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Abstract

We introduce a noncooperative multilateral bargaining model for a network-restricted
environment, in which players can communicate only with their neighbors. Each
player strategically chooses the bargaining partners among the neighbors to buy out
their communication links with upfront transfers. The main theorem characterizes
a condition on network structures for efficient equilibria and shows the prevalence
of strategic delays. If the underlying network is either complete or circular, then an
efficient stationary subgame perfect equilibrium exists for all discount factors: all the
players always try to reach an agreement as soon as practicable and hence no strategic
delay occurs. In any other network, however, an efficient equilibrium is impossible for
sufficiently high discount factors because some players strategically delay an agree-
ment. We also provide an example of a Braess-like paradozx, in which the more links
are available, the less links are actually used. Thus, network improvements may de-
crease social welfare.

keywords: noncooperative bargaining, coalition formation, communication restric-
tion, buyout, network, Braess’s Paradox

JEL Classification: C72, C78; D72, D74, D85

1 Introduction

Communication restrictions are imposed to an environment where generating a surplus
requires an agreement among three or more players. Consider a simplest possible example.
Each of three players has a different but indispensable resource, for instance, labor, land,
or capital, to produce a unit surplus. For an informational reason, two ‘leaf’ players
cannot directly communicate with each other, while the ‘central’ player is connected to
all the other players. In such environments, the following natural questions arise: How

the surplus might be allocated among the players, taking their stragegic interactions into
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account? How they choose the bargaining partner among their neighbors? Does the more
communication links guarantee higher welfere level?

To analyze these questions, we introduce a noncooperative bargaining model in which
each player can communicate only with the directly connected players in a given network.!
In each period, a proposer is randomly selected and the proposer makes an offer specifying
a coalition among the neighbors and monetary transfers to each member in the proposed
coalition. If all the members in the coalition accept the offer, then the coalition forms
and the proposer controls the coalition thereafter, inheriting other members’ network
connections (See Figure 1). Otherwise, the offer dissolves. The game repeats until the
grand-coalition forms, after which the player who controls the grand-coalition obtains the
unit surplus. All the players have a common discount factor.?

The main result characterizes a condition on network structures for efficient equilibria.
If the underlying network is either complete or circular, then for any discount factor there
exists an efficient stationary subgame perfect equilibrium. In such an efficient equilibrium,
all the players always try to reach an agreement as soon as practicable and hence no
strategic delay occurs. In any other network, however, an efficient stationary subgame
perfect equilibrium is impossible for sufficiently high discount factors — strategic delay
must occur at least some positive probability. For instance in the earlier three-player
chain example, in any stationary subgame perfect equilibrium, the central player demands
too much and leaf players decline to make an offer even though they are selected as a
proposer; and the agreement will be delayed until the central player becomes a proposer.
We show that such a strategic delay is prevalent so that at least one player must be
better off by strategically delaying an agreement unless the underlying network is either
complete or circular.

We also provide an interesting example in which adding a new communication link
decreases social welfare. This observation is reminiscent of the Braess’s parador which
first appeared in Braess (1968).% In the original context, the Braess’s paradox refers a
situation that constructing a new route reduces overall performance when players choose

their route selfishly. Analogously in our model, each player strategically chooses commu-

!Since Aumann and Dreze (1974), cooperation restrictions have been studied mainly in cooperative
games. Myerson (1977) uses a network to described the structure of cooperation restrictions.

2This model can be extended to a more general class of network-restricted games. In this paper, how-
ever, in order to concentrate on network structures and control network-irrelevant factors, we confine our
attention to a unanimity game but allow any possible network. Lee (2014) considers general transferable
utility environments but not network restrictions.

3See Braess et al. (2005) for translation from the original German. In recent years, numerous stud-
ies on Braess’s paradox have been made particularly in computer science and related disciplines. See
Roughgarden (2005) for more details.
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(a) An initial network (b) Player 1 forms {1, 2,3} (c¢) The induced network

Figure 1: A Coalition Formation in a Network

nication links to use for bargaining. Similarly, the more links are available, the less links
are actually used. As the result, network improvements decrease social welfare.* To our
best knowledge, this is the first observation of an analog of the Braess’s paradox in the
bargaining literature.

The model has two important features which distinguish it from the existing nonco-
operative bargaining models in networks. First, we allow strategic coalition formation
so that each player can choose the partners to bargain with. In the literature, however,
players’ strategic interaction is limited in a randomly selected meeting. A bilateral meet-
ing (Manea, 2011a,b; Abreu and Manea, 2012a,b) or a multilateral meeting (Nguyen,
2012) randomly occurs, then the players in the random meeting bargain over their joint
surplus.® As Hart and Mas-Colell (1996) pointed out, however, a random-meeting-model
does not entirely capture players’ strategic behaviors and strategic decision on coalition
formation should also be considered.

Next, we allow players to buy out other players and it enables them to gradually
form a coalition.’ In the Manea/Abreu-Manea/Nguyen model, given a coalition, players’
strategic decision is limited on how to split the coalitional surplus: All the players in
the coalition, once they reach an agreement, must exit the game and they are excluded
in further bargaining. Therefore, those models are not applicable to an environment in
which gradual coalition formation is inevitable to generate a surplus.” On the other hand,
when players can buy out other players as an intermediate step, they not only consider the

surplus of the current coalition itself, but also take into account the subsequent bargaining

“In the Braess’s paradox with a traffic network context, all the players are worse off; while in this bar-
gaining game in a communication network, some players may be better off even though overall performance
deteriorates.

® Abreu and Manea (2012a) also consider an alternative model in which a proposer chooses a bargaining
partner. However, their model is still limited to a bilateral bargaining.

5The notion of buyout option is based on Gul (1989). In this sense, we succeed Cul (1989). On the
other hand, since his model assumes random meeting, we develop the model by allowing strategic coalition
formation.

"For instance, in a four-player circle, since no one can immediately form the grand-coalition, the surplus
cannot be realized in their models.



game. Thus players may even form a zero-surplus coalition strategically.

The paper is organized as follows. In section 2, we introduce a noncooperative mul-
tilateral bargaining model for a network-restricted environment. Section 3 provides the
main characterization result with leading examples. Section 4 considers an alternative
model in which players cannot trade their chances of being a proposer. Missing proofs

are presented in Appendix.

2 A Model

2.1 Networks

A network (or a graph) g = (N, E) consists of a finite set N = {1,2,--- ,n} of players (or
nodes) and a set E of links (or edges) of N. When g = (N, E) is not the only network
under consideration, the notations N(g) and E(g) are occasionally used for the player set
and the link set rather than N and F to emphasize the underlying network g. Through
this paper, we assume that g is simple® and connected. Given g = (N, E) and S C N, a
subgraph restricted on S is gj¢ = (5, {ij € E | {i,j} € S}). The (closed) neighborhood of
i € N is given by N;(g) ={j € N | 3ij € E}U{i}. Let deg;(g) = |Ni(g)| — 1 be a degree
of i and d(i, j; g) be a (geodesic) distance between i and j in g.

A set S C N is dominating in g if, for all ¢ € N, either ¢ € S or there exists j € S
such that ij € E. A player i € N is dominating in g if {i} is a dominating set. Let D(g)
be a set of dominating players in g. A dominating set S is minimal if no proper subset
is a dominating set. A network is trivial if [N(g)| = 1. For any integer k =2,--- ,n — 1,
a network is k-regular if deg;(g) = k for all i € N(g). A network g is complete if it is
(n — 1)-regular, or equivalently if D(g) = N(g). A connected network g is circular if it is
2-regular.”

A complete cover of g is a collection M of subsets of N(g), such that, UM = N(g)
and g|)s is a complete network for all M € M. A complete covering number of g is the
minimum cardinality of a complete cover of g. A minimal complete cover is a complete

cover of which cardinality is minimum.

2.2 A Noncooperative Bargaining Game

A noncooperative bargaining game, or shortly a game, is a triple I' = (g, p, §), where g is

a underlying network, p € Rlﬁﬂ is an initial recognition probability with ) . p; = 1, and

8 A simple network is an unweighted and undirected network without loops or multiple edges.
9A circular network (or a circle) should not be confused with a cycle in a network. A circular network
is a network that consists of a single cycle.



0 < d < 1is acommon discount factor.

A game T' = (g,p,d) proceeds as follows. In each period, Nature selects a player
1 € N as a proposer with probability p;. Then, the proposer ¢ makes an offer, that is, ¢
strategically chooses a pair (S, y) of a coalition S C N;(g) and monetary transfers y € R'f_\”
with Zje ~Yj = 0. Each respondent j € S\ {i} sequentially either accepts the offer or
rejects it.19 If any j € S\ {i} rejects the offer, then the offer dissolves and all the players
repeat the same game in the next period. If each j € S\ {i} accepts the offer, then i buys
out S\ {i}, that is, each respondent j € S\ {i} leaves the game with receiving y; from
the proposer i and the remaining players (N \ S) U {i} play the subsequent game I'(>)
in the next period. All the players have a common discount factor 4.

After i buys out S\ {i}, or i forms S, the subsequent game I'(>%) = (g(i’s),p(i’s), 5) is

defined in the following way:
i) The induced network g(»%) = (N(i’s),E(i’S)), where N5 = (N'\ §) U {i} and
EGS) = {ij | Bi'j € E) i’ € Sand j € N\ S} J{jk | Fjk € E) j,k € N\ S}.

That is, after ¢’s S-formation, S\ {i} leaves the network, but 7 inherits all the

network connections from S.

ii) The induced recognition probability pli9);

‘ Ps if j =1
p§z,S) =< D) ifje N\S
0 if j € S\ {i}.

That is, the proposer i takes the respondents’ chances of being a proposer as well.

The game continues until only one player remains, after which the last player acquires
one unit of surplus. When the game ends in finite period T', the history h specifies a finite
sequence §(h) = {y*(h)}]_, of monetary transfers and the last player i*(h) € N. Given
I' = (g,p,9) and a history h, player i’s discounted sum of expected payoffs is

T

Ui(h) = 8'yi(h) + 67 1(i = i*(R)).
t=0

If the game does not end within finite periods, then the history A induces a sequence 3 (h)
of monetary transfers without determining the last player, and hence player i’s discounted

sum of expected payoffs is
o0

Us(h) = 8'yi(h).

t=0

10The result does not depend on the order of responses.



2.3 Coalitional States

A (coalitional) state 7 is a partition of N, specifying a set of active players N™ C N.
For each active player ¢ € N™, i’s partition block [i]. represents the players i together
with players whom he has previously bought out. Denote 7° by the initial state, that is,
N™ = N and [i];o = {i} for all i € N. A state 7 is terminal if [NT| = 1.

A state  is feasible in g, if there exists a sequence of coalition formations {(is, Se)},
such that i € N and Sj, C Ni,; and ip € NS0=(m1.501) and g, € N5 lemnSes)

for all £ =2,---,L; and N™ = N(S)~0.50)  Let TI(g) be a set of all feasible states in
g. For each 7 € II(g), the induced network g™ = (N7, E™) is uniquely determined by

gr=J {i | 37 € B (¢ € [ and § € 1]},
iENT

and the induced recognition probability p™ is determined by

. {Zje[i]ﬂ D; ifie N 1)

p . = .
! 0 otherwise.

. . . o
° in notations, for instance, g =g,

When there is no danger of confusion, we omit 7
g™ (5 = ¢(9) and so on. The description of the underlying network g may also be
omitted, when it is clear. For notational simplicity, for any v € RIN and any S C N, we

denote vg = e g vj-
2.4 Stationary Subgame Perfect Equilibria

We focus on stationary subgame perfect equilibria. A stationary strategy depends only
on the current coalitional state and within-period histories, but not the histories of past
periods. The existence of a stationary subgame perfect equilibrium is known in the
literature including Eraslan (2002) and Eraslan and McLennan (2013). See Lee (2014) for
the formal description of stationary strategies. In the literature, instead of considering all
the possible stationary strategies, a simple stationary strategy, namely a cutoff strategy,
is usually accepted.

A cutoff strategy profile (x,q) consists of a value profile x = {{z] }icn=}ren and a
coalition formation strategy profile @ = {{q }ien~ }rem, where 27 € R and ¢F € A(2N)
for each 7 € TI(g).'* A cutoff strategy profile (x, q) specifies the behaviors of an active
player ¢ € N™: in the following way:

"Through this paper, for a finite set X, A(X) is the set of all possible probability measures in X.



e player i proposes (S,y) with probability ¢7(S) such that

oy if ke S\ {i}
Yk = —(51:755\{1.} if k=1
0 otherwise;

e player i accepts any offer (S,y) with ¢ € S if and only if y; > 0z .

Note that player i can decline to make an offer by choosing S = {i}. A cutoff strategy
profile (x, q) induces a probability measure fix q on the set of all possible histories. Given
history h, let 7(h) = {7'(h)}L, be a sequence of states which is determined by h. Given
(x,q), define the set of inducible states:

xq(g9) = {7 € (g) | (3h 3t) pxq(h) > 0 and 7 = 7' (h)}.

Given x, for each 7 € II(g), i € N™, and S C N, define a player i’s excess surplus of

S-formation:

7'r(i,S) o T if C NT
er(S,x) = ox; 0xg it SC
1—6xRx if S=N".
Let Df (x) = argmaxgcyr €; (5,%) be a demand set of player i in 7 and ml(x) =

maxscyr e (S,x) be a (net) proposal gain of player i in m. Given a cutoff strategy

profile (x,q), define an active player i’s continuation payoff in m:

W) = o Y @ S)efS 0+ Y o[ Y @ +o| Y @ (8)2fvY

SCNT™ JENT S:eSCNT™ S:gSCNT

= pf > G Sx)+5 | > pf Y. af(S) (]l(iGS)xij]l(igZS)x?(j’S)) (2)

SCN~ jENT  SCNT

We close this section with two important lemmas which provide fundamental tools
for our analysis. Lemma 1 shows that any stationary subgame perfect equilibrium can
be uniquely represented by a cutoff strategy equilibrium in terms of a equilibrium payoff
vector. Thus, when we are interested in players’ equilibrium payoffs or efficiency, without
loss of generality, we may consider only cutoff strategy equilibria. Through this paper,
an equilibrium refers a cutoff strategy equilibrium. Lemma 2 characterizes a cutoff strat-
egy equilibrium with two tractable conditions, optimality and consistency. More general

versions of the proofs can be found in Lee (2014).

Lemma 1. For any stationary subgame perfect equilibrium, there exists a cutoff strategy

equilibrium which yields the same equilibrium payoff vector.



Lemma 2. A cutoff strategy profile (x,q) is an stationary subgame perfect equilibrium if

and only if, for all m € II and i € N™, the following two conditions hold,
i) Optimality: ¢ € A(D](x)); and

ii) Consistency: z7 =ul(x,q).

3 Efficient Equilibria

In this section, we characterize a necessary and sufficient condition on network structures
for efficient equilibria. Given g, define a mazimum coalition formation strategy profile
a = {{& tien~}ren(g) with
{1 if § = N7
0 otherwise,
that is, for each state m € II(g), each proposer i € N™ chooses a maximum coalition N/
to bargain with. Given I' = (g¢,p,d), let @(I') be a maximum welfare. Note that u(I")
is obtained by any cutoff strategy profile involves with a maximum coalition formation
strategy profile. A strategy profile (x,q) is efficient if
> uilx,q) = a(l). (3)
1EN
Example 1. Let N = {1,2,3,4}. Consider two game I' = (g,p,0) and IV = (¢/,p, ),
where g = (IV,{12,23,34,41}) is a circular network and ¢’ = (N, {12,23,34,41,13}) is a
chordal network. It is easy to see @(I') = § and a(I") = (p1 + p3) + 6(p2 + p4).

An efficient strategy profile does not necessarily consist of maximum coalition forma-
tion strategies. For each 7 € TI(g), define a set of i’s coalitions which maximizes the sum

of players’ expected payoffs in the subsequent state:

ET = argmax a(I™9).
SCNT

Lemma 3. Given T = (g,p,9), an equilibrium (x,q) is efficient if and only if,
Vrellxq(g) Vie NT ¢ € AE).

Proof. If [N (g)| = 2, then the statement is obviously true. As an induction hypothesis,
suppose the statement is true for any less-than-n-player game. Consider g with |N(g)| =

n. For any 7 € II(g), observe that summing (2) over N™ yields

Youflxa) = > pf Y af(S) |ef(S,x)+5 Zx;urzx;r(i,s)

IENT IENT SCNT™ JjES jgs

= > o Y )XY, (4)

1ENT SCNT



where X™0N) = 1 and X705 = 650 o) ] P for all S € N
Sufficiency: Let (x,q) is an efficient equilibrium. By the consistency condition, for all

S C N7,

Z x;(i,S) _ Z u;r(i,S) (X, Q).

FENT(S) FENT(E:S)

Since (x,q) is efficient, the induction hypothesis and the definition of efficiency yield
X705 = sg(I™9) for all S € NT. Suppose for contradiction that there exists 7 €
Ty q(g), i € N™, and S, S’ C NF such that ¢7(S) > 0 and a(I'"%)) < @(I7@5)). Then
i can strictly improve the sum of the players’ payoff by putting more weight on S’ in his
coalition formation strategy and hence ¢ cannot be a part of an efficient equilibrium.

Necessity: Given g, m € Il(g), and (x,q), define a partial strategy profile (X, q|;) =
{(x“/,q”/)},,/en(gﬁ). By induction hypothesis, for all 7 € Ilxq(g) \ {7°}, (X|z,q|x) is an
efficient equilibrium for a game with ¢g™. Consider the initial state. By (4), in order to
maximize ;. ui(X, q), each player i must maximize ) gy gi(S5)X (%) Since, for all
i€ N and all S € &, (X|(Z-7S), q|(i75)) is an efficient equilibrium for a game with ¢, the

condition ¢; € A(E;) maximizes ),y u;(X, q) and hence (x,q) is efficient. O

We are ready to state our main theorem, which characterizes a condition on network

structures for efficient equilibria.

Theorem 1. An efficient stationary subgame perfect equilibrium exists for all discount

factors if and only if the underlying network is either complete or circular.

We prove the theorem through four propositions. For the sufficient condition, in
subsection 3.1, we construct an efficient equilibrium in a complete network (Proposition
1) and in a circular network (Proposition 2). Moreover, in a complete network, the
equilibrium payoff vector is unique and hence any stationary subgame perfect equilibrium
is efficient. For the necessary condition, Proposition 3 proves the inefficiency result for
a specific class of networks, namely pre-complete networks, in subsection 3.2. That is, if
the underlying network is pre-complete and non-circular, then any stationary subgame
perfect equilibrium is inefficient for a sufficiently high discount factor. In subsection 3.3,
Proposition 4 completes the necessary condition by showing that, for any game with
an incomplete non-circular network, any efficient strategy induces a pre-complete non-

circular network with positive probability.

3.1 The Sufficient Condition

First, we consider a complete network. Proposition 1 shows that a unanimous agreement

is always immediately reached for any p and 4. Furthermore, any equilibrium is efficient



and its payoff vector equals to p. Let p = {{p] }ien~ }rem.
Proposition 1. Let g be a complete network. For any I' = (g,p,0),
i) there exists a cutoff strategy equilibrium (p,q);
ii) for any equilibrium, the equilibrium payoff vector equals to p.

Example 2 (A Three-Player Complete Network). Let g be a complete network with
N(g) ={i,j,k} and p be an initial recognition probability. In the first period, a proposer
i forms a grand-coalition by buying out other two players at the prices of dp; and éps. Thus
the unit surplus belongs to ¢ and his payoff is 1 — (p; +px)d = 1 — (1 —p;)0. Thus, before a
proposer is selected, player i’s expected payoff is p;- (1 — (1 — p;)0)+(pj+pk)-0pi = pi. O

Next, in a circular network, we construct an efficient equilibrium in which each player
always forms a maximum coalition and the equilibrium payoff vector is proportional to
the initial recognition probability. Recall that |x] is the largest integer not greater than

x.

Proposition 2. Let g be a circular network. For any T' = (g,p,d), there exists a cutoff
strategy equilibrium (x,q), where for all m € II(g) and all i € NT,

INT]

o = ol %y )

(2

Example 3 (A Four-Player Circular Network). Let g be a circular network with |[N(g)| =
4. For all 7 with 2 < |N7| < 3, since g™ is complete, the equilibrium strategies in a non-
initial state 7w are ™ = p™ and ¢™ = ¢", which are consistent with (5). For the initial
state, take any ¢ € N and let N; = {i,j,k}. For any {i} C S C Nj, since S-formation
induces a complete network, the excess surplus from S-formation is e;(S,x) = pgd—dxg =
d(1 — &)pg, which implies D; = {N;}. For all £ € N, then ¢/(Ny) = 1. Thus, we have
Y orenDPe g5 2(S) = pn, and D,y De ES% q(S) = 1 — pn,. Therefore, i’s expected
payoff is:
ui(x,q) = pi - 0(1 = 0)pn, + I [pn, - 6pi + (1 — pn,) - pi] = Opi,

which satisfies consistency condition. O

3.2 The Necessary Condition : Pre-complete Networks

To prove the necessary condition, we will show that any efficient strategy profile cannot be
an equilibrium in any incomplete non-circular network if the discount factor is sufficiently

high. First, we need to define a special class of networks, namely pre-complete networks,

10
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a) Single Dominating Player: Inefficient

@@lﬁ

b) Multiple Dominating Players: Inefficient

@@@

) No Dominating Player (Non-circular): Inefficient

< 1

) Circular: Efficient.

Figure 2: Examples of Pre-complete Networks: A dark node represents a dominating
player.

in which all the players can induce a complete network. Given g, denote a set of i’s

feasible coalitions which yield a complete network by

Ci(g) = {S C Ni(g) | g is complete.}

Definition 1. A graph g is pre-complete if

Vie N(g) {i} ¢Ci(g) # 0.
See Figure 2 for examples of pre-complete networks.

Proposition 3. Let g be a pre-complete non-circular network. For any p, there exists

§ < 1 such that for all § > 6, any efficient strateqy profile (x,q) cannot be an equilibrium
inI'=(g,p,9).

In a pre-complete network, there may or may not be exist a dominating player. We

divide the proof into two disjoint cases, D(g) # () and D(g) = 0.

11



3.2.1 Case 1: Dominating Players

We provide two leading examples to illustrate an occurrence of a strategic delay. Based
on the examples, we discuss a Braess-Like paradox. Then, we prove Proposition 3 in a
case of D(g) # 0.

The first example is of a three-player chain, in which there is only one dominating
player. In such a chain, the unique dominating player has a stronger bargaining power
than the other players so that her value is too high for the other players to buy her out.
Thus, when non-dominating players are recognized as a proposer, they decline to make

an offer and a delay occurs.

Example 4 (A Chain). Let g = ({1, 2,3}, {12,13}). First, we show an impossibility of
an efficient equilibrium. Suppose there exists an efficient equilibrium (x, q). Then player
1 is always included in a proposed coalition, that is, g1 (N) = ¢2({1,2}) = ¢3({1,3}) = 1.
Thus player 1’s expected payoff is u;(x,q) = p1(1 — dzn) + dz1. Since x1 = u;(x,q) and
xn =p1+ (1 —p1)d, it follows (1 — 0)x; = p1(1 — 6(p1 + (1 — p1)d)), or equivalently,

z1 = pi(L+ (1 —p1)d). (6)
On the other hand, player 2’s expected payoff is

u2(x, q) = pama(x) + 6((p1 + p2)z2 + pap2) > 6(1 — p3)x2 + p3p2d.

. 5p P, .. 517 P .
By consistency, we have xo > ﬁ and similarly xz3 > %. Together with (6),

it requires that

dpaps3 dpaps3
1-6(1—p3) 1-6(1—p2)

To see a contradiction, as d converges to 1, observe that the right-hand side converges

xy > p1(1+ (1 —p1)d) +

to 1+ p1(1 — p1), which is strictly greater than 1 as long as p; > 0. However, xy never
exceeds 1. Thus, for a sufficiently high §, the efficient strategy profile (x,q) cannot be an

equilibrium.

p2 P3 }
p1+p2)(1-p1)° (p1+p3)(1—p1)

Next, we construct an inefficient equilibrium. Let § = max { 0

so that § < 1. Consider a strategy profile (x,q) such that

° 931:%; ro = x3 = 0; and

e a1(N) = 2({2}) = s({3}) = 1,
and in any two-player subgame the active players follow the strategy according to Propo-
sition 1. Since player 2 and player 3 decline to be a proposer in the initial state, the

strategy profile is inefficient. To see that (x,q) constructs an equilibrium for § > 6, due

to Lemma 2, it suffices to verify the following two conditions.
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i) Optimality:  Calculate each player’s excess surpluses. It is easy to see that

e1(N,x) > 0 and e;({i},x) =0 for all : € N. For all i € {1, 2}, due to Proposition
(i.{1,2})

1, z; = p1 + p2, and hence

ei({1,2},x) = d(p1 +p2) —d(z1+22) =0(p1 +p2) — 0 (ﬁ + 0)

ﬁ (p2 — (p1 + p2)(1 — p1)d).

Then, § > & implies e;({1,2},x) < 0. Similarly, we have ¢;({1,3},x) < 0 for all
i € {1,3}. Given x, therefore, D; = {N}, Dy = {{2}}, and D3 = {{3}}.

ii) Consistency: Compute each player’s expected payoff:

e ui(x,q) = pre(N,x) + dzx; = p1(1 — dx1) + dx1 = p1 + (1 — p1)d (1_(fip1)5> = 1_(1p_1p1)5
o uy(x,q) =p2e({2},x)+dza=p2-04+6-0=0

[ U3(X, q) = p3€({3},X) + 5:133 =p3- 0+ 6-0=0.
Therefore, u;(x,q) = z; for all i € N. O

Even if there are multiple dominating players, as see (b) in Figure 2, they can generate
an additional advantage by forming a coalition with other dominating players and splitting
non-dominating players into two isolated groups. In the next example, we construct an

equilibrium in a chordal network in which there are two dominating players.

Example 5 (A Chordal Network). Let ¢ = ({1,2,3,4},{12,23,34,41,13}) and p =

(%, %, i, %) Suppose § > ¢ ~ 0.91.12 We construct an equilibrium (x,q) such that

6—06)8 . . _ (6—66+38%)8 |
‘iﬁlzwszm(_ai)()g_a)’@—“—W’

e 1({1,3}) = 3({1,3}) = 1; e2({1,2}) = ({2, 3}) = aa({1,4}) = qs({3,4}) = 3.

In any subgame in which the number of active players is less than or equal to three,

they follows the equilibrium strategies according to Proposition 1 and Example 4. Note

that the equilibrium welfare is z5 = gg:g%. The equilibrium payoff vector converges to

(%, %, %, 1—12) as 0 — 1. Now we verify the equilibrium conditions.

i) Odd Players’ Optimality: ~ Since § > %, Example 4 implies that :cgl’{l’g}) =

% = ﬁ and :cgl’{l’s}) = xfll’{l’g}) = 0. Given x, calculate player 1’s

excess surpluses:

o ex({L,2},) = a1 — 601 + ) = LD

2Note that § is a solution to §(8 — 85 + %) = (4 — §)(1 — 0)(4 + 26 — §2).
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2
o e1({L,3}3) = 82l _ (2, + ay) =SB

e1({1,2,4},x) = 622 50y 4+ ay 4 ag) = i‘*@z(f‘syf)

* 61(N7X):1—5mN:%

Given e1(S,x) for all S C Ny, it is routine to see that § > § implies Di(x) =
{{1,3}}. Similarly, we also have D3(x) = {{1,3}}.

ii) Even Players’ Optimality: For any {2} C S C Ny, player 2’s S-formation induces
a complete network. Thus, given x, one can compute player 2’s excess surpluses:
2,{1,2 1 9 0
o 2({1,2),%) = ea({2,3},x) = 8220 _ 5(ay 4 ay) = WD

— 2_53
e({1,2,3},%) = oy — 5(ay + a4+ 23) = 5(244(2236765(14155) =

Observe that ea({1,2},x) = e2({2,3},x) > 0 for all §; while e({1, 2,3}, x) is strictly
negative if § > §. Thus, for any 6 > §, we have Da(x) = {{1,2},{2,3}} and
similarly D4(x) = {{1,4},{3,4}}.

iii) Consistency: Given (x,q), compute each players’ expected payoffs:

e ui(x,q) = pre({1,3},x) + 8 [(p1 + p3 + 3 (p2 + pa)) 21 + 3(p2 + pa)p1],

1 5(8—86+62) +5{% ((676)5 I ;]
2

T 17220y 4(4-9)(2-9)

_ (688 _
= I@-o2—s 1
o ux(x,q) = p2e({1,2},%) + 6 [paz2 + pap2 + (p1 + p3) - 0],

5(1-6)(4—6 6—66+62)8
i (4(2)(5) L 4o H AE(4 52 )5) + 3 ﬂ
1

—66+62)5
@329 T2

and similarly us(x,q) = x3 and u4(x,q) = x4, and hence consistency holds. O

Remark (Braess-Like Paradox). Comparing between Example 3 and Example 5, we ob-
serve a negative welfare effect of adding a new communication link.'? In the four-player
circle with p; = % for all ¢ € N, the maximum welfare 0 is achieved in an equilibrium. If
we add a link between player 1 and player 3 in the circular network, then it becomes a
chordal network as in Example 5. Since odd players can form a grand-coalition immedi-
ately, the maximum welfare is %(1 + d), which is strictly greater than that of the circular

network. However, the equilibrium welfare in Example 5 is 55?2’_ 5% which is strictly less

than §, which is the maximum welfare in the circle. This observation is reminiscent of the

13This question has been raised by Vijay Krishna.
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I .

(a) Bargaining in a Circular Network (See Example 3): It takes exactly 2 periods for a grand-
coalition in any equilibrium. In the first period, any proposer forms a three-player coalition by
buying out two neighbors. Then the induced game is of two players.

°<I .

o—o—9

s

(b) Bargaining in a Chordal Network (See Example 5): The expected periods for a grand-coalition
is strictly greater than 2. In the first period, if the even players are selected as a proposer, then
they choose one of the odd players as a bargaining partner to induce a three-player circle. In the
circle, grand-coalition immediately forms. However, if the odd players are initially selected as a
proposer, then they induce a three-player chain. In the chain, the leaf players decline to make
an offer and hence an additional delay occurs with positive probability.

Figure 3: A Braess-Like Paradox

Braess’s paradox. In fact, this result does not depend on the initial recognition probability
p, as long as p2 > 0 and pg > 0.

One can observe the negative welfare effect of adding a new link by computing the
expected periods for a unanimous agreement. See Figure 3. In the circle, it takes exactly
2 periods for a grand-coalition in the equilibrium. Note that all the players fully use their
communication links whenever they are recognized as a proposer. In the chordal network,
however, the expected periods for a unanimous agreement is 2.5.'4 If the even players
are recognized as a proposer in the first period, then they chooses one of the odd players
as a bargaining partner to induce a three-player circle. In the circle, grand-coalition
immediately forms. However, if the odd players are initially recognized as a proposer,

they induces a three-player chain. In the chain, then the leaf players decline to make an

Hp2+pa) x 2+ (m +ps)[(p1 +ps) x 2+ (p2 +p4)((p1 +p3) X 3+ (p2 +pa) ((p1 + p3) x 4+---))}

1 1
=3 X245 X2+ 5 X3+ 15 X4+

=1
:1+Zk27=2.5.
k=2
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offer and hence an additional delay occurs with positive probability.

Remark. In the random-proposer bargaining model, the equilibrium may not be unique

15 However, the equilibrium

even in the class of stationary subgame perfect equilibria.
constructed in Example 3, Example 4, and Example 5 is unique in the class of symmetric
cutoff-strategy equilibria, in which identical players in terms of a position in a network

and a recognition probability play the identical cutoff strategy.

Now, we are ready to prove Proposition 3 in a case of D(g) # (). Since g is a pre-
complete, note that there exists j; and jo such that d(j1, jo; 9) = 2. Let Ji(g) = Nj, (9) \
D(g), J2(g) = Nj,(g9) \ D(g), and J(g) = Ji(g9) U J2(g). Lemma 4 provides a lower bound

of the unique dominating player’s expected payoff.

Lemma 4. Let g be a pre-complete network with D(g) = {i}. If (x,q) is an equilibrium
of T'=(g,p,0), then
z; > pi +pi(1 —pi)d. (7)

Proof. Step 1: Consider a three-person chain, that is, J; = {j1} and Jy = {j2}. Since
L) :1;572’]2) = x; and un(x,q) < @(l") = p; + 6(1 — p;), player i’s expected payoff is

v > pied(N,x)+ > pe Y ak(S)0wi+6 > pr > qr(S)wi

keN  S3i keEN  S#i
> pi(1=6(pi +6(1—pi))) + 6.
Rearranging the terms, we have the desired result.
Step 2: As an induction hypothesis, assume that for any pre-complete network ¢ with
D(q") = {i}, < |h(¢")] < a,and 1 < |Ja2(¢")| < b, =, > p; + pi(1 — pl)d. Now we consider
a pre-complete network ¢g with D(g) = {i}, |Ji(9)| = a, and |J1(g)| = b+ 1. Player i’s
expected payoff is

7 2 pie(N.x) + 3 e ae(S)dei +0 ) pi Y an(S)a. (8)

keN  S>i keN  S%i
For any k € N and S C N such that ¢ ¢ S, the induction hypothesis implies x@(kﬁ) >
pi +pi(1 —p;)d. Suppose by way of contradiction that p; + p;(1 —p;)0 > x;. Then, (8) can
be written as z; > p; (1 — §(p; + 6(1 — p;))) + dx;, or equivalently, z; > p; + p;(1 — p;)d,

which yields a contradiction. Similarly, induction argument completes the proof. 0

15To overcome multiplicity of equilibria, the uniqueness of equilibrium payoffs has been studied in the
random-proposer bargaining model. Eraslan (2002) shows the equilibrium payoff uniqueness for a weighted
majority game and Eraslan and McLennan (2013) generalizes this result to a general simple game using
fixed point index theorem. Unfortunately, those results cannot be applied to the model in which a
player has a buyout option, because a player can expect some partial payoff by forming an intermediate
subcoalition and hence the actual characteristic function that the players play is not of a simple game.
The uniqueness of stationary equilibrium payoffs is conjectured in a broader class of characteristic function
form games, but it still remains as an open question. See Eraslan and McLennan (2013) for a discussion.
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PROOF OF PROPOSITION 3 (CASE 1: D(g) # 0)

Take any j € Ji. Since (x,q) is efficient, we have (Vj' € J2) > g, ¢7(S) = 1 and
J

(Vi€ DUJ1) 3 iescn @i(S) = 1. Thus, player j’s payoff is

uj(x,q) = pym;(x) +8(pp +pn)r; +6 Y pir Y qj/(S)wg-j )
j'cds  SCN

> 6(pD +pJ1)$j + 6pJ2pja

which implies that z; > %. Summing j over Jj, we have xj; > %.
Jo 2
Similarly for J2, we have z 7, > %, and hence
1
1 1
Ty =24 + T, > PppPR0 + (9)
' : e 1_(1_pJ1)5 1_(1_pJ2)5

Now take any i € D. Player i’s optimality implies e;(N,x) > e;(D,x), or equivalently,

1—fdzny > 52D

. ’7D . . . . .
i — dxp. Since ¢P) has a single dominating player, Lemma 4 implies

xgi’D) > pp +pp(1 —pp)d and it follows that
1 —ppé(1+6 —ppd) > bz, (10)

By (9) and (10), we have

1 1
1—ppd(1+6—ppd) > 52( + ) !
ppo( ppo) P1nPJ, 1-1-=pp)d 1—(1-=pgp)d )

As § — 1, the right hand side of (11) converges to ps; while the left hand side converges
to pQJ. Since py < 1, there exists 6 < 1 such that the inequality (11) yields a contradiction
for § > 4. O

3.2.2 Case 2: No Dominating Player

Now we consider a network without a dominating player. See (c¢) in Figure 2 for instance.
Even in a case of that there is no dominating player, we will show that some players can be
a dominating player in the induced network by buying out only a part of their neighbors.
Before proving this, some lemmas are presented. First, whenever there is a dominating
player in an incomplete network, Lemma 5, Lemma 6, and Lemma 7 show dominating
players have some additional bargaining power compared to other non-dominating players.
In a network without a dominating player, Lemma 8 shows that each player’s payoff should
be strictly less than her recognition probability under any efficient equilibrium. For any
non-circular pre-complete network without a dominating player, Lemma 9 finds a player
who can be a dominating player avoiding a complete network. Combining those lemmas,
therefore, when an efficient equilibrium is assumed, at least one player can be strictly
better off by strategically delaying a unanimous agreement, which is a contradiction in

turn.
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Lemma 5. Let g be a pre-complete network with 0 C D(g) € N(g) and (x,q) be an
equilibrium of (g,p,0) with § < 1. If i € D(g) then x; > p;.

Proof. If [N(g)| = 3, due to Lemma 4, then x; > p; + pi(1 — p;)d > p; for any i € D. As
an induction hypothesis, suppose the statement is true for any ¢’ with |[N(¢')| < n. Now

consider g with |N(g)| = n. Take any i € D(g). For any k£ € N and any S such that
Ek’s) = p;; and if g9 is incomplete then wgk’s) > p; by
the induction hypothesis. Thus, letting Q; = > ;o n P (ZSaz‘ qi(S) + Qk({k})), we have

r; > pi(1 —6wn) + Qidx; + d(1 — Q;)p;, and hence z; > p; + i(jggzm > pi. O

i ¢S, if g9 is complete then

Lemma 5 says that for any dominating player, her expected payoff is strictly greater
than her recognition probability. However, we need a stronger result: the difference
between the expected payoff and the recognition probability is strictly positive even in
the limit of that the discount factor converges to one. Lemma 6 shows that there exists
such a dominating player and Lemma 7 proves it for all dominating players. For notational

) G5 _

convenience, denote A; = z; — p; and AZ(-j S) = x, pgj ) 1f g9 is complete and

,L?S)

non-trivial, by Proposition 1, note that e;(S5,x) = 5(9:5 —xg) = 0(ps — r5) = —0Ag.

Lemma 6. Let g be a pre-complete network with O C D(g) € N(g) and (x,q) be an
equilibrium of (g,p,6). There exists h € D(g) such that

pr (pp(1 = pp)é? — (1 —6))
1+ (|D| = 1)pnd

Tp — Ph =

phpp(1—pp)
Z o, =0

Furthermore, limg_yq (xp — pp)
Proof. Take any h € argmax;cy A; and let Qp, = > .o n > g5, Pigi(S). For any i € N and
S C N such that h ¢ S, since h € D(g®*®)), Lemma 5 implies l‘g’s) > pp, and hence we

have

Y

phen(D,x) + Qnozy, + 0(1 — Qn)pn
prpp(1 —pp)d% — prApd + Qré(pn + Ap) + (1 — Qn)dpn
> prpp(1 —pp)d? — pu| DIARS + Spr, + prAnd, (12)

Tp

AV

where the second inequality is due to Lemma 4, which implies
h,D
en(D,x) =6 (a"”) = p) = 8(pp + pp(1 = pp)3 = wp) = po(1 = Pp)8* — Apd,

and the last inequality comes from p, < Qp, pp > zp, and Ap < |D|Aj,. Subtracting pp,
)62 (1—
from both sides of (12), we have Ay > ph(p?ﬁ(‘gfjf)ph(; 5)), as desired. Since D C N, it

prpp(1—pp)
T+ (D—1)pn > V- M

must be pp < 1 and hence limg_,1 A}, >
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Lemma 7. Let g be a pre-complete network with 0 C D(g) € N(g) and (x,q) be an
equilibrium of (g,p,0). For any i € D(g), there exists A; > 0 such that x; —p; > A; as §

converges to 1.

Proof. We will show that lims_,; minep A; > 0. Let L = argmin,cp A;. Since g is a
pre-complete, as before there exists j; and jo such that d(ji,j2;¢9) = 2, and let Ji(g) =
N;, (9) \ D(g), J2(g) = Nj,(9) \ D(g), and J(g) = Ji(g) U J2(g). Recall Lemma 5, which
implies (Vi € D) A; > 0. Thus, for any j € J; and S C N, if ¢;(S) > 0 then either S C J;
or SN D = {l} for some ¢ € L.

Case 1: Suppose |Ji| = |J2| = 1. Then, for each j € J, ¢;({j}) + > e ({4, £}) = 1,
and hence there exists £ € L such that >, ;p; (¢;({s}) + ¢;({s,¢})) = ‘pL—J‘. Let Qp =
>iesPi (G ({7}H) + 4 ({5,03))+ 2 iep 250 Pigi(S), then Qp > H+py. Since x4 > pyee(JU
{l},x) + Qedzy + (1 — Qr)opy, it follows

AN > 0pe(Ar+Ay)+0 (|pLJ‘ +Pe> Ag— (1= 6)pe,

which implies Ay > — —0Pe  Since N —pN = Any <0, we have —Aj; > Ap > Ay,.
Thus, by Lemma 6, we have the desired result,

L L 1-— L
|L|pe N |L|pe A, > pepnpp(1 —pp)| L]
\L| —ps \L| —ps (L] = ps) (X + (D] = 1)pn)

Case 2: As an induction hypothesis, for any pre-complete network ¢’ with ) C D(¢’)
N(¢') and 1 < |J1(¢")] < a and 1 < |Jo(¢")] < b and any equilibrium (x', q’) of (¢',p',9),

> 0.

lim Ag > —
6—1

assume that lims_,; minep(y)(z; — p;) > 0. Now we consider a pre-complete network
g with 0 € D(g9) € N(g) and |Ji(g)| = a and |J2(g)] = b+ 1. Due to the induction

hypothesis, there exists Aj > 0 such that Aj > limgﬁl(xgj"]/) — py) for all @ € {1,2},
j € Ja, and J' C J,. Then, we have

we > pee(JU{ ) + | oo+ Y D> pi(gi ({5 + 4 (Ja U{L}) | 6(pe+ A0)

a€e{l,2} j€Ja

+ Z Z Z quj(Jl) 5(p€+Ale)+pD\{g}(5pg. (13)

a€{1,2} j€Ja J'Cla
If lims_,; Ay > A}, then there is nothing to prove. Suppose that lims_,3 Ay < Aj. As
0 — 1, then (13) yields zy > —ppdAy + dpe + (1 — pp)dAy, or equivalently, (1 — (1 —
pp)0)Ay > —dpiAy — (1 — 9)p. Take any h € argmax;cp A;. Since —Aj > Ap > Ay, it
follows that
(1—(1=pp)d)Ar > dpeAp — (1 —0)pe.

By Lemma 5, we have the desired result, limgs_; Ay > % > 0. ]
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Lemma 8. Let g be a pre-complete network with D(g) = (0. If (x,q) is an efficient
equilibrium of T' = (g,p,0), then for alli € N, x; = 0p;.

Proof. Since g is pre-complete and (x, q) is efficient, for all j € N, ¢;(S) > 0 implies gs)
is complete. Thus, each player ¢ can expect p; in the next period by rejecting any offer.
Suppose player i gets an offer with 3; < §%p;. By rejecting v;, i can be strictly better
since the stationary strategy profile guarantees dp; in the next period. Hence, x; > dp;
for all 4 € N. If there exists ¢ € N such that x; > Jdp;, then it must be z5 > dpy = d,

which is infeasible. O

Lemma 9. Let g be a pre-complete non-circular network with D(g) = (0. There exist

i,7 € N(g) such that i € D(g{53)) € N (gD,

Proof. Since g is pre-complete non-circular, its complete covering number is 2. Let M
be a minimal complete cover of g. Since D(g) = (), M must be disjoint. Given i € N,
then let M; € M such that i € M;. Since D(g) = 0, for all k € N, there exists at
least one k' € M} such that kk" ¢ E(g), that is, it must be |M} \ Ni(g)| > 1. We will
show that there exists ¢ € N and j € M such that ¢ € D(g@lah)y ¢ N(gt-eh), by
constructing such a pair of ¢ and j in the following two cases. First, suppose there exists
k € N such that [M{\ Ni(g)| > 2. Take i € M} \ Ni(g) and j € M¢ with ij € E(g).
Take i' € M} \ Ni(g) with ¢ # 4. Since 9)m, and 9|me are complete, i € D(gl+103}),
Since d(k,i';g) = d(k,i’;g(i’{i’j})) =2, k¢ N(g(i’{i’j})), as desired. Second, suppose, for
all k € N, |Mg\ Ni(g)] = 1. Take any ¢ € N and j € M such that ij € E(g). Take
k€ M;\ {i} and k' € M¢ such that d(k,k";g) = 2. Again we have i € D(g*{%})) and
d(k,k'; g) = d(k, k'; g®1%1)) = 2 as desired. O

PROOF OF PROPOSITION 3 (CASE 2: D(g) = 0)

Suppose (x,q) is an efficient equilibrium. Due to Lemma 8, for all i € N and all S € C;,
,S
ei(8,%) = 8 (1 — 25) = 3 (ps — dps) = 5(1 = D)ps,

which converges to 0 as § — 1. By Lemma 9, there exists i, € N(g) such that i €
D(g143D) and {i,j} ¢ C;. Due to Lemma 7, there exists A, such that xz(-i’{i’j})—pgi’{i’j}) >
A,;. By Lemma 8, then we have

ei({i,jh,x) = 0 (%Q’{i’j}) — (i + fffj))
> 6 (G + A -3+ 1))
= 04;+ (1 —6)(pi +pj)-
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As 6 — 1, note that e;({7,j},x) > A; > 0. Thus for a sufficiently high 6, e;({7,j},x) >
e;(S,x) for all S € C;, which contradicts to optimality of player . O

3.3 The Necessary Condition : Incomplete Networks

We have considered pre-complete non-circular networks. To complete the necessary condi-
tion, we have to allow any incomplete non-circular network. Proposition 4 implies that for
any game with an incomplete non-circular network, if the players play efficient strategies,

then a pre-complete non-circular network must be induced with positive probability.

Proposition 4. Let g be an incomplete network. For any efficient strategy profile (x,q),
there ezists m € Ik o(g) such that g™ is a pre-complete network. In addition, if g is a non-
circular network, then there exists m € Ilx (g) such that g™ is a pre-complete non-circular

network.

Proof. Suppose that g is neither pre-complete nor complete. Now we construct a sequence
of coalition formations which is consistent with (x,q) and the sequence induces a pre-
complete network. Take i* € argmax;c (g deg;(g). Let I(g) = {i € N(g) | Ci(g) = 0}

Let g1 = g and take i1 € argmax;cs(g,)d(i,4*;91). Pick any S such that g;, (S1) > 0.

1),

g91)
Let go = gl Similarly, pick io € argmax;e(g,) d(i,i*;g2). Pick any Sy such that
gi, (S2) > 0. Since (x, q) is efficient, |S1| > 2, |S2| > 2, and so on; and I(g1) 2 I(g2) 2 - - .
Thus, one can repeat this process until I(gr) = (), after which gr is a pre-complete
network. This proves the first part. In addition, assume that ¢ is not circular. If g is a
tree, then any induced network cannot be circular and hence g7 is not circular. If g has

a cycle but not a circular network, then deg;.(g) = deg;«(gr) > 3, and hence g7 cannot

be circular. O

4 Non-transferability of Recognition Probabilities

We have assumed that the initial recognition probabilities are transferable. That is, when
they trade their communication links, they also trade their chances of being a proposer
as well. In some other environment, however, players cannot trade their recognition
probabilities. With non-transferable recognition probabilities, instead of (1), we define
the recognition probabilities in any state 7 in the following way:

S ifie N

pr = >_keNT Pk (14)
0 otherwise.

With non-transferable recognition probabilities, obtaining an efficient equilibrium is

impossible even in circular networks.
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Theorem 2. With non-transferable recognition probabilities, an efficient equilibrium

exists for all discount factors if and only if the underlying network is complete.

Before proving the theorem, we construct an inefficient equilibrium in a four-player

circular network as an example.

Example 6 (A Circular Network with Non-Transferable Recognition Probabilities).

Let g = ({1,2,3,4},{12,23,34,14}) and p = (§,1,1,1)- If 0 > Z, then there exists a

cutoff strategy equilibrium (x, q) such that

Y SRS S
¢ 1 =22 = 3p5) X3 = T4 = 5p=)

e (1({1}) = 2({2}) = 15 ¢3({3,4}) = qa({3,4}) = 1.

That is, player 1 and player 2 decline to make an offer and wait for a three-player complete

network induced by player 3 or player 4.

i) Optimality: Since recognition probabilities are not transferable, note that $§1,{1,2}) =

1,{1,4 1,{1,2,4 .
a:(l AL4D % and (135 AL24h) _ % Given x, player 1’s excess surpluses are:

o e1({1,2},x) = 36 — d(z1 + 22) = %

o er({1,4},%) = 30— (a1 + 24) = Y5y

o e1({1,2,3},x) = 50 — 8(z1 + 22 + 23) = %.

Given 6 > 2, since e(S,x) for all {1} C S C Ny, we have Dy(x) = {{1}}, which
implies ¢ ({1}) = 1. Similarly we have ¢2({2}) = 1. Now calculate player 3’s excess

surpluses:

5(2—38)
3(2-9)

e e3({2,3},x) = %5 — §(xo + x3)

o e3({3,4},x) = %5 —(x3 + x4) gg:g%

o e3({2,3,4},%) = 16 — 3(wa + v + 24) = 252,

Given § > %, since e3({3,4},x) > 0 and e1(S5,x) < 0 for any other {1} C S C Ny,
we have ¢3({3,4}) = 1, and similarly ¢4({3,4}) = 1.

ii) Consistency: Given (x,q), calculate each player’s expected payoff:

o ui(x,q) = pre1({1},%) + 0 ((p1 + p2)z1 + (p3 + pa)3)
5 5
:i'0+5(%m+%§) =39 — b
e u3(x,q) = pse3({3,4},x) + dz3

_1(1 52 2 5 _
=1 <§5 -2 6(2—6)) T 520 — 0 — I3
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and similarly, us(x,q) = x2 and u4(x,q) = x4.

The equilibrium payoff vector converges to (%, %, %, %) Furthermore, the equilibrium pay-
off vector is not unique even as § — 1. Note that there exists another class of equilibrium
payoff vectors which converge to (%, %, %,0) or its permutations. However, there is no

symmetric equilibrium. O

Now we prove Theorem 2. Since Proposition 1 still holds with non-transferable recog-
nition probabilities, this directly proves the sufficient condition. Proposition 5 shows that
an efficient equilibrium is impossible for any pre-complete network. Due to the first part

of Proposition 4, then, the necessary condition is proved for any incomplete network.

Proposition 5. Suppose that recognition probabilities are not transferable. Let g be a
pre-complete. For any p, there exists § < 1 such that for all § > &, any efficient strategy
profile (x,q) cannot be an equilibrium in I' = (g,p,d).

Proof. Since g is incomplete, N(g) \ D(g) # 0. After renaming, let N(g) \ D(g9) =
{1,--+,L}. For each 1 < /¢ < L, take any S; such that g,(S;) > 0. Since (x, q) is efficient,
Sy € Cy. Due to Proposition 1, we have xy’s’“]) = pge’&). Since non-transferable recognition

probabilities are assumed, we have

(ZjEN\Sg Pj) (ZjeSe\{é} Pj)

> jen\s, Pi + P

. (15)

(¢,5¢) (¢,S¢) Pr § :
ZjeN\SZ Dj + Do

In addition, since Sy-formation is optimal for each ¢, it must be e;(Se, x) > e/ ({¢},x) = 0,
(€,5¢)

or equivalently, > ;g x; <z, ”". Summing this over ¢ and plugging (15), we have
L L
DD TS D pip (16)
(=1 j€S, (=1 j€E€Sy

where

B ZL: (ZjeN\Se Pj) (ZjESg\{E} Pj)
P = ZjeN\sl Dj + e '

Note that p is strictly positive and does not depend on §.

On the other hand, for any k’s S-formation such that ¢x(S) > 0 and any j ¢ S, it must

be l‘(’k,S) _ p(k,S) o pj

; ; = Soma T > p;. Then, for each j € N, j’s continuation payoff is

wa) = pmi()+33 p | Do an(S)es+ > an(S)a"

kEN REY S3j

.S

> 6> pe | Y ak(S)z; + ZQk(S)ng )
keN S3j S35

> Qjzj+ (1 - Q;)pj.
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where Q; = > cn Pk D555 ; qr(S). By the consistency condition, it follows that

(1= Qy)dp;
Tj > 0,0

Combining (16) and (17), we have,

53y 1= pf+p<zzpj (18)

{=1j€S5, (=1 j€S,

(17)

As § — 1, 52@ 12-jes, 11 %J)fj converges to 25:1 >_jes, Pj- However, this contradicts
to the fact that p > 0 is fixed. Thus, there exists § < 1 such that for all § > §, the

inequality (18) is violated. O

Remark. In network-restricted unanimity games, welfare can be improved by allowing for
players to trade their recognition probabilities. If the recognition probabilities are not
transferable, a proposer has less incentive to form a coalition. In general characteristic
function form games, however, the effect of transferability of recognition probabilities
on welfare may be negative. For instance, when there exists a veto player, non-veto
players may form a union, to be a new veto coalition, as a transitional state, rather than
immediately forming an efficient coalition. If the recognition probabilities are transferable,
then they have stronger incentive to form transitional inefficient coalitions. Thus, for a
non-unanimity game, banning players from trading recognition probabilities may improve

welfare. See Lee (2014) for details.
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Appendix

Proof of i) in Proposition 1.

Case 1: |N(g)| = 2. Let N(g) = {i,j} and p = (ps, pj) with p; + p; = 1. We show that
a cutoff strategy profile ({p1,pa2}, {¢:(N) = 1,¢;(IN) = 1}) is an equilibrium by verifying
player ¢ has no profitable deviation strategy given player j’s cutoff strategy. Note that
player i’s expected payoff from following her cutoff strategy is p;(1 — dp;) + p;(0p;) = pi.
First, consider player i’s proposal strategy. Either making an offer with y; < dp; or
declining to make an offer yields an expected payoff dp;. Making an offer with y; > dp; is
not profitable since the offer y; = dp; will be accepted. Thus, player i cannot be better off

by deviating from the given proposal strategy. Next, consider player ¢’s response strategy.
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By rejecting any offer, player 7 expects the payoff p; in the next period. Thus, rejecting
any offer with y; < 0p; is optimal. It is clear that accepting any offer with y; > dp; is
optimal. Therefore, player ¢ has no profitable deviation strategy given player j’s cutoff
strategy.

Case 2: |[N(g)| > 2. Suppose that, for any game (¢’,p’,d) with [N(¢")| < |N(9)|, (p’, @)
is an equilibrium, where p’ = {{p{" }ien~ }reri(y) and @' = {{ }ien~ }rem(y)- Note that,
in such an equilibrium, for each i € N(g’), player i’s expected payoff is p,. We show that
a cutoff strategy profile o = (p, q) is an equilibrium for (g, p,d) by verifying player i has
no profitable deviation strategy given other players cutoff strategies. Recall that if player
i follows the cutoff strategy, then her expected payoff is p;(1 — &) + dp; = p;. Since all
the other players except for ¢ are supposed to play stationary strategies, it is enough to

consider the proposal strategy and the response strategy of player i separately.

e Proposal strategy: Consider player ¢’s proposal strategy ¢; such that ¢;(S) > 0
(4,5)

for some S C N instead of ;. By forming S C N, player i expects p, in
the subsequent game, because (¢(»%),p(»9) §) is a less-than-n-player game with a
complete network. In order for S to form, it must be y; > dp; for all j € S\ {i}.
Note also that p(i’s)

16 . . . .
;< pg.”” Thus, player i’s proposal gain from S-formation is

5P§i’s) - Z yj < dps — Z opj = Op;. (19)
jes\{i} jes\{i}

On the other hand, player ¢’s proposal gain from following g; is

1= > dpj=(1—08)pn+0pi=(1—6)+p;. (20)

JEN\{i}
Since (19) is strictly less than (20), any proposal strategy which forms S C N is not
optimal for ¢. Among proposal strategies which form N, it is clear that making an

offer with y = dp is optimal.

e Response strategy: Since each j € N \ {i} is supposed to play the given cutoff
strategy, player i is guaranteed at least dp; by rejecting any offer. Thus, it is optimal

for ¢ to accept any offer with y; > dp; and to reject any offer with y; < dp;. O

Proof of ii) in Proposition 1.
The statement is true for |[N(g)| = 2 from the proof of Proposition 1. As an induction

hypothesis, suppose that the statement is true for any game with less-than-n-player games

16With transferable recognition probabilities, it holds with equality. With non-transferable recognition
probabilities, the inequality is strict.
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and now consider a game I' = (g,p,d) with |[N(g)] = n. Due to Lemma 1, only cutoff

strategy equilibria are considered. Suppose that there exists a cutoff strategy equilibrium

(x,q).
Case 1: Suppose that ¢ = ¢. For each i € N, since » ;o n Pk D gy @(S)L(i € S) =1,
we have

u;i(x,q) = pi (1 — dxn) + dx;. (21)

Due to consistency, we obtain w;(x,q) = x; and xy = 1. Plugging them into (21), we
have x; = p;. Thus, for any cutoff equilibrium involving maximum coalition formation
strategies ¢ yields a payoff vector p.

Case 2: Suppose that there exists ¢ who plays a non-maximum coalition formation

strategy so that ¢;(S) > 0 with S C N. This implies that
e zy =un(X,q) < 1; and
e there exists S C N such that i € S and €;(S,x) > ¢;(N, x).

Thus for each i € S, we have
5$§i’s) —dxg>1—dxy >1-6.
By the induction hypothesis, the inequality implies
dxs +1 < dps + 0. (22)

On the other hand, by letting Q; = > 3 cny Pk D gy a(S)L(j € 5), for each j € S, we

have

z; =uj(x,q) > p;(1—0dzn)+(Qjz; + (1 —Q;)p))
> pj(1-10)+6(Qjz; + (1 —Qj)p;)

= pj+0Qj(x; —pj). (23)

Rearranging the terms, (23) yields x; > p; for all j € S. However, this contradicts to
(22) for all 6. O

Proof of Proposition 2.

Define n(g) = [|N(g)|/2] — 1. If g is circular and 7(g) = 0, then g must be a three-player
circle, which is complete. Proposition 1 proves this case. As an induction hypothesis,
suppose that, for all circular network ¢’ such that n(¢g’) < m, a cutoff strategy profile

(x',q') is an equilibrium for (¢,p/,8), where x' = {{8"9p/™}ic v(gm) }reri(y)- Now we
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show that a cutoff strategy profile (x,q) is an equilibrium for (g,p,d) with a circular
network g and n(g) = m, where x = {{(5”(9W)p§r}ieN(gﬂ)}Wen(g). Take any 7 € N and let
N; = {i,j,k}. We verify the equilibrium conditions for player i.

i) Optimality: After i’s maximum coalition formation, the active players face a game
with a circular network ¢’ and n(¢g’) = m — 1. Due to the induction hypothesis,

since x

(iv{izjzk}) — 677’1—1(

i

pi + Dj + pr), we have

ei({i,j, k},x) = "(pi + Dpj +pr) — 0(z; + i+ xr)
= 0" (pi+pj+pK) —6(8"pi+6"p; + 6" py)

= 0"(1=06)(pi +pj+ i) (24)

Suppose i decline to make an offer, that is ¢ forms {i}. Since e;({i},x) = 0 is
strictly less than (24), i’s {i}-formation is not optimal. Suppose i forms {3, j}.

Note that

Lt _ [0 i+ p)) if [N (g)| is even,
' 8™ (pi + p;) if N (g)| is odd.

Thus, we have

€i({i,j},x) < 5m(pi —i—pj) — (5(.732‘ + xj) = (5m(1 — 5)(}% +pj),

which is strictly less than (24), and hence i’s S-formation with |S| = 2 is not

optimal.

ii) Consistency: Since all the players play maximum coalition formation strategies,

player i’s continuation payoff is:

uix,q) = pie({i, gk}, %) +8 | (i +pj o)zt Y. p ™

LeN\{i,j,k}
= pid™(1 = 6)(pi + pj + pk) + 6(pi + pj + pr)zi + 6(1 — (i + pj + Pr))3"™ i
Since u;(x,q) = z;, rearranging the terms, we have

(1 —=0(pi +pj +pr))xi = pid™ (1 = 8)(pi +pj + o) + (1 — (pi + pj + )" Dis

which yields x; = §"p;. O
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