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Abstract

We consider a standard coalitional bargaining game where once a coali-
tion forms it exits as in Okada (2011), however, instead of alternating offers,
we have simultaneous payoff demands. We focus in the producer game he
studies. Each player is chosen with equal probability. If that is the case, she
can choose any coalition she belongs to. However, a coalition can form if
an only if payoff demands are feasible as in the Nash (1953) demand game.
After smoothing the game (as in Van Damme (1991)), when the noise van-
ishes, when the discount factor is close to 1, and as in Okada’s (2011), the
coalitional Nash bargaining solution is the unique stationary subgameperfect
equilibrium.
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1. Introduction

In Okada (2011) and Compte and Jehiel (2010) the coalitional Nash bar-
gaining solution', a cooperative solution for situations where coalitions can
form, is found to be the unique stationary equilibrium outcome as the dis-
count factor goes to 1 in variations of a standard Rubinstein s (1982) alter-
nating offers bargaining game extended to allow for coalition formation. In

!This maximizes the product of players utility levels within points in the core of a
cooperative game.
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this paper, we show that in the producer game as in Okada (2011), the coali-
tional bargaining solution (after adding uncertainty) is the unique station-
ary subgameperfect H-essential equilibrium (an extension of Van Damme s
(1991) static H-essential equilibrium) of a coalitional bargaining game that
differs from the Rubinstein version in that simultaneous payoff demands are
considered. Hence, this paper belongs to the Nash Program (1953), the liter-
ature that looks for noncooperative games that have as equilibrium outcomes
ad-hoc cooperative solutions.

In our game, in each period, players are chosen with equal probability
from the set of active players. If chosen, this player, to be called as the ini-
tiator, can choose a coalition she belongs to. Once she chooses a coalition a
simultaneous Nash demand game (Nash (1953)) is played with the members
of that coalition. This coalition forms if an only if payoff demands are feasible
given the value the coalition generates. If a coalition forms its members are
deleted from the set of active players and consumption, in terms of transfer-
able utility, is realized. If the coalition does not form one period elapses and
the game repeats itself with the same set of active players. The number of
periods is infinite and perpetual disagreement yields a payoff of zero. There
are no externalities and the underlying cooperative game is superadditive.
Players discount future payoffs.

As an equilibriun notion, we use a refinement of subgameperfect equilib-
rium (SPE). As it is well known, repeated Nash demand like games have a
plethora of Nash and SPE equilibria (See Stahl (1990) for the two player
case). So we use a refinement, the Nash group stationary subgameper-
fect equilibrium (Nash GSSPE), of stationary subgame perfect equilibrium
(SSPE) consistent with the Nash Bargaining solution (NBS) related to Nieva s
(2002, 2005, 2008, 2014) Nash GSPE for games with finite horizon. In a Nash
GSSPE, the expected discounted payoffs each time a coalition plays the Nash
demand game are the NBS of a bargaining problem where the total surplus
is the value of this coalition and disagreement payoffs are expected Nash
GSSPE payoffs if payoff demands are not feasible.

In section 3, we proof existence of Nash GSSPE using the Kakutani’s
fixed point theorem and characterize the grand coalition Nash GSSPE in
general. In contrast with Okada (2011), the grand coalition Nash GSSPE
exists if and only if the percapita value of the grand coalition is in the Core
regardless of the value of the discount factor. Next, we use these results
to prove in section 4 that the Nash GSSPE coincides with the coalitional
bargaining solution in the producer game when the discount factor is close
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to 1 as in Okada (2011). We follow the structure of the latter paper as close as
possible. Finally, in the appendix, we give an outline of the straightforward
extension to the n-player case of Van Damme’s (1991) smoothing technique
(inspired in Nash (1953)) for the two player Nash demand game. We also
show simultaneously how this extension is used in our game. It is not hard
to see then that the Nash GSSPE is the unique SSPE when the discount
factor is close to 1 and the noise vanishes (or, equivalently, the unique SSPE
H-essential equilibrium).?

2. Preliminaries

Let (N, v) be an n-person game in coalitional form where utility is trans-
ferable. The set of players is N = {1,2,...,n}. A nonempty subset S of N
is a coalition of players. The set of all coalitions of N is C'(N). The char-
acteristic function of this game is v, a real valued function defined on C'(N)
is normalized, that is, v ({i}) = 0 for all i € N. We also assume it is super-
additive, that is, v (SUT) > v (S) + v (T') for any two disjoint coalitions S
and 7. Finally, it is essential, v (V) > 0. For each coalition S, v (S) is the
total utility that members in S can distribute among themselves in any way
they agree to.

A payoff allocation for coalition S is a vector 2% = (27 )Z g Of real numbers
where ¥ is the payoff for player i € S. A payoff allocation z° is feasible if
s i <wv(S). Let X¥ denote the set of all feasible payoff allocations for
S and let X7 denote the set of all non-negative elements in X¥. If T is a
finite set, A (T") denotes the set of all probability distributions on 7.

As a non-cooperative bargaining procedure for a game (N, v), we consider
the random proposer model as in Okada (2007) but with a twist. Negotiations
can take an infinite number of bargaining rounds ¢ = (1,2, ...). Let N* be the
set of all active players who have not formed a coalition yet at the beginning
of period t. In the initial round N' = N. At the beginning of period ¢,

2We have been aware of the work of Abreu and Pierce (2013) that use the smooth
Nash demand in an infinitely repeated game in an stochastic framework to single out as
the noise vanishes the unique equilibrium (stationary) that turns out to be the variable
threats Nash bargaining solution for a two player game. Besides the obvious differences,
we want to point out that Nieva (2005) was the first paper to suggest the use of the smooth
game after the simultaneous approach had been neglected as for the discouraging results
in Stahl (1990).



a player ¢ € N' is selected with equal probability; we will call this player
the initiator. This initiator 7 can choose a coalition S with 7 € S C N
Once she has chosen S a Nash demand game (Nash 1953) is played among
the s players in S as follows: All players in S state simultaneously their
nonnegative payoff demands 7 for each player i € S. If the payoff demand
profile #° is feasible then they agree, the coalition S forms and consumption
takes place. Negotiations continue in the next period where the set of active
players is N'*! = N* — S. If the payoff demand profile is not feasible then
negotiations continue in the next period where N'*! = N!. The game ends
when every player in N joins some coalition.

When a coalition S forms after payoff demand profile 27 is agreed upon
in period ¢, the payoff of each player i € S is 6" "o where § (0 <4 < 1) is
the discount factor for future payoffs. When bargaining does not stop, all
players who fail to join any coalition obtain zero payoffs.

The game is denoted by I" (IV, §) , where n is the initial set of active players
and ¢ is the discount factor. This is a multistage game with observed actions,
chance moves and with an infinite horizon.

We consider behavior strategies in I' (N, ). A history Al in period ¢ is
a sequence of all past actions including the selection of the initiators. A
strategy for player i, o;, maps histories where she moves to actions or in
some cases randomized actions: If player ¢ is an initiator in period ¢, o; (h!)
is a probability distribution over all possible coalitions with ¢ € S C N
If a coalition S C N' is chosen in period t, o; (h!) is a payoff demand 7
with i € S. Given a strategy profile 0 = (01, ..., 0,,), the expected discounted
payoff for player ¢ in I (IV,d) is defined in the usual way. For each coali-
tion S € C'(N), a subgame of I'(N,0) after a coalition S has formed is
denoted by I' (N — S,6), where recall N — S is the set of active players. A
strategy o; induces a strategy, a restriction o;|I' (N — S, ¢), in each subgame
['(N —S,0). In each period ¢, it will be useful to denote the subgame after
a coalition S has been chosen by some initiator by I' (N, S, ).

A strategy o; for player ¢ in I (N, 0) is called stationary if player i ‘s action
depends only on payoff relevant history. In this model, a payoff relevant
history consists of the set Nt of active players when the initiator has been
selected; it also consists of the coalition S that has been chosen and the
initiator who chose it when a player plays the Nash demand game in subgame
I'(N%, S, 0).

It is known that repeated Nash Demand games have many subgame per-
fect equilibria (SPE) outcomes (See Stahl (1991)); take the divide dollar
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game; any division of the dollar, including (0, 0), is a possible SPE equilib-
rium outcome. It is not hard to see that these repeated games have also
infinitely many stationary subgameperfect equilibria (SSPE). Hence, as an
equilibrium notion for I' (N, ) we use a refinement of stationary subgame
perfect equilibrium consistent with the Nash bargaining solution as in Nieva
(2002, 2005, 2008, 2014). In the appendix, we explain that introducing un-
certainty as in Van Damme (1991) is equivalent to our refinement of SSPE.
Formally, we have:

Definition 1. A strategy profile o = (04,...,0,) of I'(N,0) is a stationary
subgame perfect equilibrium if o is a subgame perfect equilibrium of T' (N, 0)
and every strategy oy s stationary for each v € N.

For a stationary subgame perfect equilibrium of I' (IV, §) o, let v¥ denote
the expected payoff for player i in subgame T'(S, 9).

Definition 2. A strategy profile o of T'(N,d) is a Nash group stationary
subgame perfect equilibrium (Nash GSSPE) if o is a stationary subgame per-
fect equilibrium of T' (N, §) and the expected discounted payoffs associated to
the restriction o to subgame I' (N*,S,0) for each S C N' and each N' is
the solution to a Nash bargaining problem (whenever it is well defined) where
the total transferable utility is v (S) and disagreement payoffs are discounted
payoffs if demands are not feasible that is (51}?” for each i € S.

Recall, as utilities are transferable, the Nash GSSPE discounted payoff for

v(S)=Y . th t
player i in subgame I' (N*, S, 0) is then equal to % + v for each

1 € 5, that is, it is equal to the percapita Nash surplus plus the disagreement
payoft for player 1.
It is clear that if v (S) > > g 6vN" the Nash GSSPE profile o (N*, S, §)

J
oy Nt
could consist of each player in S demanding payoff demand z7¥ = U(S)Z+S§U’

duN ", Note also that Definition 2 implies that if the Nash bargaining solu-
tion is not well defined, say, if v (S5) < ZjeS §U§Vt, any SSPE restriction o

to subgame I' (N*,S,d) can be chosen. In particular, if v (S) < > ies (5vth,
a Nash GSSPE predicts at ' (N, S, ) disagreement; the Nash GSSPE pro-
file o (N, S, ) could consist of all players in S demanding unfeasible payoff
demands.

The next two lemmas are key for our analysis. For a Nash GSSPE o of

['(N,§), let ¢¢ € A({T|i € T C S}), denote the random choice by initiator
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i of coalitions T (of S) in T'(S,8) and recall v7 is the expected payoff for
player ¢ in subgame I'(S,0) (in a Nash GSSPE). We refer to a collection
(v%, ¢%)sec(n), where v° = (vF);es and ¢° = (¢7)ies, as the configuration of
.

Lemma 3. In every Nash GSSPE o = (01, ...,0,) of I'(N, ), some coalition
with more than one member forms with positive probability in the initial round
and each member j receives more than §U§V :

Proof. For eachi € N, let v; be player i “s expected payoff for o in T'(N,J)
in a Nash GSSPE. Because of super-additivity, any average over discounted
payoffs of players that may be obtained in each coalition structure that occur
with nonnegative probability is less than or equal than v (N); this implies
> jen Vi < v (N). Because the game is zero normalized, we have v; > 0 for
alli € N. It follows that each initiator i can choose the grand coalition N and
obtain strictly more than dv; by the definition of the Nash bargaining solution.
Hence, the claim follows as then the Nash surplus in the coalition that she
ends up choosing optimally, say S, is positive, that is, v (S) — > cq 0v; > 0;
so, S has more than one member and all members get strictly more than 5UJN
for each j € S. m

Let us now characterize the configuration of a Nash GSSPE.

Lemma 4. A collection (v°, ¢%)sec(n), where v® = (v7);es and ¢° = (¢} )ies,

is the configuration of a Nash GSSPE in I'(N,0)) if and only if the following
conditions hold for every S € C(N) and everyi € S:
(1) q7 (S) > 0 implies S is a solution of.

v(T)=S"._.6v3
max ) ZJET L) (1)
i€TCS t

(i1) vi € R, satisfies

T =S . . 6vd
vy = lmax (v( ) = 2jer 0, —1—51)?9)—1-

S i€TCS t '

Z qf(T) <U(T)*ZtkeT‘5U1§ —i—(;l)f) +

l Z jeTCSieT (2)
s > @@

jES i Yi

JETCS,igT
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Proof. First we proof necessity. Given the configuration of the Nash GSSPE,
it is clear that if initiator i chooses optimally to randomize between coalitions
the expected value that she gets in each coalition that is assigned positive prob-
ability has to be the mazimum of Equation (1), otherwise she would gain by
assigning zero probability to a coalition that is not a mazximizer and increasing
the probability to a coalition that is a solution to (1); hence, 1 follows. Part
2 is just the recursive definition of expected payoffs vi. For sufficiency, we
can use the single-period deviation property that local optimality of a strategy
implies global optimality in an infinite-length multistage game with observed
actions. m

3. Existence and Grand Coalition Nash GSSPE

First we prove existence of Nash GSSPE in the general case. We also
characterize an equilibrium where only the Grand Coalition forms regardless
of the initiator. These results will help us with the producer game later on.

Proposition 5. There ezists a Nash GSSPE of the bargaining model T'(N, 0)
Proof. The only difference with the proof in proposition 3.1 in Okada (2011)
1s that in our case the initiator chooses the coalition that maximizes equation
1 and not Okada’s equation 1. By Lemma 4, it suffices to prove that there
exists a collection (v9,q%)sec(n) of players’ expected payoff v° = (v3);es and
their random choices ¢° = (¢} )ics of coalitions in all subgames T'(S,d) such
that (i) and (ii) hold for every coalition S € C(N) and everyi € S. We prove
this claim by induction regarding the cardinality s of coalition S. When s = 1,
where S = {i}, the claim trivially holds by setting v;{i} =0 and q;{i} {i}) =1.
For any 2 < s < n, suppose that the claim holds for allt =1,...,s — 1. Let
S € C(N) be any coalition with s members. For all proper subsets T' of S, let
vl = (UJT)]ET be the expected payoffs for members in T and let ¢© = (qu)jeT
be their random choices of coalitions in the subgame I'(T,0) such that (1)
and (2) in Lemma 4 hold. By the inductive assumption v’ and q* exist. Let
A7 € A({T)i € T C S}), that is, it is the set of probability distributions
over the subsets of S player i belongs to. We define a multi-valued mapping
F from a compact and conver set X9 x HAf to itself as follows. For
ieS
(z,q9) € X7 x HAf, F (z,q) is the set of all (y,r) € XY x HAf, that
satisfy the follouejisng forallie S: =



(i)r; € A({S)i € S € S and S is a solution of max,ercs (M + 5:1:1)})
(17) y; € Ry satisfies

T) — )
Yi = L nax (U( ) ;kET xk+5$¢>+

S i€TCS
> () (MR ) 4
1 Z JETCSieT (3)
> @M

S y
JES.JFi

JETCS,i¢T

It is not hard to see that F (x,q) is a non-empty convex set in Xf X H A7
ics

We can show that F' is upper-hemicontinuous and compact valued using the

maximum theorem. As then the assumptions for the Kakutani’s fized point

theorem are satisfied, there exists a fized point (z*,q*) of F with (z*,q*) €

F (x*,q*). Set v? = x} and ¢ = q} for alli € S and the proposition follows.

[ |

We next study the conditions under which the grand coalition NV is formed
independent of the initiator that is selected by random.

Definition 6. A behavior strategy o for I'(N,6) is called a grand coalition
Nash GSSPE if it is a Nash GSSPE of I'(N, §) and the grand coalition forms,
independent of the proposer.

Theorem 7. The grand-coalition Nash GSSPE of I'(N, ) is characterized
as follows: The expected payoff v; is given by v; = %N) The grand-coalition
Nash GSSPE exists if and only if its expected payoff vector (== (N) . LN)) 18

in the core of (N,v), that is, SU(N) > v (S), forall S C N.
Proof. From equation 2, we obtam

N) =) ._yov;
o= T e g, )

n

After summing up over all i, we obtain y_ .y v; = v (N) and so 3
v(N)

n

]GN
dv (N). Using this in equation 3, we obtain v; = . Next, since N forms
in equilibrium, from equation 1 we have that

V) = bty o v(S) = Dyerby
n - S




for all S C N. After substituting v; = @ and cancelling out the necessity of

the second claim follows. For sufficiency, suppose the expected payoff vector
is in the core, then equation 4 holds. By Lemma 4 the claim follows. m

Note that this results differs from that of the standard Rubinstein coali-
tional bargaining model (See Okada (2011)) where instead this is a limiting
result. In other words, in the Rubinstein paradigm the expected payoff vec-
tor of the grand coalition (%N), o @) does not need to be in the core if
the discount factor d is not close to 1.

4. The Producer Economy and the Coalitional Bargaining Solution

Uniqueness of Nash GSSPE in the general case for the coalitional bar-
gaining game we study is an open question (as it is in the alternating offers
coalitional bargaining model). So the coalitional bargaining solution for co-
operative situations in general may not be an appropriate solution concept.
However, it has been singled out as the unique non cooperative prediction in
the alternating offers coalitional bargaining framework by Okada (2011) in a
particular situation when the discount factor is close to 1; hence it is appro-
priate in this case. So we focus in the same situation and show that we obtain
the same limiting results but with a simultaneous approach. We follow this
paper ‘s structure as close as possible to emphasize the great similarity. The
idea is that Nash GSSPE that are different than the grand coalition Nash
GSSPE occur but for one degenerate case in circumstances under which the
Grand Coalition Nash GSSPE can not form. In the degenerate case, in which
both types of Nash GSSPE can occur, expected payoffs are the same; in any
case, expected payoffs are those in the Coalitional Bargaining solution. That
is the basic intuition in the central Theorem 11.

Consider a production economy ¢ with an employer (player 1) and n — 1
identical workers i (= 2,...,n), as in Shapley and Shubik (1967). A coalition
of the employer and s — 1 (s > 1) workers yields the benefit f(s), which
is monotonically increasing in s with f(1) = 0. The benefit of any other
coalition is zero. The core of the economy is nonempty since the allocation
with the employer exploiting the total benefit f(n) is in the core. To analyze
the outcome of wage bargaining between the employer and workers, we apply
our coalitional bargaining game with random initiators and simultaneous
payoff demands. The grand-coalition Nash GSSPE will be called the full-
employment equilibrium, and any other Nash GSSPE a partial-employment



equilibrium. Let v; be the expected payoff for player i(= 1,...,n) in a Nash
GSSPE.

We start by showing that in a Nash GSSPE all workers have identical
expected payoffs because of competition among them.

Lemma 8. For all workers i and j, v; = v; in every Nash GSSPE.

Proof. By contradiction. Denote the percapita Nash Surplus generated by
coalition T b (T') = v(T)—=>_ er 0v;. Note that the coalitions
that maximize the percapita Nash surplus over all coalitions that include the
producer solve equation 1 for the producer. Denote the set of such coalitions
by C1. By Lemma 3, any coalition chosen with positive probability (with more
than one member) in Nash GSSPE includes the producer as expected payoffs
have to be positive. Hence, for each S € Ci and for each i € S, we have
S e (.

Consider first the case where player i’ is not included in each S € Ci.
This implies that W(S') < %fl), where S; € C;; that is, the coalitions that i’
assigns positive pmbabzlzty m equilibrium have a lower percapita Nash product
than those in Cy. Hence, the producer would reject such a coalition as he
always can get (Sl) + 6vy and so vy = 0. A contradiction in view of lemma

3.

Consider the final case where for each i € N there exists S € Cy such that
1 € S. This means that each player i gets W(Sl +0v; for each Sy € Cy when a
coalition that she belongs to and that belongs to C; is accepted in equilibrium.
Let qzj be the probability that player i receives an offer when player j(# i) is
a coalition chooser, an initiator. Using equation 2, we have

v = 1 <W(Sl) +5Uz‘) + 12%] <W(Sl) +5U¢) )
n S1 n S1

J#

for each i € N, for some S; € Cy. After rearranging, we find an expression
for v;, ‘
W(s) 1434
51 n—6(1—|—2#iqf)

With no loss of generality, we assume that v; > v; for two different workers
i,j. We want to show that Zk# qf > Zk# ¢, and hence, in view of (5),
v; > v;, thereby obtaining a contradiction.

We next show: (i) qf > qF for any k # i,j, and (i) qji. > qf Claim
(i) follows from the fact that i € S implies j € S for any S € Cy because

(6)

V; =

10



dv; > dv; . To prove (i), it suffices to show that qji- < 1 implies qf =0,
that is, if there exists some S; € C; with j ¢ S;, then any S; € C; does
not include i. Suppose not. Then, there exists some S; € C; with j & S;

and some S; € C; with i € S;. Because S; € C; and i € S;, we have
W(s;)

Wgsi) > Wisj) > — =+ % — % By contrast, since S; € C;, we have
v J J 7 i

Wisj) > W((SF;{,Z})U{]}) = Wfi) + Jsi — 55& A contradiction.
J 7 i i [

Now we study all possible equilibria in the producer game and its expected
payoffs. The full-employment equilibrium is characterized by Theorem 7.
Next, we characterize a partial-employment equilibrium. Only the following
two types of such equilibria exist, except for a degenerate class of the economy
&. For 2 < s < n, a Nash GSSPE is called an s-equilibrium if only coalitions
with s members form with positive probability. For 2 < s <t < n, a Nash
GSSPE is called an (s, t)-equilibrium if only coalitions with s and ¢ members
form with positive probability. The basic idea here is that if such Nash

GSSPE occur then the allocation <@, %, e @) is not in the core,
Proposition 9. For 2 < s <n, an s-equilibrium of the production economy
& is characterized as follows.

(1) The employer and each worker receive the expected payoffs

vi=[f(s)—(n—1) v (7)
f(s)(I—=s5+6(s—1))
V2 = nd(s—1)—s(n—1) ®)
n(s—2)+1

respectively. Every worker receives an offer with probability 1)
(17) An s-equilibrium ezists for any § close to 1 if and only if f(s) > f(t)

for allt < s and f(s) = f(t) for allt > s. As d goes to 1, the equilibrium

allocation converges to a unique core allocation of the economy & for which

the employer exploits the total payoff f(n).

Proof. (i) As only S coalitions are chosen with positive probability, it follows

from Lemma 4 that

S S
vy = f(S) SZ]GS Uj +(5'U1

and
f(s) =vl+ (n—1)v2. (9)

11



After using Lemma 8, the unique solution of this system of equations is (6)
and (7). Let q be the probability that every worker receives an offer. Again,
from Lemma 4, we have

vy — X <f(8) - SZJ'GS %, 51}2) +q (f(s) = SZjGS o 5v2)

n

After using Lemma 8 and then solving for q , we have

SU9 _l
fS)=d(vi—v) n

Use Equation (8) to substitute for vy —vq, then Equation (7) to substitute for
vy and after some tedious algebra (try getting in the numerator of the first
expression in the right hand side sf (s) (s — 1) (§ — 1) and then cancelling out
sf(s) (6 —1)) last part of (i) follows.

(17) By Lemma 4, an s-equilibrium ezists if and only if the percapita Nash
product of S ,@ > @ for all t # s. By definition of the Nash product
and lemma 8, we have equivalently for all t # s,

f(s)—(s—1)dvy — vy S f(t)—(t—1)dvy — oy
S - t
In view of (6) and (7), vy converges to zero and vy to f(s) as § goes to 1.
Noting this, we can show that the above inequality holds for any ¢ close to 1 if
and only if f(s) > f(t) for allt # s. Since f is a monotonically increasing
function, we get that f(s) = f(n). Next we show that f(s) > f(t) for all
t < s. From equation (9) get the expression tf (s) — sf (t) > dvg (s —t) +
(t —s)ovy. Set f(s) = f(t) and cancel out (s —t). By equation (8), set
vy = f(s) — (n — 1)ve. Next, use equation (7) and cancel out f(s). Multiply
by nd(s—1) —s(n—1) < 1 and after some algebra, we obtain 1 < 6, a
contradiction.
By (6) and (7), we have that in the limit vi = f(n) and vo = 0. When
f(s) = f(t) for allt > s, the core of the production economy & consists of a
unique allocation (f(n),0,...,0). This proves the second part. m

q:

(10)

Proposition 10. For 2 < s <t <n, an (s,t)-equilibrium of the production
economy & s characterized as follows.
(1) The employer receives the expected payoff

J8) = (s~ 1w,
s(I—=98)+d

(11)

12



where, vy, the expected payoff of the worker is

f)=F(s)  (A=0)(sf(t) =tf(s))
Vg = PR + 6<t—8) (12)

(i1) Assume that t < n. If an (s,t)-equilibrium exists for any § close to
1, then f(k) = f(n) for all s < k < mn. Moreover, v, and vy converge to f(n)
and 0, respectively, as d goes to 1.

(1ii) Assume that t = n. As 0 goes to 1, vy and vy converge to vi =
(DA ==D)IM) g g = Lﬁs) respectively. The probability of full em-

(n—s) (t
ployment converges to 1 when f(s) < f(n). If an (s,n)-equilibrium exists as
f(S)
<

5 goes to 1 then £ . The expected payoff vector (vi,vs, ....,v3) is in
the core of the pmductzon economy &, and the employer receives the minimum
payoff vy in the core.

Proof. (i) By Lemma 4(i), if an (s,t)-equilibrium exists then the percapita
Nash surplus of S , W(S) > W(K for all k # s and that of T, W) > ECK)
for all k #t. This zmplzes after using the definition of the Nash surplus and
lemma 8, that

f(s)—(s—1)dvy — vy S f(k)—(k—1)6vy — oy

s = K (13)
for all k # s
F(6)—(t —t1) vy — 0y [ (k) = (k —k1) Sy — 0vy 14
for all k # t. By (12) and (13), we have
f(8) = (s=1)dvs—dvy _ f(t) = (t=1)dvs = o1 5)

S t

Equation (14) implies that equation (2) in lemma 4 (ii) becomes (as each
player is paid the same after an equilibrium coalition forms regardless if it is

SorT).
vy = f(s)— ?jes ov; + o0, (16)

First, we solve for vy in (15 ) and get equation (10). Next, we use (10) in
(14) to solve for vy after tedious algebra manipulations.

13



(13) This part follows almost identically the proof of proposition 4.2 (ii)
in Okada (2011). Let ps be the probability that an s-member coalition forms.
Then,

(%1 + (n - 1)”2 - psf(8> + (1 _ps)f<t> (17)

From (10) and (11), we can see that v and vy converge to

=D f) -1 fE) . fE)—f(s)

e (t—s) T T =)

respectively, as 0 goes to 1. Let pt be any accumulation point of {ps}. Taking
the limit in equation (14), we obtain vi + (n — 1)vy = pif(s) + (1 — pk) f(2).
Substituting (17) into this equation, we obtain:

(v 5=0) 1) = 2+ T D0s0 (19)
—S s

Because t < n, pt+ 2=t >0 must hold. Thus, f(s) = f(t). Then, vi = f(s)
and vy = 0 from (15). Finally, f(s) = f(n) is obtained by letting 6 go to 1
in (12) with k = n.

(1ii) Setting t = n in (17) yields vi = ("_1)f(2:£§_1)f("), vy = %
Because t = n, (18) implies that ptf(s) = pif(n) for any limit point p% of
{ps}. If f(s) < f(n), then pt = 0. Hence, the sequence {ps} converges to 0
as 0 goes to 1. Therefore, regardless of whether f(s) < f(n) or f(s) = f(n)
holds, we obtain: vi + (n — 1)vy = f(n). Because f(s) < f(n), we have
v1+(n—1)vy < f(n) from (16). Substituting (10) and (11) into this inequality,
a very tedious calculation yields @ < @, in contrast to Okada (2011), for
all 6 < 1 . To show that (vi,vs,....,v3) is in the core of the production
economy &, first note that equations (10) and (13) with t = n yield after a lot

of rearranging
(k(1—0)+6) f(n) = (L=0)nf(k) —f(k) > dva(n—k)  (20)

When 6 goes to 1 this equation becomes

f(n) = f(k) = (n — k)

(18)

f(n)—f(s)
(n—s)

, which is identical to equation (41) in the working paper version of Okada
(2011), Okada (2007). Next, following Okada (2007), literally, equation (17)

implies
(n—Fk)f(s)=(s—k)f(n)
(n —s)

(21)

v + (k—1)v; = (22)
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and (20) and (21) imply that vi + (kK — 1)vy > f (k). This together with
vi+(n—1)vy = f(n) show that (v, v, ....,v3) is in the core of the production
economy &. Any core allocation (vy,vs, ....,v2) in which workers receive the
same payoffs ve satisfies v + (n — L)ve = f(n) and vy + (s — L)ve > f(s).
These conditions imply vi > vi. From vi + (s — 1)vy = f(s) it follows by
contradiction that the employer receives the minimum payoff vi in the core.
u

We have the analogous to theorem 4.1 in Okada (2011) that is the central
theorem in our paper.

Theorem 11. The asymptotic values of the Nash GSSPE payoffs vi and v}
for 6 close to 1 are uniquely characterized as follows.

(1) If the allocation (M o) @) 15 in the core, then v} = @ and

of = L)

2 n °
(i1) Otherwise, the workers receive wage vy = ! ("T)Lif ) where s is the
solution of min;<j<,_1 W The employer receives the smallest payoff in

the core.

(1ii) The asymptotic Nash GSSPE allocation (vi, v, ....,v3) maximizes the

generalized Nash product x1xs...x, within the core, that is, it is the Coalitional
Bargaining Solution.
Proof. First, we argue that if there are other Nash GSSPE with more than
two different sizes of coalitions, these have the same asymptotic values of
players’ expected payoffs as an (s,t)-equilibrium when the discount factor
goes to 1. Equation (16) becomes with, say, 3 possible coalition sizes, s <
t<t <n,

v1 + (n = 1)vg = psf(s) + pef(t) + (1 — ps — pr) f(t,) (23)

. As [ is monotonic, it follows from (22) that v; + (n — 1)vy > psf(s) +
(1 — ps)f(t). After substituting (17), we imply f(s) > f(t). Thus, from
monotonicity of f, f(s) = f(t). Then the proof proceeds as in the proof
of Proposition 10(ii) but with (22) modified as

v+ (n = Dvy = (ps + o) f(5) + (1 —ps — pe) f(¥) (24)

. It follows that f(t') = f(s) and f(s) = f(n). The same arqument can be
used if s <t <t' =n to conclude that f(s) = f(t). Next the proof in Propo-
sition 10(iii) can be applied to (23) with t' = n. Second, from Propositions

15



9 and 10 and Theorem 7 uniqueness follows when § is close to 1. Part (i)
follows from Theorem 7. In part (ii) the claims that workers receive vy =

% and the employer receives the smallest payoff in the core follow from

Propositions (9) and (10). That s is the solution of minj<g<p—1 W fol-

lows from (20) as for k # s it is an strict inequality and if k = s then it holds
with equality. Finally, it is not hard to see that (iii) holds. m

5. Conclusion

We considered the standard coalitional bargaining game with alternating
offers without renegotiation and externalities, however with simultaneous
payoffs demands. In the producer game as in Okada (2011), we get identical
results if we use the Nash GSSPE (a refinement of SSPE consistent with the
Nash Bargaining solution) as a solution concept when the discount factor
goes to 1 or if we look at the SSPE if we smooth the game as in Van Damme
(1991) and the noise vanishes and the discount factor goes to 1. Hence
a simultaneous approach also predicts the Coalitional Bargaining solution.
A reasonable conjecture is that our results should extend to the situation
where only one coalition can form as in Compte and Jehiel (2010). More
importantly, our framework should also lead to predictions in models with
renegotiation and externalities where extensions of the Coalitional Bargaining
Solution may be possible to be defined based on our noncooperative approach.
We leave that for future research.

A. Appendix: The n-player Smooth Nash Demand Game

We give an outline on how to extend the result to any n that the Nash
bargaining solution is the unique H-essential equilibrium as in Van Damme “s
(1991) result for n = 2 after smoothing this game and letting the noise vanish.
We also show simultaneously how to fit this result into our model and the
equivalence between the Nash GSSPE and the SSPE of the perturbed game
when the noise vanishes and hence the uniqueness of this SSPE when the
discount factor goes to 1.

Let S be the set of active players and suppose that coalition 7' C S has
been chosen, that is, we are in subgame I" (S, T, d). Following Van Damme
(1991), we propose to smooth the Nash demand for players in 7" and then
look at the SSPE when the amount of smoothing approaches zero. Consider
the function A (a:T) that gives the probability that payoff demand profile 27
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is feasible. More precisely, we restrict attention to perturbations in the class
H = U.oH¢, where H¢ is the set of functions that satisfy
h:RY — (0,1], h continuous, h (2¥) =1 for 27 € XT, and

max {h (z) , h (27) Hxl <eif o (a7, XT) > ¢,
ieT

where o (xT,XEC) is the Euclidean distance from 27 to XT. The latter

means that i decreases to zero sufficiently fast when 2 moves away from X7 .

The smooth Nash demand game in subgame I' (S, T, ) is then U7 (h) =

(T, (Ry)ier (R?)i€T> when uncertainty is described by h and where the
continuous payoff function is R (27) = 2"h (27) 4+ (1 — h (2T)) 60

In this set up, a (Nash) equilibrium 27of U5T is an H-essential equi-
librium if associated with every sequence {h‘}_, with h® € H® there is a

sequence {xT’EL 10 such that 27¢is an equilibrium of ¥ (h¢) and such that

7€ converges to 27 as e approaches zero.

Van Damme (1991) shows, following Nash (1953), that the NBS is an H-
essential equilibrium of the two player case in the two player standard smooth
Nash demand game (Theorem 7.5.4). However, there is no assurance it is the
unique H-essential equilibrium. Hence he gives an example of a "reasonable"
function for which this is the case (Theorem 7.5.5). The proof for the n-
player case is a straightforward extension following his same steps using the

€T
the unique H-essential equilibrium of ¥ and so Lemma 4 holds if we replace
Nash GSSPE by SSPE and the smoothing technique (assuming independent
perturbations) has been introduced and the noise vanishes in 57 for each
T C S and for each S C C'(N). The uniqueness of the SSPE when the
noise vanishes in the producer game follows from the uniqueness of the Nash

GSSPE when 4 goes to 1.

consistency property of the NBS. It follows that (
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