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Abstract

Risk of stock collapse is a genuine motivation for cooperative fisheries management. We
analyse the effect of an endogenously determined risk of stock collapse on the incentives to
cooperate in a Great Fish War model. We establish that equilibrium harvest strategies are non-
linear in stock and find that Grand Coalitions can be stable for any number of players if free-
riding results in a total depletion of the fish stock. The results thus show conditions under
which a Great Fish War becomes a Great Fish Pact. However, this conclusion no longer holds
upon dropping the standard assumption that payoffs are evaluated in steady states. If payoffs
in the transition between steady states are included, the increased incentives to deviate offset
the increased benefits from cooperation due to the presence of endogenous risk and the Great

Fish Pact returns to being a Great Fish War.
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1. Introduction

Risks of catastrophe or regime shifts, if endogenously determined, have been shown to be an
important incentive for precaution in strategic resource use (Nikuiya et al., 2014, Ren and
Polasky, 2014, Sakamoto, 2014). Further, such risks are relevant for understanding the
decision to join climate treaties (Kolstad, 2007, Dellink and Finus, 2012 and Barrett, 2013)
and are likely to affect the strategic harvest choices of fishing nations (Hannesson, 2014).
From 1950 to 2000, 366 fisheries collapsed and the collapses are generally attributed to over-
fishing (Mullon et al., 2005). Indeed, avoiding stock collapses was one of the principle
motivations for the formation of Regional Fisheries Management Organisations (RFMOs), the
institutions intended to facilitate cooperation in the management of high seas fish stocks.
Surprisingly, the effect of endogenously determined catastrophes on the potential for

cooperation in fisheries agreements has received little attention in the literature.

In this paper, we fill this gap using the Great Fish War model of Levhari and Mirman (1980)
and consider the effects of a risk of stock collapse which increases in harvest. We ask,
whether an endogenous risk of stock collapse can transform the Great Fish War into a Great
Fish Pact. We modify the Great Fish War model of Levhari and Mirman (1980) (henceforth
LM) to estimate Stochastic Markov Perfect Nash Equilibrium (SMPNE) harvest functions
under an endogenously determined risk of irreversible collapse such that the stock after the
collapse is zero, and remains zero, for all future time periods. It should be noted that
“collapse”, as defined in the fisheries literature does not require the stock to be completely

extinct (Cooke, 1984). Instead, we define collapse as an economic collapse, meaning that the



fishery is no longer viable and no profits can be made. Our study therefore relates generally to
the literature on uncertainty in resource management such as Clarke and Reed (1994) and
Tsur and Zemel (1998). More specifically, our study relates to literature which considers
endogenous risk of regime shift in resource games, namely, Sakomoto’s (2014) analysis of the
subclass of dynamic renewable resource games of Sorger (2005) and Ren and Polasky (2014),
who conduct a more general analysis. These two studies show that endogenous risk can lead
to either more or less aggressive resource use. Additionally, Sakamoto (2014) demonstrates
the importance of considering the transition between regimes, i.e. taking off-steady-state
payoffs into account. Finally, our study fits directly into the literature using the LM model.
Exogenous uncertainty in the LM model has been considered in three studies. Antoniadou et
al. (2013) and Agbo (2014) consider exogenous uncertainty in stock dynamics. Fesselmeyer
and Santugini (2013) consider exogenous uncertainty in the quality of the resource as well as

the probability of regime shifts in the growth rate of the stock.

In our study, we compare analytically how incorporating endogenous risk affects the structure
of the LM model. Due to the technical difficulties in analytically solving for non-linear
harvest functions (Antoniadou et al., 2013), we use numerical methods to demonstrate that
optimal harvests are non-linear in stock. Our numerical model is validated by removing the
endogenous risk from the model and statistically analysing the similarity of the numerically
derived harvest functions to those from analytical solutions. This provides an important bridge
between analytics and numerical methods, demonstrates the robustness of the model to
numerical error and validates our approach. Our model calculates the Internal Stability of
Grand Coalitions across a range of growth and discount rates and for any number of players.
In turn, this allows us to determine if an endogenous risk of stock collapse affects the

potential for successful cooperation.



Our study is the first detailed exploration of non-linear harvest functions in the LM model and
the first study to explicitly consider endogenous risk of stock collapse from a coalition theory
perspective. We find that endogenous risk of stock collapse may provide an incentive to
entirely deplete the fish stock. Because entirely depleting the stock is a response to the
presence of endogenous risk, we term this “pre-emptive depletion”. The effect of pre-emptive
depletion on coalition stability depends on the assumptions adopted regarding how the payoff
from deviation is calculated. Initially, we retain the standard and commonly used assumption
implicit in the two-stage game a la d’ Aspremont et al. (1983). In this approach, membership
choices are made in the first stage. In the second stage, membership is fixed and players
receive payoffs which calculated in steady state according to the coalition formed. Under this
standard assumption, we find that, in general, an endogenous risk of stock collapse increases
Grand Coalition stability. This is particularly so if non-cooperation would result in pre-
emptive depletion. When this is the case, the incentive to cooperate is so strong that the Grand
Coalition is stable for any number of players and can therefore be described as a Great Fish
Pact. This study therefore suggests a solution to the “puzzle of small coalitions” (Breton and
Keoula, 2014), whereby the size of theoretically stable coalitions is smaller than what is
observed in reality. Notably, the puzzle of small coalitions can be solved without the use of
transfer payments. Transfer or “side” payments combined with asymmetric players is a
frequently invoked and powerful method which increases the number of players for which
cooperation can be sustained (Kaitala and Lindroos, 1998, Kennedy, 2003, Lindroos 2008,
Pintassilgo et al. 2010, Long and Flaaten, 2011, Ellefsen, 2012, Breton and Keoula, 2014,
Walker and Weikard, 2014). However, transfers payments have met much resistance in the
policy world in general (Folmer et al., 1993) and are not implemented in direct financial terms
in fisheries agreements (Munro, 2008). Further, the puzzle of small coalitions is solved

without the use of sequential move games (e.g. Long and Flaaten, 2011) or alternative



solution concepts, such as farsightedness (e.g. Breton and Keoula, 2012, Walker and Weikard,

2014).

Thus, endogenous risk solves the puzzle of small coalitions (the Great Fish War becomes a
pact). However, we find that this result is very sensitive to the assumptions implicit in the
standard two-stage game. We relax the assumption that payoffs are determined in steady
states by considering a transition period whereby the stock size gradually adjusts after a
deviation has occurred (cf. Sakamoto, 2014). Deviators receive payoffs during this transition
period (“transition payoffs”). Transition payoffs turn out to be a decisive incentive for non-
cooperation. Without transition payoffs, if deviation leads to pre-emptive depletion, then the
payoff of deviation is zero. With transition payoffs, the process of pre-emptively depleting
provides a payoff. We find that transition payoffs motivate non-cooperation to the extent that
the Grand Coalition is only stable in a two-player game, and then, only if the discount rate is
sufficiently low and the stock grows sufficiently slowly. The Great Fish Pact thus returns to a
Great Fish War. Overall then, the paper shows how endogenous risk of stock collapse leads to
dramatic increases in the potential for cooperation but qualifies this with the important

proviso that this result holds only if transition payoffs are not considered.

The following Section 2 describes the bio-economic model and derives and analyses the
envelope condition. Section 3 explains how Grand Coalition stability is calculated. Section 4
numerically analyses the model in terms of the stability of Grand Coalitions. Section 5

proceeds to consider the effects of including transition payoffs. Section 6 concludes.

2. Bio-economic model




We will first describe the biology of the system and introduce the objective functions. The
objective functions determine the payoffs for a given coalition membership choice, which are
then used to determine coalition stability. The set N of identical players represents n nations,
indexed by i. Let us first define escapement e (the stock remaining after harvest) in a given

period, t as
er = x¢ — Nihig, (1)

where h; . is the harvest of player i in period t. The stock in the next period depends on

escapement in the current period and is determined by the function f'(e,) as follows:

X1 = f(er) = Pef, 2

where f > 0and 0 < a < 1. If there is no harvest, x, increases over time to its carrying

capacity, which is given by

% = pra. 3)

We normalise the model such that the carrying capacity is fixed and not affected by the
growth parameters a and S. Specifically, we set § = x(1~% (from Equation (3)) and thus the
carrying capacity x can be treated as a parameter in the model and we only need to specify «,

which we term the “growth parameter”. Note that lower « entails a higher growth rate.

The probability of the fish stock surviving into the next period, 0 < r < 1, is endogenously

determined by the escapement and is given by

r(e)) = max (O, 1-— y—f), (4)

et

where 0 < ¥y < 1 and therefore 0 < r(e) < 1. The parameter y determines the critical

escapement level yx, below which collapse is certain. For any escapement level e, > yx such



that max (0, 1-—- ’;—x) =1- ’;—x it is easy to see that there is a strictly positive survival
t t

probability which is increasing in escapement at a decreasing rate. This means that there is a
strictly positive risk of stock collapse at all stock sizes. This is reasonable because, for certain
species, pressures from habitat loss or invasive species may mean that a risk of stock collapse

IS present even in the absence of any fishing (Field et al., 2009, Gjgseter et al., 2009).
The instantaneous utility function for player i is given by
u(h;) = max(0, In(h;)). (5)

This utility function avoids the problem of being undefined when harvest is zero, which is
useful in our numerical approach. Appendix 1 explains and validates the choice of utility

function in more detail.

The value function of player i is given by

Vi) = u(hy) +r(e)sVi(f(e)), (6)

where 0 < § < 1 is the discount factor. The value function depends on instantaneous utility
and the value of the stock in the future, subject to discounting and risk of collapse. Both the
risk of collapse and the future value of the stock depend on escapement. Escapement depends
on h; and the sum of the harvests of other players h_;. Therefore e = x — h; — h_;. Optimal
harvest varies with stock size. Therefore, harvest level is represented as a function of stock
size such that h; = £;(x), which we term the harvest function. Similarly, escapement is also a

function of stock size, i.e.e = x — A;(x) — A_;(x).

We can now begin to investigate how the harvest functions of our model differs from the LM
harvest functions and what drives these differences. Optimal harvest maximises the value

function for a given stock size. The envelope of these maxima across all stock sizes is the



envelope curve. The envelope condition is a necessary condition for the maximisation of the
envelope curve and thus gives insight into the conditions under which optimal stock size and

harvest are achieved.

ah_i) ou

Lemma 1: The envelope condition is given by % = (1 o ) o

Proof: See Appendix 2.

The envelope condition shows that player i’s harvest is optimal when the marginal value of

the fish stock % is equal to the marginal value of harvest %, which is adjusted by the

proportion of the marginal harvest of all other players. The general format of the envelope
condition, as in Lemma 1, is identical to that of the LM model (Mirman, 1979). However, the
values of the derivatives are different because the endogenous risk function r(e) affects the
value function V;. Therefore, harvest levels which satisfy the envelope condition will not be
identical to the LM case. We can conjecture that the value function will be particularly steep
at low stock sizes because small increases in stock size lead to large reductions in risk of
collapse. Furthermore, the slope of the harvest functions will depend on whether x is less or
greater than yx. By contrast, in the LM model the slope of the harvest function is constant.
For a full analysis of the effects of endogenous risk in terms of Grand Coalition stability, we

employ a numerical method, which is explained in the following section.

3. Grand Coalition stability

We now proceed to explain how the value function is optimised and how we use these results

to analyse stability’. We test for Grand Coalition stability across a parameter space 12.



Elements of 2 are triples (n,y, 8) where 8 = (a, p). The parameter p is the discount rate

where0<p<landé = ﬁ. The set of players in the coalition is given by M, where

m = |M|. We consider and compare two coalition structures. The first is the Grand Coalition
given by M = N. A coalition member may deviate and will do so immediately should this be
beneficial. This results in the second coalition structure; the partial coalition M = N /{k},
where {k} is the free-rider. Coalition members choose harvest levels to maximise their joint
utility and the free-rider chooses harvest to maximise individual utility. For each element of
1, and for an infinite time horizon, we optimise the value function V;(x) for a given £ to
derive the optimised value functions U;(x;; 2) for Grand Coalition members and for free-
riders. This is achieved via the Bellman equation. For a coalition member j, the optimised

value function U;(x,; £2) is given by

1 H .
Ui(xe; 2) = —maxy {ZjEM (max (0, In (Z) ) + %lfj(xtﬂ;ﬂ))} VjeEM, (7)

where H = Y ;) h; is the coalition harvest. The value function for a free-rider k playing

against the coalition N\{k} is given by
) = r(ed) :
Uy Gee; 2) = maxy, (1) + 7575 U (e D)} ®)

The optimised value function Uy, (x;; 2) is equivalent to that in the sole owner case, i.e. where
n = 1. Optimised value functions are calculated numerically using value function iteration.
The harvest functions 4;(x) V i € N which result in optimised value functions over an
infinite time horizon thus constitute Stochastic Markov Perfect Nash Equilibrium (SMPNE)
harvest functions. SMPNE harvest functions allow us to determine the steady state stock size

with harvesting at the stock size x* for which the following equality holds;

x* = Bx" — Lien Ai(x7))". ©)
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Evaluating the optimised value functions at x. (the steady state under a Grand Coalition) and
xrg (the steady state if free-riding occurs) gives payoffs, which determine Grand Coalition
stability if transition payoffs are not included. We use an Internal Stability solution concept,
under which the Grand Coalition is stable if the payoff to a Grand Coalition member is greater
than that of a free-rider playing against the coalition of remaining members. If transition

payoffs are not included, the Grand Coalition is therefore internally stable if
Uj(xgc; 2) = Uy (xpgp; 2) (10)

The internal stability condition is also applied under the inclusion of transition payoffs, but in
that case, payoffs in the transition between steady states after a deviation from the Grand
Coalition are accounted for. For more details and discussion of the numerical techniques used,

see Appendix 1.

4. Results of the standard two-stage game

This section presents stability results for our game under the assumption that transition
payoffs are excluded. We begin by validating the numeral accuracy of our model. The
validation demonstrates high statistical similarity of harvest functions from a numerical LM
model with analytically derived LM harvest functions; see Appendix 1 for details. We thus
proceed to analyse the numerical model of endogenous risk of stock collapse. We consider a
range of parameters? for a and p such that & € 4 = [0.01,0.02, ...,0.99] and p € P =
[0.01,0.02, ...,1]. We denote the set of all possible 8 = (a, p) as @ suchthat ® = A X P. The
disaggregation of A and P allows us to determine the stability of coalitions across a full range

of parameters and therefore to acquire insights of a similar depth to those provided by
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analytical results. We do not analyse @ = 1 in order to retain strict concavity in the growth
function. Further, we begin by analysing a low value for the parameter, y. Lower critical
escapement levels xy mean that certain and immediate stock collapse occurs for a smaller

range of stock sizes. We therefore set y = 0.01 and consider the effect of changing y later.

Figure 1 presents the resource stock in steady state for the parameter space @ usingn = 2 as a
representative example. The analysis will distinguish results for the Grand Coalition (Panel A)
and the case where free-riding occurs (Panel B). Note that the free-rider case for n = 2
coincides with the Cournot-Nash equilibrium. For each element of @, multiple steady states
can exist. We first present and analyse the largest stable steady state for each element of @

and later, we will describe the different steady states which can exist for each element of @ in

more detail.
(A) x5 (B) xi
1
Discount - v
rate, p.
Vi
o -~ 7 7 7 To9 0 " T 7 T T T 7 709
a a
Fast > Slow Fast > Slow
growing growing growing growing

Figure 1: Largest stable steady states in the Grand Coalition case (Panel A) and the free-rider case (Panel B) in @
space where n = 2, as an example. Using x; to denote the steady state stock in Region I, xj; to denote the
steady state stock in Region Il and so on, the regions are defined as x; =0, 0< x;; <1000, 1000< x;;, <2000,

2000< x;, <4000, 4000< x; <7000 and 7000< x;, <10000.

Figure 1 shows that the largest stable steady state is either zero, as in Region I, or positive as

in all other regions. In Region 1, it is optimal to fish the stock to extinction rather than waiting
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in the hope that stocks will increase and thus the risk of collapse will drop. We refer to this
effect as “pre-emptive depletion”. Pre-emptive depletion occurs when «a is high (the growth
rate is low) and occurs for a greater range of « as the discount rate, p increases. Larger « and
p mean that the stock has less value in the future: stock regeneration is limited, and any gains
occurring in the future will be discounted. Further, the presence of endogenous risk makes
those future gains uncertain. Hence, the choice is made to pre-emptively deplete the stock,
thus gaining an immediate and certain payoff. In all other regions, “conservative
management” occurs, whereby the largest stable steady state is positive. Conservative
management occurs when the value of the future (in terms of @ and p) is greater and thus

maintaining a positive steady state becomes optimal, despite the risk of stock collapse.

Pre-emptive depletion occurs in a smaller area of the parameter space in the Grand Coalition
than under free-riding. In general, free-riding reduces the steady state stock and therefore
increases the risk of collapse. The increased risk of collapse stimulates pre-emptive depletion

for lower values of a.

To build intuition for the above result, we proceed to analyse the differences in harvest
functions between cases where pre-emptive depletion occurs and where conservative
management occurs. In principle, each stock size can support a certain harvest level in
equilibrium, as is usually visualized in the Sustained Yield (SY) curve (Clark, 2010). In this

case, the SY curve requires that the following equality holds
x = L(x—h)* (12)

Solving Equation (11) for harvest gives the SY curve as follows

1

y(x)=x— (%)E (12)
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The intersection of the SY curve with a given harvest function is thus a steady state, though
not necessarily a stable one. The relationship between the SY curve and the harvest function
determines whether pre-emptive depletion or conservative management occurs. In Figure 2,
we provide generic figurative representations of SY curves and harvest functions under
conservative management and pre-emptive depletion. We also show stock dynamics in order

to aid in interpreting the steady states.

Conservative Pre-emptive
management depletion
#u(x)
Harvest
rules
|
‘ Y$(x)
!
x* yx
0
Stock
dynamics 0 d
Ax Ax

Figure 2: Generic representation of harvest functions, stock dynamics and steady states under conservative
management and pre-emptive depletion where Ax = x;,; — x;. Open circles indicate unstable steady states and

closed circles represent stable steady states.

A more detailed analysis of the properties of harvest rules is given in Appendix 3. Both
harvest functions in Figure 2 are linear and have a slope of 1 when x < yx. For these stock
sizes, collapse is certain and therefore the entire stock is harvested immediately. A stock size

of zero thus satisfies Lemma 1 and is a stable steady state under both conservative
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management and pre-emptive depletion. In the case of pre-emptive depletion, harvest is
greater than growth for all stock sizes, and thus x = 0 is the only steady state. In the case of
conservative management, harvest will be less than growth in some range of the harvest
function. Therefore, both an unstable and stable steady state exist in addition to the zero
steady state. Lemma 1 is satisfied for both stable steady states. Thus, pre-emptive depletion
is formally defined as the existence of only one stable steady state, which is zero, and
conservative management is defined as the existence of a positive stable steady state in

addition to the zero stable steady state.

Payoffs are determined in the stable non-zero steady state if it exists (i.e. conservative
management is adopted). If it does not exist (i.e. pre-emptive depletion occurs) then payoffs

are zero because the steady state is zero. Payoffs are shown in Figure 3.

(A) U (x%5 Q) (B) U.(x*; )
1 1
Discount
rate, p.
Vi R —— . — TR
— e —y . =
b 09 0 0.9
a a
Fast > Slow Fast > Slow
growing growing growing growing

Figure 3: Payoffs for a Grand Coalition member (Panel A) and a free-rider (Panel B) in © space where n = 2, as
an example. Using U’ to denote the payoff value in Region I, U™ to denote the payoff in Region Il and so on,
the regions are defined as U! = 0, 0 < U'' <10, 10< UM <20, 20< UV <40, 40< U <70, 70< U"! <110

and U"" >110. Region I thus refers to parameterisations for which pre-emptive depletion occurs.
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Both panels in Figure 3 show the same general pattern. Payoff increases as the discount rate
decreases. The marginal effect of the discount rate is very pronounced at low discount rates.
Also, payoff decreases as « increases. Recall, high « means that the stock grows more slowly.

We also see an area for very high a where payoff is zero due to pre-emptive depletion.

To further the analysis, it is useful to formally define the threshold in the parameter space @
which determines where payoffs change from non-zero to zero due to pre-emptive depletion —
referred to as the depletion threshold. The depletion threshold is given by the borders between
Region | and Region Il in Figure 3. By comparing the relative locations of the depletion
thresholds, we can see that pre-emptive depletion occurs for a larger area of @ in the free-rider
case, and the intuition is as follows. Free-riding reduces x*, which increases the risk of stock
collapse, and therefore provides greater incentives to harvest the entire stock in response to

the higher risk.

Endogenous risk of stock collapse thus has profound effects on the incentives whether or not
to free-ride. Free-riding reduces x* which increases risk at an increasing rate due to the
functional form of Equation (4). This means that free-riding leads to increases in risk which
are disproportionally larger than the reduction in x*. In turn, this risk amplification reduces
the payoff of free-riding relative to Grand Coalition membership. We term this effect the “risk

amplification effect” of free-riding.

In order to analyse the stability of Grand Coalitions for different numbers of players n, we
calculate payoffs in the free-rider and Grand Coalition cases in @ space for each n. We can
then explain how the risk amplification effect and changing numbers of players affect the

stability of the Grand Coalition.

The results are shown in Figure 4(A) and will be discussed according to the effects of

changing a, p and n and finally, we discuss the area marked . Figure 4(A) shows “stability
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thresholds” which divide the parameter space into areas where the Grand Coalition is stable
and unstable for a given number of players. Concerning «, in general, we see that for a given
p, as a increases, the Grand Coalition can shift from being unstable to being stable. Higher «
means a lower growth rate which in turns results in a lower x*. Grand Coalitions maintain a
higher x* than coalitions when free-riding occurs. In this way, the risk amplification effect
discourages free-riding disproportionally more at lower x*. Accordingly, increasing a can

result in a shift from unstable to stable.

Concerning p, in general, we see that for a given a, as p increases, the Grand Coalition can
shift from being unstable to being stable. This is caused, again, by the risk amplification
effect. Higher p means that the future is less valuable. Therefore, players prefer current
harvest relatively more than future harvest. Accordingly, x* decreases, the risk amplification
effect increases and concurrently, Grand Coalition stability increases. Note also that the risk
amplification effect explains the curved shape of the thresholds in Figure 4. This is because

x*decreases in p and the risk amplification effect increases in x* at an increasing rate.

Concerning n, we see that in general, increasing the number of players decreases the number
of parameterisations for which the Grand Coalition is stable. Grand Coalition stability relies
on internalising the externalities of fishing, which are two-fold. Firstly, harvest by one player
reduces the amount of fish available for the other player in the future. Secondly harvest by
one player increases the risk amplification effect. Grand Coalitions internalize these
externalities, but the benefits to each player of doing so are reduced as n increases because the
socially optimal catch must be shared by more members. Thus, as n increases, we see a

decrease in the number of parameterisations for which the Grand Coalition is stable.

As n increases from 3 to 32, the stability threshold approaches the free-rider depletion

threshold in progressively smaller steps. At n = 32, the stability threshold is identical to the
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free-rider depletion threshold. This implies that the decision to free-ride by a single player
will result in pre-emptive depletion, which gives a payoff of zero in steady state. As n
increases beyond 32, the socially optimal harvest must be shared by more players, but always
remains non-zero, while the free-rider payoff remains zero. Hence, the stability threshold does

not change for n > 32. In other words, the stability threshold has thus converged at n = 32.

The grey area y in Figure 4 refers to the subset of @ for which U;(x*; 2) = Ui (x*;2) = 0,
i.e. where pre-emptive depletion occurs in both the Grand Coalition and free-rider cases.
When this is the case, stability is trivial because, when payoffs are evaluated in the steady
state, there are no incentives for players to fish either in or out of the coalition. Therefore,
Grand Coalitions are non-trivially stable for some values of @ for all n > 1. Grand Coalitions
are non-trivially stable for stocks which are slow growing, but not so slow growing that the

stock is pre-emptively depleted. This result is due to endogenous risk.

The above analysis of stability raises the question, what determines the location of the
stability thresholds? Also, why do the stability thresholds converge at n = 32? We will now
demonstrate that this finding is sensitive to the parameter y, which determines the critical
escapement level yi below which stock collapse is certain. We do so by increasing y from
0.01 to 0.05. Increasing y leads to an increase in the probability of collapse for all stock sizes.
Therefore, as would be expected, increasing y leads to an increase in the size of the area of
displaying pre-emptive depletion. This, in turn has an effect on the stability thresholds as

demonstrated in Figure 4(B).
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(A) Low critical escapement level (B) High critical escapement level
YV % > a0
’ & R . & LS
3 y
unstable stable unstable stable
Discount
rate, p.
0 0.9 0 0.9
0 a
Fast s Slow Fast « Slow
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Figure 4: Stability thresholds between stable and unstable Grand Coalitions for selected numbers of players in @
space with y = 0.01 (Panel A) and y = 0.05 (Panel B). We illustrate the interpretation of the thresholds
explicitly for n = 3. For all stability thresholds, to the left of the stability threshold, the Grand Coalition is
unstable. To the right of the stability threshold, the Grand Coalition is stable. For n = 2 the Grand Coalition is
stable for all parameters. The grey area, marked v, is the subset of @ for which U;(x*; 2) = U, (x™;2) = 0, i.e.

where pre-emptive depletion occurs in both the Grand Coalition and free-rider cases.

In comparison to Figure 4(A), Figure 4(B) shows that an increase in y from 0.01 to 0.05 shifts
all stability thresholds for n > 2 to slightly lower values of a and reduces the number of
players at which the stability thresholds converge 32 to 26. To recap, the parameter y
determines the critical escapement level below which collapse is certain. Therefore, for stocks
with a higher critical escapement level, we observe more pre-emptive depletion. At the same
time, cooperation exists for a larger part of the parameter space because there are greater

benefits to internalising the risk of stock collapse.

5. Including transition payoffs
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The previous section has shown that a player receiving strictly positive payoffs in the Grand
Coalition can receive a zero payoff upon deviation. This effect drives the possibility for a
stable Grand Coalition for any number of players. However, zero payoffs from deviation are
due to the assumption that the state of the stock jumps immediately from x; to xzrz. We

therefore relax this assumption and thus account for transition payoffs.
5.1. Method for including transition payoffs

In order to test the effects of including transition-payoffs between steady states, we construct
a forward model. Generally speaking, forward models take backwardly induced optimal
control functions and applies them to a model which runs forward in time in order to fully
identify the dynamics of the system. In our case then, for a given element of @, the forward
model takes the harvest functions, 4;(x) V i corresponding to the free-rider case with a
starting stock size of x. In the first period, we apply the harvest functions to the stock, thus
calculating utility and escapement. Escapement and the growth function determine the stock
in the next period and the process is repeated until the stock size converges to xzz. The time
taken for convergence is given by T. The total payoff is given by the instantaneous utility in
the Grand Coalition, plus the discounted expected sum of payoffs in the transition, plus the
discounted lifetime value of the fisheries in the free-rider steady state. The payoff in the free-
rider steady state is reduced as a result of these payoffs being pushed further into the future
and the probability that collapse occurs during the transition period. Hence, we adjust the
free-rider steady state payoffs by the function &(p, T, R) where 0 < é(p,T,R) < 1 and

R = [11_, r(e,). Thus the total payoff including the transition period is given by

u(fy(xge) ) + ZZ=1 5tr(ec—1) u(/'«k (f(et—l)) ) + &(o, T, R) Uy (xfg)- (13)

We can thus repeat the analysis of Section 4, accounting for transition payoffs.
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5.2. Results of including transition payoffs

This section presents the results of including transition payoffs. We find that the maximum
size of a stable Grand Coalition is two. We find that stability only exists for a small area of

the parameter space, as shown in Figure 5.

1
Y
Discount
rate, p
0.1 ‘
0.1 o 0.99

Fast N Slow

growing growing

Figure 5: Stability of a two-player Grand Coalition in @ space with transition payoffs where y = 0.01. The black
area shows elements of @ for which the 2-player Grand Coalition is stable. The grey area, marked v, is the
subset of & for which U;(x*; 2) = U, (x; 2) = 0, i.e. where pre-emptive depletion occurs in both the Grand

Coalition and free-rider cases.

The potential for stability is lower when transition payoffs are included due to the increased
payoff to deviators available in the transition period. Grand Coalitions of two-players are
stable when the discount rate is sufficiently low. Stability can also exist for slightly higher
discount rates when a s larger. This conforms closely to the result of Kwon (2006) who
studies partial coalitions and finds that partial coalitions of two players are stable only if

a(1 + p)~tis sufficiently high. In our case however, the area of stability has a long tail which
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encompasses progressively lower discount rates. This is due to endogenous risk. Players who
are more concerned with the future prefer Grand Coalition membership due to the reduced

risk of stock collapse.

6. Conclusions

This study analyses the classic Levhari and Mirman model of the Great Fish War (1980)
under an endogenous risk of stock collapse. The objective is to analyse the effects of
endogenous risk of stock collapse on the stability of Grand Coalitions. The results of the
standard two-stage game show that a risk of stock collapse increases the potential for
cooperation. Further, the results show that cooperation can be sustained for any number of
players if the stock is sufficiently slow growing, but not so slow growing that exploitation is
not sustainable in the long run (i.e. if pre-emptive depletion occurs). Because the potential for
cooperation exists for any number players under an endogenous risk of stock collapse, the

Great Fish War becomes a Great Fish Pact.

Further considering the standard two-stage game, the result relating to the growth parameter «
has interesting management implications, particularly for deep-water fisheries which are often
slow growing (Gordon, 2003). Slow growing stocks are more vulnerable to over-exploitation
(Roberts, 2002, Neubauer et al. 2013). This paper supports this proposition for very slow
growing stocks. Indeed, the results suggest that the stock would be fished to extinction.
However, because Grand Coalitions are stable for slow (not very slow) growing stocks
regardless of the number of players, the potential for sustainable management is somewhat

less bleak.

Most importantly, the results offer counter-evidence to a long-running implicit conclusion in

the literature, namely that the number of players is the most important determinant of
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potential for stable Grand Coalitions. This study shows that when there are more than a
certain number of players, further increases in the number of players has no effect on the area
of the parameter space for which the Grand Coalition is stable. The reason for this is that in
previous models, increasing the number of players results in lower steady state stocks and
these low steady states can be sustained ad infinitum with no risk that the stock might
collapse. The result presented in this paper regarding the independence of stability from the
number of players is entirely the result of relaxing this very common, yet inappropriate,

assumption.

In general, this study contributes to the discussion regarding what makes coalitions in
fisheries management stable. We observe empirically that coalitions can be stable for large
numbers of players but theoretical models tend to be more pessimistic (Hannesson, 2011).
Breton and Keoula (2014) refer to this as the “puzzle of small coalitions” and show that larger
coalitions can be achieved by using asymmetric players in a game with first mover advantage,
thus partly solving the puzzle. Asymmetric players combined with transfer payments can
contribute to solving the puzzle (e.g. Pintassilgo et al. 2010), as can the type of solution
concept used (e.g. Breton and Keoula, 2012, Walker and Weikard, 2014 ). We have shown
that endogenous risk of stock collapse allows the potential for cooperation for any number a
players; a possibility which has not yet been identified in the literature. Further, cooperation

for any number of players can be sustained without the use of transfer payments.

However, our results are sobering in the sense that the potential to seize transition payoffs
swamps out the prospects for cooperation and hence, the Great Fish Pact returns to being a
Great Fish War. Under the Great Fish Pact, farsightedness, sequential move games and
transfer payments are not required to address the puzzle of small coalitions. However, because
the Great Fish Pact does not hold if transition payoffs are included, farsightedness, sequential

move games and transfer payments still have an important role to play in addressing the



puzzle of small coalitions. Further study is required to determine the effects of these

assumptions on coalition stability when transition payoffs are included.
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Appendix 1: Utility function and numerical accuracy

This appendix discusses numerical accuracy with respect to our utility function and

interpolation error.
The utility function

The utility function u(h) = In(h) is undefined when h = 0. A risk of stock collapse implies
that harvest level h = 0 may occur. We therefore require a utility function which avoids this
problem but is sufficiently similar to In(h), such that we know that differences in the stability
of Grand Coalitions between our model and the LM model can be attributed solely to the
presence of endogenous risk. Therefore, we use the utility function max(O, ln(h)) which is
equal to In(h) if h > 1. The range of the utility function is bounded in that it is non-negative
and harvest cannot exceed the carrying capacity. We set the carrying capacity at x = 10,000
(by setting B = 10,000%%) such that our utility function differs from In(h) only for a small
fraction of its range. Hence, using a large values for x ensures h is extremely infrequently

between zero and 1 and thus the utility function max(O, ln(h)) performs, in practise, the

same as [n(h) for all h > 0. Where h = 0 however, the function max(O, ln(h)) = 0 and thus

performs differently from the original LM model.

In order to evaluate whether our utility function has any effect on the outcome of the model,

we numerically solve the deterministic (original) LM model with the utility function
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max (0, in(h)) and evaluate the similarity of the numerically derived harvest function to the
analytical solution of the original LM model. We consider the sole-owner case and consider

all harvest functions in © space, as defined in Section 4. To test the similarity, we calculate a
standard R? statistic to evaluate the extent to which the numerical harvest function can be

explained by the analytical harvest function. The results are reported in Figure Al.

Figure Al: R? statistics in ® space determining the accuracy of a numerical 1-player deterministic LM model.
Each region (I through 1V) represents a range of R? statistics. Using R? to denote the R? value in Region I, R%
to denote the R? in Region Il and so on, the regions are defined as 0.9998 < R? < 1, 0.9994 < R? < 0.9998,

0.9990 < R%, < 0.9994 and 0.9984 < R2, < 0.9990.

The results show that the numerical model can recreate analytical results to a high degree of
accuracy. It also shows that particular areas of © space are more numerically challenging to
estimate than others. The location of the area of largest error, consisting of the union of

Regions I11, IV and the larger of the two areas marked as Region Il is particularly important.
The accuracy of stability thresholds in this particular region is therefore somewhat reduced.

Overall, the high R? values confer confidence in the accuracy of the numerical method, thus

supporting our use of the max(0, In(h)) utility function. While numerical accuracy is high,
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we cannot be sure whether the inaccuracy is due to the utility function or due to interpolation

error.

Interpolation Error

Error in the model may also result from interpolation error. Interpolation error results from the
discretised state space. We set the state space as x; € X = [0,1000, 2000, ...,10000]. In the
case that the steady state x* is less than 1000, the model increases the number of elements in
the state space in order to more accurately identify the steady state. Discretisation of the state
space means that U; (x,.,; @) is only known for each element of X. Almost always, x;,; is
not an element of X and therefore we use interpolation to estimate U;(x;,1; 2). Error in
interpolation means that future value in the value function deviates from its true value and this
results in deviations of the harvest function from their true form. The effect of any
interpolation error on the harvest function is reduced when the value function is determined
by instantaneous utility relatively more than future value. Future utility has relatively less of
an effect on the value function when the discount rate is high. This can be seen in Figure Al,
where error in the numerically estimated LM model tends to be higher for lower discount
rates. This suggests that some of the inaccuracy in Al is due to interpolation error. Finally, it
is useful to note that future value also has relatively less of an effect on the value function if
future value is reduced due to endogenous risk. Therefore, endogenous risk has the side effect
of reducing the effect of interpolation error in our model, thus increasing our confidence in

the results.

Appendix 2: Deriving the envelope condition




Deriving the envelope condition requires determining the first order conditions of Equation

(6) with respect to harvest and stock. The first order condition w.r.t. harvest h; is given by

av; _ 6r de av;of ode

— +—=—§V,(f(e)) +r(e)§ =% =—=0. (A2.1)

on; * 5% ah; af de dh;
From Equation (1) it follows that % = —1. Equation (Al.1) therefore simplifies to

du
dh

=Z sV, (f(e)) +7(e)s "’a; iz (A2.2)

Substituting 4, (x) for h; and A_;(x) for h_; in Equation (6) such that e = x — £;(x) —
#_;(x) and differentiating Equation (6) w.r.t. x gives

Vi _ ou ok
ax  oh; ox

or (1 Oy an_l

+5[— 2 )V(f(e))+ r(e)542

av; of ( oh; O0h_;
de

)] oy

Substituting % in the above with %, then substituting % with the right hand side of
l l l

Equation (A2.2), then simplifying gives

= (1-Z=) (Savi(f(e) + r(e)s 320, (A2.4)

ax af de

Equation (A2.2) is substituted into Equation (A2.4), thus giving the envelope condition

Vi _ (1 _ 2%=i)) 2w
ax (1 ox )dhi' (A2.9)

Appendix 3: The properties of harvest functions.

This appendix discusses the properties of harvest functions in terms their monotonicity and

their form in relation to point x = yx. We present the harvest function for « = 0.99, p =

27

0.01,y = 0.02and x € X = [0,100, 200, ...,10000] in the sole-owner case in Figure A3. We

find that harvest functions are not necessarily monotonic, which is expected given that it may
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be optimal to harvest the entire stock at low resource levels. Furthermore, Figure A3 also
indicates that the harvest function does not necessarily attain a (local) maximum where
x = yx. It can still be optimal to harvest all of the stock immediately, even if collapse is not

certain. Thus the maximum of the harvest function occurs at x = 300 whereas yx = 200.

300

250

200

A(x) 150

100

W‘“W

| L L | i
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0 YX 500 1000 1500 2000 2500 3000 3500 4000
X

50

L

Figure A3: The harvest function where « = 0.99, p = 0.01 and y = 0.02 demonstrates non-monotonicity. Stars
are actual data points. The harvest function is defined up to x = 10000. We limit the x axis to focus on lower

values of x.
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Footnotes

1. All numerical analyses were performed in MATLAB 7.14 (R2012a) (Mathworks Inc.).
The code for calculating payoffs and steady states as well as the code for validating

the model (Appendix 1) are available from the corresponding author on request.

2. In the original LM model the discount factor is between 0 and 1 whereas we test the
discount rate between 0 and 1. This means that we test discount factors between 0.5

and 1.

3. The risk amplification effect is similar to the “risk reduction effect” of Ren and
Polasky (2014). The risk reduction effect refers to the reduction in endogenous risk

when stock increases.
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