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Abstract

We examine the optimal management of emission permit markets when banking but not

borrowing of permits is allowed. The regulator maximizes expected social welfare through an

optimal allocation rule in an infinite horizon setting. The policy is second-best as the emission

cap is set before the uncertainty about the current state of the economy is resolved. In this setting,

the role of banking is to decrease the regulator’s risk as it generates an endogenous price floor in the

permit markets. We show that the regulator’s optimal policy adjusts the emissions cap irrespective

of the existing number of permits in the bank, with the implication that the regulator neutralizes

the effect of the existing bank on future permit prices. We derive the optimality conditions for

the second-best emission cap with banking and solve the model analytically in the case of IID

shocks. Our results show that the discount factor together with the slopes of the marginal damages

and benefits determine the welfare gains from allowing banking of permits. Finally, to address

the current state of the EU Emission Trading Scheme (EU ETS) and guide the design of future

permit markets, we solve the model numerically with persistent shock process and show that the

optimal emission cap is positively correlated with business cycles, meaning that during downturns

the regulator should tighten the cap. The expected emissions and permit prices also correlate

positively with economic activity.
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1 Introduction

Possibility to bank permits is a common feature in many of the current and proposed emission permit

systems such as The European Union Emissions Trading Scheme (EU ETS) and The American Power

Act.1 The motivation for including banking provisions is commonly framed as a mean to provide

intertemporal flexibility and improved efficiency in abatement effort as well as protection against

random fluctuations in economic environment (Chevallier, 2012). Recent experiences in EU ETS have,

however, led to demands for market interventions such as “backloading” to increase the prevailing

permit prices viewed as too low to be effective and also to moderate the quantity of permits held

in the bank.2 The need for such arbitrary changes raises concerns over the future viability of permit

schemes, and going forward, it is likely that rule-based interventions will be preferred to regulator’s

discretion. Surprisingly, the current literature on permit markets with banking does not provide such

rules that aim at maximizing social welfare.3

The purpose of our paper is to examine the optimal and active management of permit markets in the

presence of uncertainty and the possibility to bank permits for future use. Our analysis contributes

to the past research on the second-best policy design by explicitly introducing a regulator whose goal

is to maximize social welfare through an optimal allocation rule in an infinite horizon setting. Like in

Schennach (2000), our main focus is on such permit systems where banking is allowed but borrowing

is not.4 The need for adjusting the periodic allocation stems from the fact that the regulator sets the

emissions cap before learning the current state of the economy, whereas firms and speculators have the

advantage of observing the current state prior to their actions. Given this information structure, our

work also continues in the spirit of Weitzman’s (1974) seminal paper by determining when a permit

system with banking dominates tax-based regulations and permit systems without banking in welfare

terms.

The literature on permit banking identifies two main motives for allowing permit banking in cap

and trade schemes. The first motive is deterministic and driven by discounting, whereas the second

one is framed in terms of inherent uncertainty in the ultimate cost of abatement (Fell et al., 2012).

Deterministic banking motive refers to firms’ decision to smooth abatement costs through time given

that the periodic permit allocation does not satisfy inter-temporal optimality conditions (Cronshaw
1The first successful emissions trading scheme was The Acid Rain Program established 1990 with the purpose

of cutting the SO2 emissions from electricity generation. It also allowed banking of unused permits for future use

(Schennach, 2000).
2The EU Commission has put forth a policy proposal to create a reserve mechanism to adjust permit supply in times

of unexpected demand shocks that threaten to drive the price too low and hence create a glut of banked permits.
3Newell et al. (2005) examine "quantity-plus policies" that aim at stabilizing the permit price at some desired level

but their focus is on cost efficiency.
4Almost all of the current and proposed permit schemes considerably restrict borrowing from future allocations. For

example, EU ETS implicitly allows borrowing from the next year’s allocation, but the extent of such borrowing remains

limited (Chevallier, 2012). Some recent papers have examined the welfare effect of various restrictions on borrowing

(Fell et al., 2012; Leard, 2013)
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and Kruse, 1996; Rubin, 1996). This smoothing may or may not improve welfare depending on the

type of damages. Uncertainty banking, on the other hand, refers to firms’ decision to hedge against

future cost shocks as well as to smoothing of the effects of random fluctuations in input prices, demand

and weather (Schennach, 2000).

We propose that banking also has a third motive that arises from the planner’s active policy to

maximize welfare and from the firms’ speculative demand to bank permits. We show that the planner

takes advantage of an endogenous price floor created by the expectations for future permit price. The

expected price is in turn determined by the planner’s policy and by any information conveyed in the

most recent shock realization. This third motivation for banking has not been explicitly stated in

the literature and its presence provides some new results. In effect, the presence of an endogenous

price floor creates a hybrid policy that combines the properties of the quantity and price policies.5

The planner can then utilize the presence of an endogenous price floor by increasing the level of the

optimal cap relative to no-banking case. The reason for this is that the presence of a price floor reduces

the efficiency losses incurred at low shock levels. This in turn enables the planner to hedge against

efficiency losses at high shock levels by relaxing the cap.

Kling and Rubin (1997) were first to study social efficiency of inter-temporal permit trading, with

both banking and borrowing provisions. Their analysis compares emissions in an unregulated market

outcome to the socially optimal level of emissions, and they propose an inter-temporal trading ratio

(ITR) that can achieve the latter. They conclude that without ITR, inter-temporal trading may not

be welfare improving. Yates and Cronshaw (2001) introduce uncertainty in the problem of second-best

policy. They use a two-period model to examine whether inter-temporal trading improves efficiency

and if so, how the system should be optimally designed using ITRs. They find that inter-temporal

trading should be allowed only when the slope parameter of marginal abatement costs is greater than

that of the marginal damage function. They also provide a preliminary discussion of a full-fledged

dynamic setting in which the regulator can update the allocation policy. Our paper is most closely

related to paper by Feng and Zhao (2006) which refines the analysis in Yates and Cronshaw (2001) by

distinguishing between three separate effects of banking on welfare. Their focus is on comparing two

different ITRs: unitary and monetary equivalent interest rate. We show that in a dynamic framework

where borrowing is restricted some of their results do not continue to hold. For example, in most

relevant cases, the cap is set at a higher level than in permit systems without banking. We also show

that the optimal number of new permits allocated completely neutralizes the effect of the existing

bank of permits.

The previous literature has mostly concentrated on emission trading schemes where the regulator sets

the allocation path of new permits at the time of introduction of the policy. Newell et al. (2005) is
5Roberts and Spence (1976) were first to propose a hybrid policy with price floors and ceilings. Williams (2002)

discusses the need for research for such policies in combination with banking. Newell and Pizer (2003) mention that

inter-temporal trading of permits makes quantity policies behave more like a price policy.
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an exception. They examine whether banking provisions can be used to emulate the properties of

tax based instruments in a setting where marginal damages are relatively flat. They hypothesize that

the regulator may want to achieve a certain expected permit price level through active management

of the policy through periodic allocation rules. They, however, allow for borrowing of permits which

alters the permit markets considerably. Most recently, Fell et al. (2012) and Leard (2013) examine

welfare properties of permit banking in a multi-period setting, but they do not solve for the optimal

permit allocation rule under uncertainty and they do not allow for active management of the cap

levels. Defining such an optimal rule is one of the main contributions of our paper.

We first analyze the planner’s optimal policy in a special case where the periodic random shocks are

independent and identically distributed. As to be expected, we find that the policy performs better

the closer it can follow the marginal damage curve. In the case where marginal damages are flat, like

with greenhouse gas (GHG) emissions, banking allows the planner’s policy to approach the marginal

damage curve. This occurs especially when the discount factor is close to unity, or alternatively, when

the length of time between allocations is short. However, with steep marginal damages, banking seems

to distort the policy away from the marginal damages. In an intermittent case banking may yield

welfare gains compared to the quantity policy without banking or to a tax policy. Finally, we use

our model to examine the optimal management of present-day cap and trade systems such as EU

ETS. We show that in the presence of persistent business cycles, the planner acting optimally makes

considerable adjustments to the periodic cap while keeping the expected permit price at a constant

level. During economic downturns, the cap is tightened, and during upturns, it is relaxed. Adjustments

are done in such a manner that during periods of high economic activity, the expected permit price

is higher than in periods of low activity. We conclude that with persistent business cycles there is an

even greater need for optimal allocation rules for new permits.

The rest of the paper is organized as follows. Section 2 presents the description of the economy and

the permit market outcome. Section 3 presents the planner’s problem and the resulting optimal policy.

Section 4 describes the optimal policy under both IID and persistent shocks as well as in the case of

climate change mitigation policy. Section 5 concludes.

2 The economy and permit markets

Following the setup in Feng and Zhao (2006), the economy produces a consumption good, qt, that yields

stochastically evolving net benefits (surpluses) given by a function B(qt, θt).6 The marginal benefit

is strictly decreasing, Bqq(q, θ) < 0, and satisfies conditions Bq(0, θ) > 0 and limq→∞Bq(q, θ) < 0.7

Random variable, θt, represents market fluctuations such as shifts in consumer demand and cost of
6Other interpretations of q are also possible, for example, it can represent the use of some unspecified input.
7Notation Bqq has the standard interpretation as the second derivative of benefit function with respect to q. The

variables are, in general, time dependent. To avoid notational clutter, we omit the time indices whenever there is no

risk of confusion.
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production, with high realizations leading to higher marginal net benefits from q, Bqθ > 0.8 After

the current value of θt is realized, the optimization problem maxq B(q, θ) determines the unregulated

outcome, and the unregulated level of production is implicitly defined by the problem’s first order

condition:

Bq(q, θ) = 0. (1)

Denote the unregulated solution by q0(θ). By the implicit function theorem, q′0(θ) > 0, that is, the

quantity produced and consumed is increasing in θ.

Production of qt generates environmentally harmful emissions, treated here as an externality. We define

the resulting environmental damages in the next section when we present the planner’s problem. To

simplify notation, we measure qt in units of pollution emitted. A regulator, whose goal is to limit

emissions from good qt, imposes a unit price pt on emissions. This price can be either a Pigouvian tax

or alternatively, a price of an emission permit. The regulated outcome in both cases is determined by

the following optimization problem:

max
q
B(q, θ)− pq.

The regulated production level, q = q(p, θ), is implicitly given by the first order condition

Bq(q, θ)− p = 0. (2)

The following properties hold by the implicit function theorem: qp(p, θ) = B−1
qq < 0 and qθ(p, θ) > 0.

That is, by increasing the unit price of emissions the regulator can reduce the quantity emitted. Note

that unregulated outcome q′0(θ) ≡ qθ(0, θ).

Under a tax system the unit price of emissions is exogenously given. In a cap and trade system,

however, the price of a permit is endogenously determined, and it depends on the number of permits

available, Qt, and the current shock term, θt. If the unregulated market emissions, q0(θ), are less than

the cap, the cap is not binding and the price of the permit will be zero, and when the emission cap

is binding, there will be a positive permit price. These equilibrium conditions for the permit market

can be written as

p ≥ 0, Q− q ≥ 0 and (Q− q)p = 0. (3)

With no inter-temporal trade of permits allowed, the regulator simply voids all excess permits at

the end of each period. If banking of permits is allowed, then it becomes possible to carry over

current permits to the next period.9 To model this, we introduce speculative banking demand for

permits, denoted by bt. The decision to bank permits depends on the following inter-temporal arbitrage

condition:

bt ≥ 0, −pt + βEtpt+1 ≤ 0 and (−pt + βEtpt+1)bt = 0, (4)
8We do not need to make assumptions with respect to the properties of Bθ and Bθθ.
9Our model does not allow for borrowing of permits from future periods. This constraint is more or less in line with

the current practices in the EU-ETS. In addition, throughout the paper, we assume the inter-temporal trading ratio

(ITR) to be equal to unity like in Fell et al. (2012).
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where β = (1 + r)−1 is the discount factor and r the periodic interest rate. Banking is not profitable

if the expected present value of the next period’s permit price is lower than the current permit price.

If the opposite holds, banking becomes profitable and, in a competitive equilibrium, all arbitrage

possibilities are fully exploited. Thus, banking demand increases the current permit price until the

second inequality in (4) holds as an equation.10

Banked permits contribute to the next period’s emissions cap. The regulator allocates ∆t new permits

to the market, totaling in an emission cap, Qt

Qt := ∆t + bt−1. (5)

Banking of permits alters the earlier market equilibrium conditions in (3) via the presence of specu-

lative banking demand and banked permits from previous periods. More importantly, possibility to

bank permits enforces a strictly positive permit prices.11 The new market equilibrium condition with

banking can be written as

Qt − qt − bt = 0, (6)

where the cap is given by (5). Since borrowing of permits is forbidden the amount of permits banked

can be zero or positive. For example, suppose that bt = 0. This means that the current permit price,

pt > E≈pt+1, is high enough to discourage banking for future periods. If bt > 0, then the current

price matches the expected present value of the future permit price, i.e. pt = βEtpt+1. Thus, the

banking motive in effect sets an endogenous price floor for permit prices as the permit price can be

higher than the present value of next period price but not lower. The level of the price floor depends

on the discount factor and the inter-temporal persistence of shocks, and moreover, it is endogenously

intertwined with the regulator’s policy function as we will see later. The effect of speculative banking

is therefore to transform the cap and trade policy into a version of hybrid policy with a price floor (e.g.

Roberts and Spence, 1976), and the regulator can in turn take an advantage of this feature, which we

soon demonstrate. But before that, we characterize the price and emissions outcomes in more detail.

There are two possible market outcomes under a permit policy with or without banking: either the

emissions are equal to the periodic cap, Qt or the emissions are lower than the cap. If the emissions are

equal to the cap, qt = Qt, i.e. the cap is binding, then the permit price is simply determined through

the market equilibrium condition (2). If the cap is not binding, the actual level of emissions, qt < Qt,

is determined in the market by a given level of cut-off market price of the emission permit, p̃t. In the

case of no banking, from equation (3) it is obvious that a non-binding cap leads to a permit price

equal to zero. Whereas, in the case of banking, a non-binding cap indicates positive banking. The

speculators’ decision rule (4) determines that the current permit price is equal to the present value of

expected next period price of the permit. Thus, the cut-off price levels are p̃t = 0 and p̃t = βEtpt+1

10Banking can be understood as a nondepreciating storage. Thus, banking decision follows the normal rules of com-

petitive storage, see e.g. Deaton and Laroque (1992) and Amundsen et al. (2006).
11The price is positive only if the allocation of new permits is moderate enough to generate a positive probability for

the cap to be binding at some point of time in the future.
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for permit market without and with banking, respectively. When inter-temporal trading of permits

is allowed, the speculative demand absorbs the supply of excess permits, whereas when banking is

not allowed, there is an excess supply of permits and they hence have no value. The resulting market

emissions are given by relation

qt = min {q(p̃t, θt), Qt} (7)

and current permit price

pt = max {p̃t, Bq(Qt, θt)} , (8)

where the cut-off price level is p̃t = 0 and p̃t = βEtpt+1 for permit market without and with banking,

respectively. The market emission function, q(p, θ), is defined through equation (2).12

The current realization of the shock θt ultimately determines whether or not the cap is binding.

Since high shock realization leads to high emissions, i.e. qθ(p, θ) > 0, there is a cut-off level of shock

realization that divides shock realizations into binding and non-binding regimes. If the realized shock

is higher than an endogenously determined cut-off shock level θ̃t, the cap is binding. In the opposite

case the cap is not binding.

Definition 1. The cut-off value of shock, θ̃t, is the shock realization below which, the cap level Qt is

not binding with current price p̃t, i.e.

θ̃t := θ(Qt, p̃t), (9)

where function θ(q, p) is implicitly defined by the relation Bq(q, θ(q, p))− p = 0.

The function θ = θ(q, p) states the unique value of shock realization associated with quantity–price-

pair (q, p). By the implicit function theorem and given the assumptions on the properties of B, we

have: θq(q, p) > 0 and θp(q, p) > 0. With low shock realizations, θt < θ̃t, the cap is not binding and

emission and price outcomes are determined through left-hand terms of max and min functions on

equations (7) and (8), respectively. With high shock realizations, θt > θ̃t, the cap is binding and

right-hand terms are active.

The market outcome is determined through equations (7) and (8). When banking of permits is allowed,

the cut-off price, p̃t = βEtpt+1, is based on the expectations of future market conditions and on the

regulator’s policy. Thus, the resulting market equilibrium cannot be specified without first examining

the regulator’s problem.

3 The policy

3.1 Planner’s Problem

Emissions from the production of the market good, q, cause environmental damages denoted by an

increasing and convex damage function D(q), i.e. Dq(q) > 0 and Dqq(q) ≥ 0. A benevolent social
12Note that Qt ≡ q(Bq(Qt, θt), θt).
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planner observes this externality and chooses the level of the policy instrument to maximize the

expected social benefits. We next characterize the optimal cap and trade policy in a second-best setting

and compare it with the first-best and second-best tax policies. The policy is second-best, since the

planner has to set the environmental policy prior to observing the current shock realization (Weitzman,

1974; Yates and Cronshaw, 2001; Feng and Zhao, 2006).13 In contrast, the market agents decide their

actions after the shock is realized. We assume a Markovian shock process, i.e. Etθt+1 = E[θt+1|θt].14

Let us first examine the case of a cap and trade policy with banking. The problem of the regulator is to

decide an optimal sequence of new emission permits to be allocated for each period {∆t}∞t=0. Given the

amount of permits banked in previous period bt−1, the resulting emissions cap for the current period is

Qt = ∆t+bt−1. The information structure is assumed to be such that when deciding the allocation ∆t

the planner knows the previous period values of all the variables. Especially, the regulator knows the

the amount of permits banked, bt−1. This is reasonable as the regulator controls both the allocation

of new permits and the invalidation of used permits. We define the information set of the regulator as

Ωt−1 := {bt−1, θt−1}. Under this information set, the regulator knows the cap, Qt, which results from

allocating ∆t new permits. Instead of using the allocation of new permits we formulate the regulator’s

problem as one of setting the sequence of optimal emission cap levels, {Qt}∞t=0. The optimization

problem of planner is dynamic and we formulate it as a dynamic program. We consider only a set of

stationary and time-consistent policies. The Bellman equation of the problem is

V (bt−1, θt−1) = max
Qt

Et−1[B(qt, θt)−D(qt) + βV (bt, θt)], (10)

where emissions qt are given by the market equilibrium determined in equations (7) and (8), with

cut-off price p̃t = βEtpt+1. We cannot proceed without first examining the equilibrium emissions.

Analogously to the Deaton and Laroque (1992), the equilibrium of the emission permit markets is a

price function pt = f(Qt, θt, bt−1) implicitly defined by the market price equation (8)

f(Qt, θt, bt−1) = max {βEtf(Qt+1, θt+1, bt), Bq(Qt, θt)} . (11)

From here we can observe that the assumed information structure and, therefore, regulator’s ability

to control the cap levels, makes the amount of permits in the bank, bt−1, redundant. This is a crucial

observation on which our approach and results rely on. We next define the reduced equilibrium.

Definition 2. A stationary rational expectations equilibrium is a function f̂(Qt, θt) defined through

f̂(Qt, θt) = max
{
βEtf̂(Qt+1, θt+1), Bq(Qt, θt)

}
. (12)

The equilibrium emissions and their properties are given in a following lemma.

Lemma 1. Given an equilibrium f̂(Qt, θt) the corresponding equilibrium emissions are

q̂(Qt, θt) := min
{
q(βEtf̂(Qt+1, θt+1), θt), Qt

}
. (13)

13Assuming there are no possibilities to design a menu of contingency dependent policies.
14We use short-hand notation, Etθt+1 := E[θt+1|Ωt], where the set Ωt contains all the information available to the

planner in period t. We use the notations for the conditional expectations interchangeably.
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The following property holds:

q̂Q(Qt, θt) =

 0, if θt ≤ θ̃t,

1, if θt > θ̃t.
(14)

The cut-off shock level is θ̃t = θ(Qt, βEtf̂(Qt+1, θt+1)) and θt ≤ θ̃t and θt > θ̃t denote cases where the

cap is non-binding and binding, respectively.

Proof. Appendix A.1.

Although, the market equilibrium is not yet completely solved as the definition (13) is only implicit

and the effect of the emission cap policy unspecified, we can proceed in analysis of the regulator’s

problem. The Bellman equation (10) can be recast as

V̂ (θt−1) = max
Qt

Et−1[B(q̂(Qt, θt), θt)−D(q̂(Qt, θt)) + βV̂ (θt)], (15)

where market reaction function is given by the equilibrium emissions function (13). Since the only

state variable is an exogenous shock, we can restate the problem as a sequence of static optimization

problems

max
Qt

Et−1[B(q̂(Qt, θt), θt)−D(q̂(Qt, θt))]. (16)

Since the emission response function (13) is determined through the market equilibrium (12) the op-

timization is in effect constrained by the equilibrium function. The optimization leads to a stationary

policy that sets the emissions cap for each period, i.e. Qt = Qbank(θt−1). In a rational expectations

equilibrium, the market agents anticipate correctly the policy rule that sets the cap. Given the infor-

mation structure of the market agents, at period t they observe the shock realization θt and, therefore,

know the next period emissions cap, Qt+1 = Qbank(θt), too. However, they do not know the next pe-

riod price of the emission permit as it depends also on the shock realization of that period. In this

sense, the problem of the speculative agents is easier under this kind of policy than in the competitive

storage setting by Deaton and Laroque (1992). However, the market agents have here less information

than in a two-period models of emission permit policy by Yates and Cronshaw (2001) and Feng and

Zhao (2006).

It should be noted that if the shock θt is identically and independently distributed (IID), the previous

shock realization does not convey any information of future shock realizations. Thus, in the IID case,

the stationary policy degenerates into static one with single value, i.e. Qbank(θt−1) = Q, for all θt−1.

In this case the cap is always set to a given level and it is optimal in all the contingencies.

3.2 Characterization of Policy

As stated above, the planner’s problem (16) leads to a stationary policy Qt = Qbank(θt−1) for the

optimal emission cap level. Thus, it is obvious that in a given setting, the optimal cap is independent of

the existing bank of permits. We state the implication of this observation in the following proposition:
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Proposition 1. The optimal number of new permits allocated completely neutralizes the effect of the

existing bank of permits, i.e.

∆t = ∆bank(bt−1, θt−1) := Qbank(θt−1)− bt−1. (17)

Since the planner cares only for the emissions and since the cap, Qt, is the only instrument in use,

it is irrelevant for the planner, whether the cap stems from the newly allocated permits or from the

bank. As a consequence, allocation of new permits adjusts fully to neutralize the effect of the existing

bank. It is worth noting that the existing literature does not explicitly state the result in Proposition

1. Newell et al. (2005) propose a similar type of a rule, but in that paper the regulator’s goal is to fix

the permit price to some preferred level in a setting where both banking and borrowing are allowed.

Proposition 1 also implies that speculators’ demand to bank permits is higher when compared to a

situation where the number of permits in the bank increases the level of future permit supply (that

is, when Proposition 1 does not hold). To see this, notice that even a large accumulation of banked

permits, bt−1, does not decrease the expected future price exactly because of the regulator’s active

policy.15 For example, suppose an extreme case where bt−1 > Qbank(θt−1). The planner then adds a

negative number of new permits, which in practice entails a purchase of the excess permits off the

market.16 However, as we will later discuss, if an allocation policy of Proposition 1 is implemented,

the bank does not become so large that a buy-back would be needed.

In order to examine the policy further, we need to analyze the way the policy is optimally set. We

present the necessary first-order condition of the planner’s problem (16) in the following proposition:

Proposition 2. The planner’s optimal second-best emissions cap policy with banking, Qbank(θt−1),

satisfies

Et−1[Bq(Qt, θt)|θt > θ(Qt, βEtf̂(Qt+1, θt+1))] = Dq(Qt), (18)

for all θt−1.

Proof. Appendix A.2.

The proposition states that the second-best cap equates the marginal damages to the expected

marginal benefits only from those realizations where the emissions are equal to the cap, i.e. when

the cap is binding. This follows from the fact that the planner can, at margin, only affect those emis-

sion that are bound by the cap. When the cap is not binding, it is the speculative market demand

that determines the actual level of emissions. In that case, the market price of emissions is determined

by the expectations of future prices, i.e. pt = βEpt+1. These expected prices are, in turn, determined

by expectations on price realizations when the cap is binding next time. These expected future prices

are, in turn, determined by the same logic by those future price realizations when the cap is binding.
15The fact that expected future permit price is independent of the current bank of permits simplifies the permit

market problem compared to the case of competitive storage models (e.g. Deaton and Laroque, 1992).
16This is something that the new EU ETS reserve mechanism is planned to execute.
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To illustrate the logic of the cap and trade policy with banking, we compare it with second-best

cases of cap and trade without banking and tax. A cap and trade policy is naturally very similar to

the one with banking. The lack of inter-temporal trading of permits, however, simplifies the problem

considerably as we do not need to worry about the equilibrium price function (12). As explained in

Section 2, without banking the cut-off price level is exogenously given p̃t = 0. Without banking it is

obvious that the planner can set the cap sequentially as there is nothing that would couple the periods

to each other. Thus, we can replace the emission reaction function (13) in the planner’s problem (16)

with relation qt = min{q(0, θt), Qt}. Given this market reaction we can state the optimality condition

as

Et−1[Bq(Qt, θt)|θt > θ(Qt, 0)] = Dq(Qt). (19)

As in the case of cap and trade with banking, the second-best cap equates the marginal damages to

the expected marginal benefits only from those realizations where the cap is binding. Thus, it seems

to be a general property of the cap and trade policy. In the case of no banking, if the shock is limited

to be such that the cap is always binding, we no longer need the zero price floor in the first-order

condition (cf. Feng and Zhao, 2006, eq. (3)). Our result extends the optimal policy to the case where

economic shocks can be so large that emissions cap is not always binding. While the possibility of

non-binding cap seems to be a rather rare special case, the non-binding limit becomes a fundamental

property of the policy when banking of permits is allowed. Proposition 2 characterizes the planner’s

optimal management of permit markets with banking and equation (19) without banking, and to our

knowledge, they have not been stated in the literature before.

The problem of setting the second best tax can again be performed sequentially. The planner sets the

optimal tax based on the following optimization problem:

max
τt

Et−1[B(q(τt, θt), θt)−D(q(τt, θt))]. (20)

Unlike in the case of cap and trade, here the emission outcome is directly obtained from (2) with tax

being the price of emission. The necessary first-order condition to this problem is

Et−1[Bq(q(τt, θt), θt)qp(τt, θt)]− Et−1[Dq(q(τt, θt))qp(τt, θt)] = 0. (21)

Since Bq(qt, θt) = τt by equation (2), we get

τtEt−1[qp(τt, θt)]− Et−1[Dq(q(τt, θt))qp(τt, θt)] = 0 (22)

The above equation implicitly determines the second-best optimal tax level, τ2nd
t (θt−1). Term qp(τt, θt) =

B−1
qq (qt, θt) describes the changing curvature of the marginal benefit function. The curvature term in

the first-order condition gives more weight to those contingencies where the constant tax forces a

larger change in the production level.17 Comparison of (22) with optimality conditions of cap and

trade policies (18) and (19) non-linearities in the model have a more direct effect on optimal policy
17The past literature has typically analyzed the case of quadratic benefit and damage functions. In that case the

curvature term is constant and has no effect on the solution of the problem.
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in the case of tax than with cap and trade policies. In the case of tax, the lack of marketable permits

enables simple solutions in special cases: If the marginal damages are constant, Dq(q) = d for all q,

then τt = d, for each period as the curvature terms cancel out. In addition, if the benefit function is

quadratic, the curvature term is constant and tax is implicitly determined by τt = Et−1Dq(q(τt, θt)).

Allowing the inter-temporal trading introduces a new parameter into the model: the discount factor β.

The discount factor has an important role in the determining the banking motives (4) and, therefore,

the endogenous price floor. The smaller the discount factor, the weaker the banking motives, as

expected relative price increases need to be higher to induce banking. In fact, if the discount factor is

low enough, there may be situations where banking has no role as pt > βEtpt+1 always holds. More

precisely, we define the critical level of the discount factor to be such that there will be no demand

for speculative banking.

Definition 3. The no-banking critical level of discount factor is

β0 := sup{β | p(QNt , θt) > βEtp(QNt+1, θt+1),∀θt ∈ Sθt}.

where QNt is the optimal emission cap without banking and Sθt
denotes the support of probability

distribution of θt.

The above definition of the critical discount factor directly leads to the following proposition.

Proposition 3. Zero amount of permits is banked, bt = 0, and banking has no role in a cap and trade

policy if the discount factor is less than the critical level, i.e. β < β0.

Proof. The definition of critical discount factor, β0, presents the largest value of discount factor that

cannot support positive banking.

Whether the no-banking result is probable in applications depends on the stochastic process of the

shock θt and the length of the period in a discrete time setting. For example, there is no banking if the

periodic interest rate is higher the largest expected relative price increase.18 If the underlying shock

process has a wide enough support, banking always has at least a potential effect on the optimal cap.

In the opposite extreme of a deterministic model, the policy can be set optimally for each period and

there is no need for banking demand.

The value of the discount factor, β, relative to the critical discount factor, β0, determines how the

price floor influences the planner’s optimal policy. The following proposition shows how the optimal

level of the cap is set in the presence of banking demand:

Proposition 4. Let Bqθ(q, θ) > 0, Bqq(q, θ) < 0 and Dqq(q) ≥ 0, for all q and θ. Given an optimal

cap without and with banking QNt and QBt , respectively. If β < β0, then QBt = QNt for all t. However,

if β > β0, then QBt > QNt , for all t.
18β < β0 ⇔ r > Et max{(pt+1 − pt)/pt}.

12



q

p

τ

βEp
t+1

BQNQ

EBq Dq

Figure 1: A schematic illustration of the effect of banking on the emission permit markets

with IID shocks. Gray lines EBq and Dq are the expected marginal benefits and marginal

damages, respectively. τ denotes the optimal tax and QN denotes the optimal cap under

no banking. Optimal cap with banking is denoted by QB and endogenous price floor is

given by βEpt+1. The market outcome is at intersection of the actual realization of Bq
and tax-level (τ), cap-level (QN ) or policy locus (red dashed line) in the case of tax, cap

without and with banking, respectively.

Proof. Appendix A.3

Proposition 4 states that if the discount factor is less than the critical level, there will be no motive to

bank permits for future periods, and therefore, option to bank permits will not influence the planner’s

optimal policy. If, on the other hand, the discount factor is large enough, then it is possible that

positive banking occurs under some shock realizations. In that case, the planner utilizes the presence

of an endogenous price floor by increasing the level of the optimal cap relative to no-banking case

(QB > QN ). The reason for this is that the presence of a price floor reduces the efficiency losses

incurred at low shock levels. This in turn enables the planner to hedge against efficiency losses at high

shock levels by relaxing the cap. Thus, the active management of the permit allocation together with

the planner’s policy to neutralize the effect of the bank result in differing cap levels under banking

and no banking. This is in contrast to the optimal allocation rule presented by Feng and Zhao (2006)

where the cap levels are equal under banking and no banking. This difference is due to the regulator’s

ability to actively adjust the cap level based on the observed market outcome.

Figure 1 illustrates the effect of banking on optimal cap level. The endogenous price floor generated

by the speculative demand, in effect, creates a policy instrument that combines the properties of the

quantity and price policies. When the realized shock is high and the cap is binding, we have a quantity

regulation in place, whereas when the realized shock is low and the cap is not binding, we have a price

policy in place. The price floor can be above or below the optimal 2nd best tax level depending on

the model parameters.
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In the case of no banking, the determination of the optimal cap level is rather straightforward for the

planner as the zero price floor is exogenously given. When banking is allowed, however, the problem

becomes more difficult. In that case, the planner has to satisfy the first order condition (18) and also

assess the market equilibrium price function (12) for the emissions permits. The difficulty resides in

the two-way connection between the price function and the optimal policy: market agents adapt to

the policy and the policy needs to adapt to the market behavior. While the banking combines features

of the price and quantity regulation (Figure 1), the price floor itself emerges through the speculators

demand in the permit market. Thus, the planner has only a partial control over how the price-quantity

combination is fulfilled.

4 Results

4.1 IID shocks

We first analyze the planner’s optimal policy in a special case where the periodic random shocks, θt, are

independent and identically distributed. The next subsection examines the effect of shock persistence.

We can use our model to derive an analytical solution under a set of assumptions. Namely, the benefit

and damage functions are quadratic polynomials, the optimal cap is always binding without banking

and the IID shock follows a continuous, uniform distribution θ ∼ U [θ, θ̄]. The quadratic form of the

equations is a standard in a prices vs. quantities literature initiated by Weitzman (1974). The analysis

here extends the literature into the case of bankable quantities. The assumption on a binding cap is

reasonably minor constraint for feasible parameter values and is made to keep notation as easy to

follow as possible. In what follows, we denote the level of dispersion with σ, defined as one half of

the width of the support, i.e. 2σ = θ̄ − θ. The uniform distribution allows for simple presentations

for expected values and are needed for solving the model analytically. Formally, we assume linear

marginal damage

Dq(q) = d0 +Dqqq (23)

and marginal benefit functions

Bq(q, θ) = θ − |Bqq|q, (24)

where parameters Dqq ≥ 0 and Bqq < 0 denote the slopes of the marginal damage and benefit lines,

respectively.

Under the above assumptions, the analytical solution for the optimal policy, with or without banking,

is determined by a root of a quadratic polynomial. See Appendix B for details. It is now relatively

straightforward to perform comparative statics on the optimal emission cap. We collect the main

results in the following proposition.

Proposition 5. Given that there is a positive probability for banking, the optimal cap QB increases

both with dispersion σ and discount factor β.
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Figure 2: The optimal policy for three values of relative steepness of marginal damages

|Dqq/Bqq| ∈ {0, 1, 10}. Policy locus is described for three levels of discount factor, β ∈

{0.925, 0.975, 0.999}, red solid, broken and dotted line, respectively. Black solid line is

the mean marginal benefit function and dotted ones are the minimum and maximum

realizations of a uniform distribution. Black broken line is marginal damage function.

The optimal no banking cap QN = 0.5 and optimal second best tax τ = 0.5 in all the

cases.

Proof. Direct application of comparative statics. See Appendix B.3 for details.

As discussed earlier, since demand for banking generates an endogenous price floor, the planner can

reduce efficiency losses at higher shock realizations by relaxing the cap. The planner hence raises the

cap if there is an increase in volatility. Similarly, since the demand for banking is increasing in the

discount factor, thus making the probability of banking larger, the optimal policy focuses on reducing

efficiency losses at high emission realizations by relaxing the cap.

Figure 2 illustrates the determination of optimal policy when banking of permits is allowed.19 The

figure contains three different cases for the ratio of slopes of the marginal damages to marginal benefits,

|Dqq/Bqq| ∈ {0, 1, 10}, and for each such case, we illustrate the effect of the discount factor under

three different discount factors β ∈ {0.925, 0.975, 0.999}.20 The vertical red lines represent the levels of

the optimal caps under different discount factors whereas the kink point represents the endogenously
19In the calculations we have assumed that Eθ = 1 and |Bqq | = 1. Thus, in the market equilibrium without policies,

the expected emission level would be unity. The slope of marginal damages, Dqq , is varied and the level, d0, is chosen

to be such that with all the slope values the no banking optimal cap is QN = 0.5. The dispersion parameter is σ = 0.05

and resulting β0 = 0.9.
20The ratio of slopes is a known determinant of relative performance of price and quantity policies: quantity regulation

is better when ratio is large and price regulation when the ratio is small. In the case of bankable permits, however, the

endogenous banking motive has an effect on the performance of the quantity regulation. The strength of the banking

motives is illustrated here through the discount factor β. Under the assumed parameter values, the discount factor

β = 0.9 is equal to the case of cap and trade without banking. As the discount factor approaches unity, the probability

of positive banking increases to the limiting value of unity. The optimal cap in the no-banking case is QN = 0.5 and

the optimal second best tax is τ = 0.5 in all cases.
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Figure 3: Optimal cap Q, expected banking relative to the cap Eb/Q, expected emissions

Eq and expected permit price Ep as a function of discount factor. Black solid, broken

and dotted line present |Dqq/Bqq| values of 0, 1 and 10, respectively. No banking cap

QN = 0.5 and optimal second best tax τ = 0.5 in all the cases. Here σ/Dq(QN ) = 0.1.

determined price floor where banking demand becomes positive. The horizontal and vertical parts of

the red lines form the policy locus. The intersection of the ex-post marginal benefit line with the policy

locus determines the actual level of emissions and the current permit price. Thus, in order to assess

the possible price-emissions outcomes under cap and trade policy, the policy locus is substituted for

the marginal damage curve.

Figure 2 shows how the presence of an endogenous price floor imposes a restriction on the planner.

In the first-best optimum, the policy would be set at the crossing of the ex-post marginal benefit

and damage curves. Under the second-best policy, the equilibrium level of emissions is determined

through the intersections of the policy locus (red lines) and ex-post marginal benefit curve. The

policy therefore performs better the closer it can follow the marginal damage curve. In the case where

|Dqq/Bqq| = 0, banking allows the policy to approach the marginal damage curve, especially if the

discount factor is close to unity. With steep marginal damages (|Dqq/Bqq| = 10), banking seems to

distort the policy away from the marginal damages. In an intermittent case the kinked policy is never

an excellent approximation of the marginal damages but may yield welfare gains compared to the

quantity without banking and price regulations.

Figure 3 presents the optimal emission cap and the resulting market equilibrium as functions of
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Figure 4: Social welfare gain relative to the cap and trade without banking as a function

of discount factor β. Solid black line is the optimal cap and trade with banking and

dashed red line is the optimal tax. With the lowest value of β = 0.9 there is no banking

in the equilibrium and, thus, banking and no banking cases are equal. The red circle

shows the maximal welfare under cap and trade with banking. Here σ/Dq(QN ) = 0.1.

the discount factor β. We again compare three different slope ratios (|Dqq/Bqq| ∈ {0, 1, 10}). While

the emission cap increases with the discount factor the expected banking increases too, resulting

in non-monotonic expected emissions. The resulting expected permit price pattern mirrors that of

the expected emissions. As Figure 2 already implied, the planner allows the cap to vary more when

the marginal damages are flat. When the marginal damages are steep, the optimal cap is hardly

changing at all. When compared to a permit system without banking, with steep marginal damages,

banking tends to decrease expected emissions, whereas with flat damages, banking increases expected

emissions. With intermediate slopes, expected emissions increase and decrease with low and high values

of discount factor, respectively. The expected share of emission to be banked does not depend on the

relative slopes of the marginal damages and benefits. Instead, the banking increases with discount

rate in all the three cases studied.

Figure 4 compares the social welfare under three different instruments: permit system without banking

(reference), permit system with banking (black solid line) and the optimal second-best tax (red dashed

line). The comparison is measured as a gain in expected social welfare relative to the expected social

welfare from using the cap and trade without banking. The figure shows that relative gains or losses in

welfare depend on the discount factor β. Left panel shows that allowing for banking of permits increases

welfare when the marginal damages are flat. In the extreme limit of β → 1 the welfare gain approaches

the gain from using a tax, which is known to be efficient policy is this case. This results from the fact

that in the limiting case, banking is effectively equal to the tax policy. For other case of |Dqq/Bqq|

optimal banking policy increases welfare, although as the ratio increases the gains decrease. When the

marginal damages are very steep and the discount factor high, banking can worsen the performance

of permit regulation, resulting in relatively high welfare losses. These results are different to the result

found in Feng and Zhao (2006, Proposition 2). They observe that with ITR equal to unity, banking
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will decrease welfare if Dqq > |Bqq|. We show here that if the allocation of new permits is actively

managed, banking can increase expected welfare even when Dqq > |Bqq|. If the difference in slopes is

large, the magnitude of gains becomes smaller and less likely (panel |Dqq/Bqq| = 10). However, if the

difference of slopes is smaller, i.e., situation between panels |Dqq/Bqq| = 1 and |Dqq/Bqq| = 10, then

the welfare gains are larger. All in all, the welfare differences are rather minor between any second-best

regulation. The relative differences seem to be limited to 1 percent or less. Yet, the absolute differences

may be notable, especially, with global externalities such as greenhouse gas emissions.

It is interesting to note that the discount factor is not necessarily exogenous from the perspective of

the planner. By shortening the interval of the permit adjustments the discount factor can be increased.

In principle, by a proper choice of period length any discount factor can be reached. Thus, the model

suggests that with a very flat marginal damages, the period should be as short as possible for the

permit system to approach the optimal performance of the tax regulation. With very steep marginal

damages, the bankable permits do not seem to be useful unless a very long period can be enforced.

It is worth noting, that the period length is typically positively correlated with dispersion of the cost

shock. The effect of dispersion is not taken into account in the above discussion.

4.2 Persistent shocks

To study the optimal management of permit allocation over business cycles, we need to examine

the case of persistent shocks. When the shock exhibits persistence, the expected future periods are

not identical conditional on the most current information. Therefore, both the optimal policy and

the optimal banking decisions by the speculative agents vary between periods. Solving the optimal

policy becomes notably more difficult when compared to the case of IID shocks. Yet, highly correlated

economic shocks can create persistent anomalies in the demand for permits, and failure to manage

the allocation of new permits may lead to much greater deviation from the optimal emissions level

compared to the case of IID shocks. Thus, with persistent shocks there is a greater need for optimal

allocation rules for new permits.

We are interested in how the optimal emission cap is set under persistent shocks when banking

of permits is allowed. It turns out that the effects of the discount factor and of the slopes of the

marginal damage and benefit functions do not differ that much from the IID case above. In the end,

the planner and the speculative agents face a similar Markov decision problem in both cases. Only

significant difference is that, with persistent shocks, the current realization yields useful information

with respect to the future realizations. Apart from this, there is little difference in periodic decision

making.

We solve the optimization model numerically through a iterative scheme (Appendix C). The Markov

process for the shock is specified as an autoregressive AR(1) process

θt = (1− ϕ)Eθ + ϕθt−1 + εt,
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Figure 5: The optimal emission cap for four values of persistence ϕ ∈ {0, 0.4, 0.7, 0.9}

with dotted, broken and dotted, broken and solid lines. The relative steepness of marginal

damages |Dqq/Bqq| = 1 and the discount factor, β = 0.95.

where innovations are IID Gaussian with εt ∼ N(0, σ2
ε). In what follows, we assume that Eθ = 1.

For the optimization problem, we discretize the stochastic process into about a hundred states and

describe the Markov process through the transition matrix Pij . Here we concentrate on persistence

levels ϕ ∈ {0, 0.4, 0.7, 0.9}, where zero case represents the IID case.21 In addition, both the Bqq andDqq

are set to unity and the discount factor β = 0.95. We have set the unconditional standard deviation of

the θt to be σθ = 0.05. Therefore, the conditional standard deviation for the next period prediction is

σε = (1− ϕ2)σθ indicating a lower risk level for the regulator as the persistence ϕ becomes stronger.

Figure 5 presents the relationship between the optimal emission cap for the next period and the

observed current realization of the shock term, θt−1, i.e. Qt = Q∗(θt−1). We have used four different

values of persistence ϕ ∈ {0, 0.4, 0.7, 0.9}. As can be seen, the emissions cap is increasing in the

value of shock variable. The higher the persistence the more strongly the cap responds to the current

economic conditions. As the persistence becomes weaker the optimal policy approaches the constant

IID case. With high shock realizations, the optimal cap locus is reasonably linear, but as the shock

value decreases, an increasing convexity is observed.

Figure 6 illustrates the effect of optimal cap on market outcomes. The red curves show the quantity-

price pairs that result in a permit system with banking. The figure presents three different shock

realizations θt−1 ∈ {0.85, 1, 1.15}, where unity is the process mean and 0.85 and 1.15 are very low and

very high realizations, respectively. Depending on the level of persistence, the expected value of the

next period’s shock is somewhere between the process mean and the observed value. Comparing the

Figure 6 with the IID case in Figure 2, we can see that the horizontal portion of the policy, where

banking demand is positive, is actually becoming lower as the emissions decrease. This indicates that
21Here we have a normal distribution for the shock and, thus, the results are not identical with the IID case in the

previous section.
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Figure 6: The optimal cap and trade policy with banking for three values of persistence

ϕ = 0.4 (left), ϕ = 0.7 (middle) and ϕ = 0.9 (right panel). Policy loci for three shock

realizations on the previous period, θt−1 ∈ {0.85, 1, 1.15}, are presented by red solid,

broken and dotted lines, respectively. The black lines describe the marginal benefit curve

with the three cases of θt−1. Blue solid line is the marginal damage function. The relative

steepness of marginal damages |Dqq/Bqq| = 1 and the discount factor β = 0.95.

0.8 0.9 1 1.1 1.2
0.3

0.35

0.4

0.45

0.5

0.55

E
[q

t|θ
t]

θ
t

0.8 0.9 1 1.1 1.2
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

E
[p

t|θ
t]

θ
t

0.8 0.9 1 1.1 1.2
0

0.05

0.1

0.15

0.2

0.25

E
[b

t|θ
t]

θ
t

 

 

φ = 0.9

φ = 0.7

φ = 0.4

φ = 0

Figure 7: The expected emissions (left panel), permit price (middle panel) and banking

(right panel) for four values of persistence ϕ ∈ {0, 0.4, 0.7, 0.9} with dotted, broken and

dotted, broken and solid lines. The relative steepness of marginal damages |Dqq/Bqq| = 1

and the discount factor β = 0.95.

the expected permit price is lower for low shock realization. The reason for this is that the demand for

banking also decreases as the speculators expect future permit prices to remain depressed. This price

dependence is stronger with higher levels of persistence. Thus, when persistence becomes weaker, we

gradually approach the IID case in Figure 2.

Figure 7 shows the expected values of emissions, permit price, and banking as functions of the realized

shock level. With extreme shock realizations, expected emissions are highest when persistence is also

high. With shock realizations near the mean, low persistence cases have the highest expected emissions.

Expected price level mirrors those of emissions. Expected banking is positive only with low shock

realizations, and banking demand is highest when persistence is weak. With high persistence a low

shock realization is most likely reached from a previous low shock realization, which indicates that
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Figure 8: The optimal policy locus of cap and trade with banking for three values of shock

realizations on the previous period, θt−1 ∈ {0.85, 1, 1.15}, are presented by red solid,

broken and dotted lines, respectively. The black lines describe the marginal benefit curve

with three cases of θt−1. Blue solid line is the marginal damage function. The persistence

of shock is ϕ = 0.9. The relative steepness of marginal damages |Dqq/Bqq| = 0 and the

discount factor, β = 0.95.

the cap level is already low, as the regulator anticipates the persistence of low shocks (see Figure 5).

If the persistence is low, the cap level is relatively higher as the cap is varied less. In addition, with

low persistence the low shock realization is more likely reached from a higher realization, under which

a higher cap is set. Both of these effects make the likelihood of excess supply of permits higher and

this induces strong banking motives.

4.3 Case: climate change

Climate change is driven by the atmospheric carbon stock. Since the emitted CO2 particles have long

life spans in the atmosphere, the current atmospheric carbon stock is an outcome of centuries of inflow.

This leads to a very flat marginal damages curve (Hoel and Karp, 2002; Newell and Pizer, 2003). This

observation is based on the fact that the marginal damages from carbon emissions derive from a large

atmospheric carbon stock which is in turn driven by the flow of annual emissions. Thus, the effect

of a small variation in annual emissions has a negligible effect on the carbon stock and therefore to

marginal damages.22 Although we do not have stock variables in our model, we can examine CO2 cap

and trade policies by assuming that the slope of the marginal damages Dqq is zero, i.e., the period-wise

damages are linear.

Building on this observation, we assume that the periodic marginal damages from the emissions are
22Note that the constant periodic marginal damages do not need to be time invariant.
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Figure 9: The optimal cap (a) and expected banking (b), emissions (c) and permit price

(d). The persistence of shock is ϕ = 0.9. The relative steepness of marginal damages

|Dqq/Bqq| = 0 and the discount factor, β = 0.95.

constant. As stated in Section 3.1 the optimal second best tax is equal to the marginal damages

τ = MD. The welfare analysis in Section 4.1 suggests that the tax would be an optimal second

best policy and that banking will strongly improve the welfare impact of a cap and trade policy.

To simulate the business cycles and the carbon emission policy, we assume that the shock is highly

persistent (ϕ = 0.9). The analysis proceeds along the same lines as in the previous section. Figure

8 shows the policy loci under an optimal cap and trade policy with banking. The loci are presented

for the cases of low, mean and high observed shock realizations θt−1. The form of the policy locus

is similar to the IID case as the permit price is not affected by the shock realization when there is

positive banking, i.e. the flat portion of the policy locus is horizontal.

Figure 9 presents the optimal cap for the next period given the observed shock realization θt−1 (panel

a). Due to the quadratic benefits and constant marginal damages, the relationship is linear. Because of

this linearity, under the optimal policy, the expected permit price, E[pt+1|θt], is constant irrespective

of the shock realization. The constancy of ex-ante expected permit price explains the horizontal policy

locus seen in Figure 8. Panels b, c and d of Figure 9 show the expected banking, emissions, and permit

prices, respectively, for each shock realization. The banking activity is similar to the case of quadratic

damages (Figure 7). Banking is profitable only if shock decreases strongly enough. Therefore, banking

is observed only with low shock realizations. There is a notably larger variation in the optimal cap and
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resulting emissions (panesl a and c). This occurs because the optimal policy tries to keep the permit

price as close to the marginal damages function as possible. Since the marginal damages are flat, the

variation in expected prices is quite modest over the business cycle. The expected price realizations,

E[pt|θt], are positively correlated with the shock, even though, the ex-ante expectations E[pt+1|θt]

are constant. This results from the fact that the high shock realizations are more likely generated

by positive innovations that lead to binding cap. The opposite holds for the low realizations where

banking demand weakens the decrease in expected prices.

Our results suggest that over the business cycles the cap should be set so that the future expected

price would be equal to the assessed social cost of carbon for that period. This was also the basis

of analysis in Newell et al. (2005). Under the second-best policy described here, this would lead to

higher expected emissions but also higher expected permit prices when the economic activity is high.

Yet, the price changes over time would be modest. The results from macroeconomic modeling of the

first-best carbon tax indicate that both the emissions and the tax levels could, typically, be increased

during economic boom (Heutel, 2012; Lintunen and Vilmi, 2013). In the second-best setting above,

the macro economic effects would make the connection between the realized shock level and both the

expected emissions and expected prices stronger.

5 Conclusions

This paper has examined the question of an optimal management of permit markets in a second-

best setting where the regulator sets the policy before the cost shock is realized and the market

agents act after the realization. We have focused on the case where banking of permits is allowed,

but not borrowing, and the inter-temporal trading ratio is unity. We have derived the planner’s

optimality conditions and characterized analytically the effects of banking on the planner’s optimal

policy. Under optimal policy, the regulator sets the cap based on expectation on future economic

activity. In particular, this means that the current bank level does not affect the choice of the next

period’s cap level. In a sense, the regulator neutralizes the effect of the existing bank by correspondingly

adjusting the allocation of new permits. In most relevant cases, the cap is set at a higher level than in

permit systems without banking. This differs from earlier results where there is no active management

of permit allocation (Yates and Cronshaw, 2001; Feng and Zhao, 2006). We have also shown that the

presence of speculative banking demand sets an endogenously determined price floor which critically

depends on the discount rate, persistence of the business cycle, and on the planner’s policy.

With IID shocks and under standard assumptions, we show that the optimal cap increases with

the discount factor and with shock dispersion. As the optimal policy maximizes net benefits, the

optimal cap is driven by the ratio of the slopes of the marginal damage and marginal benefit functions

as in Yates and Cronshaw (2001) and Feng and Zhao (2006). We also compare the levels of social

welfare under permit systems with banking to those without banking and second-best taxes. We show
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that when marginal damages are relatively flat, an optimally managed permit system with banking

approaches the efficiency of a tax instrument as the time between updates becomes shorter. When

marginal damages are relatively steep, too frequent updating of the policy actually decreases welfare

relative to permit systems without banking. We show that banking of permits can be welfare improving

also when the marginal damage function has a greater slope than the marginal benefit function.

Our numerical analysis also accommodates persistence in the shock process. We show that higher

persistence translates to greater variance in the optimal cap, as the planner uses information provided

by the observed shock to update expectations of future emissions and permit prices. Likewise, specu-

lative banking demand responds to persistence in shocks by adjusting the price floor to accommodate

information provided by the observed shocks. Finally, we use our model to examine the optimal man-

agement of present-day cap and trade systems such as EU ETS. We show that in the presence of

persistent business cycles, the planner acting optimally makes considerable adjustments to the peri-

odic cap while keeping the expected permit price at a constant level. During economic downturns,

the cap is tightened, and during upturns, it is relaxed. Adjustments are done in such a manner that

during periods of high economic activity, the expected permit price is higher than in periods of low

activity.

Our findings suggest that the permit price should remain relatively stable over the business cycles.

Even persistent periods of low shocks should not decrease the permit price significantly. Thus, the

findings imply that the prevailing situation in EU emission trading system with high number of permits

in the bank and correspondingly low level of permit price is not optimal. Our results indicate that

the cap and trade policy should be based on an allocation rule such that the existing bank of permits

would decrease the allocation of new permits one-to-one and the emission permit price should remain

close to an assessed target level.

The literature on permit systems with banking has also examined the effects of market power on

efficiency and on the path of emissions (Liski and Montero, 2005, 2006, 2011). Some firms, due to

their size or because of thinness of markets, may be able to influence the market price to their own

advantage. A regulator managing the market in such a context needs to adjust the allocation rule

accordingly. We leave the determination of the exact nature of this adjustment for future research.
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A Proofs

A.1 Proof for Lemma 1

Proof. The equilibrium emissions follow directly from equation (7) and equilibrium (12). Suppose that

θt ≤ θ̃t. Then the cap is not binding and has no effect on the equilibrium emissions level qt. Suppose

that θt > θ̃t. Then the cap is binding, qt = Qt, and the cap has a one-to-one effect on the equilibrium

emissions.

A.2 Proof for Proposition 2

Proof. By the Lemma 1 we know that the function q̂ is differentiable almost everywhere and the zero-

measure point of non-differentiability does not contribute to the expectation value as the function q̂

is continuous. Thus, the first-order condition is directly obtained

Et−1[Bq(qt, θt)q̂Qt]− Et−1[Dq(qt)q̂Qt] = 0, (25)

where we have used the following shorthand notation: qt := q̂(Qt, θt) and q̂Qt := q̂Q(Qt, θt).

Further using the Lemma 1 we know that q̂Qt = 1, if θt > θ̃t := θ(Qt, p̃t) and zero elsewhere. In

addition, q̂t = Qt, if θt > θ̃t. Using these facts we can rewrite the optimality condition∫
Bq(Qt, θt)1BIND(θt)dF (θt, θt−1) = Dq(Qt)

∫
1BIND(θt)dF (θt, θt−1),

where F (θt, θt−1) is the distribution function of the Markovian shock process. Indicator function

1BIND(θ), has value one when θ ∈ BIND and zero elsewhere. The set BIND consists of shock re-

alizations in which the emissions are bound by the cap, i.e. BIND := {θt|θt > θ̃t}. Thus, we can

write ∫
BIND

Bq(Qt, θt)dF (θt, θt−1) = Dq(Qt)
∫

BIND
dF (θt, θt−1).

Since
∫

BIND dF (θt, θt−1) = Pr(θ ∈ BIND), this directly leads to the optimality conditions

Et−1[Bq(Qt, θt)|θt > θ(Qt, 0)] = Dq(Qt), (26)

for the cap and trade without banking and

Et−1[Bq(Qt, θt)|θt > θ(Qt, βE[pt+1|θt])] = Dq(Qt), (27)

with banking. The future price is determined through equilibrium price function pt+1 = p(Qt+1, θt+1).

Note that the condition with banking has θt on both sides of the inequality and, therefore, the

conditioning is in implicit form.
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A.3 Proof for Proposition 4

Proof. Since β > β0, with fixed cap level QNt there is a smaller set of shock realizations θt which cause

the cap to be binding with banking than without banking. This is because in some realizations banking

motives are realized. As we have assumed Bqθ > 0, this means that the cut-off shock realization with

banking is higher than without, i.e. θ̃B > θ̃N .

Using this observation on the first order conditions without banking∫ ∞
θ̃N

[
Bq(QNt , θt)−Dq(QNt )

]
dF (θt, θt−1) = 0

we can rewrite it as∫ θ̃B

θ̃N

[
Bq(QNt , θt)−Dq(QNt )

]
dF (θt, θt−1) +

∫ ∞
θ̃B

[
Bq(QNt , θt)−Dq(QNt )

]
dF (θt, θt−1) = 0.

Since Bqθ > 0, it holds that the first auxiliary integral is negative, i.e.∫ θ̃B

θ̃N

[
Bq(QNt , θt)−Dq(QNt )

]
dF (θt, θt−1) < 0.

Thus, the second auxiliary integral has to be positive∫ ∞
θ̃B

[
Bq(QNt , θt)−Dq(QNt )

]
dF (θt, θt−1) > 0.

To make the auxiliary integral to match with FOC with banking,∫ ∞
θ̃B

[
Bq(QBt , θt)−Dq(QBt )

]
dF (θt, θt−1) = 0,

one can only adjust the cap level. Since Bqq −Dqq < 0, the FOC can be satisfied only if QBt > QNt .

The FOC needs to be satisfied with all θt−1 where in some cases the banking motives may not be

realized. Therefore, in general QBt ≥ QNt .

If β < β0, the banking motives are not realized in any contingency. Therefore, the inter-temporal

trading of permits does not have any effect on the policy. As a result, QBt = QNt .

B Analytical solution

B.1 Setup

Under strong assumptions, the model can be solved analytically. The assumptions made here are: the

benefit and damage functions are quadratic polynomials, the optimal cap is binding without banking

with all the realizations of shock θ and the shock θ is IID and follows a continuous, uniform distribution

θ ∼ U [θ, θ̄]. Let us denote the marginal damages as

Dq(q) = d0 + d1q
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and marginal benefits

Bq(q, θ) = θ − b1q,

where d1 > 0 and b1 > 0. For later use it proves useful to define a dispersion parameter σ through

equations θ = Eθ − σ and θ̄ = Eθ + σ.

B.2 No banking

Given the assumptions above, the no banking cap is always binding and the current shock realizations

conveys no information on about the future shock realizations. Thus, the optimal cap is directly

obtained from the first order condition (18)

Eθ − b1Q = d0 + d1Q

resulting in

QN = Eθ − d0

b1 + d1
,

where QN denotes the optimal cap level without banking. This result would be valid also if the

uniform distribution assumption is relaxed. The condition for always binding cap can be now be

written formally as Bq(QN , θ) > 0, i.e.

σ < Dq(QN ),

where we have used the first order condition to bring forward the connection between dispersion

parameter σ and marginal damages at QN .

B.3 Banking

If the discount factor is below the critical value, β ≤ β0(QN ), the banking is never performed and the

optimal cap with banking is equal to the cap without banking (Proposition 4). The critical cap can

be calculated using Definition 3

β0(QN )Dq(QN ) = Bq(QN , θ)

leading to

β0(QN ) = θ − b1QN

Eθ − b1QN
= 1− Eθ − θ

Eθ − b1QN
= 1− σ

Dq(QN ) .

Here we have used the first order condition to interchange the marginal damages and marginal benefits.

From the binding cap -assumption it follows that β0 > 0.

Let us now concentrate on the case β > β0(QN ) under which positive banking is observed with a

positive probability.23 The optimality condition (18) is with IID shocks

E[Bq(Q, θ)|θ > θ̃] = Dq(Q)
23Binding cap and positive banking assumption restrict the dispersion parameter: (1− β)Dq(QN ) < σ < Dq(QN ).
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with cut-off shock value

θ̃ = θ(Q, βEp(Q, θ′)) = βEp(Q, θ′) + bQ, (28)

and price function

p(Q, θ) = max{βEp(Q, θ′), Bq(Q, θ)}.

The solution of the problem does not involve solving the price function for every argument values as

it suffices to solve its expected value. By directly taking expectation from the price function

Ep(Q, θ) = (1− P (θ̃))βEp(Q, θ) + P (θ̃)E[Bq(Q, θ)|θ > θ̃],

where P (θ̃) stands for probability that the cap is binding, i.e.

P (θ̃) =
∫ ∞
θ̃

dF (θ) = γ0 + γ1θ̃, (29)

with short-hand notation γ0 := θ̄/(θ̄ − θ) and γ1 := −1/(θ̄ − θ). Using the first order condition and a

short-hand notation µ := Ep(Q, θ) we end up with

µ = (1− P )βµ+ P Dq(Q). (30)

Finally we need to calculate the expectation value explicitly

E[Bq(Q, θ)|θ > θ̃] =
∫ θ̄

θ̃

θ − b1Q
θ̄ − θ̃

dθ = (θ̄ + θ̃)/2− b1Q,

leading to first order condition

(θ̄ + θ̃)/2− b1Q = d0 + d1Q. (31)

Equations (28) – (31) determine the optimal policy which can directly be written as a pair of equations

(1− β)µ = [γ0 + (βµ+ b1Q)γ1](d0 + d1Q− βµ)

and

(θ̄ + βµ+ b1Q)/2− b1Q = d0 + d1Q

Inserting the latter to the first and using the dispersion parameter σ we end up with a quadratic

equation for the optimal cap

ϕ(Q) := a2Q
2 + a1Q+ a0 = 0,

where

a2 = β(d1 + b1)2,

a1 = −2β(Eθ + σ − d0)(d1 + b1)− (1− β)(2d1 + b1)σ

and

a0 = β(Eθ + σ − d0)2 − (1− β)(2d0 − Eθ − σ)σ
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The parabola opens upwards and the minimum of the quadratic polynomial is at emission level

Qmin = − a1

2a2
= Eθ + σ − d0

d1 + b1
+ 1− β

β

2d1 + b1
2(d1 + b1)2σ,

where the first term is the emission level at which the maximum locus of marginal benefits crosses the

marginal damages, Bq(Q, θ̄) = Dq(Q). The second term is positive. Thus, it follows directly that the

optimal cap is the smaller of the two roots of the polynomial as the larger one is infeasible solution

to the optimization problem. One directly observes that if there is no uncertainty, σ = 0, the solution

reduces to the one without banking. Thus, if there is no stochasticity present, the banking has no role

in the optimal policy.

The optimal solution is uniquely determined by level parameter of the marginal damages d0 and slope

parameters of marginal damages and benefits d1 and b, stochastic marginal benefits level Eθ and σ as

well as discount factor β. The comparative statics can be straightforwardly applied. As the parabola

opens upwards and the optimal emission level, Q∗, is the smaller of the two roots, we know that

ϕQ(Q∗) < 0. The effect of dispersion on optimal cap is directly obtained as

∂Q

∂σ
= (2d1 + (1 + β)b1)Q∗ − 2β(Eθ + σ − d0)− (1− β)(Eθ + σ − 2d0)− (1− β)σ

ϕQ(Q∗) .

After a short manipulation we end up with

∂Q

∂σ
= −β[Bq(Q∗, θ̄)− µ] + (1− β)σ

ϕQ(Q∗) > 0,

since Bq(Q, θ̄)−µ > 0, if σ > 0 and β < 1. Thus, the optimal cap increases with increasing dispersion.

Similarly, by direct calculation we can derive the effect of discount factor

∂Q

∂β
= − σµ

βϕQ
> 0.

In both cases we utilized the fact that the optimality conditions require that the endogenous price

floor need to be on a auxiliary line

p(q) = 2d0 − Eθ − σ + (2d1 + b1)q.

Especially, at the optimum it is needed that βµ = p(Q∗). In the comparative statics above, the function

p(Q∗) appears in the numerator in both cases.

C Iteration scheme

When the shocks, θt, are IID, the current shock realization does not convey information on the future

shock realizations. Therefore, the optimal policy does not have any information what to use when

assessing the next period market outcomes. As a result, the optimal cap level is a single number,

constant over time. However, when the shocks are persistent, the regulator can use the current shock

as a signal for the next period outcome. The optimal policy becomes a non-trivial function of current

shock, which complicates the optimization of the emission cap.
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We solve the problem by converting the the continuous shock model into a discrete one and apply an

iteration scheme. At period t− 1, the aim is to set an optimal cap for the period t, i.e. Qt = Q(θt−1).

With banking, the optimal cap level depends on the price expectations by the speculative agents.

Since the agents act at period t, the interesting price expectation is Etpt+1. Correspondingly, these

price expectations depend on the cap policy for the next period Qt+1. In a discrete shock case the

function of interest, Q(θ), is transformed into vector Q where Qi = Q(θi) for all i ∈ {1, 2, . . . , n}.

Similarly, the expected permit prices form a vector π with

πi = E[p(Qi, θj)|θi] =
∑
j

Pijpij ,

where Pij is the transition probability form θi to θj and pij is the realized permit price at θj when

previous shock realization has been θi. The earlier history has no effect on the price realization as the

optimal policy truncates the history by nullifying the effect of previous banking decisions.

Iteration scheme for the cap and expected price level pair (Q,π) consists of four steps:

1. Choose initial vector π0. Set s = 1.

2. Find Qs by solving

max
Qs

∑
i,j

Pij [B(qij , θj)−D(qij)],

subject to for all i, j:

qij ≥ 0,

pij = Bq(qij , θj),

pij ≥ 0, Qsi − qij − bij ≥ 0 and (Qsi − qij − bij)pij = 0,

bij ≥ 0, pij − βπs−1
j ≥ 0 and (pij − βπs−1

j )bij = 0,

3. Calculate πs

πsi =
∑
j

Pijpij .

4. Increase s by one and repeat steps 2. and 3. until required accuracy is reached.

In step 2. we have performed joint maximization for all the contingencies. The optimization can

be performed individually cap-levels Qi, for all contingencies i ∈ {1, 2, . . . , n}. The equality of the

approaches stems from the fact the individual optimization problems are independent of each other.

The joint optimization problem grows in size as n2. Our GAMS implementation consisted of 111 grid

points and resulted in over 50 000 explicit constraints. The gain from joint maximization is that there

is no need for loop of separate optimization problems.

The choice of initial expected price vector π0 is a delicate matter. The initial value has to be such that

the optimization problem is still feasible. In practice, this means that the market outcome constraints
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need to be satisfied. A way to calculate an initial value is to use equation π0
i =

∑
j Pijpij with some

good initial value for prices pij .

We apply the constraints resulting from the decisions of market agents through the market clearing

and first order conditions. These constraints determine the emission outcome function q̂(Qsi , θj) as

defined in Lemma 1. In step 4. it is useful to note that using the definition of price permit function of

Lemma 1, the iteration step can be formulated as

πsi =
∑
j

Pij max{βπs−1
j , Bq(Qsi , θj)}.

The mapping can be shown to be a contraction mapping (with bounded Bq) and, thus, the expected

prices will converge to a unique, policy dependent, fixed point. However, the numerical tests suggest

that the optimization step leaves some numerical disturbances to the solution with the standard

tolerance levels. These are caused by the discrete shock approximation. However, the damping of

iteration seems to help in the convergence (Judd, 1998, p. 558).
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