~ %~ FONDAZIONE ENI
ENRICO MATTEI

NOTA DI
LAVORO

56.2015

Contagion Risk and Network
Design

Diego Cerdeiro, The International
Monetary Fund

Marcin Dziubinski, Warsaw University
Sanjeev Goyal, University of Cambridge




Contagion Risk and Network Design

By Diego Cerdeiro, The International Monetary Fund
Marcin Dziubinski, Warsaw University

Sanjeev Goyal, University of Cambridge

Summary

Individuals derive benefits from their connections, but these may, at the same time, transmit
external threats. Individuals therefore invest in security to protect themselves. However, the
incentives to invest in security depend on their network exposures. We study the problem of
designing a network that provides the right individual incentives. Motivated by cybersecurity,
we first study the situation where the threat to the network comes from an intelligent
adversary. We show that, by choosing the right topology, the designer can bound the welfare
costs of decentralized protection. Both over-investment as well as under-investment can
occur depending on the costs of security. At low costs, over-protection is important: this is
addressed by disconnecting the network into two unequal components and sacrificing some
nodes. At high costs, under-protection becomes salient: it is addressed by disconnecting the
network into equal components. Motivated by epidemiology, we then turn to the study of
random attacks. The over-protection problem is no longer present, whereas under-
protection problems are mitigated in a diametrically opposite way: namely, by creating dense
networks that expose the individuals to the risk of contagion.

JEL Classification: D82, D85
Keywords: Cybersecurity, Epidemics, Security choice, Externalities

This paper is based on a chapter in Diego Cerdeiro's doctoral thesis submitted to Cambridge University
in June 2014; the chapter was titled "Individual Security and Network Design". Sanjeev Goyal and
Diego Cerdeiro were supported by European Research Area Complexity-Net. Marcin Dziubinski
acknowledges support from the Foundation for Polish Science through project Strategic resilience of
networks realized within Homing Plus programme of Foundation for Polish Science, co-financed by the
European Union from the Regional Development Fund within Operational Programme Innovative
Economy ("Grants for Innovation"). Sanjeev Goyal also acknowledges support from a Keynes
Fellowship and the Cambridge-INET Institute.

This paper was presented at the 20th Coalition Theory Network Workshop, which was held in Venice,
Italy, on 19-20 March 2015

Address for correspondence

Marcin Dziubinski

Institute of Informatics

Warsaw University

Banacha 2

02-097 Warszawa

Poland

E-mail: m.dziubinski@mimuw.edu.pl

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it


http://www.feem.it/
mailto:working.papers@feem.it

Contagion Risk and Network Design

Diego Cerdeiro*
Marcin Dziubiriski®

Sanjeev Goyal?
April 10, 2015

Abstract

Individuals derive benefits from their connections, but these may, at the same
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1 Introduction

Individuals derive benefits from being connected to others. These connections may, at the
same time, transmit external threats. The internet reflects this tension{l] connectivity
facilitates communication but is also used by hackers, hostile governments and firms
and ‘botnet’ herders to spread viruses and worms which compromise user privacy and
jeopardize the functioning of the entire systemE] Individuals are aware of these dangers
and invest in security software. The incentives to invest in protection depend on exposure
in the network and will generally depart from what is collectively desirable.

In this paper, our goal is to examine how network design can mitigate inefficiencies
in protection.

There are (n + 2) ‘players’. The designer first chooses the network over the n nodes.
Given this network, each of the n nodes (simultaneously) chooses whether to protect or
not; protection carries a fixed cost. Finally, the adversary chooses a node to attack. If
the attacked node is protected, then all nodes survive the attack. If the attacked node
is not protected, then this node and all nodes with a path to the attacked node through
unprotected nodes are eliminated. Nodes are assumed to derive benefits from their con-
nectivity: the payoff of a node is increasing in the size of its surviving component. A
node’s net payoffs are equal to its connectivity payoffs less the amount spent on pro-
tection. The designer is utilitarian: he seeks to maximize the sum of nodes’ payoffs.
The adversary is intelligent, purposefully choosing the attacked node so as to minimize
connectivity-related payoffs.

We start with a study of the first best design and defence profile. We show that for
low protection costs, all nodes should be protected and any connected network is optimal.
For intermediate costs of protection, the designer chooses a star network and protects its
center only. The adversary then eliminates a single spoke of the star. If protection costs
are high, the designer splits the network into equal size components and leaves all nodes
unprotected. The adversary eliminates one of these components.

This sets the stage for the study of decentralized protection. We show that if defence
is sufficiently expensive (so that no protection is first best), no protection is the unique
equilibrium defence of any first best network. At the other extreme, if protection is
sufficiently cheap (so that full protection is first best), there exist networks that implement
the first best in every equilibrium. Departures from first best welfare will therefore arise
only for intermediate costs of protection; that is, when a center protected star is optimal.
The designer cannot attain first best payoffs in equilibrium, as the only equilibria on star
networks are those where either all or no node protects. In our main result (Theorem [1]),

In the United States, the Department of Homeland Security (DHS) is responsible for cybersecurity.
Its mission statement reads, “Our daily life, economic vitality, and national security depend on a stable,
safe, and resilient cyberspace. We rely on this vast array of networks to communicate and travel, power
our homes, run our economy, and provide government services.”

2Moore et al.| (2009) estimate that in 2009, roughly 10 million computers were infected with malware
designed to steal online credentials. The annual damages caused by malware are very large: in the
US the annual costs of identity theft are estimated at 2.8 billion USD. These large costs have led to
the emergence of a large software security sector. Intel bought McAfee in 2010, for 7.68 billion USD
(bbe.co.uk; 19 August 2010).



we show that the designer can bound the welfare costs of decentralization by choosing
the right topology.

We then consider the optimal design problem in more detail. When a center pro-
tected star is first best but all nodes protect in equilibrium, protection decisions involve
negative externalities and exhibit strategic complementarities. Nodes have incentives to
protect and divert the adversary’s attack to other parts of the network. How can the
designer induce some nodes to be eliminated in equilibrium? We show that connected
networks are suboptimal to address the over-protection problem. When a connected net-
work has an equilibrium achieving higher welfare than full protection, there always exists
a disconnected network that welfare-dominates it. Thus, if the designer is to avoid the
over-protection problem, he must disconnect the network and sacrifice some nodes.

The analysis summarized so far assumes that individual coordinate on equilibria that
achieve maximum equilibrium welfare. In general, however, some of these networks may
feature multiple equilibria that achieve vastly different welfare levels. How can the de-
signer tackle potential coordination problems? To illustrate the issue, suppose that the
costs of protection are such that maximum equilibrium welfare is achieved via full pro-
tection on a connected network. The network where nodes are arranged on a cycle has
a full protection equilibrium. However, if the cost of protection outweighs the benefits
of surviving in isolation, there is another equilibrium on this network where no node
protects and the adversary brings down the entire network. We provide a necessary and
a sufficient condition for a network to induce full protection in any equilibrium. Such
networks are sparse in the following sense: they must feature a node that can block the
adversary’s attack, thus saving a large part of the network.

Epidemics of diseases such as influenza, AIDS and tuberculosis, have enormous costs
in terms of human suffering’|] In the case of diseases, it is more natural to suppose that
‘attack” on the social network is random. We show that in the first best scenario, op-
timal network structures do not change with the nature of the external threat if some
level of protection is optimal. That is, the designer chooses either a connected network
with all nodes protected (if security is sufficiently cheap), or a center-protected star (for
intermediate values of protection costs). When protection is expensive, the optimal un-
protected network depends on the value of connectivity. For very convex value functions,
the designer may ‘risk it’ by creating a very large component, an option that is obviously
suboptimal under intelligent threats.

The solution to the design problem with decentralized security stands in sharp contrast
with the case of intelligent attack. First, the over-protection problem is no longer present.
Secondly, the under-protection problem may need to be addressed in a diametrically op-
posite way. Facing an intelligent adversary, security choices exhibit complementarities,
and to avoid an equilibrium where nobody protects the designer must choose relatively
sparse networks. Under random attack, security choices feature both strategic comple-

3There are 3 to 5 million cases of acute influenza and between 250,000 and 500,000 deaths are at-
tributed to this infection, annually. In 2012, over 8.5 million people were infected with tuberculosis and
1.3 million deaths were attributed to it. In the same year, 2.3 million new cases of AIDS were reported
and over 1.5 million people died due to the disease; over 36 million people have died due to HIV/AIDS
so far (WHO (2013, 2014a, 2014b)).



mentarities (due to the value of being connected to surviving individuals) and substitutes
— a node will simply not protect unless it is sufficiently exposed to the risk of contagion.
Since a node must be exposed to potential contagion in order to protect, the designer
may need to choose dense networks to induce protection.

The contribution of the paper lies at the intersection of economics and computer sci-
ence literature. For an early contribution in the study of decentralized defence, see Kun-
reuther and Heal| (2003). |Aspnes et al.|(2006) studies security choices by nodes in a fixed
network when nodes only care about their own survival, attack is random, and both pro-
tection as well as contagion are perfect. The focus is on computing the Nash equilibria of
the game. They provide approximation algorithms for finding the equilibria. In a recent
paper, Acemoglu et al.| (2013) study the incentives for protection in a setting when both
defence and contagion are imperfectﬁ The present paper provides, to the best of our
knowledge, the first systematic study of the problem of optimal network design when the
nodes invest to protect themselves against attacks.

Our paper is related to a recent literature on network design. |Goyal and Vigier| (2014)
study the problem of security in a setting where security and network design are both
chosen by a single player. The results in the present paper highlight the large effects of
decentralized defence for optimal design. In (Goyal and Vigier| (2014) the optimal design
is a star network and optimal allocation of resources is exclusively on the central node.
By contrast, when individual nodes choose security, the optimal design has to address
problems of too much as well as too little protection. This best way to tackle over-
protection is by disconnecting the network and sacrificing some nodes. Potential under-
protection problems are addressed by creating equal components. Finally, coordination
problems in security are mitigated through the creation of ‘sparse’ networks that contain
critical nodes [l

The rest of the paper is organized as follows. Section [2| presents the model. Section
presents the first best solution. Section [4| presents our main result on the welfare costs of
decentralization. Section [f] discusses optimal design. In Section [6| we consider the case of
random attack. We conclude in Section [7] All proofs are in the Appendix.

2 The model

Let N ={1,...,n}, n > 2, be the finite set of nodes. A link is a two-element subset of
N. A network G is a set of links, G C {ij : i,j € N,7 # j}, where ij is short for {i,j}.
The set of all networks over the set of nodes N is denoted by G(N). Given a set of nodes
UCN, GU]l={ij € G:i,j€ U} is the subnetwork of G induced by U. Additionally,
given a set of nodes X C N, G — X = G[N \ X] is the network obtained from G by
removing all nodes from X together with the adjacent links. A path in G between nodes

4There is also a very active research programme in financial contagion, see e.g., Blume et al.| (2013),
Acemoglu et al|(2015]), (Cabrales et al.| (2013), and |[Elliot et al.| (2014)).

9Baccara and Bar-Isaac| (2008) study the optimal cross-holding of incriminating information in a
criminal organization, exploring the tradeoff between cooperation enforcement and potential detection
by an external authority. However, no protection technology is available to agents; the choice of security
is central to our study.



1,7 € N is a sequence of nodes 1,...,%, € N such that g = ¢, i, = 7, m > 2, and
ig_1tx € G for all k =1,...,m. Node j is reachable from node 7 in G if 7+ = j or there is
a path between them in G. We denote this fact by ¢ <£>j. A component is a maximal set
of nodes C' C N such that for all 2,5 € C, 7 # j, we have ¢ <£>j. The set of components
of G is denoted by C(G). We will abuse the terminology and use the term ‘component’
to refer to the subnetwork G[C] induced by a component C, as well. Given network G
and node i € N, C;(G) denotes the component C' € C(G) such that i € C. Network G is
connected if |C(G)| = 1.

A network value function (NVF) is a function that reflects how good the network is
in the given context. We consider the following network value function:

oG) = Y fc,

CeC(G)

where f : R — R is strictly increasing, strictly convex, and f(0) = 0. This form of
network value functions is in line with Metcalfe’s law, where the value of a connected
network over x nodes is equal to 22, as well as Reed’s law, where the value of a connected
network over x nodes is of exponential order with respect to the number of nodes (e.g.
2% — 1). It reflects the idea that each node derives additional utility from every node it
can reach in the network.

Players. There are (n + 2) players: the designer (D), the n nodes, and the adversary

(A).
The timing. There are three rounds of the game:

1. D chooses the network G € G(N).

2. Nodes from N observe GG and choose, simultaneously and independently, whether
to protect (1) or not (0). This determines the set of protected nodes A.

3. A observes the protected network (G, A) and chooses node z € N to infect. The
infection eliminates all the unprotected nodes reachable from x in G — A. Thus
the set of eliminated nodes is F,(G|A) = {i € N : z &M’}, if z ¢ A, and
E.(G|A) = @, otherwise. This leads to the residual network G — E,(G|A).

Payoffs. Payoffs to the players are based on the value of the residual network and costs
of defence. The gross payoff to node ¢ € N in network G is equal to f(|C;(G)])/|Ci(G)],
i.e. each node gets the equal share of the value of its component. The net payoff of a node
is equal to the gross payoff minus defence spending. The protection has costs ¢ € R, ;.
A removed node gets payoff 0. Node i’s payoff in network G with defended nodes A and
attack x is then equal to:

JUCH(G—Ex (GlAY] iy
A @ maaay ¢ i€l
UG, A z) =14 0 itie E,(GIA)\ A (1)
F(C(G=Bx (G1A)))
[C.(C—Ex (GI)]

otherwise.

bt



The designer aims to maximize social welfare, i.e. the sum of nodes’ utilities, which is
equal to the value of the residual network minus total costs of defence. Formally, the
designer’s payoffs are equal to:

UP(G,A,z) =W(G,Ax) =) UYG,Az) = > faep | = 1ale. (@)

i€V CEC(G—E(G|A))

The adversary is intelligent and aims to minimize gross welfare, i.e. the sum of nodes’
gross payoffs, equal to the value of the residual network:

(NS . S ((fe)) (3)
CeC(g—Ez(g1A))

The game. The model described above leads to game I' = (P, (2Z;)icp, (Si)iep). The set
of players is P = NU{D, A}. The set of strategies of player D is Sp = G(IV). A strategy
of each node i is a function ¢; : G(N) — {0, 1} which, given network G € G(NV), provides
the protection decision 0;(G) of the node. The set of strategies of each node i € N is
S; = 29(N) A profile of individual strategies of the nodes determine, given a network G,
the set of defended nodes A(G) = {i € N : 6;(G) = 1}. The set of strategies of player A
is a function x : G(N) x 2V — N which, given network G € G(N) and set of protected
nodes A C N, provides the attacked node z(G,A). The set of strategies of player A is
Sp = NIW)<2 A strategy profile is a tuple (G, A, z) with the strategy choices of each
of the playersff| The outcome of strategy profile (G, A, z) is (G, A(G), z(G, A(G))). The
preferences of players D and A are determined by their utilities from the outcomes of
strategy profiles. In the case of nodes we make an additional tie breaking assumption
that in the case of utilities being equal, each node prefers to stay uninfected.

Equilibrium. We are interested in subgame perfect equilibria of game I', called equi-
libria, for short. Throughout the paper we will also refer to the subgame ensuing after
network G is chosen. We will denote this subgame by I'(G). We will abuse the notation
by using the same letters to denote the strategies in I'(G) and in I' (we will indicate
whenever it is not clear from the context which game is considered).

It is important to note that, for the problem to be well defined, for any network G
the subgame I'(G)) must have an equilibrium. This is established by the following lemma.

Lemma 1. For any network G € G(N), I'(G) has an equilibrium.

An immediate corollary of Lemma [I|is that the game I' has an equilibrium.

3 First best outcomes

We start the analysis by characterizing the optimal choice if the designer can choose the
protection profile as well as the network. Before we state the proposition characterizing

6We will represent the strategies of the nodes with the function providing the set of defended nodes,
for short.



the first best, we define the following set. Given n € N, let

n

Q*(n) = argmaseqr, (- 2)f Qq_—lj) Ffmod (g=1).  (4)

As will be clear in the next result, for sufficiently high protection cost the first best
involves no protection. For a given network value function, elements in the set Q*(n) are
related to the maximum number of components in the optimal unprotected network.

Proposition 1. Suppose the designer chooses protection and design. Then
(1) if ¢ < min{cy(n), ca(n)}, the network is connected and all nodes are protected,
(2) if c1(n) < ¢ < es3(n), the network is a star and only the centre is protected,

(3) if ¢ > max(ce(n), cs(n)), the network is unprotected and has ¢ —1 components of size
Lq_LlJ and one component of size n mod (¢ — 1) (if n mod (¢ —1) > 0),

where
Cl("):f(n);i(?_l)’ (5)
oy T4 (Lﬁg) ~Jnmod (g = 1) o
caln) = 10 = 1) = (=201 (| 2] ) = fnmod (g - 1), g

with ¢ € Q*(n).

The response of the adversary to each of these networks and defence profiles is as
follows. The adversary attacks any node in case , eliminates a spoke in case , and
targets a node in a component of size | " | in case .

When defence is sufficiently cheap all nodes will be protected, and the maximum gross
payoff of f(n) will be achieved through any connected network. For intermediate values
of ¢, protecting all nodes is too costly but the damage caused by the adversary can be
brought to a minimum with a center-protected star. When the cost of protection is large,
no node is protected and an undefended network is optimal.

Consider, for example, the case of Metcalfe’s Law (i.e. f(y) = y?) with n = 30 nodes.
If ¢ < 2.03, first best is achieved through a connected and fully protected network. If
2.03 < ¢ < 616, then a centre protected star is optimal. Finally, if ¢ > 616, then the
designer chooses a network consisting of two components of 15 nodesﬂ

"The optimal number of components of an undefended network depends on the convexity of the
value function. For f(y) = y? and n ¢ {9,15}, it consists of two large equal-size components and (if
n is odd) an isolated node. For m = 9, the network with three equal-size components is the unique
optimal undefended network; for n = 15, there are two optimal undefended networks: three equal-size
components, and two size-7 components and an isolated node. Formally, we have that under this network
value function Q*(9) = {4}, @*(15) = {3,4}, and Q*(n) = {3} for any n ¢ {9,15}.



4 The price of decentralization

What are the welfare implications of decentralized protection decisions? We will use two
measures: the price of stability and the price of anarchy.

The price of stability is defined as the fraction of payoff to the designer in the first
best over the maximal payoff to the designer that can be attained in equilibrium of T" (for
the given costs of protection c):

W(GP, A, 2
max(g,A,z)e&(c) W(G7 A(G)7 JZ(G, A<G))) ’

PoS(n,c) = (8)
where (G™®,A™) is a first best network and defence profile and ™ is a best response
to it by the adversary. The price of anarchy is defined as the fraction of payoff to the
designer in the first best over the minimal payoff to the designer that can be attained in
equilibrium of I' (for the given costs of protection c):

W(G™, AP z) (9)
min(G,A,w)GS(c) W(G7 A(G>7 QI(G, A(G))) '

PoA(n,c) =

It is easy to see that these measures provide, respectively, lower and upper bounds on
the welfare costs of decentralization.

The following additional quantity will be used in the analysis of decentralized equi-
libria:

fln—1)

co(n) = — (10)

We start by noting that there is no cost of decentralization if protection is sufficiently
expensive or sufficiently cheap.

Lemma 2. If ¢ < min{cy(n),ci1(n),ca(n)} or ¢ > max{cy(n),c3(n)}, then there exists
network G such that the designer attains first best payoffs in every equilibrium of T'(G).

Suppose that ¢ > max{ca(n),cs(n)}, so that the first best consists of an unpro-
tected network G with the largest components being of size LWLlJ’ where ¢ € Q*(n).
If protection is costly enough for the first best to be an optimal undefended network
(G, then in such a network any potential gains from connectivity are outweighed by the
cost of protectionﬁ No protection is the unique equilibrium defence profile of I'(G). If
¢ < min{ci(n),ca(n)}, the first best consists of a connected network G with all nodes
protected. If, in addition, ¢ < ¢g(n), then while there exist connected networks with
equilibria involving less than full protection, there always exist networks such that all
nodes protect in every equilibrium.

Lemma [2] therefore establishes that departures from first best may arise for two differ-
ent reasons. Firstly, if the cost of protection is such that co(n) < ¢ < min{ci(n), c2(n)}.
In this case, first best welfare is attained through full protection, but any network has

an equilibrium where no node protects. Such a situation may only arise if the network

8Formally, we have that c3(n) > =



value function features exponential growth, since ¢o(n) < c¢1(n) requires that the value
of a network over n nodes is at least twice as large as the value of a network over n — 1
nodes.

Secondly, there will be departures from first best if the latter consists of a centre-
protected star. This requires that the network value function f and the network size n
be such that ¢;(n) < c3(n)F] Then, for ¢;(n) < ¢ < c3(n) first best is a centre-protected
star, but this cannot be attained in equilibrium, as the only equilibria on star networks
are those where either all or no node protects.

Lemma 3. Let G be a star network. In any equilibrium of I'(G), either all nodes protect
or no node protects.

For large n, decentralization of protection cannot be problematic if lim,_, W =
+o0o. In this case, for sufficiently large n, ¢ < min{cyg(n),c1(n)} and therefore the price
of anarchy equals one If, on the other hand, lim,_, % is bounded, then the
wedge between first best and decentralized welfare will not vanish as n increases. Our
main finding is that, for any network value function, the ability to choose the network
topology allows to bound the welfare costs of decentralization. This is summarized by

the theorem below.

Theorem 1. For cost of protection ¢ and network size n:

(1) If ¢ < min(co(n),c1(n), ca(n)) or ¢ > max(ca(n), c3(n)), then PoA(n,c) = PoS(n,c) = 1.

(2) Suppose that c¢1(n) is bounded and min(co(n),c1(n), c2(n)) < ¢ < max(ca(n), cz(n)). Then:
(a) lim,, oo PoA(n,c) = lim,,—o PoS(n,c) =1, if % is unbounded.

(b) lim,,—oo PoA(n, ¢),lim, o PoS(n,c) < £ if lim, f) p < +oo with p > c.

— p—c’ n

(¢) lim, o0 PoA(n, ¢),lim, o PoS(n,c) < %, if limy, o0 @ =p>c.

To gain intuition for point [2]in Theorem [}, it is useful to consider examples. Suppose

that f(y) = y*> Note that ¢;(n) is bounded, lim, .. c;(n) = 2. Moreover, @ is

unbounded. Hence, this network value function corresponds to case . Since @ is

unbounded, for any cost ¢ there exists a network size n such that % > c. In this case,
the designer can enforce full protection by choosing the right topology. Moreover, since
f(n) grows faster than n, the welfare implications of over-protection by (n — 1) nodes are
negligible compared to connectivity payoffs.

In cases [2bland , @ is bounded. The value of connections becomes approximately
linear as the network size increases. Consider, for example, f(y) =y — In(y + 1), so that
lim,, @ = 1. If ¢ < 1, then for sufficiently large n the designer can choose a connected

network where all nodes protect. The average payoff across nodes in the first best is

9Note, for example, that c1(n) > c3(n) for any n if f(y) = Y.

0This follows from the fact that if cop(n) is bounded then c;(n) is bounded. The condition
limy s o0 % = 400 is satisfied, e.g., for f(y) = y* and a > 2, or f(y) =¥ —1 and a > 1. These
functions are sufficiently convex so that, for any finite protection cost, there exist a sufficiently large n
such that a connected fully protected network is first best and there exist networks with full protection

in any equilibrium.



@ — = — 1, while in decentralized equilibrium with overprotection @ —c—1—c.
Hence the price of anarchy is bounded above by 1%5 If ¢ > 1, then the designer can
choose the empty network, and the price of decentralization is at most % — ﬁ

5 Decentralized security and optimal design

Our main result (Theorem (1)) states that the welfare implications of decentralization can
be bounded by choosing the network topology. In this section we turn the attention to
the optimal design problem.

When protection decisions are decentralized, inefficiencies stem from two distinct
sources: pure-externality problems and coordination problems. To illustrate the inef-
ficiencies associated with pure-externality problems, let f(y) = 3*. Suppose that the
first best is a centre-protected star (i.e. ¢1(n) < ¢ < c¢3(n)). If ¢ > % and no spoke
protects, the centre of the star strictly prefers not to protect. This is the underprotection
problem due to positive externalities. If ¢ < n — 1, there is a unique equilibrium where
all nodes protect. This is the overprotection problem due to negative externalities.

The second source of inefficiencies are coordination problems. Let f(y) = 32, and sup-
pose that the first best is a connected and fully protected network (i.e. ¢ < min{c;(n), ca(n)}).
Consider a clique, i.e. a network where there is a link between any pair of nodes. There
are two possible equilibrium outcomes. One where all nodes protect (attaining the social
optimum), and another one where no node protects. The latter is due to the fact that it
is not profitable for a node to protect if no other node survives in the network. Protection
in this setting has features of threshold public goods: it is only profitable for the nodes
to protect if there are sufficiently many other nodes protecting in the network.

In this section we analyze how the designer can mitigate the decentralization problems
by choosing the right network topology. Given that, depending on the network, the
subgame I'(G) may feature multiple equilibria, we will consider two polar cases. For
any network G, the equilibrium of the subgame I'(G) that will be selected will be either
welfare-mazximising or welfare-minimising. Formally, for a given network G € G(N), let
E(c|G) denote the set of all equilibria of I'(G) under costs of protection ¢. An equilibrium
(A, x) is welfare-mazximising if

(A, z) € argmax(nr pee oy W (G, A, z(A)). (11)
An equilibrium (A, z) is welfare-minimising if
(A,l‘) € argmin(A/’z/)eg(ch)W(G,A,IE(A)). (12)

Let &(c) denote the set of equilibria of the game I'. An equilibrium (G, A, z) € £(c) is
welfare maximising if

(G7 Aa Zlf) € arg maX(G,A’,x’)ES(c)W(Gv A<G)a l'(G, A))a (13)
and welfare minimising if
(G7 Av J}) € arg min(G,A’,x/)ES(C)W(Ga A(G()7 ‘T(G7 A)) (14)
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Consider potential differences between design under centralized and decentralized pro-
tection. Any discrepancy between first best design and design under welfare maximising
equilibria will reflect a pure-externality problem. Differences between design under wel-
fare maximising and welfare minimising equilibria reflect coordination problems.

5.1 Metcalfe’s Law

In this section we present the characterization of optimal networks for the case of Met-
calfe’s Law, that is, when f(y) = y?. This functional form can be motivated, for example,
by assuming that each individual in a component of size y has a piece of information that
has a value of 1 to everyone (including herself). Thus, every node in a surviving com-
ponent of size y receives a gross payoff of y, and the designer’s gross payoff from this
component is equal to 3.

We find that three classes of networks are optimal under Metcalfe’s law in a welfare
maximising equilibrium. When protection costs are low, the designer keeps the network
connected, and in the welfare maximizing equilibrium all nodes protect. As protection
costs increase, the designer needs to construct a network such that not all nodes protect.
To do so, s/he finds it optimal to save on protection at the expense of connectivity.
In particular, by creating a relatively large star component, and a smaller component.
In equilibrium, only the center of the star protects and the smaller component remains
unprotected and is eliminated. For large protection costs, the designer chooses the optimal
unprotected network, where in decentralized equilibrium no node protects.

The following two quantities correspond to the sizes of the star and unprotected
component of the network with partial protection:

stn) = | (n+1)=v2n|,

B n—sn)—1 if (n—s(n)—1)>>2s(n)—1
uln) = { n — s(n) otherwise

Proposition 2. Assume f(y) = y*> and n > 20. If (G, A, z) is a welfare mazimising
equilibrium, then

(1) if 0 < ¢ < min{cp(n),cy(n)} or s(n) < ¢ < cy(n), G is connected and all nodes
protect,

(2) if cp(n) < ¢ < s(n), G features a star of size s(n) and a component of size u(n), and
only the hub of the star protects,

(3) if ¢ > max{cy(n),s(n)}, G features two components of size |n/2] and no node pro-

tects,
where
co(n) = n —[Ln/?]n—l—nmodZ]’
ol = L4 = ) ()

11
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Figure 1: Optimal design as a function of protection cost ¢: f(y) = y* and n = 30.

The response of the adversary to each of these networks and defence profiles is as
follows. The adversary attacks any node in (1), eliminates u(n) nodes in case (2), and
eliminates a component of size |n/2] in case (3)[]

Figure [1] illustrates the result for n = 30. If ¢ < 2.03, full protection in a connected
network is first best, and this can be attained in equilibrium on any such network. If the
cost of protection is between ¢ = 2.03 and ¢ = 616, a center-protected star is first best.
However, only two equilibria are possible on a star network: full protection (if ¢ < 30)
and no protection (if ¢ > 29). Since no network can induce protection for costs above 30,
the interest is in what the designer should choose if ¢ € (2.03, 30].

If 2.03 < ¢ < 13, over protection implies a departure from first best but the designer
finds it optimal to keep the network connected and have all nodes protect in equilibrium.
For ¢ > 13, the welfare costs of over-protection are severe enough to merit disconnecting
the network to avoid it. The optimal network consists of a star of size 23 and a component
of size 7. In equilibrium, only the center of the star protects and the adversary eliminates
the component of size 7. While several nodes are compromised, many more save on
protection.

For ¢ > 23, however, the center of the star no longer finds it profitable to protect.
Therefore, if ¢ € (23,30] the designer faces two options: either connecting all nodes
and inducing full protection, or splitting the network and inducing no protection. De-
fence is sufficiently costly for the designer to prefer splitting the network into equal-size
components and losing half of the nodes to the attack.

What networks are optimal if, for any network, a welfare minimizing equilibrium is

' The condition n > 20 is sufficient for the adversary not to attack a partially protected component in
equilibrium. Within the finite number of cases not covered (i.e. for n < 20), we could not find a network
such that this takes place on the equilibrium path.
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chosen? Consider again the case with n = 30 nodes. For costs of protection above 23,
the designer chooses the optimal unprotected network that consists of two components
of size 15. Since ¢ > 23 > 15, not to protect is a strictly dominant strategy for any node.
Clearly, all equilibria on this network achieve the same level of welfare. Thus, in this case
the set of optimal networks under welfare minimizing equilibria is the same as the one
under welfare maximizing equilibria.

A similar argument extends to the case where ¢ € [13,23]. That is, the optimal
network under welfare maximizing equilibria attains the same welfare in any equilibrium.
To see this, note first that a node in the small component of size 7 < ¢ would never
protect. Furthermore, if the center of the star does not protect, then the adversary would
attack it, even if all spokes of the star protect. By eliminating the center of the star,
the adversary causes a damage of at least 232 — 22 - 1@ This is vastly larger than the
damage of 7% caused by attacking the unprotected component. Therefore, the center of
the star protects in every equilibrium, and the adversary prefers to attack the unprotected
component to eliminating an unprotected spoke.

Finally, if ¢ < 13, the optimal network under welfare minimizing equilibria is con-
nected and fully protected. In this range of costs, any connected network has a full
protection equilibrium, but some of them have equilibria where not all nodes protect.
However, for any ¢ < 13 the designer can always choose a network that secures full pro-
tection in every equilibrium. This can be achieved, for example, by choosing the star
network.

Formally, for a set of nodes N and a cost of protection ¢, let us denote with G/“(N, ¢)
the set of connected networks such that all nodes protect in any equilibrium. That is,

GMI(N,c) = {G € G(N) : G is connected and A = N for any (A, z) € (c|G)}.

The following result establishes that this set of networks is not empty when in the welfare
maximizing case the designer prefers full protection.H

Lemma 4. Assume f(y) = y*> and n > 4. If ¢ < cy(n), then there exists a network
where all nodes protect in every equilibrium.

It follows from this result that, by choosing the right topology, in the welfare min-
imizing case the designer can avoid coordination problems and attain the same payoffs
as in the welfare maximizing case. In terms of the price of decentralization, this means
that the price of anarchy is equal to the price of stability. We summarize the welfare
minimizing case in the following proposition@

Proposition 3. Assume f(y) = y* and n > 4. If (G,A, ) is a welfare minimizing
equilibrium, then

12Formally, if y nodes protect in a star of size s, then the damage caused by eliminating the center
equals f(s) —yf(1). This is minimal for y = s — 1.

BIfn € {2,3} and ¢ € (n—1,cy(n)), the designer would like to induce full protection but any network
has an equilibrium with no protection.

4Tn the next section we provide a necessary and a sufficient condition for a network to be in G/*(N, ¢)
for general network value functions.
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(1) if 0 < ¢ <min{ép(n),cy(n)} or 3(n) < c < cy(n), G is in GMY(N, c) and all nodes
protect,

(2) if ép(n) < ¢ < 3§(n), G features a star of size §(n) and a component of size u(n), and
only the hub of the star protects,

(3) if ¢ > max{cy(n),$(n)}, G features two components of size |n/2| and no node pro-
tects,

where

I

Sn) = { s(n) if 2s(n) — 1 < u(n)

s(n) —1 otherwise

. n® — [8*(n) + (n = 5(n) — u(n))]

n—1

Note that the size of the star, §(n), in the optimal network with partial protection
may differ from the one the designer chooses under welfare maximising equilibria. This
stems from the fact that, facing a given network and defence profile, different strategies
of the adversary can be equilibrium strategies. Specifically, how the adversary decides,
when indifferent between two attacks, can exacerbate the over-protection problem. For
example, if f(y) = y* and there are n = 32 nodes, then the optimal partially protected
network under welfare maximizing equilibria consists of a star of size 25 and a component
of size 7. If only the center of the star protects, the adversary is indifferent between
eliminating the small component (producing a gross welfare of 25% = 625) and targeting
a spoke of the star (yielding gross welfare of 242 4+ 72 = 625). Two equilibrium outcomes
are therefore possible: either all spokes protect, or no spoke protects (with the adversary
attacking the small component in both cases). Clearly the former equilibrium is worse,
and the designer responds to this by isolating a spoke of the star and thus reducing the
size of the star to 24 nodes.

Figure [2| contrasts design under first best with design under decentralized protection
for f(y) = y?, as a function of the size of the network, n, and the protection cost, c.
The parameter space (n, c) is partitioned into five regions. In region I, the first best is a
connected network with all nodes protected. By choosing the right topology, the designer
can attain first best payoffs. In regions II, III, and IV, the first best is a center-protected
star. However, in a decentralized equilibrium either all nodes protect or no node protects
in the star.

Facing this problem, the designer must choose to either keep the network connected, in
which case all nodes must protect, or save on protection at the expense of connectivity. In
region II, s/he opts for choosing a connected network. In turn, in region III a disconnected
network with a center-protected star of size §(n) is optimal. It is important to note that,
while this topology and protection profile can get the designer higher payoffs than both a
fully protected connected network and an unprotected disconnected network, it may not
be implementable in equilibrium. If ¢ > §(n) the center of the star would not protect, and
so the designer will choose either a connected network where all nodes protect (region
IT), or the optimal unprotected network that has two components of size |n/2] (region
V).
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Figure 2: Optimal architecture if f(y) = y?, as a function of network size n (horizontal
axis) and protection cost ¢ (vertical axis).

Finally, in region V the first best involves no protection, and this is implementable in
equilibrium.

5.2 General network value function

The discussion of Section 4] established that departures from first best welfare arise if full
protection is first best but is not implementable in equilibrium, and because the center
protected star is not an equilibrium. If the first problem arises, its solution is simple:
the designer will respond to it by choosing an optimal unprotected network. The second
problem, on the other hand, is more challenging.

By Lemma (3] there are two equilibrium defence profiles on the star network. No
protection is an equilibrium profile of the star if ¢ > f(n — 1)/(n — 1), whereas full
protection is an equilibrium profile if ¢ < f(n)/n. Note that for any ¢ > f(n)/n, no
network has protection in equilibrium, and thus the designer chooses in this case the
optimal unprotected network. The non-trivial situation is therefore when ¢ < f(n)/n and
in the best equilibria of the star all nodes protect. In the case of Metcalfe’s Law explored
above, we have seen that this is achieved by fragmenting the network and sacrificing
a relatively small component. Here we show that this feature holds for any network
value function, in the following sense. Specifically, we show that if the designer chooses
a connected network, it must be that all nodes protect. The intuition is the following.
Note that any connected network that has a partial protection equilibrium, also has a
full protection equilibrium. If the benefits from connectivity are ‘weak’ enough for full
protection to be worse than partial protection, then the designer can attain the same
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gross welfare (but with less protection) by luring the adversary with a relatively small
component. Let us state the result and then provide an intuition for the formal proof.

Proposition 4. Let G be an optimal network in a welfare maximising equilibrium of T'.
If some but not all nodes protect, then G is not connected.

To illustrate the proof of the result, let us consider the following example. Suppose
that there are n = 20 nodes, the cost of protection is ¢ = 0.8, and the network value
function is f(y) = y — In(y + 1). The payoff to the designer under full protection is
f(20) — 20 - ¢ = 0.95. This is clearly an equilibrium on any connected network, since
¢ < f(20)/20. Suppose that the designer chooses a connected network where some nodes
are eliminated in equilibrium. Consider, for example, the network depicted in panel (a) of
Figure 3] The defence profile A* is depicted such that protected nodes are surrounded by
a square. Facing A*, gross welfare is smaller if the adversary targets node i (f(17) = 14.1)
than if s/he targets node k (f(4) + f(15) = 14.6). Note that if node i protected it would
successfully divert the attack towards node k, since the gross welfare after attacking
an unprotected neighbour of 7 is f(18) = 15 > 14.6. Consider then the strategy of
the adversary that specifies attacking node i if nodes choose defence A*, and attacking
node k if nodes choose defence profile A* U {i}. Then A* is an equilibrium defence. In
particular, note that node ¢ does not wish to protect, since in that case its payoffs are of
f(4)/4—c<0.

This network thus avoids the over-protection problem, and achieves strictly higher
welfare than a fully protected connected network (f(17) —2-¢ = 15.7 > 0.95). Consider,
however, re-designing the network into a star of 17 nodes and a cycle of 3 nodes, as shown
in panel (b) of Figure [3l There is an equilibrium in this modified network where only
the hub of the star protects and the adversary targets the unprotected cycle["] While
gross welfare is f(17) in both networks, the modified network features lower protection
spending. This example points to the sub-optimality of partially protected connected
networks. When they achieve higher welfare than the fully protected connected network,
they are in turn dominated by a network which achieves the same gross welfare with
lower spending on protection.

It follows from Proposition [4] that if the designer were to choose a network where
some but not all nodes protect, then this network must be disconnected. This opens
up two possibilities for the adversary’s attack on the equilibrium path: either (i) s/he
attacks an unprotected component, or (ii) s/he targets a partially protected component.
While Case (ii) is the one that we have not been able to rule out for general network
value functions, Case (i) is certainly a possibility, as shown above for the case of f(y) =
y%. Tt is important to note, however, that the option given by Case (i) of sacrificing a
relatively small component to save on protection in a larger component, which works
under Metcalfe’s Law, cannot work for some value functions.

5Facing this defence profile, the adversary prefers to attack the cycle (producing gross welfare of
f(17) = 14.1) to eliminating a spoke of the star (gross welfare of f(3) + f(16) = 14.8). A node in the
cycle could protect and thus divert the attack towards a spoke of the star. But this is not profitable,
since f(3)/3 — ¢ < 0.
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Figure 3: Addressing overprotection: n = 20 and ¢ = 0.8, with f(y) =y —In(y+1). The
network in panel (a) has an equilibrium where some but not all nodes protect. Panel (b)
shows a disconnected network which achieves higher welfare.

To see this, consider any value function such that f(y) > 2f(y — 1) (e.g. Reed’s Law,
f(y) = 2Y —1). Let X be an unprotected attacked component, and Y an unattacked
protected component, |Y| > |X|. As shown in the Appendix, if the network is discon-
nected no component is fully protected. Therefore, there is at least one node in Y that
the adversary could eliminate. Since |X| < |Y| — 1, we have that f(|X|) < f(|Y]—1) <
f(Y]) = f(JY| —1), and so the adversary strictly prefers eliminating a single node of the
largest component to eliminating all nodes in X, a contradiction. The intuition is simple:
since f(y) > 2f(y — 1), a single extra node in the largest component generates at least
twice the value as the entire smaller component. Therefore, the designer will never be
able to satisfy the ‘appetite’ of the adversary with a smaller component.

Let us next consider the problem of optimal design when, for every network, nodes and
adversary coordinate on a welfare minimising equilibrium. How can the over-protection
problem be addressed in these circumstances?

Observe first that, under welfare minimizing equilibria, if the optimal network is
connected it must be that all nodes are protected. The intuition is as follows. Consider
a connected network G which has a (welfare minimizing) equilibrium defence A where
some but not all nodes protect. Even though the adversary is eliminating at least one
node, the net payoff of nodes that protect is non-negative. It follows that network G' must
have another equilibrium defence where all nodes protect. Furthermore, by definition of
A, the equilibrium with full protection cannot be worse. If A attains the same level of
welfare as full protection, then the tie breaking assumption that nodes prefer to remain
uninfected implies that full protection must be preferred by the designer as well. But
then the designer can be better off by choosing a star network, as in any equilibrium of
the star all nodes will protect.

The upshot of Proposition 4] therefore extends to welfare-minimizing equilibria (albeit
for different reasons): the designer must disconnect the network if s/he is to avoid the over-
protection problem. As stated above, if the network is disconnected then two things may
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happen on the equilibrium path. Either the adversary attacks an unprotected component
(denoted as Case (i)), or s/he attacks a partially protected component (Case (ii)). Case
(ii) can be ruled out if the network value function satisfies the following property.

Property 1. f(1)y < f(y + 1) — f(y) for any y > 0.

Property [1]is a condition on the convexity of the network value function. Functions
that satisfy this property include, for example, Reed’s Law (f(y) = 2¥ — 1), and poly-
nomial functions with exponent greater than or equal to 2 (i.e. f(y) = y*, a > 2). We
make the following remark.

Proposition 5. Suppose f satisfies Property [] Let (G,A,z) be a welfare minimizing
equilibrium of I'. If G is not connected, then the adversary attacks an unprotected com-
ponent.

The proof works by contradiction. Suppose that in a welfare minimizing equilibrium
the network is disconnected but the adversary attacks a component where some nodes
protect. Let us denote this component by P. Clearly, P cannot be fully protected. If P
was fully protected and the adversary attacks it, then it must be that all components are
fully protected, and the designer can be better off by choosing a connected star where
all nodes protect in any equilibrium. Thus, P is not fully protected and the adversary
eliminates at least one node of P.

Let us say that a component is ‘large’ if its size is such that % > ¢, and that it
is ‘small’ otherwise. Clearly, if a small component exists then eliminating it is always
feasible for the adversary, since any node in a small component does not protect in any
equilibrium. Moreover, there must exist one such small component if the optimal network
is disconnected. Otherwise the defence profile where all nodes protect is an equilibrium
defence, which, by definition, cannot be worse. But then the designer can attain strictly
higher payoffs by choosing a connected star where all nodes protect in any equilibrium.

We next observe that if P has only one unit of protection, then the adversary must
strictly prefer an attack on P to attacking a small component. To see this, note first
that P must have the structure shown in Figure [} The adversary eliminates the set X
of nodes, and if a node in X protects then the adversary attacks a node in Y. For an
eliminated node ¢ who has a protected neighbour, not to protect is a best response only
if the adversary disconnects protected nodes in P if ¢ protects. Otherwise node ¢ could
get at least the same payoffs of protected nodes of P by protecting. Note, in particular,
that component P has at least two units of protection and the adversary weakly prefers
an attack on X or Y to an attack on any other component. Clearly, if P had only one
unit of protection the adversary would strictly prefer an attack on P than an attack on
any other component.

The proof is finalized with the following step. We show that it must be possible to
construct another equilibrium defence, A’, where in any ‘large’ component some but not
all nodes protect, and the adversary attacks a ‘small’ component. By definition of A
being a welfare minimizing equilibrium, the new equilibrium with defence A’ cannot be
worse. Moreover, by the observation of the previous paragraph, under A’ there must be
at least two protected nodes in component P. But then the designer can modify the
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original network by changing all components into stars. If Property [1| holds, then in any
equilibrium on the modified network only the centres of the large components protect
and the adversary eliminates a small componentm This attains the same gross welfare
as A’ does in the original network, but with strictly less protection spending. Hence the
original network G cannot be optimal.

Figure 4: The structure of the partially protected and attacked component

As a corollary of Proposition [5] we have the characterization of the optimal net-
works under welfare minimizing equilibria for any network value function that satisfies
Property [ In equilibrium, if the network is connected then all nodes protect. If it is
disconnected and some nodes protect, then it consists of large centrally protected stars
and small unprotected components, with the adversary eliminating a small component.
If it is disconnected and unprotected, it is the optimal unprotected network.

Consider, for example, the case of Reed’s Law, f(y) = 2¥ — 1. Since, as argued above,
under Reed’s Law the option of luring the adversary with a small component cannot
work, optimal design under welfare minimizing equilibria is as follows.

Corollary 1. Assume f(y) =2Y — 1. Let (G, A, x) be a welfare minimizing equilibrium.

(1) If ¢ < 27;:_11_1, G is connected and all nodes protect.

(2) If ¢ > Znn__ll’l, G features two components of size |n/2] and no node protects.

Theorem [I|states that if ¢ < min{cy(n), c1(n), ca(n)}, then the price of anarchy equals
one. That is, first best involves full protection and there exist networks that attain full
protection in every equilibrium. What is the structure of these networks?

Let us start by observing that if the cost of protection is very low, ¢ < f(1), then any
node that is attacked is better off by protecting, regardless of the protection decisions of
other nodes. Therefore, in any equilibrium outcome all nodes are protected. Since f(1) <
min{cg(n),c1(n),ca(n)}, ¢ < f(1) implies that the first best is a connected and fully
protected network. The designer can attain first best payoffs in decentralized equilibrium
by choosing any connected network.

16Tf Property [1| holds, an equilibrium where the large components are periphery-protected stars may
be possible.
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What if costs of protection are low (so that first best involves full protection) but
not very low: f(1) < ¢ < min{co(n),c1(n),c2(n)}? As we discussed already, there are
connected networks were inefficient equilibrium outcomes are possible, as nodes may
fail to coordinate on the efficient equilibria (e.g. no protection on the cycle, when full
protection is the first best). However, this problem can be solved by choosing the right
topology of the network. Below we provide a necessary condition and a sufficient condition
for a connected network to have full protection in any equilibrium outcome under costs
of protection ¢ < f("—__l)

n—1

Definition 1 (k-critical node). Node i € N is k-critical in connected network G if the
largest component in G — {i} is of size k.

Loosely speaking, the importance of a node as a barrier against contagion due to an
intelligent attack is decreasing in its criticality. For example, any node in a complete
network is (n — 1)—critical.ﬁ On the other hand, the centre of a star is 1-critical.

Proposition 6. Consider a network G, and let k be such that f(gl”__kk)) > c.

(1) If all nodes protect in every equilibrium of I'(G), then G has a k-critical node.

(2) If for alli € N, i is k-critical or has a link to a k-critical node, then all nodes protect
in every equilibrium of I'(G).

In essence, the presence of a k-critical node, with % > ¢, rules out equilibrium
outcomes where no node protects: each k-critical node has incentives to protect if no
other node protects. However, it is not sufficient for having full defence in any equilibrium
outcome. Consider the network depicted in Figure pal Let f(y) =y and ¢ € (81,100].
The largest component in G — {i} is of size 9, and so i is 9-critical. Note that with k =9,
% = 100 > ¢. Consider the defence profile shown in the figure. Facing this defence
profile, the adversary generates a loss of 19% — (19 — 8)3 = 5,528 if node j is targeted,
and a loss of 19% — (9% 4+ 9%) = 5,401 if node i is attacked. Hence the best response of
the adversary eliminates node j, which thus earns payoff 0. If j chooses to protect, then
the adversary can generate a loss of only 192 — (19 — 7)3 = 5,131 if s/he attacks a node
of the clique to which j belongs, and therefore prefers to attack node ¢ when j protects.
Thus, if it deviates to protection, payoffs of j are of 92 — ¢ < 0. Additionally, since each
of the protected nodes earns positive payoff, none of them is better off by choosing no
protection, as in any best response of the adversary they would be eliminated. Thus, the
defence profile shown is indeed an equilibrium profile.

Note that a k-critical node cannot be eliminated in equilibrium, or otherwise it would
profitably deviate by protecting. It follows from this observation that if G' has a k-critical
node and there exist unprotected nodes in an equilibrium of I'(G), then none of the nodes

who are eliminated in equilibrium can have a link to a k-critical node. Thus, a sufficient

Tf ¢ > %, then every network has an equilibrium with no protection.

18Tn fact, any node in a d-connected network, d > 2, is (n — 1)-critical. A network is d-connected if
there is no set of [ < d nodes whose removal disconnects the network and the network can be disconnected
by removing a set of d nodes (see e.g. |Bollobas| (1998)).
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Figure 5: Networks over n = 19 nodes with a k-critical node, k£ < 9.

condition for full protection to be the unique equilibrium outcome on a network is that
every node is k-critical or has a link to a k-critical node. Figure [5b]| provides an example
where the sufficient condition stated in the second part of Proposition [6] holds. Node 4
is 3-critical, and has links to all other nodes. Thus if f(y) = y* and ¢ € (0,16%), any
equilibrium of I'(G) has all nodes protected. This condition is not necessary, as illustrated
in Figure [5fd When f(y) = 3 and ¢ € (0,13?), in any equilibrium outcome all nodes
protect.

6 Random attack

To understand the effect of adversarial intelligence on the problem faced by the designer,
in this section we consider the case where the identity of the node attacked is independent
of its position in the network and protection status. In particular, the attack studied
in this section is random in the following sense: a randomly picked node ¢+ € N is
targeted. The payoffs of nodes and designer are modified in obvious ways to reflect

21



expected utilities[”]

6.1 First best outcome

We start the analysis by characterizing the first best. The following definitions will be
used. For B(n) ={beN":by >...>b,>0and > b =n},let

B*(n) = arg maxyep(, Zf )(n —by).

For b € B*(n), we will let K(b) denote the maximum ¢ such that b; is strictly positive.
Moreover, let

) ()——Zz;f( Jn—b) )
by(n) = f(n)—l—(n;l f(n—1) Zf Y — b) (17)

where b € B*(n).

Proposition 7. Suppose the attack is random and the designer chooses protection as well
as design. Then

(1) If ¢ <min{é(n),é(n)}, the network is connected and all nodes are protected.
(2) If ¢1(n) < ¢ < ¢é3(n), the network is a star and only the centre is protected.

(8) If ¢ > max{cy(n),cs(n)}, the network is unprotected and has K(b) components, of
sizes by, ..., b (p)-

When the first best involves protection, the topologies that are optimal are the same
as under intelligent attack. The novel aspect is the structure of the optimal unprotected
network. Facing an intelligent threat, there is no point in choosing an unprotected net-
work with a unique largest component; the adversary would remove such a component.
Under random attack, the designer may choose an unprotected network with a very large
component if the network value function is sufficiently convex. For example, if f(y) = o¥,
a > eﬂ then the optimal unprotected network consists of a component of size (n — 1)
and an isolated node.

19This model of random attack is the appropriate benchmark to study the effects of the adversary
purposefully choosing one node to attack. An alternative model of random attack consists of assuming
that every node fails independently with probability 1/n. To see that the two specifications of random
attack are different in a meaningful way, suppose that f(y) = y?, n = 4, and ¢ > f(4) = 16 so
that investing in protection cannot be optimal for the designer. If every node fails independently with
probability 1/4, then a connected network achieves the highest welfare, of (1 — %)4 - f(4) = 5.0625.
Clearly, a connected network cannot be optimal if a randomly picked node is attacked, as it yields zero
welfare.

20Where e is the base of the natural logarithm.
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(a) (b)

Figure 6: Networks over n = 6 nodes. In the network of Figure [6a}, the unprotected nodes
{4,5,6} expose the other nodes to the possibility of contagion, but an attack on any of
them neither spreads nor disconnects the network if all other nodes protect. Figure [6h]
presents an example with only one unprotected node.

6.2 Metcalfe’s Law

In this section we present the characterization of optimal networks under random attack
when f(y) = y?. As shown in the Appendix, for this value function the optimal unpro-
tected network consists of two components, of sizes [n/2] and |n/2]. The differences
in the first best between intelligent and random attack are thus minor in the case of
Metcalfe’s Law 2]

Before we state the next result, we need to define the following sets of networks over
n nodes:

G"Y(N) = {Geg(N): exists U C N such that |U| = u,
G — {i} is connected for all i € U, and ij € G fori € U ift j ¢ U}

foru =1,....,n—1. For u = 0, let G"(N) denote the set of connected networks. To
illustrate, suppose that there are n = 6 nodes. Figure shows a network in G3(N).
Note that, e.g., the set of nodes U = {4,5,6} satisfy the conditions required: they are
not linked among themselves, but have links to all other nodes. Moreover, their removal
does not disconnect the network. The network in Figure @ is in G°(N). In this case,
U = {6}.

Proposition 8. Assume f(y) = y*, and suppose the attack is random. If (G,A) is a
welfare maximising equilibrium, then

21The minor differences stem, first, from the fact that if n is odd then the optimal unprotected network
features a component of size (n+ 1)/2 and another of size (n —1)/2. Secondly, under random attack the
hub of the center-protected star is attacked with positive probability. This makes the star more attractive,
and therefore the threshold for the star to be better than a fully protected network is ¢ (n) = 2";1
random attack, which is smaller than the threshold ¢;(n) = 27?:11 under intelligent attack. Naturally,

this extra benefit of the star under random attack vanishes as n grows.

under

23



(a) (b)

Figure 7: Let f(x) = 2% Network |7al features strategic complements: node j protecting
increases incentives for node ¢ to protect. Network [7b|features strategic substitutes: node
7 protecting decreases incentives for node ¢ to protect.

(1) If ¢ <1, G is connected and all nodes protect.
(2) If 1 <c<¢(n), Gisin GYN) and all but one nodes protect.
(3) If ¢1(n) <c < (n—1)+1/n, G is a star and only the centre protects.

(4) If ¢ > (n— 1) + 1/n, G is unprotected and has two components, of sizes [n/2] and

[n/2].

Under random failure, investments in security always exhibit positive externalities.
Additionally, protection decisions may be strategic substitutes, as well as strategic com-
plements (c.f. Figure (7). The latter possibility is due to the fact that nodes care not
only for staying uninfected but also for the benefits they derive from being in the net-
work. Either way, the positive externalities effect always prevails and the over-protection
problem is no longer present if the external threat is unintelligent. In effect, the de-
signer will disconnect the network in decentralized equilibrium only for reasons related
to under-protection.

Interestingly, when the designer decides to keep the network connected, s/he will not
choose any such network (even if nodes coordinate on welfare maximising equilibrial).
This also stands in sharp contrast with the case of intelligent attack, where under welfare
maximising equilibria the designer could choose any connected network to enforce full
protection. For relatively small protection costs, the intelligence of the adversary works
for the designer’s advantage. Under random attack, the designer needs to choose the
network more carefully. In particular, networks that satisfy the properties to belong in
G"1(N) have equilibria where a subset of nodes are sufficiently exposed so as to secure
maximum protection spending in equilibrium.

To illustrate point (2) in Proposition |8, suppose there are n = 19 nodes, and that
c=15¢€ (1,¢(n)). Since ¢ < ¢ (n), first best is full protection in a connected network.
Note, however, that in any equilibrium of a connected network there will be at least

24



Figure 8: Two equilibria on the wheel network over n = 19 nodes.

one unprotected node. If all other nodes protect, the individual gain from protection
is %n — ¢ < 0. Maximum equilibrium welfare will therefore be achieved if there is a
single unprotected node that elimination neither spreads nor disconnects the network.
Figure |8a] presents the wheel network as an example. Note that protected nodes do not
wish to unprotect, for the gain from protection is %n —c>0.

Given that multiple protection profiles can be equilibria in a given network, the op-
timality of the networks presented in Proposition 8| may rely on nodes coordinating on
the right equilibrium. If the cost of protection is ¢ < 1, a node will choose to protect on
any network (since n — ¢ > 0). Moreover, if ¢1(n) < ¢ < (n — 1) 4+ 1/n, then centre
protection is the unique equilibrium of the star network.

What if the cost of protection is small (¢ < ¢,(n)), but not too small (¢ > 1)? We show
that in this case a network G attains maximum equilibrium welfare in every equilibrium
if and only if GG is the complete network. To illustrate this, Figure shows another
equilibrium on the wheel network where more than one node is unprotected. The next
result characterizes the optimal network under welfare minimizing equilibria.

Proposition 9. Assume f(y) = y?, and suppose the attack is random. If (G,A) is a
welfare minimizing equilibrium, then

(1) If ¢ <1, G is connected and all nodes protect.
(2) If 1 < c<¢é(n), G is the complete network and all but one nodes protect.
(8) If ¢1(n) <c < (n—1)+1/n, G is a star and only the centre protects.

(4) If ¢ > (n— 1)+ 1/n, G is unprotected and has two components, of sizes [n/2] and

[n/2].

The key point is to note that potential coordination problems among nodes are ad-
dressed in fundamentally different ways depending on the nature of the attack. Under
both intelligent and random attack, the set of networks chosen bearing in mind coordi-
nation failures is a strict subset of the possible designs when coordination problems are
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absentH The reason is that, in both cases, the designer can prevent coordination failures
by appropriately choosing the network. However, when the adversary is intelligent, full
protection is secured by choosing networks that are sparse: there must exist a sufficiently
important node that can block the adversary’s attack and thus be willing to protect. On
the contrary, under random attack maximal protection is achieved by choosing networks
that are dense: a node must be exposed to an unprotected node, or otherwise it would not
have enough incentives to protect; maximal protection in every equilibrium is achieved
through maximal exposure, i.e. by designing a complete network.

6.3 General network value function

In this section we discuss in what ways the intuitions brought forward by the case of
Metcalfe’s Law generalize to other network value functions. Before we state the propo-
sition characterizing welfare maximising equilibria, we need to introduce the following
quantities. Let

fln—1)

tu(n) = Hu- D

yforu=1,...,n.

Proposition 10. Suppose the attack is random, and let (G, A) be a welfare mazimising
equilibrium of I'. Then

(1) GisinG""(N) and exactly u nodes do not protect, ift,(n) < ¢ < min{t,+1(n),é1(n), é2(n)},
foru=0,...,n—1.

(2) G is a star and only the centre protects, if ¢1(n) < ¢ < min{és(n),t,(n)}.
(3) G is an optimal unprotected network, if ¢ > min {t, (n), max {¢2(n), és(n)}}.

Recall that under Metcalfe’s Law, if full protection is first best (¢ < {¢1(n), é(n)})
then either all (if ¢ < t;(n)) or all except one (if t;(n) < ¢ < ta(n)) nodes protect in
equilibrium. The generalization of Proposition [10|shows that this depends on the specific
network value function.

Suppose, for example, that there are n = 6 nodes and consider again Reed’s Law, i.e.
f(y) = 2¥ — 1. The optimal unprotected network consists of two components, of sizes 4
and 2. From this observation, it is straightforward to see that full protection is first best
if ¢ < 5.3 (as min{¢;(n), é2(n)} = ¢é1(n) = 5.3). Simple calculations indicate that in this
case t4(n) < 5.3 < t5(n). Therefore, when first best is full protection, up to 4 nodes may
be unprotected in equilibrium if the cost of protection is large enough. If ¢4(n) < ¢ < 5.3,
in decentralized equilibrium of any network there will be at least 4 unprotected nodes.
Equilibrium welfare is therefore bounded above by the case where there are exactly 4

22When the aversary is intelligent, we know that the network must be connected and contain a k-
critical node with k < n — ¢, and this class of networks is a strict subset of the set of connected networks.
Under random attack, the complete network is a strict subset of G"~1(N).
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unprotected nodes such that an attack on any of them neither spreads nor disconnects
the network, and this is only attained by networks in G*(N).

As we discussed for the case of Metcalfe’s Law, the optimality of the networks that
attain maximum equilibrium protection may depend on nodes coordinating on the best
equilibrium. For the network value function f(y) = y? the welfare costs of coordination
problems could be avoided by choosing the right topology. We conclude this section with
a discussion on whether this finding generalizes to other network value function.

For sufficiently small protection costs, first best networks attain first best payoffs in
every decentralized equilibrium for any network value functions.

Fact 1. Suppose the attack is random and first best involves full protection. If 0 < ¢ <
t1(n) and G is connected, the unique equilibrium of I'(G) attains first best payoffs.

If costs of protection are low (so that full defence is first best) but not too low,
then every equilibrium on any network features some unprotected nodes. The designer’s
optimal choice is a network with an equilibrium where the number of unprotected nodes
is as small as possible. Suppose t1(n) < ¢ < t3(n). In the welfare maximising case, the
designer chooses a network G with a node [ who has a link to all other nodes, and G — {{}
is connected. There is an equilibrium on such a network where [ is the only unprotected
node. Notice that the complete network satisfies these properties — [ can be any node
1 € N. The next result states that for any network different from the complete network,
a worse equilibrium exists (i.e. one where more than one node does not protect). Thus,
the only hope if the designer wants to achieve maximum equilibrium payoffs in every
equilibrium is the complete network. However, whether the complete network has only
one unprotected node in every equilibrium depends on the network value function.

Fact 2. Suppose the attack is random, first best involves full protection, and t1(n) < ¢ <

to(n).

(1) If G is not the complete network, there exists an equilibrium of I'(G) which does not
attain mazimum equilibrium welfare.

(2) The complete network G¢ attains mazximum equilibrium welfare in every equilibrium

of D(G®) for any ¢ < ta(n) if f(?__ll)) < uf(yf__u“) foranyu=1,...,n—1.

The intuition for this observation is as follows. Since t;(n) < ¢ < ta2(n), by Proposi-
tion [10] we know that there are at least one unprotected node in every equilibrium. This
is true because for ¢ > t;(n) any node who has all its neighbours protected prefers not to
protect. For any network that is not the complete network, we can construct an worse
equilibrium, where there are two unprotected nodes. This is what is established in point
of Fact .

By creating maximal exposure, there are no equilibria in the complete network where
exactly two nodes do not protect. But nodes may ‘get stuck’ in worse equilibria in the
complete network, and whether this is possible depends on the network value function.
Increasing the probability of contagion by creating exposure taps the substitutes aspect
of protection decisions. But nodes value being connected to surviving individuals — this
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is the complements aspect of protection decisions. Thus, if few nodes are protected it
may not pay off to protect. Consider, for example, f(y) =2Y — 1 with n = 6 nodes, and
suppose that ¢ = 2.6 € (t1(n),t2(n)). By Proposition , the complete network has an
equilibrium with full protection. It also has, however, an equilibrium with no protection@
The condition in point of Fact [2| bounds the convexity of the value function, and
thus bounds the strength of complementarities in protection. This condition holds, for
example, if f(y) = y*, a < 2.

7 Concluding remarks

In this paper we studied the problem of mitigating inefficiencies resulting from protection
decentralization by appropriate network design.

Motivated by the example of cybersecurity, we first took up the case of an intelligent
threat. An efficient equilibrium may exhibit too much or too little investment in security.
The problem of over-protection problem arises for intermediate costs of protection, and
is best addressed by disconnecting the network into unequal components, and sacrificing
some nodes. The problem of under-protection is more standard and reflects the public
good aspect of security. It arises at larger costs of security and is addressed by creating
networks with equal components. Finally, inefficient equilibria arise due to strategic
complementarity in security. They are addressed by creating networks that are ‘sparse’
and contain ‘critical’ nodes. This sparseness gives rise to nodes that can prevent attacks
from spreading, and thus save large parts of the network. Although the first best cannot
be attained when over-protection pressures prevail, network design puts a bound on the
welfare costs of decentralization.

Finally, motivated by problems in epidemiology, we studied optimal design in the
face of random attack. The over-protection problem is no longer present, whereas under-
protection problems may be mitigated in a diametrically opposite way: namely, by cre-
ating dense networks that expose the individuals to the risk of contagion.

23 If no other node protects in the complete network, then a node’s gain from protecting equals
1 f(n)

n n
is an equilibrium defence on the complete network, then it is an equilibrium defence on any d-connected

network, d > 2. The optimal network in these case must therefore be 1-connected.

+ %f(l) — ¢ = 2.58 — ¢ < 0. Therefore, no protection is an equilibrium. In fact, if no protection
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A Equilibrium existence

Proof of Lemma[l. Let x be a strategy of A in I'(G) such that for all A C N, z(A) is a
best response to A. Network G and strategy x define game I'(G, z) with set of players
N such that, given defence A induced by a strategy profile of the nodes (d1,...,9d,), the
utility of player i is a'(A) = UY(G, A, z(A)).

We will show that I'(G, x) has a Nash equilibrium. To show that we will construct a set
of defended nodes, A*, such that the corresponding strategy profile of the nodes is Nash
equilibrium of I'(G, x).

There are two cases possible. First, suppose that for all components C' € C(G), % > c.
[ this case A* = N is an equilibrium of I'(G, x), as any node that would deviate and drop

protection, would obtain payoff 0 < % —c.

Second, suppose that there exists C' € C(G) such that % < c. Let A(Gle) =A{C €
C(G) : f(IC])/IC| < ¢} be the set of all such components. We construct A* using the
following algorithm.

o A*:=N\JA(G|c), i.e. A* protects all the nodes in components where protection
yields non-negative payoffs to the protected nodes; for any C' € A(G|c), CNA* = &;
note that z(A*) removes C' € A(G|c) of maximal size.

e While there exists i € A* such that z(A*\ {i}) € A(G|c) do
— A* = A"\ {i}.
Clearly the algorithm stops, as in every step at least one node is removed from A*.
Moreover, (A*) removes C' € A(G|c) of maximal size and no node in C' has incentive
to protect. The algorithm ensures that no node in A* has incentive to drop protection

either. Hence A* is an equilibrium protection of I'(G, z) and (A*, x) is an equilibrium of

I(G). O
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B The First Best Outcome

Proof of Proposition[]l Let (G,A) be a first best protected network. Three cases are
possible.

Case (i). A =N Clearly in this case G must be a connected network.

Case (ii). @ C A C N In this case A removes at least one node from G and so gross
welfare is bounded from above by f(n — 1). Star network is the unique network that
attains this upper bound by using only one unit of protection. This is the lowest possible
number of protected nodes possible in Case (ii). Thus G is a star and A = {i}, where ¢
is is the centre of G.

Case (iii). A =@ Aslong asn > 1, any disconnected G yields higher welfare than a
connected network in this case. Moreover, there are at most two sizes of components in
C(G). For assume otherwise and let C,Cy, C3 € C(G) be such that |Cy| > |Cs| > |Cs].
Then, since f is strictly increasing and strictly convex, D is better of by moving a node
from C5 to Cy. Lastly, if C; is the component of maximal size in C(G), then there is
at most one component C' € C(G) with |C] < |C}|. If there was another component
C’ € C(G) with |C'| = |C], then, since f is strictly increasing and strictly convex, D
would be better off by moving a anode from C” to C. It is straightforward to see that
the number and the sizes of the components are as stated in the proposition.

Comparing the payoffs of (i)-(iii) yields the desired result. O
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C The price of decentralization

To prove Lemma , we will use the following two results. Let G/“/(N, ¢) denote the set
of connected networks such that all nodes protect in any equilibrium. That is,

GI(N,c) = {G € G(N) : G is connected and A(G) = N for any (A, z) € E(c|G)}.

Lemma 5. G/ (N ¢) # @ if and only if ¢ < co(n).

Proof. For left to right implication, note that if ¢ > c¢y(n) = f(”—l

then any node
strictly prefers to protect only if all other nodes survive. Therefore, for any network G,
the strategy profile where no node protects is an equilibrium of I'(G).

For right to left implication, suppose that ¢ < ¢y(n) = f(n"—ll and let G be a star network
and 7 be the centre of G. Take any equilibrium (A, z) of I'(G). It must be that i € A
as otherwise ¢ would be removed by A obtaining payoff 0 instead of % —c > 0.
Similarly, if there is j € N \ {i} such that j ¢ A, then & = x(A) ¢ A and k is better off

by protecting, which yields payoff at least ! (” 1) —c>0. O

Fact 3. For all ¢ € Q*(n), % < c3(n).
q—1
Proof of Lemma[Z Consider first ¢ < min {cy(n), c1(n), ca(n)}. Since ¢ < min {c;(n), ca(n)},
(n), by
Lemma [5| there exists connected G such that A = N in every equilibrium of I'(G).
Consider next ¢ > max {cz2(n), cs(n)}. By Fact , this implies that ¢ > % There-

q—1

fore, if ¢ > max {ca(n),c3(n)} and G is a first best network, A = & in every equilibrium
of I'(G). O

first best is attained through full protection in a connected network. Since ¢ < ¢

Proof of Lemma[3. Let G be a star network. For a contradiction, suppose there is an
equilibrium (A, z) on G with A C N.

( )

Suppose that < c¢. In this case any protected node i € A would be better off by

deviating to no protectlon, as A removes at least one node from G and so the payoff to
i, UG, A z(A)) < 12D e <,
Suppose that f(n”—__ll) > c and let 7 be the centre of star G. If ¢ protects, it obtains at least

the payoff of % — ¢ > 0. Hence 7 prefers to protect, regardless of protection decisions
of other nodes. Let j = z(A) be the node attacked by A. As in the case of i, j prefers to
protect, a contradiction with the assumption that (A, x) is an equilibrium. O

Proof of Theorem [1. Point [I] follows directly from the discussion in the main text. For
point [2] notice that, by Lemma [5] D can enforce full protection by choosing the right

connected network if and only if ! ( 1) > c.

M (n 1)
Yy n—1

f(n=1)

—~ < c for all

Since > c for sufficiently large n, or
n>1.

Consider the former case. Then, for sufficiently large n, D could choose a connected

is increasing, either

network where all nodes protect in every equilibrium. This attains a welfare of f(n)—nc.
Thus

f(n _ 1) . 1 — n_ fn)—f(n=1) ¢
lim PoA(¢,n) < lim —————— = lim ftn) = ) (18)
n—00 n—r00 f( ) — nc n—o00 1— %C
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Suppose that fn) i unbounded, i.e. limn_me = 4o00. Then, by the fact that

% is bounded,

Suppose now that lim,,_ @ = p < +oo. In this case lim,,_,~ w =0 and
1— n_ f()—f(n-1) ¢
n—00 1-—- Ty p—c
Assume now that % < ¢, for all n > 2. If D chooses the fully disconnected network,
then £ D
) ) n—1)—c P
< = .
lim PoA(e,n) < lim n—DfQ1) f(D) 21)
This completes the proof. O
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D Decentralized security and optimal design

We structure the proofs of optimal design in the following way. Results that are for
general network value function are shown first. Based on these results, we then show the
results for specific functional forms. We start with welfare maximising equilibria, and
then move to welfare minimizing equilibria.

D.1 Welfare maximising equilibria

To prove Proposition [4, we need a couple of intermediate results and some notation.
Given a network G € G(N) and a set of nodes U C N, the neighbourhood of U in G
is the set of nodes 0g(U) = {j € N\ U : Ji € U. ij € E}. In the case of a singleton
set {i}, its neighbourhood in G is the set of neighbours of i in G. In this case we omit
the curly brackets and write dg (i) rather than dg({i}). Given network G and set of
protected nodes A, we will say that a component C' € C(G) is partially protected under
AfCNA#@and C\A=2.

Lemma 6. Let G € G(N). In every equilibrium (A, x) of I'(G), if two protected nodes are
connected in network G, then they are connected in the residual network G—Eyc ) (G|A).

Proof. Assume otherwise and let 7,5 € A be connected in G and disconnected in G —
E.a)(G|A). Then, under defence A all paths between ¢ and j go through E,a)(G|A).
Pick | € E,)(G|A) such that [ is on a path from ¢ to j in G and is a neighbour of
Ci(G[A(G)]). Let A" = AU{i}.

It must be that z(A’) € C;(G) or [ is strictly better off by getting positive payoff (it gets
higher payoff than its protected neighbour gets under A). Thus, there must be at least
another unprotected node, I’ € C;(G). There are two cases possible:

Case (i). z(A’) is reachable from [ in G — A. In this case E,a)(G|A') C Eya)(G|A)
and [ gets strictly higher payoffs than its protected neighbour did under original strategy
profile; thus [ is strictly better off with payoff > 0 (a contradiction).

Case (ii). z(A’) is not reachable from [ in G — A. In this case, ¢ and j are connected
in G — Eyan(G|A'). Suppose that x(A') ¢ Ci(G — Eya)(G|A)) (the case with C; is
analogous). Then |C;(G — Eyan(G|A"))| > |Ci(G — Eya)(G|A))| (the component gets
extended by node j, at least). Since [ € C;(G — E,a)(G|A')) so 1 is strictly better off (a
contradiction). O

The next lemma characterizes the structure that a partially protected component
must have for it to be attacked in equilibrium.

Lemma 7. Suppose that (G, A, x) is a welfare mazimising equilibrium of I'. Let A* =
A(G), " = 2(G,A*) and X* = E(G|A*). If x attacks a partially protected component
P € C(G*), then there exists a unique set of nodes Y # @ such that

1. G[Y] is connected.
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2. A*N P =0g(Y), i.e. the neighbourhood of Y is the set of protected nodes in P.
3. |C(GIP]=Y)| =|A*NP| > 2 and for each C € C(G[P] =Y), |[CNA* =1.
Moreover, for all i € 0g(A*) N X*, 2(G,A*U{i}) €Y.

Proof. Let P be a partially protected components attacked by x, as stated in the lemma.
Let A" = A* U {i}, ' = z(G,A") be equilibrium response of A to G and defence A
extended with a node i € N, and let X* = E,:(G|A?) be the set of nodes eliminated by
x'. We prove the lemma in the following three steps.

Step 1. For all i € 9g(A) N X, |C(G[P] — X)| > 2. By Lemma [6] the residual
component G[P] — X is connected and its value is f(|P| — | X|). Let i € 0g(A)N X be a
node removed by attack x and neighbouring a protected node. Suppose, to the contrary,
that |C(G — X%)| < |C(G)], that is component G[P] does not get disconnected by X*. If
so, then | X?| < |X]| (as otherwise ' would be a better response to (G, A*) than x) and so
the value of residual component G[P] — X*, f(|P| — |X"|) > f(|P| — | X]|). Payoff to i in
G[P]— X", when it protects, is f(|P| = |X")/(|P|=[X")—c = f(IP|=|X]/(IP|=|X])—c
(as f is increasing and convex). Since f(|P| — |X|)/(|P| — |X]|) — ¢ > 0 (as there are
protected nodes in PN A* that get exactly this payoff) so i is better off. Thus G[P] must
get disconnected by X' i.e. |C(G[P] — X?)| > 2.

Step 2. For all i € 9g(A*) N X* and any C € C(G[P] — X'), |[C N A*| = 1. Pick any
i € 0g(A*) N X* and any C € C(G[P] — X'). Clearly it must be that |C N A| > 1, as
otherwise C' would be removed by z'. Let j € 9g(X*) N C (any node in dg(X") must be
protected). Let G' = (N, E’) be a network obtained from G by removing all links to nodes
from C'\{j} and linking these nodes to j only, i.e. E' = (E\E[C\{j}])U{jl: 1€ C\{j}};
additionally, in the case of j € Jg(7), all nodes from X* are linked to form a clique, i.e.
E' =(E\E[C\{jhu{jl:leC\{j}tu{lr:l,re X, #r}.
Consider a strategy profile (A’,2’) in I'(G”) such that

o N'=(A"\C)U{j}.
o o/(A) =z"
o Forall l € A, /(A" \ {l}) = (G, A"\ {I}).

e Foralll € P\ (A'UC), /(A" U{l}) = 2(G,AU{l}) (note that P\ (A'UC) =
P\ (AUCQ)).

e Foralll e (C\{j}), 2/(A"U{l}) = a*.

The strategy profile (A’,2") is an equilibrium of I'(G’). The responses of A to A’ and
any single node deviations from A’ are best responses, because they are best responses
to (G,A) and any single node deviations from A’ C A*. None of the nodes is better off
by deviating from its strategy, as they obtain the same payoffs as under (A*, z(G,-)) in
the game I'(G).
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Since (A’, 2’) is an equilibrium of I'(¢’) and it yields a better welfare than (A* z(G,+)) in
['(G) (as less defence resources are used), so we get a contradiction with the assumption
that (G, A, x) is an equilibrium. Hence it must be that |[C N A| = 1.

Step 3. The structure of G[P]. Clearly G[X] is connected. Moreover, since for any
component C' € C(G[P]— X"), |CNA*| =1, s0 A*NP = 95(X?), i.e. the neighbourhood
of X" is the set of protected nodes. Additionally, by Step 1, C(G[P] — X') > 2. Thus
taking Y = X' we have a set of nodes that satisfies points [I| - |3| stated in the lemma.
It remains to be shown that it is unique such set of nodes. Assume to the contrary
that there is a set of node Y’ # Y that satisfies points [I| - [3| as well. It cannot be that
Y'NY # @, because dg(Y’) would contain unprotected nodes from Y (which violates
point [2 for Y'). But then, by point [2| for Y, G[A* N P] — Y is connected, which violates
point [3] for Y.

Uniqueness of Y together with points [I] - [8|and Step 1 imply that for all i € dg(A*)NX,
(G, AU{i}) €Y. O

Let (G, A, x), A* = A(G), z* = z(G,A*), P € C(G), and X* = E,-(G|A*) be as
defined in Lemmal[7] Let Y be the set of nodes satisfying points[I]-[3|of Lemmal[7} Suppose
that A* O P = {Jjo,...,ja} with jo € d(X*). Let C(G|P] - Y) = {Zy UX, Z1,. .., Z4}
with j; € Z;, for all i € {1,...,d} (by Lemma [7] this is possible; in the component of
G[P] — Y containing j, we distinguish two subsets: X and the remaining set of nodes
Zy). The structure of G[P] is illustrated in Figure [4]

The components of G can be divided into three disjoint sets (some of them possibly
empty): {P}, D ={C € C(G): Cna* =@ and CNA* # &} (the set of not attacked
components, protected under A*), and U = {C € C(G) : CN (2" UA*) = &} (the set of
not attacked components not protected under A*).

In the following lemmas we establish further properties of network GG and subnetwork

G[P].

Lemma 8.
FAXD) =z f(1P] = [X]) = f(IP] = | X[ = 1). (22)

Proof. Assume to the contrary that

fFOUXD) < f(P| = [X]) = fF(IP| = [X] = 1). (23)
Since each node j;, with i € {1,...,d} is protected, so if the node would not protect, the
adversary would remove it. Thus for all i € {1,...,d},
d d
FUPD = FUXT+120) = > FUZD) > FUPD) = F(Zol + 1Y+ 1Zil) (24)
i=1,i#q i=1

which implies

FIXI+120l) < f(Zol + YT+ D12 = > F1Zi) (25)

i=1 i=1l,i#p
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and further .

FUXT+12Z0l) < f(12Z0] + YT+ ) 1Zi))- (26)

i=1

By the fact that f is strictly increasing, it follows that

d
X< Y1+ 12l (27)

i=1

On the other hand, since removing the nodes from X is better than attacking a node in
Y and disconnecting the component, we have

d d
FUPD) = f(1Zo] + Y]+ Z Zi|) > f(IP]) = f(IX]+ | Zol) — Zf(lZz-l), (28)
which implies
FUXI+120) + 32 £UZ1) > F(Z] + V] + 3124 (29)

Since |P| = | X| + |Zo| + [Y] + 320, | Zi], so Equation implies

d d

F(Zol + 1Y+ ) _1Zil) > FUXD) + (1 Zol + Y] =1+ )1 Zi]). (30)

=1 =1
This, together with Equation implies

d

FUXT+12Z0)) + ) F1Z1) > FUXD + F(Zol + Y] =1+ ) 1Zi]), (31)

i=1 =1
from which we get

d

FUXT+1Z0) = FUXD) > f(1Zol + Y] =1+ D 1Z]) = > f(1Zi) (32)

i=1 1=1

and further, by convexity of f,

FUX[+12Z0l) = FUXD) > f(1Z0l + Y] =1+ > 1Zi]) - f(z |Zil). (33)

=1

and
d d
FUXT+12Zo]) = FUX]) > f(1Zo] + Y] -1+ Z Zi]) = f(IY] -1+ Z Zi]),  (34)

as f is strictly increasing and |Y'| > 1. Since f is strictly increasing and strictly convex,

this yields
d

X > Y| -1+ |2 (35)

i=1
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and further, by the fact that |X|, |Y| and |Zy|,...,|Z4| are integers,

d
XI= YT+ 12, (36)
i=1

a contradiction with Equation (27). Thus we have shown that it must be that f(|X|) >
FUPI = X)) = f(1P] = [X] = 1). O

Fact 4. Xl a1z Pl_Ix
SOXI+1%0) _,  JOPI=1X) -

[ X1+ 120l [Pl = 1X]

Proof. 1f it was f(|X| + |Zo|)/(|X]| + |Zo|) > ¢, then it would be profitable for a node
i € 0y+(jo) N X to protect. If it was ¢ > %, then it would be profitable for any

node 7 € P N A not to protect. n

Corollary 2.
21X |+ |Zo| < |PI. (38)

Proof. Since f(y) is strictly increasing and strictly convex, so f(y)/y is strictly increasing.
Thus, by Equation (37)), |X|+ |Zy| < |P| — |X| and Equation follows. O

As a corollary from Lemma [§, Fact [d] and Corollary [2] we get that G must have at
least one not attacked component, which implies Proposition [4

Proof of Proposition[f] We prove the proposition by showing that D UU # @.

Assume, to the contrary, that C(G) = {P}. Let G’ be a network consisting of two
components, a clique over the set of nodes X and a star over the set of nodes V \
X, with centre i. Consider the strategy profile (A’,2") of the game I'(G’) with A" =
{i}, 2/(G',A") € X and 2/(G',A”) being a best response to (G',A”), for A" # A’
Strategy profile (A’,2) is an equilibrium of game I'(G'): by Equation (22)), 2/(G’, A")
is a best response to (G’, A’); by Equation , none of the nodes in X can be better
off by choosing protection, while being protected in P\ X yields non-negative payoff;
by Equation (38, A would attack G[P \ X] if ¢ did not protect (recall that |Zy| > 1 as
Jo € Zp).

Since (A’, z) is an equilibrium of I'(G’) so G’ yields a strictly better payoff to D than G,
a contradiction with the assumption that (G, A, z) is a welfare maximising equilibrium.
Thus it must be that DUU # @. m

To prove Proposition 2] we need three intermediate steps. Lemma [9] shows that, for
any f, if the network is not connected in a welfare maximising equilibrium, then there is
no fully protected component. Lemma [10[shows for f(y) = 3? that if G is not connected
and the adversary attacks a protected component, then there exists another protected
component in GG. Based on this intermediate result, Lemma [11] shows that if G is not
connected the adversary does not attack a protected component.

Lemma 9. Let (G,A,z) be a welfare mazimising equilibrium. If G is not connected,
then there is no fully protected component.
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Proof. Suppose G is not connected, and there exists component X € C(G) such that
X C A. Clearly, X must be the only fully protected component, or otherwise D would
be strictly better off by merging all fully protected components.

We compare two modifications to G. Network G’ is obtained by attaching another com-
ponent Y € C(G) to X, where z(G,A) ¢ Y if possible. We present the case where
z(G,A) ¢ Y; if G has only two components the proof is analogous. First, note that there
exists an equilibrium of I'(G”) were all nodes in X UY protect and A attacks the same
unprotected node or attacks a protected node in X UY. For GG to be optimal, it must be
that G' does not attain higher welfare. Let |X| = |X”| 4 |Y|, and denote with py < |Y|
the number of nodes protected in Y. Then,

FAX T +2]Y]) = (1IX"] + 2V e
< (Y] =pr)

FAXT+ YD) + (YD = (X" + Y]+ pr)e

<
> SUX"+2lY]) = FOUXT [+ Y] = F(YD. - (39)

The second modification consists of network G”, formed from network G as follows.
Change X into a star, and detach |Y'| spokes from it to form a copy of Y. The nodes that
have not been detached from X form a component X”. Let A” denote the equilibrium
defence profile in I'(G”).

Case (i). X” C A For G to be optimal, it must be that
FUX") +2f(IY]) = @py + X )e < fOIX"I+ Y] + F(IY]) = (py + X7+ [Y]e
S c(lY[=pyv) < fOIX"+ Y] = FOXT) = £(YD.

Combining this condition with (39), we have that f(|X"| + 2]Y|) — f(|X"| + |V]) <
FUX"+1Y]) = f(|X"]), which contradicts f being convex.

Case (ii). X" C A and 2(G",A”) ¢ X" TFollowing the same steps as in Case (i) leads
to a contradiction.

Case (iii). X" NA =@ and 2(G",A”) ¢ X” Following the same steps as in Case (i)
leads to a contradiction.

Case (iv). X"NA =@ and z(G",A”) € X" Since nodes in X" are eliminated, it must

be that ¢ > fﬁ';:]‘), or

[ X e > FOIX"]). (40)

Let Z denote the component attacked in equilibrium (G, A, xz). By Lemma @, the payoff
to the designer from this component in the original network is f(|Z| — |Eya)(G|A)]).
Then, for G to be optimal, it must be that

FUXT+ YD + £(12] = [Exa)(GIA)]) = (X7 + Y])e = f(IV]) + F(1Z]) — pye,
or, equivalently,
(X e+ (Y] = ple < FUX" +Y]) = f(IY]) = [F(12]) = F(IZ] = | Eac1a) (GIA)])].
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We can combine this condition with to obtain:

FAX"D) + (Y] = py)e < fF(IX" |+ [Y]) = F(IY]) = [f(1Z]) = F(1Z] = [Ewcia)(GIA)])].
Rearranging yields:

(Y] =py)e < fOIX T+ V) = FUX"]) = fAY]) = [F(1Z2]) = F(IZ] = | Exia) (G1A)])]-(41)
For G to be optimal, ¢ must be such that and holds. Thus, it must be that

FAX I +2Y]) = FAXT [+ YD) < fOAX"T+ YD) = X))
—[F12D) = F(1Z] = | Excia)(G]A)])]
< FUXTI+ YD = £OX7]),

which contradicts f being convex.
O

Lemma 10. Assume f(z) = z%. Let G be a network chosen in welfare mazimizing

equilibrium. If G is not connected and the adversary attacks a protected component, then
there exists another protected component in G.

Proof. Assume otherwise. Let (G, A*; A*) be a welfare maximizing equilibrium. Since
the adversary attacks a protected component, there must be unprotected nodes there
and the adversary removes some of them. We know that if (G, A*, A*) is an equilibrium,
then A*(G,A*(G)) does not disconnect the protected nodes. Let P be the protected
component and p = |P| be its size,  be the number of unprotected nodes removed, and
Uy, ..., u be the sizes of the remaining, unprotected, components Uy, ..., Uy of g, such
that u; > ... > u;. We will construct a sequence of strategy profiles (g;, A;, Ai)o<i<i (not
necessarily equilibria) such that:

1.1>1

2. (¢°, A%, A%) = (G, A*, A*),

3. (¢', Al, AY) is an equilibrium.

4. If i' < 4, then W(g", A", A") < W (g}, A?, A).

The points above contradict the assumption that (G, A*, A*) is a welfare maximizing
equilibrium. In each strategy profile (g, A%, A"), A’ differs from A* on network ¢* only,
and A’ differs from A* on (g°, A’(g")) only. Describing the strategy profiles we will focus
on the arguments on which the strategies of the players are different to (G, 0%, A*).

Let (g, Al, A') be defined as follows. Component P is replaced with two components:
P! of size pl = p— 2/, and P} of size ps = /. Here, 2’ = min Y (z), where Y (z) = {1 <
y<z:fly)>flp—y)— f(p—y—1)} The subnetwork of g; over P} is a star and
the subnetwork of g; over P} is a clique. Let Al(g') = {m}, where m € P} is the centre
of the star over P}. Let A'(g',A'(¢g')) € P3. The construction above is valid as long
as o’ is well defined, i.e. as long as Y (z) # &. This is the case because, by Lemma ,
r € Y(x).
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Given 7 > 2, the network (g’, AY, A’) is defined on the basis of (¢'~', A""! A1), Each
such network has at least two components: P}, of size p}, Pi, of size p. The subnetwork
over P} is a star and the subnetwork over the remaining components are cliques. Defence
Ai(g;) = {m}, where m € P} is the centre of the star over Pj. Attack A;(g;, Ai(g;)) € P4,
removes all the component Pi. The set of the remaining components is denoted by U".
The construction ends on minimal 7 such that for all U € U, |U| < | P

Let ## = max{s € N: f(pi ') — f(1) > f(pi' +s) — f(p\"* +5—1)}. In other words
t is maximal such that removing all but one node from a component of size p, ' + 1 is

preferred by the adversary to removing a single node from a component of size p'~' + #'.
Network (g*, A, A?) is obtained from (¢!, A1 A1) as follows:

1. Pick the largest component U*~! from ", Let u'~! = |U*"!| (note that u*~! > pi*
as otherwise the algorithm would stop before reaching this point).

2. Move d’ = min(#’,p5~* — 1) nodes from U*~! to P{~! adding them as spokes of the
star over P! thus obtaining the component P.

3. Move 1 node from U""! to P!, thus obtaining component Pi, and form a clique
over Pj.

Clearly, if [ > 2, the nodes-adversary subgame in the last strategy profile in the sequence,
(g, Al, A, is an equilibrium, as, by the construction, attacking P! is preferred to attack-
ing P! and none of the components in U’ is larger than p, — 1. If the protected node
in P! chose no protection, it would be removed by the adversary. Moreover, no node in
P! is better off by choosing protection. This is because, by the construction, even if one
node protects in P, the adversary still prefers to attack this component to attacking any
other component (note that the components in U are all strictly smaller than P).
To see why the nodes-adversary subgame in the last strategy profile in the sequence,
(gt, AL, AY), is an equilibrium in the case of I = 1, notice that no node in P! is better
off by deviating and choosing protection. This is because |Pl| = 2/ < z and if this is
profitable for a node to protect in P, then it must be profitable to protect for any of the
removed nodes neighbouring a protected node in the attacked component P in G (if such
a node protects, then the adversary switches his attack and the component of that node
in the residual network is of size > = + 1). This would contradict the assumption that
(G, A*, A*) is an equilibrium.
Now, it is enough to show that W (G, A*, A*) < W (g, Al, AY). To show this we will show,
for all ¢ € [1,1], that

W(g, A" AY) > W (g™ AT AT, (42)
Clearly for ¢ = 1 this is the case, as there are less units of defence used and the number
of nodes removed by the adversary is the same or less. For ¢ > 2 the equation above
reduces to

fOT +d) + fla™ = d = 1) > f(pyh) + fu'). (43)
For f(x) = x? this is equivalent to (substituting, for clarity of presentation, d + d,
prepit pe oy U

(p1+d)* + (u—d—1)* > pi +u*. (44)
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We show first that p; > u. To show that it is enough to show that p —z > u; in ¢° = G,
as in the subsequent networks p{ grows and the sizes of components in U7 (weakly)
decrease, i.e. p; > p—x and u < wy. Since in (G, A*; A*), the Adversary prefers to
attack component P to attacking Uj, so it must be that the residual network with z
nodes removed from P has at most the value of the residual network with component
U; fully removed. Consider network ¢’ obtained from G by re-designing P into a star
with centre m € P. Consider the strategy profile (¢', A’,; A") where A’(¢') = {m} and
A'(g', N (g")) C U,. If the adversary prefers A’ to attacking a spoke of P. This profile
cannot be an equilibrium, or otherwise G is not optimal for the designer. Thus it must
be that the Adversary prefers to attack a spoke of P to attacking a node in Uy, that is

P = (=17 = ()’ (45)

which yields
20p — ) +2r — 1> (uy)*. (46)

Notice that it must be that x < wy. This is because otherwise the designer would be
better off by disconnecting x nodes from P, forming a clique out of them, and changing
P into centrally protected star. By Lemma , Equation , there is an equilibrium in
the changed network subgame where the adversary attacks the clique of size x and no
node protects in the clique (if a node protected, the adversary would attack the remaining
nodes in the clique). Thus the new network yields a better payoff to the designer, as the
loss is the same, but less protection is used.

Since x < wuy and p; > p — x, SO implies

2p1 + 2U1 —1 2 (U1)2. (47)

which gives
Uy S v 2p1 + 1. (48)
Since for p > 4 (and we know that p > 4 by the structure of the subnetwork of G over
P), p1 > 2p1 +1,s0 u; <py.
Now, to show , we consider two cases separately: (i) d = po—1 and (ii) d = ¢! < py—1.
For case (i), we rewrite as
(pr+p2 = 1)* + (u—p2)? > pf + 0 (49)
which reduces to
(p2)2 + (p2 — 1)2 > 2(p2 — 1)(u—p1) + 2u. (50)

Since (p2)? > (p1)? — (p1 — 1)? (as removing Py ' yields better payoff than removing a
spoke of the star over P;™1), so

(p2)* + (2 — 1) > 2p1 — 1+ (po — 1)*. (51)

Since p; > u, SO
2p1 = 1+ (p2 = 1)* > 2(p2 — 1)(u — p1) + 2u, (52)

which implies ({44]).
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For case (ii), Equation (44]) can be rewritten as
2p1d + d* > 2u(d + 1) — (d + 1)? (53)

and further to
2(p1 — 1)d+ d* > 2ud + d* — 2(d* —u) — 1. (54)

Now we can show that Equation holds. Since

(p2—1)=1>(p)* = (p1 — 1) (55)

SO
p2>\/2p + 1. (56)
Moreover, since

(p2)> —1 < (pr +d+1)* — (py +d)? (57)

(as d is maximal such that attacking Pj is preferred to attacking P}) so

2
d > % —p1—1 (58)
and, by ,
1
By this
1
d2—u>2p1—\/2p1+£—1—u>0, (60)

as p1 — 1 > w and p; + 1 > /2p;. Consequently, holds.

By Equation (54), W(g', A", A) > W(g"™, A" A1), Thus we have shown that
(G, A*, A*) cannot be an equilibrium, as the designer could choose ¢' instead. This
completes the proof. O

Lemma 11. Assume f(x) = 22, and n > 20. Let (G, A, ) be a welfare mazimising equi-
librium of I'. If G is not connected, the adversary does not attack a protected component.

Proof. For a contradiction, suppose that z(G, A(G)) € C1(G), where C1(G)NA # &. Let
e = |Eya.a)(G|A)| denote the number of eliminated nodes, and |C}(G)| = y+e be the
size of the attacked component. By Lemma [6] the attack does not disconnect protected
nodes that are connected in G, and so the loss due to attack equals (e + y)* — y>.

Pick node ¢ such that i € Eyqa@)(G]A) and N;(G) N A # @. That is, node i is
eliminated under attack x(G, A(G)) and has a protected neighbour. For (G, A, x) to be
an equilibrium, it must be that z(G, A(G) U {i}) attacks a node in C(G) disconnecting
protected nodes[] It follows that there are at least two protected nodes in Cy(G), i.e.
|C1(G)NA| > 2. Moreover, e > 2, or otherwise the adversary would strictly prefer attack

HIf 2(G, A(G) U {i}) ¢ C1(G), then node i would earn strictly larger payoffs by protecting than the
payoffs of its protected neighbour when ¢ does not protect. If z(G, A(G) U {i}) € C1(G) but the attack
does not disconnect protected nodes in C1(G), then node ¢ would earn at least as much as its protected
neighbour does when ¢ does not protect. By the tie breaking assumption that a node prefers not to be
eliminated, node ¢ would protect.
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z(G,A(G) U {i}) to attack z(G,A(G)) under (G, A(G)). This implies that G cannot
feature two isolated nodes; the designer would be strictly better off by connecting them.
By Lemma [11] there exists another component Co(G) # C1(G) with protected nodes,
Cy(G)NA # @. Without loss of generality, let Cy(G) denote the largest such component.
If C5(G) is not a star, then it can be redesigned as a star, and in this new network there is
an equilibrium where only the hub of the star protects, and all other nodes not in Cy(G)
choose the same strategy as in the original equilibrium. Moreover, the attack (G, A(G))
is still optimal for the adversary. Since this attains the same gross payoffs with minimal
protection spending, let us assume that Cy(G) is a star. Let z = |Cy(G)| denote the size
of this component.

We will construct a series of strategy profiles (G*, A, x%)o<;<; such that:

1. 1>1.

2. (G A%, ) = (G, A, z).

3. (G, A?) is a best response of the adversary to defence A’ in subgame T'(G).
4. If i/ < i, then W(G¥, A”,2") < W(G*, A?, 2%).

5. W(G ALzl < s%(n) + (n — s(n) — u(n)).

In each strategy profile (G*, A’ z%), A® differs from A on network G only, and z* dif-
fers from z on (G', AY(G")) only. Describing the strategy profiles we will focus on the
arguments on which the strategies of the players are different to (G, A, x). The points
above contradict the assumption that (G, A, z) is a welfare maximising equilibrium. If
the designer could control protection, then s/he would choose (G!, Al) over (G?, A?) for
any ¢ < [. S/he does not do so because A’ is not an equilibrium defence profile. But
the network with a star of size s(n), a clique of size u(n) and (possibly) an isolated node
achieves strictly higher welfare in equilibrium.

Let (G, A, z') be defined as follows. Recall that |Ci(G)| = y + e. Take y nodes of
P (G) are arrange them in a star. Take the remaining e nodes of C;(G), arrange them
in a clique, and link all of the nodes in this clique to the centre of the star of size y. This
yields a new component C](G'). Let AY(G')NCH(G') = {m}, where m is the node that
is linked to all other nodes. z'(G', A') eliminates the e unprotected nodes attached to
m. Note that by construction z!(G*, Al) is a best response of the adversary to defence
Al in sub-game T'(G').

Given i > 2, the network (G?, A’ z*) is defined on the basis of (G*~!, A1 2i~1). Each
such network has at least two components: C%(G"), of size y + €', and C4(G"), which is
a star of size z'. Defence of these components is A(G") N CHG) = {m}, and A*(G") N
C2(G") = {h}, where h is the centre of C4(G"). Attack (G’ AY(G")) € Ci(G?) removes
e’ nodes from C}(G").

For 2 <i<1[—1, (G' A% z') is obtained from (G, A1 zi1) as follows:

1. Pick a component C7~ (G, j ¢ {1,2}, with s/ = |C;"1(G"™")| > 2. If such a
component does not exist, the algorithm stops.
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2. Move t' = min{y + e, s~ — 1} nodes from C’Z ! to C3* adding them as spokes
of the star over C4~!, thus obtaining Component Cs.

3. Move 1 node from C;_l to Ci~! adding it to the clique of e'~! nodes to be eliminated,
thus obtaining component, C%.

4. If, after these changes, there are two isolated nodes, create a component with them.

The construction ends on minimal 7 such that [N\ {C¥(G) U Ci(G)}| € {0,1}, i.e. there
is at most one node not included in C}(G) or C4(G).

By construction, z(G?, A?) is a best response of the adversary to defence A’ in sub-game
['(GY). In particular, for every i we have that f(z') — f(z* — 1) < f(y +¢€') — f(y). To
see this, first note that it holds for ¢ = 1. Then suppose that it holds for ¢ — 1:

fENFETT =) < fly+e™) = fy). (61)
Next note that

CORNICIENY JET ) = [T+ - 1)

< fETTHy+ee ) - fET Ty + e 2 0)
= fETH - fET =) F 2y + e

<

< fy+e’ 1) y) +2y+e ) +1

(2"
(
(
fly+e ™) = fly) +2y+e)
( S
= fly+e™+1) = f(y)
= fly+e)—[fy).

Thus, if it holds for ¢ — 1, it holds for 7. By induction, it holds for all .
It remains to show that after every application of steps 1-4, the designer is strictly better
off. Suppose that t* = y + e¢"~1. The gain in gross payoffs is bounded below by the case
where C’;‘l is of the same size z°~! as O3 ', and 2'~' is smallest, i.e. 27" = + 1. The
gain in this case is of {[(t' + 1) + '] — (t' + 1)?} — [(t'+1)?—0] = 2(¢")*—~1 > 0. Suppose
next ¢' = s ' —1. The gain in gross welfare is of {[zi_l + (sé’l D2 — (2712} —[(sh ' =
1) — 0], Wthh is greater than zero if and only if ;' > %2; —t. Since %2;:1:11 < 3/2
and 32_1 > 2, the result follows.
Finally, (G!, Al, z!) is obtained from (G'~!, Al=1, 2!~1) as follows. Take the largest number

t! spokes away from C!~! and move them as spokes of C4~' such that

FE) = [ =1) < fly' +¢') = f(y'), and (62)
FE+D) = fE) > f —1+€) = fy' = 1) (63)

(62) implies that the adversary’s original attack is optimal, whereas implies that if
further spokes are moved from C!™! to CL™! then the adversary would prefer to attack a
spoke of C4~!. Henceforth, let us denote z « 2!, y + ¢!, e < €.

Let s(n) = |(n+1)—+/2n] and u(n) denote the size of the center-protected star and clique,
respectively, of the optimal network with at most three components when the adversary
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attacks an unprotected component. Note that e < u(n) (or otherwise the adversary
would attack the clique of size e if it was disconnected), and z < s(n) (or otherwise the
adversary would prefer to attack a spoke of the size-z star to eliminating the e nodes
attached to the star of size y). We can then consider the following modification to G'.
Out of the y surviving nodes of the attacked component, leave y — (s(n) — z) nodes as
unprotected neighbors of the eliminated nodes, and attach the remaining (s(n)— z) nodes
as spokes of the other star. The net gain in gross welfare is equal to

s'(n) = (22 +y%) = s°(n) — 2" = [(u(n) —e) + (s(n) — 2)] = 20.(2 — &) — &¢,(64)

where 8, = (s(n) — z) and 6. = (u(n) — e). From (62), we have that [(u(n) — &) +
(6 +0.)])? — (6 +0,)> > 22— 1, or

62 +26.6, — [u*(n) — (22 — 1) + 2u(n)é.] < 0.

Since z < s(n), it is easy to see that u?(n) — (22 — 1) > 0: the adversary prefers to
eliminate a clique of size u(n) than a spoke of a star of size z. Thus, this polynomial in
0. has a negative and a positive root. We then have that

e < 0 = —0, + /62 +u(n) — (22 — 1) + 2u(n)d,

d. is increasing in u(n). Note, however, that (u ( ) —1)2 < 2s(n) — 1, i.e., the adversary
prefers to eliminate a spoke of a star of size s(n) to eliminating a chque of (u(n) — 1)
nodes. This implies that u(n) < 1+ 1/2s(n) — 1, so that

e < =0, + /02448, + 1+ 2(1 4 6.)y/25(n) — L.

Combining this result with yields

s'(n) = (22 +y%) > 0.(22—4) —2(1+4,)v/2s(n) —1 -1
> 5,22 —4) —2(1+0,)u(n) — 1
= 20,(0, + [z — (u(n) +2)]) — 262 — 2u(n) — 1 (65)

where the second inequality uses 1/2s(n) —1 < u(n). Recall that §, > 1. The proof
is completed with with following two steps. First, let us show that z > wu(n) + 2, so
that the right-hand side of (65)) is minimized at 0, = 1. Suppose, for a contradiction,
that z < u(n) + 1. It is stralghtforward to verify that “(")H < 0.4 for any n > 15.
Thus, for n > 15 we have that 2 < 0.4. On the other hand, note that y < z/2. To see

this, note that can be written as y < Z_%(+1)2 < z/2, where the second inequality
uses e > 2. Moreover, z < z (or otherwise the adversary would attack a disconnected
clique of size x rather than a spoke a star of size z). Therefore, z/n = z/(x + y + 2) >
z/(z + 2/2 + z) = 0.4, a contradiction. Second, substituting 6, = 1 in (7)), we obtain
s*(n) — (22 +y?) > 2s(n) —4u(n) — 7, where the right-hand side is positive for n > 20. O

Lemma 12. Assume f(y) = y*. If G is not connected, x(G,A) € C; where C;NA = &,
and A # &, then:

46



(a) |Al =1, i.e. there is only one protected node.
(b) There are at most two unprotected components.
(c¢) If there are two unprotected components, one of them is of size 1.

Proof. Let Py, ..., P, denote components with at least one protected node, and C1, ..., C,
denote unprotected components. Component labels are such that |P| > |Py| >,...,>
|P| and |C1| = |Caf 2,..., > |G

By Lemma [9] there is no fully protected component. Therefore, if P; is not a star, the
designer can re-design it as a star, and the profile where only the centre protects is an
equilibrium profile. Since this achieves the same connectivity with minimal protection,
the designer is not worse off. We can then assume that P, is a star for all . Let |P| = s
and |C| = u denote the sizes of the largest star and the largest unprotected component,
respectively. For the adversary to attack C) in equilibrium, it must be that u? > 25 —1 if
c>u,orul—1>2s—1if ¢ <wu. Since u?> —1 > 25 —1 implies u? > 25— 1, let us assume
the more restrictive case where u is the smallest integer such that u? — 1 > 2s — 1.
Specifically, let u be the smallest integer such that 2s —1 <u?—1<2s+1. If n=s+u
orn = s+u+1, then (a), (b) and (c) hold. We will show that if n > s+wu+1, i.e. there
are at least two other nodes in the network, then GG cannot be optimal.

Note that if the designer adds an additional node in N/(P, UC}) to C, she could attach
a maximum of S(u) additional spokes to P; such that the adversary would still strictly
prefer to attack the unprotected component, where

u if u is even
S(u)—{ u+1 ifwuisodd (66)

Further note that v > 2: if u = 1 then eliminating the spoke of a star will always be
preferred. It follows that, if the size of the clique is increased by 1, then the size of the
center-protected star can be increased by at least 1 and the adversary’s original attack
will remain optimal.

Recall that n > s +uw + 1. If all other components in G are of size 1, then consider
the following modifications to G yielding a network G’. Create a clique including all
nodes originally in C'; and one additional node who was isolated in GG, and add a spoke
to P. By (60]), the adversary attacks the clique of G’ of size (u + 1). Since s > 2,
(s + 1) — (s* +2) > 0, and gross welfare is strictly higher under G’ than under G.
Since protection spending does not change, G’ achieves strictly higher welfare than G, a
contradiction.

Suppose finally that there is a component K of size k, 1 < k < s. Then gain in welfare by
re-allocating nodes in K to components C; and P; is bounded below by the case where
k = 2: only one spoke can be added to P; after adding one node to C;. Consider then
network G”, obtained from G by creating a clique including all nodes originally in C}
and one of the nodes of K, and adding the remaining node of K as a spoke of P;. By
(66)), the adversary attacks the clique of G” of size (u+1). Gross gain in welfare is equal
to (s +1)% — (s> +4) > 0. Since protection spending remains constant or decreases, G”
achieves strictly higher welfare than G, a contradiction. O]
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It follows from Lemma [12| that if the adversary attacks an unprotected component,
then G consists of a star of size s(n) and a component of size u(n), and A = {m}, where
{m} is the centre of the star.

Proof of Proposition[4. By Proposition [4] and Lemmas three architectures and de-
fence profiles are possible under welfare minimizing equilibria: a connected network where
all nodes protect, a disconnected network as described in point (2) of the proposition,
and a disconnected network as described in point (3) of the proposition. Comparing wel-
fare attained in (1)-(3) yields the thresholds c¢p(n) and ¢y (n). In particular, the network
and defence profile achieving highest welfare is (1) if 0 < ¢ < min{cp(n),cy(n)}, (2) if
cp(n) < ¢ < cy(n), and (3) if ¢ > max{cp(n),cy(n)}. However, defence profile in (2) is
equilibrium defence profile if and only if ¢ < % = s(n) (so that the centre protects).
Considering this yields the desired result. O]

D.2 Welfare minimizing equilibria

As in the proof of existence (Lemma [1]), given network G and costs ¢, we will use A(G|c)
to denote the set of components in GG were it is not individually rational to protect under
any attack strategy. That is, for any C' € A(G|c), f(|C])/|C| < ¢. The following fact will
be used to prove some of the results.

Fact 5. Let (G*,A,x) be a welfare minimizing equilibrium. If G* is disconnected, then

A(G*le) # 2.

Proof. Suppose there is no such component. Let A* = A(G*) and z* = z(G*, ). By the
construction used in proof of Lemma [I} there exists an equilibrium of T'(G*), such that
all nodes protect. Since (A*, z*) is welfare minimizing, this equilibrium is not worse for
D. Let G’ be a star over all nodes from N. Since f(n—1)/(n—1) > ¢, in any equilibrium
(A" 2") of I'(G'), A’ = N and no node is infected by z'(A’). Moreover, by convexity of
f, D is strictly better off than under G*, a contradiction with our assumptions. Thus it
must be that there exists X € C(G*) such that f(|X])/|X]| < c. O

We start by showing that, in a welfare minimizing equilibrium, there cannot be a fully
protected component.

Lemma 13. Let (G*, A, x) be a welfare minimizing equilibrium. If G* is disconnected,
then there is no fully protected component.

Proof. Assume, to the contrary, that there exists C' € C(G*) such that C' C A. Let
A* = A(G*) and 2* = x(G*,-). As in the proof of existence (Lemma [1]), given network
G and costs ¢, we will use A(G|c) to denote the set of components in G were it is not
individually rational to protect under any attack strategy. By Fact [5, A(G*|c) # @.
Moreover, in any equilibrium of I'(G*) and for any C' € A(G*|c), no node protects in C'
under A.

Let G’ be a network defined as follows. The sets of components of G’ and G* are the
same, C(G") = C(G*), and for each X € C(G"), G'[X] is a star. We will show that either

G’ yields higher payoff than G* under welfare minimizing equilibria to D, or there exists
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G" that does. This will contradict our assumptions and complete the proof. The proof
goes by steps.

Let A® be an equilibrium defence of I'(G*), constructed as in proof of equilibrium exis-
tence (Lemma [1)).

Step 1. In any equilibrium (A',2") of I'(G"), for any X € C(g) \ A(G'|c), X N A" # &.
For assume otherwise. Then there exists X € C(G) \ A(G’|c) such that X N A" = @.
Clearly A attacks one such X of maximal size. It must be that 2/(A’ U {i}) € X \ {i},
where i is the centre of G'[X], for otherwise it would be profitable for the centre of
X to protect (because f(|X|)/|X| > ¢ and every node prefers outcomes where it stays
uninfected). Similarly, it must be that f(|X| —1)/(|X|—1) < ¢, as otherwise deviation
to protection would be profitable to i. But then X is a component in C(G") \ A(G’|c) of
minimal size (if it had one node less, it would be in A(G’|c)). Notice also that it must
be that X C A for otherwise it would mean that A prefers attacking a component in
A(G*|c) than removing a node in X (removing a node is the smallest possible damage
that A can cause to X when X is not fully protected). Furthermore, since X is of minimal
size to be in C(G") \ A(G’|c), it must be that all nodes in N\ A(G*|c) are protected under
A®*. Clearly, this means that X is the unique component in C(G")\ . A(G'|¢), or otherwise
a network G” that merges all components in C(G’) \ A(G’|c) into a single star attains
(by convexity of f) strictly higher payoffs than G to D in any equilibrium, for in any
equilibrium of I'(G”) all nodes in the star protect.

Note that there must exist at least two components in A(G’|c), for otherwise the unique
unprotected components, Z, yields zero payoffs to D, and D is strictly better off by
choosing a star network where all nodes protect in any equilibrium. The payoffs of nodes
in X increase, as well as the payoffs of nodes in Z.

Consider then the following two modifications to G’. Network G is obtained by attaching
component Y to X and forming a star component, where x(G’,A*") ¢ Y (such an
unattacked component exists because of the argument in the preceding paragraph). In any
equilibrium of G all nodes in the star component protect. Let | X| = |X|+|Y|. For this not
to be profitable, it must be that ¢|Y| > f(|X|+2]Y]) = f(|X|+|Y]) = f(|]Y]). Network G is
formed by creating a star out of X and detaching |Y'| spokes to form a copy of Y. Since X
was of minimal size for it to be individually rational to protect, clearly no node protects in
any equilibrium of I'(G). Two cases are possible. If A does not attack X, then this is not
a profitable modification to D iff (| X|+|Y|)e < f(IX|+|V]) = f(|X])— f(|Y]). Combining
with the condition that states that G is not profitable yields f(|X|+2[Y])—f(|X|+]Y]) <
FUX]+Y]) = f(|X]), a contradiction with f being convex. If A attacks X, then this
is not a profitable modification to D iff (|X| + [Y])e < f(IX]| + [Y]) = f([Y]) = f(1Z]),
where Z is the originally attacked component. Since it is not individually rational to
protect in X, Xe > f(|X|), so that f(|X]) + |Y]e < f(IX|+|Y]) = f(IY]) = f(1Z]), or
Ve < f(X| +|Y]) = f(IX]) = f(IY]) = f(]Z]). Combining with condition for G not
to be profitable yields f([X|+2[Y]) — f(IX]+ [Y]) < f(IX]+ [Y]) = f(X]) = f(]2]) <
FUX|+|Y])— f(]X]), a contradiction with f being convex. Therefore, in any equilibrium
either G or G attain strictly higher welfare than G’ does under A*, a contradiction with
G’ being optimal under welfare minimizing equilibrium.
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Step 2. In any equilibrium (A’, z') of ['(G"), for any X € C(G)\ A(G'|c), either X C A’
or X N A = {i}, where i is the centre of G'[X].

Notice first that there exists a component X € C(G*)\ . A(G*|c¢) such that X C A’. To see
this take any X € C(G*) \ A(G*|c) such that X C A* (as we assumed, such a component
exists). It must be that removing a single node from X is preferred by A to attacking a
largest component in A(G*|c), for such an attack is available to A under A* on G* and
yet all nodes in X protect under A*. Since this is the case in G’ as well, so either none
or all nodes protect in X under A’. We ruled out the former in Step 2. Hence it must be
that X C A/.

Now, suppose, to the contrary of the statement in Step 3, that there exists X € C(g) \
A(G'|c) such that neither X C A’ nor X N A’ = {i}. Since X N A’ = @ is ruled out by
Step 2, it must be that 2 < | X N A'| < |N]|.

As the first case, suppose that X \ {i} C A’, where i is the centre of G'[X]. In other
words, all spokes of G[X] protect and its centre does not. Let |Y'| be the the component
in A(G|c) attacked by a/(A’) and Z be a largest component fully protected under A’.
Since attacking Y is preferred to attacking the centre of X, so

FAYD) =z £AX]) = (X = D). (67)
On the other hand, since Z is fully protected, so
U2 = (21 =1 = f(1YD. (68)
Thus
A2 = f(z] = 1) = fUXT]) = (X[ = 1) f(1), (69)
and, by convexity of f,
fUZ1+1) = f(12]) > f(IX]) = (1 X] = 1) f(1), (70)
FUZ21+ 1)+ (2] = D) (1) > fO1X]) + £(12]). (71)

Consider network G” obtained from G’ by disconnecting G’[X] and attaching one node
from X to G[Z] as a spoke. In any equilibrium on G”, the extended Z’ fully protects
and none of the remaining nodes from X protect. Moreover, any welfare minimizing
equilibrium on G” translates to a welfare minimizing equilibrium on G’, where the same
nodes protect apart from those in X UZ. The same operation may be applied to get rid of
all components which have spokes-only-protect equilibria on G’. By , the value of the
network is strictly increasing between G’ and G”. Now, all fully protected components
under A* are also fully protected under A and in any equilibrium on G’ and G”. All
the other protected components are replaced with centrally protected stars in G” or are
profitably merged with fully protected components (and during this merging the number
of protected nodes between A® and any equilibrium on G” does not increase). Hence G”
is strictly better to G* under welfare minimizing equilibria.

Steps 1-2 establish that, in any equilibrium of I'(G’), there is a unique fully protected
component X, and all other components in C(G) \ A(G'|c) are centre protected stars.
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Note that under equilibrium defence A°* in I'(G’), D attains the same gross welfare with
at least the same protection spending. For, by construction, X C A® and all other
components in C(G) \ A(G'|c) have at least one unit of protection. Therefore, we have
that UP(G*, A*, 2*(A*)) < UP(G*, A% x*(A%)) < UP(G', A 2/ (A)).
Note that there must exist at least two components in G’, for otherwise attaching the
attacked nodes as spokes of X would make D strictly better off. Thus, there exists an
unattacked component Y # X. The proof is completed by considering two different mod-
ifications, yielding to networks G and G. Network ( is obtained by attaching component
Y to X and forming a star component. Network G is formed by creating a star out of
X and detaching |Y'| spokes to form a copy of Y. Following analogous steps as in the
proof of Lemma @ shows that under welfare minimizing equilibria either G or G make D
strictly better off than under G’, contradicting G* being optimal.

O

Proof of Proposition[J. For a contradiction, let (G*, A, z) be a welfare minimizing equi-
librium where, for P € C(G), (G, A(G)) € P and PN A(G) # @. Let A* = A(G*) and
x* = x(G*,-). Clearly, P € A*. For otherwise the adversary does not eliminate a single
node, and it must be that A* = N. But then a connected star network attains strictly
higher payoffs to D in any equilibrium, as all nodes protect as well but (due to convexity
of f) gross payoffs are higher. Thus, P € A* and A eliminates at least one node in P.
Moreover, by Fact [f|, A(G*,¢) # @.

Let X denote the set of eliminated nodes in equilibrium (G*, A, z), i.e. X = E,.(G*|A).
Moreover, let A" = A* U {i}, ' = x(G*, A") be equilibrium response of A to G* and
defence A’, and let X' = E,:(G*|A") be the set of nodes eliminated by z*.

Step 1. For any i € 9¢(A*)NX, |C(G[P]—X")| > 2. That is, if an eliminated node with
a protected neighbor protects, the best response of A results in the residual network over
P having at least two components. Suppose, to the contrary, that component G[P] does
not get disconnected by z*. It must be that X* C P and X* ¢ X. If X* € P, then node
i would prefer to protect, since f(|P|)/|P|—c> f(|P|—|X])/(|P|—|X|) — ¢ > 0, where
the first inequality if by f increasing and convex and f(0) = 0, and the second inequality
by the fact that there are protected nodes in P in equilibrium (G*, A, z). If X' C X,
then by protecting node i gets a payoff of at least f(|P|— |X|+1)/(|P|—|X|+1)—c>
f(P| = I1X])/(|P| — |X]) — ¢ > 0. Moreover, |X*| < |X| (as otherwise z* would be a
better response to (G, A*) than x) and so payoff to i in G[P] — X*, when it protects, is
F(P| = |X)/(|P] — X)) —c> f(|P]—|X]|)/(|P| — |X]) — ¢ > 0, so i is better off. Thus
G[P] must get disconnected by ', i.e. |C(G[P] — X")| > 2.

Step 2. For any A such that |[ANP| <1, 2(G*,A) ¢ C for any C € A(G*,¢). If|AN
P| =0, then P ¢ A(G*, ¢) implies that A must strictly prefer eliminating P to eliminating
C € A(G*,¢). Suppose then |ANP| = 1. As in the previous paragraph, let X = E,(G*|A)
denote the set of eliminated nodes in equilibrium (G*, A, z), and X' = E,:(G*|A") the
set of nodes eliminated if node i € X protects. Let U denote the largest component
in A(G*,¢). Note that eliminating a component C' € A(G*,¢) is available to A under
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(G*, A*). z* ¢ A(G*,c) implies that f(|U]) < f(|P|) — f(|P| —|X]) (the damage caused
by attacking X is at least as large as that of attacking U). X* C P and X' € X implies
tha, for any i € X, f(U]) < J(|P)) ~ (X Ua6(X)]) ~ Coccarxonxoee 7€)
(the damage caused by attacking X" is at least as large as that of attacking U). Moreover,
|IC(G[P] — X*)| > 2 (by Step 1) implies that, for any i € X, C € C(G[P] — X*) \ (X U
O0c(X)) # @ and thus the la~st term 3 cceiarpxin(xuag(x) / (IC]) > 0. There are two
cases to consider. Case (i): AN P C X U0Jg(X), i.e. the protected node in P is a node
in X or has a neighbor in X. Pick any ¢« € X, and consider an attack on node j € X°.
Damage caused by A bounded below by case where AN P = J¢(X), in which case it is of
F(PI) ~ F(IX UD6(X)]) > F(P]) ~ F(IX U26(X)]) ~ Seccqerpxonoroason F1CD 2
f(JU]). Hence A strictly prefers an attack on j € X* to an attack on U, and therefore,
z(G*,A) ¢ C for any C € A(G*,¢). Case (ii): ANP € XUdg(X). Damage caused by an
attack on any i € X is of at least f(|P|)—f(|P|—|X|-1) > f(|P))—f(|P|—|X]|) > f(|U]).
Hence A strictly prefers an attack on i € X to an attack on U, and therefore, 2(G*, A) ¢ C
for any C' € A(G*,¢).

Step 3. G* is not optimal. The proof is finalized with the following arguments. Let
A®* be an equilibrium defence of I'(G*), constructed as in proof of equilibrium existence
(Lemmall]). Since A(G*,c) # @, z(G*, A**) € C, where C' € A(G*,¢), i.e. in equilibrium
A climinates a component in A(G*, ¢). Note that, since (A, z) is welfare minimizing on

G*, UP(G*, A%, 2*(A%)) < UP(G*, A, 2*(A°®)). Two cases must be considered.

Case (a). There exists Z € C(G*) such that Z C A®. Then note that there must
exist at least two components in G*, for otherwise a connected star attains strictly higher
payoffs to D in any equilibrium. Thus, there exists an unattacked component 2’ # Z.
Consider then two different modifications, yielding to networks G and G. Network G is
obtained by attaching component Z’ to Z and forming a star component. Network G
is formed by creating a star out of Z and detaching |Z’| spokes to form a copy of Z’.
Following analogous steps as in the proof of Lemmal[J|shows that under welfare minimizing
equilibria either G or G make D strictly better off than under G, contradicting G* being
optimal.

Case (b). There is no fully protected component under A**. By construction of A
there is at least one protected node in every component C' € G*\ A(G, ¢). Moreover, since
x(G*, A%) € C for some C' € A(G*,c), by Step 2 above it must be that |[A®* N P| > 2.
Consider then network G’; obtained from G* as follows. The sets of components of G’ and
G* are the same, C(G') = C(G*), and for each X € C(G"), G'|X] is a star. Consider defence
profile A" where, for each C' € C'(G’) \ A(G',¢), A'N C = {i} where i is the centre of C.
This defence profile is the unique equilibrium defence of I'(G”). For any node in eliminated
component U € A(G’,c), not to protect is a strictly dominant strategy. Consider next
any of the stars P’ ¢ A(G’,c). Even if all spokes protect, A prefers to attack the centre
of the star to attacking a component any C' € A(G’,c). To see this, note that convexity
of f and HE < ¢ < ATD imply that (U] < [P'| =1, and so f(|U]) < f(|P'| = 1).

1]
Next node that, by Property [1, f(|P'| —1) < f(|P']) — (|P'| — 1)f(1). Combining, we
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have that f(|U|) < f(|P']) = (|P']| = 1)f(1), which implies that A would strictly prefer to
attack the centre of the star of size |P’| to attacking the unprotected component of size
|U| even if all spokes of P’ protect. Hence, the centre of P’ protects in any equilibrium.
If the centre of the star protects, then spokes do not protect, as A prefers attack of U
to eliminating a single node of P’ that does not disconnect P’. The proof is finalized
by noting that (G', A’ z(G’, A’)) achieves the same gross welfare than (G, A" z*) but
with strictly smaller protection spending, since |[A’N P| =1 < 2 < |A** N P|. Thus,
UAG, AN 2 (G A) > UAG*, A% 2*) > UAG*, A*, z*), and so G* cannot be optimal.

O

We can now use the results derived for general network value function to obtain
Proposition [3] and Corollary [I}

Proof of Lemmal[j. For n > 4, cy(n) < n — 1. Therefore, ¢ < ¢y(n) implies ¢ < n — 1,
and D can choose the star network G where A(G) = N in any equilibrium (A, z) of
['(G). O

Proof of Proposition[3. Let (G, A, z) be a welfare minimizing equilibrium. By LemmalL3]
and Proposition [f] if G is disconnected but A(G) # @, then there is no fully protected
component and A attacks an unprotected component. By Lemma [12] in this case G has
only one protected node. Clearly, the protected component must be a star of maximal
size, §(n), such that A strictly prefers to attack the unprotected component.

Thus, three architectures can be optimal. If G is connected then A(G) = N. If G is
disconnected but A(G) # @, then G features a star of size §(n) and an unprotected
component of size u(n). If G is disconnected and A(G) = @, then G is the optimal
unprotected network. Comparing payoffs yields thresholds ¢p(n) and cy(n).

To see that defence profiles are equilibrium profiles, first note that if ¢ < min{¢p(n)cy(n)}
then by Lemma {| there exists G such that A(G) = N in any equilibrium of I'(G).
Furthermore, if ¢ > max{cy(n),$(n)} then ¢ > f({n/2])/(|n/2]), and so if G is the
optimal unprotected network then A(G) = @ in any equilibrium of I'(G). Finally, if
u(n) < cp(n) implies that if cp(n) < ¢ < §(n) then in any equilibrium of I'(G) only the
centre of the star protects and A eliminates unprotected component of size u(n). O

Proof of Corollary[1. Let (G,A,z) be a welfare minimizing equilibrium. We first show
that if G is disconnected then A(G) = @. By Lemma [13] and Proposition [ if G is
disconnected but A(G) # @, then there is no fully protected component and A attacks
an unprotected component. Let U € C(G) denote the attacked component, and P € C(G)
a partially protected component. If |P| > |U|, then f(y) > 2f(y—1) implies that A must
strictly prefer an attack on an unprotected node in P than eliminating U. Hence it must
be that |P| < |U|. If |[P| < |U| and some nodes protect in P, then there exists an
equilibrium (A’;2’) of I'(G) where PUU C A’(G). Since (A, x) is welfare minimizing
on GG, D cannot be worse off. But then consider network G” where P and U are merged
into a star. All nodes in P U U protect in any equilibrium of I'(G”) and, by convexity of
f, D is strictly better off. Therefore, if G is disconnected then A(G) = @.

We thus have that G is connected and A(G) = N, or G is the optimal unprotected
network and A(G) = @. Comparing payoffs indicates that D prefers full protection if
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n_ol%)_ : ;
¢ < #=22onmoed? apd no protection otherwise. However, for ¢ > ¢(n) every network

has a no protection equilibrium. Since ¢(n) < 2n_2L7Jn_” mod 2 (with strict inequality if

n > 3), D chooses connected G such that A(G) = N in any equilibrium of I'(G) if
¢ < ¢(n), and the optimal unprotected network otherwise. 0

D.3 Securing full protection through network design

Proof of Proposition[f Consider first (1). For a contradiction, suppose there is no k-
critical node with % > ¢. Consider the strategy profile (A,z) in which no node
protects. Pick any node 7 € V. If ¢ does not protect, it gets a payoft 0. If ¢ protects, it

gets a payoff of U'(G, A, z(A)) = L= kk i) _ ¢, where k; is the size of the largest component

in G — {i}. Since there is no k:—crltlcal node with f(;_kk) > ¢ so UG, A, z(A)) < 0.
Therefore, the profile in which no node protects is an equilibrium.

Now consider (2). Let (A, z) be an equilibrium of I'(G) where not all nodes protect.
Let i € Ex(A)(G\A) Since A C N, Eya)(G|A) # @. It cannot be that ¢ is a k-critical
node with f ) > ¢, as ¢ would prefer to protect. Suppose that i is not k-critical with

fsln k) ( ) > c. If 7 deviates to

> c. Then 1 is connected to a k-critical node j with !
protection, its payoff will be UY(G, AU{j},z(AU{j})) > "—kk) ¢, where k; is the size
of the largest component in G — {j}. Since U'(G,AU{j}, (A U{j})) > 0, so i is better

off by deviating, which contradicts the assumption that (A, x) is an equilibrium. O]
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E Proofs for random attack

E.1 First best

Proof of Proposition[7. Let (G,A) be a first best protected network. Three cases are
possible.

Case (i). A =N Clearly in this case G must be a connected network.

Case (ii). @ C AC N Then (G,A) must be a centre-protected star. We prove this in
three steps.

Step 1. G is connected. For a contradiction, suppose G is not connected. Since A # &,
there exists C(G) € C(g) with anode i € C(G)NA. Consider the following modification
to G, which results in network G’. For every node j ¢ C(G), delete all its links and
create a link between j and 7. Protection spending remains the same, and gross expected
payoffs from connectivity strictly increase. Hence G cannot be optimal.

Step 2. If k,j ¢ A, then kj ¢ G. That is, there are no links between unprotected
nodes. Suppose the contrary. If £ and j are not leaf nodes, then consider network G’
which is identical to G except that kj ¢ G’. Gross expected payoffs are strictly greater
under G’ than under GG. Suppose that & is a leaf. Let i € A be a protected node. Consider
network G” which is identical to G except that kj ¢ G” and ki € G”. Gross expected
payoffs are strictly greater under G” than under G.

Step 3. (G, A) is a centre-protected star. Let s denote the number of protected nodes.
The designer’s payoffs are equal to
() = fn—1)

f(n—l)—k%f(n)—sc:f(n—l)—l—s . —c|.

n—s

Note that is must be that w < ¢, or otherwise it would be optimal to protect all
nodes, a contradiction. The payoff of the designer is therefore maximised at s = 1. That
is, a single node is protected, and thus (G, A) is a centre-protected star.

Case (iii). A =@ Since there are at most n components in the network, the designer

solves
arg MaXpe g(n) Z . Z f(bj) = argmaxyepn) Z f(bi)(n = by).
=1 i i=1
Comparing the payoffs of (i)-(iii) yields the desired result. ]
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E.2 Welfare-maximising equilibria

For any A C N, let A_; = A\ {i} denote the protection profile where all nodes in A
different from node i protect. Furthermore, let

h(G,AL) = UG, A_U{i}) = Ui(g, Ay), (72)
Hi(G,AL) = UP(G,A_;u{i}) —UP(g,A,). (73)

In words, h;(G,A_;) and H;(G,A_;) are, respectively, the gain of node i and of the
designer from i protecting under network G and defence profile A_;. Recall that C;(G)
denotes the component of G such that i € C;(G). Thus, C;(G — A_;) denotes the set
of unprotected nodes in G which have a path to ¢ through unprotected nodes. We can
therefore write

hi(G,A_,;)i{f('Ci(G)DO]+ > Hf(ci(GEj(Gm_iu{i}))DO e (1)

. (G — E:(GIA_: ;
G0 oS ™ L IC(E = E(GIAZ U

The following lemma establishes that, due to positive externalities, there can never be
over-investment in protection.

Lemma 14. For any G and A, H;(G,A_;) > hi(G,A_;), with strict inequality if and
only if |Ci(G)| = 2.

Proof. Note that

H,(G,A_;) >

—c,

[f(Cz‘(G — B (GIA U{)))
|Ci(G — E;(G|A-; U{i}))]

S

[F(ICi(G)]) — 0] + >

JECH (G=A_;)\{i}

S|

> hi(G,A).

This establishes the first statement in the lemma. For the second statement, consider
the direction from right to left. Since f is increasing, the second inequality is strict if
|C;(G)| > 2. Finally, consider the direction from left to right. If |C;(G)| = 1, then C;(G —

A_)\ {i} = @. In this case, hi(G, A_;) = 2 [Q - o] = L1[f(1) = 0] = Hi(G,A_,).
O

As a corollary, we have that if the first best features no protection, then there is no
cost of decentralization.

Corollary 3. Let (G,A) be first best. If A = &, then A is an equilibrium of T'(G).

Proof. For a contradiction, suppose that in the first best the designer chooses G and
A = @, but A = @ is not an equilibrium of I'(G). Set A_; = @. It must be that
hi(G,A_;) > 0. Since H;(G,A_;) > h;(G,A_;), A = @ cannot be first best. O

The next lemma shows that if ¢ > ¢,(n) then D chooses an optimal unprotected
network.

Lemma 15. Let (G,A) be an equilibrium of I'. If ¢ > t,(n), then A = @ and G is an
optimal unprotected network.
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Proof. 1t suffices to show that, if ¢ > ¢,(n), then for any G the unique equilibrium of
['(G) is A = @. To see this, note that, for any G € G(N) and A C N, h;i(G,A_;) <
I0) 4 (p— 1)1 L= ¢ Thus, if ¢ > ¢,(n), then hy(G, A_;) < 0 for any G and A. Not

n? n (n—1)
to protect is a dominant strategy for a node on any network, and so for any G € G(N),
the unique equilibrium of I'(G) is A = @. O

We first prove Proposition [10] (for general f), and then prove Proposition [§]

Proof of Proposition[10, We address Cases [[H3] separately.

Case [1} tu,(n) < ¢ < min{t,11(n),é1(n),éx(n)} for some w = 0,...,n — 1. Since
¢ <min{é(n),é(n)}, first best is full protection in a connected network. The following
claim states that if ¢ > t,(n) then, for any G, at least u nodes are unprotected in every
equilibrium of I'(G).

Claim 1. Suppose ¢ > t,(n). For any G, [N \ A| > w in every equilibrium of I'(G).

Proof. Suppose that ¢ > t,(n) but there exists G such that A is an equilibrium of I'(G)
and v’ =n — |A| < u nodes are unprotected. For any protected node i € A, note that

fn) | fln—1) fn) | fln—1)
hi G, A,i < —c< — — — ty
( ) n? +un(n—1) ST +un(n—1) (n)
fn—1)
"—(u—1)]—— <0.
o = (= ]2 <0
Therefore, any node i € A would rather unprotect, a contradiction. O
Maximum equilibrium welfare is therefore achieved if there are exactly |V \ A| = u

unprotected nodes such that if an unprotected i € N \ A is attacked, the attack neither
spreads nor disconnects G. Equilibrium welfare is therefore bounded above by “ f(n—1)+
=% f(n) — (n—u)c. The following claim establishes that G attains maximum equilibrium
welfare if and only if G € g"*(N), and thus completes the proof of Case [1]

Claim 2. Suppose t,(n) < ¢ < t,41(n). There exists an equilibrium A of I'(G) such that
UP(G,A)=2f(n—1)+2%f(n) — (n —u)cif and only if G € G"*(N).

Proof. For the direction right to left, pick a network G € G" *(N). For a set of nodes
U C N satisfying the conditions for G € G"*(N), consider the defence profile A = N\U.
For i € A,

fn)  fln—1) fn)  fln—1)

(G.A_) = —c> — =
hi(G, AL Uy e 2 g F e~ () =0, (75)

and so protected nodes do not wish to deviate. If u = 0, then A is an equilibrium of
['(G) and the statement is true. Suppose u > 1. For j € N\ A,

f(n) f(n) fln—1)

nGa = 10 O =)

<0. (76)

Combining and , we conclude that A is an equilibrium of I'(G), and it achieves
welfare UP(G,A) = L f(n—1) + =% f(n) — (n — u)c.
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Consider next the direction left to right. For a contradiction, suppose that there exists
G ¢ G"*(N) which achieves maximum equilibrium welfare. If u = 0, then G ¢ G"*(N)
means that G is not connected. Since ¢ < t1(n), full protection is the unique equilibrium
on every network. Thus, the designer can be strictly better off by choosing a connected
network, a contradiction.

Suppose then that « > 1. Since G attains maximum equilibrium welfare, there are only
u unprotected nodes whose potential attack neither spreads nor disconnects the network.
Since the attack to i € N\ A does not to spread, it must be that ij ¢ G for all j € N\ A.
Since the attack to i € N\ A does not disconnect the network, it must be that G — {i} is
connected. It follows from these two observations that G ¢ G"*(V') implies that there
exists a pair of nodes (i,7), 7 € N\ A and j € A, such that ij ¢ G. Then, for node 7,

f(n) fln—1) f(n) fln—1)
hi(G,A_;) < —+ - 1) — — 1) —t =0.
i(G,A) < " + (u )n(n—l) c< T + (u )n(n—l) «(n) =0
That is, node j would strictly prefer not to protect, a contradiction. O

Case ¢1(n) < ¢ < min{és(n),t,(n)}. Since ¢1(n) < ¢ < é3(n), first best payoffs
of the designer are attained by a centre-protected star. It is easy to check that, since
¢ < t,(n), the centre m of the star protects if no spoke protects. If a spoke finds protection
profitable when m protects, then by Lemma [14] the designer would be strictly better off,
and therefore full protection would be optimal, a contradiction. Hence A = {m} is an
equilibrium of the star and the designer achieves first best payoffs.

Case 3l ¢ < min{t,(n),max{é(n),¢és(n)}}. If ¢ > max{éy(n),cés(n)}, then first best
is an optimal unprotected network. By Corollary 3| this is attainable in equilibrium. If
¢ > ty(n), then by Lemma [15{ D chooses an optimal unprotected network. O

Before proving Proposition [8] we show that if f(y) = y? then the optimal unprotected
network consists of two components, of sizes [n/2] and [n/2].

Lemma 16. Assume f(y) = y* and suppose the attack is random. If (G, A) is first best
and A = &, then G consists of two components, of sizes [n/2] and |n/2].

Proof. Let b* be an optimal partition, i.e.

n

b* € h(b;),
e it 20

1=

where h(b;) = (n— b;)b?. Note that #'(b;) = 0 < b; = 2, and h"(b;) = 0 & b; = &. That

is, function A(-) has a maximum at 2%, and is convex on [O ”} and concave on [”

u n ],
37 )3 3
We show that the optimal partition contains two components, of sizes [n/2] |n/2], with
the following steps.

Step 1. b < P?ﬂ + 1. For a contradiction, suppose that b; > (%’ﬂ + 1. Then

consider the partition which is equal to b except that we isolate one node from b;. Since

h(-) is decreasing on [3*,n] and increasing otherwise, this is a strict improvement, a

contradiction.
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Step 2. There is at most one component of size b; such that 0 < b; < U‘ﬂ Suppose
b <bj; < L%J . Then consider moving nodes from the subset of size b; to the subset of size
bj, up to the point in which the new size of the larger subset is 0; = min { L%J b + bi}.

n

Since h(-) is convex on [0, %], this is a strict improvement, a contradiction.

Step 3. If b;,b; > (%L then |b; — b;| < 1. If |b; — b;| > 1, then move one element
from the larger to the smaller subset. Since h(-) is concave on [%,n}, this is a strict
improvement, a contradiction.

By steps 1-3, there are two possibilities. The first possibility is that there are only two
non-empty subsets, of sizes b; > L%J and b; < L%J It is easy to verify that the optimal
partition into two components is with sizes [n/2] and |n/2], a contradiction. Since
a = n/3, the second possibility is that there are two subsets of sizes greater than or equal
to L%J, and possibly one subset of size less than or equal to L%J Let x, y, z denote the
sizes of the three components, with x >y > 1/3 > 2z > 0 and x + y + z = n. Abstracting
from integer problems, maximising (n — z)z? + (n — y)y* + (n — 2)2% with respect to
these constraints yields two constrained local optima: (x,y,z2) = (n/3,n/3,n/3) and
(x,y,2) = (n/2,n/2,0). It is straightforward to verify that the objective is maximised in
the latter. Hence, the optimal unprotected network has two components, of sizes [n/2]

and |n/2]. O

Proof of Proposition[§ It follows from Proposition [I0] and Lemma [I6] O

E.3 Welfare-minimizing equilibria

Proof of Fact[]l Let G be a connected network. Pick any node i € N. For any A C N,
note that h;(G,A_;) > % — ¢ > 0, where the last equality uses ¢ < t;(n) = ﬂl(—Z
Therefore, the unique equilibrium of I'(G) is A = N. ]

Proof of Fact[d Consider statement first. Suppose G is not complete and attains
maximum equilibrium welfare in every equilibrium of I'(G). By Proposition , every
equilibrium A of I'(G) must be such that there is exactly one unprotected node [, where
G — {l} is connected. Fix such an equilibrium A. Note that li € G for every i #
[. Otherwise there would be a node i whose neighbors are all protected in A, and so
hi(G,A_;) = % — ¢ < 0, a contradiction. Moreover, since GG is not the complete
network, there exist nodes uj, us such that uy,us ¢ G. To complete the proof, we will
show that there is an equilibrium of I'(G) where nodes u; and uy do not protect, and
therefore G does not attain maximum equilibrium welfare in every equilibrium of I'(G).

We will use the following concepts.

Definition 2. A set of nodes C' C N is a vertex cover (VC) of G if, for all ij € G,
ijNC # @. A vertex cover C' is minimal (MVC) if, for all D C C, D is not a vertex
cover of G.

Consider the following two steps.
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Step 1. If C'is an MVC of G and [ € C, then A’ = C' is an equilibrium of I'(G). Let C
be an MVC of G, and consider defence profile A’ = C. For i ¢ A’ note that j € A’ for
every j € Og(i), or otherwise A’ would not be a VC (it would not be covering all links in
@). Therefore, h;(G,A') = L% — ¢ < 0. For j € A, there must exist i € dg(j) such that
i ¢ A, or otherwise the VC A’ is not minimal. Furthermore, since [ € A’ and kl € G for

every k, an attack on ¢ does not disconnect G. Therefore, h;(G,A") > f(n) +£En 1; c>0,

where the inequality uses ¢ < t5(n) = ( ) 4 igz 3

Step 2. There exists an MVC A’ such that [ € A" and uy,uy ¢ A’. Construct A’ as
follows. Start with Ay = N\ {uy,us}. Since {uy,us} ¢ G, Ay is a VC. If the VC A is
not minimal, remove nodes from A{ until obtaining an MVC. Node [ will be in any such
MVC, or otherwise the link [u; € G would not be covered.

Combining steps 1 and 2 completes the proof of statement . Consider next state-
ment . Let G be the complete network G¢. For a contradiction, suppose there exists
an equilibrium A of I'(G¢) where |A| <n —2. Let e = |[N \ A| > 2 denote the number
of unprotected nodes. For unprotected node ¢ ¢ A, h;(G, A) = % + %% —c>
%“c (:_—:_—11) fl EZ 1) where the inequality uses ¢ < t3(n). By the condition given in the
fact, it is straightforward to see that h;(G°, A) > 0. That is, an unprotected node would
prefer to protect, a contradiction. ]

Proof of Proposition[d By Proposition [7] and Lemma [I6] we have that
2n —1
n Y

b(n) = —(Ln/2jn+nmod 2)’

é3(n) = (n—1)>=([n/2)? +nmod 2),

so that ¢1(n) < éa(n) < é3(n). By Proposition (7} first best is full protection if ¢ < é(n),
a centre-protected star if ¢(n) < ¢ < é3(n), and the optimal unprotected network if
¢ > ¢3(n). Furthermore, t1(n) = 1, t2(n) = 22+, and t,(n) = (n — 1) + &, so that 0 <
t1(n) < é1(n) = ta(n) < tn(n) < és(n). Let (G, A) be a welfare minimizing equilibrium.
We consider the different cases.

Case (1). 0 < ¢ < t1(n) Since t1(n) < ¢é(n), by Fact |I| any connected network G
attains first best welfare in unique equilibrium.

Case (2). t1(n) < ¢ < é(n) =ty(n) By Fact 2, G must be the complete network.

Case (3). ¢é1(n) = t2(n) < ¢ < t,(n) By Proposition [10} the star network has an
equilibrium where only the centre protects. To see that this equilibrium is unique, note
first that ¢ > ¢;(n) implies that any other equilibrium must have the centre unprotected.
Let G be the star network, and A be a defence profile where s € {0,...,n — 2} spokes
protect. For spoke j ¢ A, h;(G,A) = + ==L f(1)—c < —2 < 0, where the inequality
uses ¢ > to(n). Hence the unique equlllbrlum of the star is A = {m}, where m is the
centre. D chooses the star and attains first best payoffs.

60



Case (4). ¢ > t,(n) By Lemma G is the optimal unprotected network.
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