B 1y en(or(The ~T))] if T € [Ther, Tk ]

r
Installed Network Base Externality Potential Network Growth Externality
Virer (T) = ﬁ (TM Tl ) -(7)
a+p-n-(Irer — LRer ) — PRET .
P if T e[Tir, )
r

Installed Network Base Externality

The temporal profiles of the payoffs from adopting FET and RET over the time horizon T €[0, )
are displayed in Fig. 4. The red solid line corresponds to the payoffs from using FET Vyer(T), which
consists of a sum of payoffs attributable to installed network base effect Vpl\él%E (T) and potential
network growth effect Vg (T),ie, Ver(T)=VEF(T)+ VASE (T) . The red dash line corresponds
to the payoffs attributable to installed network base effect V{7 (T), and the gap between red solid
and dash lines corresponds to the payoffs attributable to potential network growth effect Vit (T).
Similarly, the blue solid line illustrates the temporal profiles of the payoffs from using the newly
emerging RET Vipr(T), and the blue dash line corresponds to the payoffs attributable to installed
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network base effect Viry (T), with the gap between blue solid and dash lines denoting the payoffs

attributable to potential network growth effect Viy; (T).

There are several features. First, at the date T = T;!ET when FET is just introduced in markets,
there is the largest potential for FET to grow and accumulate its market base. Hence, the payoffs
generated by potential network growth effect reach the highest level, creating the largest gap
between red solid and dash lines. Second, as time proceeds over the period Te (TFIET , TFAEIT) ,FET
continues to accumulate and expand its network base. As a result, the payoffs attributable to the

installed network base effect Vi (T) increase, and the payoffs generated by potential network

growth effect VAT (T) decline, which is shown by the shrinking gap between red solid and dash
lines. Finally, once the date of FET maturity is reached VT e [TFAEIT, oo) , the network of FET becomes
saturated, without further network expansion. As a result, the payoffs attributable to potential
network growth effect fall off with time and disappear Vit (T) =0, leaving only the payoffs
attributable to installed network base effect VFA,;{L;E (T) in the composition of the total payoffs, , i.e.,
Vier (T) = VT, VT e [T ,0) . Hence, both red solid and dash lines converge once the date of

FET maturity is reached. 17
3. Non-adoption of renewable energy technology

Based on Egs. (6)-(7) with the specification of the payoffs received from adopting FET and RET in the
presence of network externality, we then obtain the following results that characterize the temporal

profiles of payoffs from adopting both types of energy technologies.

Lemma 1l In the above-described model of RET adoption in the presence of energy network externality,
consider that FET is available in energy markets at the date of technology introduction Teer and expands its
network size until the date of technology maturity Titr, then the payoffs received by a household who adopts
FET at the date of technology maturity Tifr are larger than those received at any point in time before FET
maturity date T € [Tier, Tétr), ie., Viegr (Tffr) > Veer(T) holds for VT €[Trer, Tifr) . Moreover, given
that RET is available in energy markets at some point in time Tpgr , and the size of RET network grows up to
its maturity date Tger, then the payoffs received by a household who adopts RET at RET introduction date

Trer are smaller than those received at any point in time after RET is introduced VT € (Tz{gr ,), ie.,

Viker (TI{ET) < Vrer (T) hOldeOI’ VT e (TIgET , OO) .

Proof. We examine the monotonic property of the payoffs function to prove this lemma. For the

17" The temporal profile of the newly emerging RET also shows these similar features.
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adoption of FET, differentiating the corresponding payoff function Eq. (6) with respect to the

argument T obtains,

_ AVesr(T)_fom

Veer D= r

1—exp(-r(THr —T))]>0

Consider that at any point in time VT € [Tier, Tirr ), the term is positive T —T >0, and the
payoff Eq. (6) is an increasing function with its argument Vi (T)>0,s0 Vigr (TFAEIT) > Vier (T)
always holds for VT e [TFIET , TFZ\ST) . The same proof applies to adoption of RET, differentiating the

corresponding payoff function Eq. (7) with respect to the argument T obtains

dVeer(T) _Bom

Vaer =4 r

[1—exp(—r(Trtr —=T))]>0

Consider that at any point in time VT e (TéET, TIQET) , the term is positive Tger —T >0, and the
payoff Eq. (7) is an increasing function with its argument Vier' (T)>0,s0 Vrer(T) > Vier (TéET)
always holds for VT e (TéET ,Té\gr) . Furthermore, the payoffs would remain constant once the date
of technology maturity is reached, i.e., Vrer(T)=Vrer (Té\gT) for VT e [T1§§T ,©) . Combing both

time intervals, we obtain Viger (TIQET) <Vgzer(T) holds for VT e (TéET ,). n

As shown by the red sold line in Fig. 4, the economic intuitions associated with Lemma 1 are
straightforward. Starting from the lowest level at the date of technology introduction, the payoffs
from adopting a particular energy technology would trend up with time over the network expansion
period and reach the highest level at the maturity date. Intuitively, as a technology lifecycle evolves
into the maturity stage, the potential network growth effects have all been realized and transformed
into the existing installed network base effects, thus accumulating the largest network size to deliver
network-related payoffs to the household. By contrast, when a household adopts a particular energy
technology at the time when it just becomes available in niche markets, the potential network growth
effects have not yet been transformed into installed network base effects, thus building a network
with the smallest size to deliver network-related payoffs. Based on Lemma 1, we obtain the following

proposition that characterizes an outcome in which the household has no incentive to adopt RET

Proposition 1 In the above-described model of RET adoption in the presence of energy network externality,
consider that RET is a newly emerging technology that becomes available in energy market after the incumbent
FET matures, i.e., Taer > Tipy, then the installed network base externality in favour of FET incumbent would
lead to an outcome that the household has no incentive to adopt RET when this emerging technology becomes

available for use at time TéET .
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Proof. To prove that a household has no incentive to adopt RET at the date of RET introduction
Trer , we need to establish that the payoffs received from using RET is lower than those in the case of

adoptlng FET, i.e., VRET (TlgET) < VFET (TlgET) .

Given that RET is brought into energy markets after FET matures, i.e, Tger > Tifr, the payoffs
from using FET at time Typr is the same as those at time TpYr, i.e., Vier (Tier) = Vier (Tier ) - Hence,

the above-mentioned condition that is sufficient to the no-adoption of RET is equivalent to,
Viker (TéET ) < Vier (TéET ) = Vrer (TIgET ) < Vier (Té\gT ) ’ 8)

where the payoffs function take explicit forms as (c.f., Egs. (4)-(5))

Vrer (TIgET) = A7 Prer + ﬁ—zn [1- eXP(_r(Tlé\gT - TlgET ))]

r r

a+B-n-(TY T )—
Veer (Tigr) = P (FETr FET) ~ PrET

substituting Eq. (9) into Eq. (8), the condition of no-adoption of RET thus boils down to

Vrer (TlgET ) — Veer (TFAST )

_ Prer —Prer N p-n .|:1 —exp(—r(Té‘gT —TéET))
r r r

(10)

1 —T;En} <0

where the first term on the right-hand side is negative due to the fact that the cost of using FET is
generally lower than that of using RET, i.e., pper < Prer - Furthermore, for simplicity we consider
that both FET and RET have the same period of technology lifecycle from technology introduction to

maturity T7Yr —Tier = Tper — Trer, we thus have

M 1 M 1
1 eXp( r(TRET TRET )) _ (TFI\EIT —TFIET) _ 1 eXp( T (TFET TFET)) _ (TFAEIT _ TFIET) N O
r r ’

< 1-exp(-r- (TFAST - TFIET)) <r- (TF]\gT - TFIET)

which holds for all positive values of the discount factor 7, thus Eq. (10) is always negative. =

Proposition 1 suggests that a significant barrier faced by RET upon introduction in markets is
concerned with the network externality. At the time when the emerging RET becomes available to
commercial use, the incumbent FET has accumulated a network advantage by having transforming
potential network growth effect into installed network base effect that generates network-generated
payoffs from FET adoption. As a result, a household who joins energy market at that time has no
incentive to adopt RET. This mechanism is illustrated in Fig. 4, at the date of RET introduction, the
red line (payoffs from using FET) is well above the blue line (payoffs from using RET). In addition,
we further argue that the non-adoption of RET is actually the household’s payoffs-improving choice
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at each point in time after the date of RET introduction, which is summarized in the following result.

Corollary 1 In the above-described model of RET adoption in the presence of energy network externality,
consider that RET is a newly emerging technology that becomes available for household use after the incumbent
FET matures, i.e., Taer > Tirr, then the installed network base externality in favour of FET leads to the

non-adoption of RET at any point in time after RET is available in energy markets VT € [Tger, ).

Proof. To prove that a household has no incentive to adopt RET at any point in time Te [TEET, oo) ,
we need to establish that the payoffs received from using RET is lower than those from adopting FET,
e, Vrer(T)<Veer(T), for VT € [TEET, ©) . We examine these conditions for two separate time
sub-intervals [Tger, TR{%T) and [TI%T,OO) . First, for the sub-interval VT €[Tger, Té\gT), given that
RET becomes available in energy markets after FET matures, i.e., Taer > TiEr, the payoffs from
using FET at each point in time VT € [TéET , T,?ﬁT) are the same as those received at the date of FET
maturity TiYr, ie., Vier(T) = Vier(Tirr) . Accordingly, the above-mentioned condition that is

sufficient to the non-adoption of RET is equivalent to,
Vizer (T) < Vrer (T) = Vier (T) < Vier (TFAE/IT) p (11)

where

VRET (T) =

a+p-n-(T—Trer) = Prer n p .zn [1—exp(—r(Taer —T))]
; r

a+ﬁ‘7’l'(TFAgT _TFIET)_pFET
r

VFET (Tlg\gT ) =

and the condition of no-adoption of RET Eq. (11) boils down to

Virer (T) —Vier (TFAEIT )

_ Prer — Prer 4 p-n [1—exp( T(TRET
r r r

)) +T - Tl%ET - (TFAéIT - TFIET )} (12)

:pFET;pRET +[3;’ﬂ[1—exp( r TRET ))+T—T1§£T}<O
r

where the second line uses the fact that the cost of using FET is lower than that of using RET, i.e.,
Prer < Prer, and the last line considers that both FET and RET have the same growth period of
lifecycle from technology introduction to maturity T{Y; —Tier = Tigr — Trer - Accordingly, for all
positive values of the discount factor 7, Eq. (12) is negative Vier(T)— Vier (TFAST) <0, for

VT e [TéET, Tlng) . Second, for the sub-interval of time after RET network matures VT e [T%T,oo) ,

the payoffs received from adopting both RET and FET are given by,
14



My ‘1+,3’”'(T1§gT —TéET)—PRET
(Trer) =
B
a+ﬁ'n'(TFAgT _TFIET)_pFET
r

VRET (T) = VRET

VFET (T) = VFET (Tlé\gT ) = VFET (TFAI:fIT ) =

Given that prer < prer, and Tt —Tier = Trer — Trer, we have Vier (T) < Vigr(T) for
VT e[Titr,) . Combining with the results for two sub-interval [Trer, TIQET) and [T%T,oo) , we

thus obtains that Vier(T) < Veer(T) for VT € [TéET,oo) ..

As illustrated in Fig. 4, the economic intuitions associated with Corollary 1 are straightforward.
At each point in time after the date of RET introduction, the red line of FET (payoffs from using FET)
is always above the red line (payoffs from using RET). Therefore, due to the installed network base
externality in favour of FET, households have no incentive to adopt the newly emerging RET. Taken
together, Proposition 1 and Corollary 1 suggest that the payoffs from adopting FET is larger than

those from using RET at both the date of RET introduction and afterwards.
4. Policy regulations for renewable energy adoption

Given that the private agents have no incentive to adopt the newly emerging RET due to the presence
of network externality, specific policy regulations are thus required to resolve the market failure

attributable to network externality, which is summarized in the following result.

Proposition 2 In the above-described model of RET adoption in the presence of energy network externality,
given that the installed network base externality in favour of incumbent FET would lead to the non-adoption of
RET when this new technology becomes available for household’s use, the government can induce the adoption
of RET through policy requlations that fully correct for both cost gap and network externality gap. In particular,
the level of government policy regulation sufficient to induce RET adoption at any point in time after RET is

available VT e [TéET,OO) is characterized by

(13)

1—exp(—r- (T, — T))}
r

G = Prer — Prer +ﬁ'n'|:TFAI§IT _TFIET _(T_TIéET)_

Moreover, as time proceeds towards RET maturity Tpgr, RET's potential network growth externality in
favour of RET is fully realized, thus the level of policy regulation for RET deployment needs to phase out and

eventually reaches a level just serving to eliminate the cost gap Prer = Prer -

Proof. Suppose that the policy regulations, denoted by G, takes the form of a flow variable that is

imposed annually throughout the time frame after RET becomes available VT e [Tker, ©), then the
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level of policy regulation required to eliminate RET’s payoffs gap relative to RET and thus induce

RET adoption is equal to
[ G-exp(=r(t=T))-dt = Vier(T)~Vier (T) (14)

where the payoffs function for using RET and FET at time VT € [TéET ,0) are

a+ﬁ~n'(T—T1£ET)_PRET n ,3-211 .[1—exp(—1’(T1§1/5[T -T))]
7 r

u+ﬂ'n'(TFAE/IT _TFIET)_PFET
r

VRET (T) =

VFET (T) = VFET (TFAEIT) =

Substituting the payoff functions into Eq. (14) and rearranging obtains the policy regulation required
for RET adoption as characterized in Eq. (13). Furthermore, the monotonicity shows that Eq. (13) is a
decreasing function with its argument T',ie,as T goes up, the required policy regulations fall and

finally reach a regulation level based on an elimination of cost gap Prer —Prer. =

As shown in Fig. 4, the intuitions that underline Proposition 2 are as follows. The gap between
red and blue solid lines denotes the level of policy regulation sufficient to induce RET adoption at
each point in time after RET becomes available. Notably, the gap reaches the highest level at the date
of RET introduction, and then fall off with time as the RET network starts expansion. Once the RET
network undergoes an equivalent network expansion until its maturity, the potential network growth
externality would be fully transformed into the installed network base externality in favour of RET,
thus facilitating RET adoption and the phase-out of policy regulation. In particular, it is also at this
moment that the playing field is levelled for RET deployment, in the sense that only when RET and
FET accumulate an equivalent size of installed networks and RET’s payoffs gap attributable to
network externality has been eliminated, traditional policy instruments based on the elimination of
cost gap can take effect for RET deployment, and now the payoffs gap essentially reflects the cost gap

resulting from environmental externality associated with both distinct types of energy technologies.

To elicit the policy implications of Proposition 2 for RET deployment, we consider a particular
case by setting T = Tggr in Eq. (13), from which we can characterize the level of policy regulation

sufficient to induce RET adoption at the date of RET introduction as

1 - eXp(—i’ ° (T]é\g]" - TléET ))

G = Prer — Prer +ﬁ'n'|:TFAIgT —Tier —
%f—/

r
cost ga
v network ex;e,rnulity gap . (15)
= (Prer — Prer )+ Pp-n- (TFAEIT —Tier )—B-n-[1- eXP(—T’(Té\gT —Tier N/
1 (2) 3
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where Eq. (15) can be thought of as a reformulation of RET deployment policy scheme, in particular,
it is suggested that the traditional regime centring on the elimination of cost gap should be extended

into a new one that corrects for both cost and network externality gap.

More explicitly, the first term in the right-hand side corresponds to the cost gap to be bridged,
mainly reflecting the traditional wisdom in designing RET adoption policies. That is, conventional
policy regulations focus on removing RET’s cost disadvantage versus FET, either through raising the
cost of FET by carbon taxation or lowering the cost of RET by renewable subsidies, particularly aimed
at internalizing the environmental externality. However, this does not suffice to ensure a rapid and
sustained deployment of RET, because it ignores the potential role of network externality. As shown
by the second term that corresponds to FET’s installed network base externality, when the emerging
RET becomes available for adoption at time Tarr , the incumbent FET has accumulated an installed

base network advantage over its growth period,

Teir M I
J.TFIET ﬂndt =ﬁ-Tl-(TFET _TFET) . (16)

Consider that the incumbent FET-based technological regime has taken a substantial period of time
(several decades or centuries) to build network bases, the existing installed network base externality
in favour of FET is thus substantially large, implying that the level of policy regulation required to
induce RET adoption may largely outweigh that based on bridging cost gaps. Finally, the last term on
the right-hand side corresponds to RET’s potential network growth externality. That is, at the time
when the emerging RET becomes available for use, a household who adopts RET is expected to
receive an intertemporal payoff attributable to RET’s potential network growth externality over the

RET lifecycle Tpfr —Trer.

Tzé\gT - TéET ))]

[ Bon-exp(—r(t—Thyr))-at = L2 OREH

Ther r

(17)

where there is discounting embedded in the streams of future payoffs due to the fact that RET’s
potential network growth effects have not been transformed into installed network base effects at the
date of RET introduction, so discounting factor should be used to value future payoff streams that
have not been fully realized at that time point. Furthermore, as a counter force to the above-described
FET’s installed network base externality, RET’s potential network growth effect partially mitigates
the inertia against RET adoption. Intuitively, as more RET-based generators and users are potentially
connected within a network (e.g., small grid), other agents tend to have a higher incentive to join the

same grid for the network-generated benefits (e.g., economies of scale, convenience to access energy
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use and post-purchase service), ushering self-propagation dynamics that accelerate RET deployment.

Taken together, the net effect of network externality associated with both types of energy

technologies boils down to,

M I
p-n- [TFAEIT —Tier — 1mexp(r (rTRET _TRET)):l >0 . (18)

Given that FET and RET share the same period of network growth Tt - Tapr = Ther - Tier, the
installed network base externality in favour of incumbent FET would outweigh the potential network
growth externality that favours newly created RET.!® Intuitively, at the date of RET introduction, the
first-mover incumbent FET has completed network expansion and maximized network size. As FET’s
potential network growth effects have all been fully realized and transformed into installed network
base effects, the payoffs from using FET takes a form of an intertemporal summation of instantaneous
payoff flows, without discounting (c.f., Eq. (16)). In contrast, at the date of RET introduction, this new
emerging RET just embarks on network expansion, and its potential network growth has not been
fully realized and transformed into installed network base, there is thus discounting embedded in the
future payoff streams (c.f., Eq. (17)). As a result, even if both FET and RET share the same period of
network growth, the installed network base externality in favour of incumbent FET would outweigh

the potential network growth externality that favours newly created RET.

Therefore, given that the net effect of network externality favours incumbent FET and leads to an
inertia against the emerging RET, traditional policy regulation based on eliminating cost gap may not
be sufficient, and a new policy paradigm for RET deployment should consider extending the
traditional scheme centring on eliminating cost gap to a new one that corrects for both cost and

network externality gap,

1—exp(—7-(Tagr — Tier )
r

G = Prer — Prer +IB'n'|:TFAI§IT —Tier —
|

costgap

} > Prer — PFET - (19)

network externality gap

Taking a concrete example, suppose that FET and RET have the same 100-year growth period, i.e.,

T - Tier = Titr - Tier = 100 . Using a discount rate # = 5% to discount cross-period utilities,

18 Define Tper —Topr = Tty = Tier =T as the period of technology network growth, the second term
on the right-hand side of Eq. (18) boils down to r-T —1+exp(—r-T), taking differentiation with
respectto T obtains r-(1—exp(-r-T))>0 for VT >0.Hence, the larger the network growth

period T, the larger the net effect of network externality in favour of incumbent FET.
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we find that the payoffs gap attributable to network externality is equivalent to a gap in network
growth over a period of 80 years.’” Moreover, the annual inflows of household for energy use are
positive 1> 0. According to the empirical evidence provided by Gandal (1995), Brynjolfsson and
Kemerer (1996), and Gowrisankaran and Stavins (2004), households” valuation of network externality
is positive > 0, suggesting that households attach additional WTP to a particular technology with
a larger network size. Therefore, policy regulations for RET deployment are required to correct for

RET’s network externality gap versus incumbent FET.

Furthermore, consider that the policy regulations required for RET deployment are imposed on
the two specific energy technologies (FET and RET) simultaneously and go into effect at the date of
RET introduction. That is, the policy portfolio consists of both FET-based regulations Grer that
lower the payoffs from using incumbent FET and RET-based regulations Ggrer that raise the payoffs
from adopting emerging RET, and the simultaneous imposition of the policy portfolio aims for an
equalization of intertemporal payoffs from adopting FET and RET and hence provides an incentive of
RET adoption when RET becomes available for household use.

Vier (TIgET ) - J;ZET Grer - exp(—r(t - TI£ET )) -dt

. (20)
= Vrer (TéET) + ITésr Grer - eXp(—T’(t - Tl%ET )) -dt

where the left-hand side of Eq. (20) denotes the intertemporal payoffs received from using FET at
time Tger when FET-based policy regulation Grer is put into place to lower the payoffs from
using FET. The right-hand side is the intertemporal payoffs received from using RET at time Tger

when RET-based policy regulation Grer is imposed to raise the payoffs from using RET.

Meanwhile, we consider a relevant case where the above-mentioned policy regulations only alter
the payoffs received from using each individual energy technology (FET and RET), without imposing
any disturbance on household’s payoffs from using the energy technology in general. In other words,
the role that policy regulations play is to induce the transfer of payoffs from using different energy
technologies, i.e., the payoff losses of FET users incurred by regulations should be balanced by the
payoff gains of RET users, while having no influence on the sector-wide aggregate payoffs from
using energy technology. Using the date of RET introduction as the benchmark point, the aggregate

payoffs balance imposed on using energy technologies can be expressed as

¥ Given that the time duration of technology lifecycle is 100 years, and payoff discounting rate is 5%,

then we have [Tﬁ‘ﬁT —Tier —[1—exp(-r- (Tlé\gT —Ther N1/ 7’] =80.13
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Trer [
J.O J.T Grer -exp(—r(t=T))-dt-dT

1)
= [ exp(-#(T ~Tder) | Grer -exp(—r(t—T))-dt -dT

where the life-hand side of Eq. (21) is the payoff losses of all the pre-existing FET users in energy
markets when FET-based policy regulations are imposed at time Tger . The inner tier of integration
corresponds to the intertemporal payoff losses of an individual household adopting FET at time T

in the presence of FET-based regulation Grer. The outer tier corresponds to integrating the inflows
of all households adopting incumbent FET before policy regulations are in place T [0, Trer]. The
right-hand side is the payoff gains of the inflows of all households adopting RET after RET becomes
available for end use. The inner tier of integration corresponds to the intertemporal payoff gains of an
individual household adopting RET at time T in the presence of RET-oriented policy regulation
Grer . The outer tier corresponds to integrating the inflows of all households adopting emerging RET
after RET becomes available T €[T#er,0), discounted at the benchmark time point Tier . We hence

obtain the following proposition to summarize the findings.

Proposition 3  [n the above-described model of RET adoption in the presence of energy network externality,
the policy portfolio for RET deployment consists of both FET-based regulations Gy that lower the payoffs
from using incumbent FET and RET-based regulations Gger that raise the payoffs from adopting emerging
RET, and aims to equalize the payoffs from using FET and RET. Moreover, the policy regulations are balanced
schemes which impose no disturbance on sector-wide aggregate payoffs from using generic energy technology,

in the sense that FET users’ payoff losses incurred by Gy should be balanced by RET users’ payoffs gains
created by Grer . In this case, the levels of policy regulations specific to both incumbent FET and emerging

RET can be characterized by the system of equations

1—exp(—r-(Taer — T,{ET))}
r

Grer +Grer = Prer — PreT *+ ﬁ n- |:TFAEIT _TFIET -
(22)
Grer

I
=71-Tgrer
Grer

Proof. Substituting the payoff functions Vier (TéET) and Vier (TIQET) into Eq. (20) can establish
the first equation in this proposition. For the second equation in this proposition, the left-hand side of

Eq. (21) charactering the payoff losses of FET users takes an explicit form as

Grer

TthT 0o
[ [ Grer -exp(=r(t=T))-dt-dT =

I
: TRET 4

and the right-hand side of Eq. (21) charactering the payoff gains of RET users is given by
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[\, exp(r(T=Thor))f G -exp(r(t=T)) - aT = 4"
TRET T r

A balance between payoff losses of FET users and payoff gains of RET users implies the relative level

of policy regulations between the two specific energy technologies,

GreT oy Grer  Grer
Trer = ——=
r r Grer

I
=1’~TRET . [ ]

Intuitively, the first equation of this proposition is a straightforward variant of Eq. (15) when
there is a simultaneous imposition of both FET-based and RET-based regulations to correct for RET’s
payoffs gap versus FET. For the intuitions implied by the second equation, as the newly emerging
RET is brought into markets at a later date, the incumbent FET can take a longer time to install its
network base and hence establish a larger level of installed base network externality. Although this
constitutes a stronger inertia that inhibits private adoption of RET, it creates an potential opportunity
for regulations in the sense that there is a larger installed base of FET network available for regulators
to transfer payoffs to newly emerging RET, thus helping raise the payoffs from adopting RET and
foster RET deployment.

5. Conclusions

In designing appropriate policy schemes for RET deployment, traditional well-established wisdom
generally centres on bridging the cost gap of high-cost RET versus low-cost FET, given that RET is
currently not cost-efficient enough to compete with FET due to the market failure to internalize social
and environmental costs associated with environment-polluting FET. While the traditional policy
schemes can appropriately correct for environmental externality associated with both types of energy
technologies, a characteristic looseness is that it neglects the potential role of network externality that

invariably occurs in energy markets.

To capture the unexplored importance of energy network externality for RET deployment, this
paper develops an economic model of energy technology adoption that features network externality,
where the payoffs derived by a household from adopting a particular type of energy technology are
positively related to the size of energy generation, distribution, and service network specific to that
technology, which in turn are positively related to the total number of households already adopting
that energy technology within the same network. Based on this analytical model, the key findings are
that as the incumbent FET - the first commercially available energy technology - has accumulated
pervasive deployment and installed base advantage within the energy production, distribution and

service network, such a network externality mechanism makes it difficult to dislodge the dominant
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FET-based technological regime. As a result, the newly emerging RET, once available for commercial
use, would face considerable obstacles for large-scale deployment, even if policy regulations have

been put in place to eliminate RET’s cost disadvantage.

We hence propose that there is a need for a reformulation of RET deployment policy that shifts
from traditional wisdoms centring on eliminating cost gap to a new paradigm that corrects for both
cost and network externality gaps. In particular, three overarching policy implications are worth
noting. First, policy regulations should not be designed merely based on the elimination of RET’s cost
gap versus FET, because the scope is too narrow to correct for installed base network externality in
favour of incumbent FET, thus failing to overcome the internal inertia against RET adoption. Second,
specific policy programs should be established to ensure that RET undergoes an equivalent network
expansion as the incumbent FET has experienced, so that RET’s potential network growth externality
can be fully transformed into installed network base externality in favour of RET adoption. It is only
when RET and FET accumulate an equivalent size of installed base networks that the payoffs gap
attributable to network externality can be eliminated and the level playing field can be created for a
rapid and sustained RET deployment. Third, although a large installed base network accumulated by
incumbent FET constitutes a strong inertia that inhibits private adoption of RET, it creates an
potential opportunity of regulations in the sense that there is a larger installed base of FET network
available for regulators to transfer payoffs to newly emerging RET, thus helping raise the payoffs

from adopting RET and foster RET deployment.
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Appendix

We rewrite the intertemporal payoffs received from using FET at each point in time T € [TFIET , TFAST]

as a sum of integration over two time intervals [T, TFAEIT] and [TFAEIT, oo) .
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Veer (T) = J‘:[{Z +’B -n- (t—TFIET) _pFET]'eXp(—V(t —T)) dt
=J‘:}{%T [a+ﬁ'n'(t_TFIET)_pFET]'eXp(—T(t—T))-dt

+ [u + ﬁ * 7’l * (TFI\EIT - T}!ET) - pFET ] M J-TM eXp(—T’(t - T)) * dt
with the first term in the second line over the time interval [T, TFAEIT] is equal to

(a—f-n-Tier —peer)- [ exp(-r(t=T))-dt+fon-[ ™ t-exp(-r(t~T))-dt

I
_ ﬂ—ﬁ'n'TFET—PFET
r

[1—exp(-r(TH#: = T))]+ Bn [T+r" — (T +r ") -exp(=r(Tir = T))]
r

and the second term in the second line over the time interval [TFAEIT , oo) is equal to

a+ﬁ'n'(TpAéIT _TFIET)_pFET
r

M
° eXp(—T(TFET - T))
Combining the integration over two time interval, we obtain the intertemporal payoff

Veer (T) = pn (T;TFIET)_pFET - ﬁr;n [1-exp(-r(Tier =T))] - u
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Fig. 1. The timing of technological evolution in energy markets. Over the time frame T €[0,00), the first-mover incumbent
fossil energy technology (FET) becomes available to use from the date of technology introduction T¢er, and the size of FET
network grows until the date of technology maturity T/f;. A household who joins energy markets and adopts FET at any
point in time T €[T/er,T/tr] would benefit from FET’s network growth from market entry date T up to FET maturity
date T/Y;. After that [T{;,00), the size of FET network reaches a saturation level. The newly emerging renewable energy
technology (RET) becomes available from the date of technology introduction T,én , and the size of RET network grows until
the date of technology maturity Tyt . A household who joins energy markets and adopts RET at any time T € [Taer: Tatrs
would benefit from RET’s network growth from market entry date T up to RET maturity date TRty . After that [TRMET, o],
the size of RET network reaches a saturation level. FET and RET are supposed to have the same period of lifecycle from

technology introduction to maturity T/ — Tier = Tty — Tier -
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Fig. 2. An illustration of energy technology network. A household directly derives the basic
network-independent utility (i.e., thermal energy used for cooking, heating, lighting etc) from
energy use terminal. In addition to valuing the basic function from energy use terminal, the
household tends to attach network-generated willingness-to-pay to an energy technology with
a larger production, distribution, and service network which generally provides end users
with more indirect benefits, e.g., economies of scale in production, robustness to operate,
efficiency in delivery, convenient access, and repair, maintenance, facility update, and other
post-purchase service.
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Potential Network Growth Externality

Installed Network Base Externality

TP[ET T T[-g\gr t

Fig. 3. An illustration of the payoffs received from using fossil energy technology (FET) in the presence of network externality.
The intertemporal payoffs received by a household adopting FET at any point in time T €[T};, Tifr] consist of a sum of
two parts. 1) Payoffs attributable to installed network base externality: at the household entry date T € [T}ET,TFAE"T], FET has
established an installed network base with a network size of N(T)= n-(T — T/ ); 2) Payoffs attributable to potential network
growth effect: at the household entry date T € [Tier, T 1, FET still has a technology growth potential with network size
expanding from T up to FET maturity date T
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Fig. 4. A graphic illustration of the temporal profiles of payoffs from adopting FET and RET over the time frame T €[0,~0).

The red solid line corresponds to the payoffs from using FET Vi1 (T), as a sum of payoffs attributable to installed network
base effect V4" (T) (red dash line) and payoffs attributable to potential network growth effect V5" (T) (the gap between

red solid and dash lines). The blue solid line denotes the payoffs from using RET Vi, (T) as a sum of payoffs attributable to
installed network base effect Vi (T) (blue dash line) and payoffs attributable to potential network growth effect Vi (T)

RET
(the gap between blue solid and dash lines).
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