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Abstract:  

We focus on two utility programs intended to reduce energy usage and the associated CO2 

emissions—a home energy audit and rebates on the purchase of high-efficiency air-source heat 

pumps. We use a unique panel dataset from participating and non-participating households to 

estimate the average treatment effect of participating in either program on electricity usage. We 

fit models with household-by-season, season-by-year, and household-by-year fixed effects to 

account for all possible confounders that might be influence energy usage. Since the programs 

are voluntary, we seek to restore near-exogeneity of the program “treatment” by matching 

participating households with control households. We deploy coarsened exact matching (CEM; 

Iacus et al., 2011) as our main matching method. We ask whether it is sufficient to match 

households based on past electricity usage, or if we gain by adding structural characteristics of 

the home, including heating system type. We find that the two programs reduce electricity usage 

by 5% on average. The effects are strong in both winter and summer for the energy audit group 

but appear to be stronger in the winter for the heat pump rebate group. Adding house 

characteristics to the matching variables does seem to affect results, suggesting that using past 

usage alone may not be sufficient to identify the effects of program participation.  
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Information v. Energy Efficiency Incentives: 

Evidence from Residential Electricity Consumption in Maryland 

By Anna Alberini and Charles Towe 

 

1. Introduction 

 The purpose of this paper is to estimate the savings in residential electricity usage that 

can be attributed to energy efficiency programs. We focus on two such programs. The first is a 

home energy audit offered to customers free of charge, where information is provided to the 

consumer about ways to save energy and money, and the consumer is free to choose which 

advice to implement, and when. The second is a rebate on the purchase of a high-efficiency heat 

pump, a device used for heating the home in the winter and cooling it in the summer that is very 

common in our study area due to its climatic conditions (hot summers and winters marked with 

only brief exposure to extreme cold).  

The two programs rely on completely different approaches to encouraging energy 

efficiency investments in the home: The former provides information at low or no cost to the 

consumer, while the latter lowers the capital cost of the investment. We interpret participation in 

either of these two programs as a “treatment” in the context of an experiment with residential 

electricity consumption as the outcome. We assess the effect of the treatment using a unique 

panel of data on electricity usage before and after the time of the program for both the 

participating households and suitable control households. 

Environmental issues and climate change concerns have led to a resurgence of residential 

energy efficiency programs by policymakers and utilities wishing to reduce energy usage and the 

CO2 emissions associated with electricity generation. Well publicized and influential reports 

(IPCC 2007, McKinsey, 2009) have identified energy efficiency improvements in buildings as 
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capable of delivering CO2 emissions reductions at low or even negative cost, and in the US in 

fiscal year 2013 federal expenditures on preferential tax policies targeting energy efficiency 

improvements in existing and new homes came to a total of almost $4 billion (Dinan, 2013).  

Residential efficiency programs were popular among the utilities in the late 1980s and 

early 1990s, when they were part of the utilities’ demand-side management programs, which 

attempted to reduce electricity usage to avoid or postpone expensive capital expenditures and 

reduce peak load. However, the cost-effectiveness of these measures was and still is difficult to 

study, due to adverse selection and the likelihood that these programs attract people who are 

systematically (and unobservably) more motivated or productive at reducing electricity usage 

(Joskow and Marron, 1992; Hartman, 1988; Waldman and Ozog, 1996; Allaire and Brown, 

2012). As a result, considerable debate remains about the cost-effectiveness of these programs 

(Loughran and Kulik, 2004; Auffhammer et al., 2008). 

Ideally, one would want to evaluate residential energy efficiency programs by conducting 

randomized controlled trials, where households are exogenously assigned to treatments of 

different type or intensity (Davis, 2008). Alternatively, it might be possible to devise 

circumstances that are plausibly interpreted as natural experiments (Gans et al., 2013). Our study 

lends itself to neither of these criteria nor do we have plausible instruments for participation. 

Fortunately, we do have the data necessary to implement a retrospective case-control study and 

address these problems. We capture all confounders through a “triple difference” approach that 

lets log household electricity usage depend on the weather, household-by-season fixed effects, 

season-by-year fixed effects, and household-by-year fixed effects. This setup takes advantage of 

the panel nature of our dataset.  
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We also match treated households with similar control households, based on (i) 

electricity usage in the benchmark year (2008), or (ii) electricity usage in the benchmark year 

plus structural characteristics of the home. Matching restores balance across treatment and 

control households and in theory makes treatment as good as randomly assigned conditional on 

our rich set of observables  

One question we address in this paper is whether it is sufficient to match treated and 

control observations on past usage (usage during 2008, our benchmark year) or we gain by 

creating matching strata based on past usage and structural characteristics of the dwelling.  

Clearly, the former approach is coarser and results in more numerous matches (and hence a 

larger sample size), while the latter is more precise, but requires information beyond the mere 

usage history of the households, and by design may discard many more units.   

If past electricity usage is sufficient to describe completely a household’s energy usage 

patterns, then adding house characteristics should not make much difference in terms of the 

results of the matching exercise. If, on the other hand, structural characteristics of the dwelling 

help explain usage and/or participation in the utility program and contribute to covariate 

imbalance, then the matching exercise will give different results when we add the structural 

characteristics. We do not have a priori expectations on whether the two approaches produce 

very different results, but we note that recent literature about the effects of novel tariffs or utility 

program has often relied on just past usage, with no information about the structural 

characteristics of the dwelling (Auffhammer, 2014). 

We use coarsened exact matching (Iacus et al., 2011) to match households, and apply the 

resulting weights in regressions that use the full panel of observations. We compare the results 

from this approach with standard matching (Abadie and Imbens, 2006, 2011) and propensity 
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score matching (Dehejia and Wahba, 1999 and 2002) for cross-sections drawn from our full 

sample.   

Briefly, we find that the energy audit and rebates on the purchase of high-efficiency air-

source heat pumps resulted in 5% reductions in the use of the electricity. The savings appear to 

be equally strong in the winter and summer in the case of the energy audits, and the results are 

sharper when matching is done on both past usage and house characteristics, despite the 

considerable trimming the sample is subjected to. With the heat pump rebates, the savings accrue 

primarily in the winter. In sum, our results suggest that matching on only past usage may not be 

enough, and that usage data should be augmented with house and/or household characteristics 

when possible.   

 Our paper is different from recent work in the area of “information” about energy usage, 

which has focused on examining whether more frequent feedback on usage than the conventional 

billing frequency, simplified or reformulated bills, or real-time feedback on usage through in-

home displays (alone or combined with dynamic pricing) change household energy consumption 

(Faruqui et al., 2010; Gans et al. 2013; Jessoe and Rapson, 2013).We contribute to the strand of 

literature that has sought to assess energy-efficiency incentive programs by examining the uptake 

of such incentives (Hassett and Metcalf, 1995), free riding in their presence (Boomhower and 

Davis, 2014) and apparent rebound effects potentially induced by the availability of these 

incentives (Alberini et al., 2014). 

 The remainder of this paper is organized as follows. Section 2 presents the background 

for our study. Section 3 describes the data. Section 4 lays out the econometric model and 

methods. Section 5 presents the results and section 6 offers concluding remarks. 
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2. Background 

 In 2008, the state of Maryland established the EmPower Maryland Program, with the 

goal of reducing energy consumption by 15% by 2015. Participating electric and gas utilities set 

up a number of initiatives to help meet this goal, including—starting in January 2010—rebates of 

$200 and $400 on the purchase of air-source heat pumps in tier I and tier II, respectively.  This 

rebate structure remained in place for all of 2010 and 2011, and was revised in January 2012, 

when rebates were extended to tier III heat pumps and ductless mini-split heat pumps that met 

specific energy efficiency requirements. The electric utility that serves the study area is a 

participant in the EmPower Maryland program. 

 In January 2011 the participating utilities started home energy audit programs. In this 

paper we examine the effects on energy usage of the simplest and least time-consuming of these 

audits—the Quick Home Energy Check-up (QHEC). In the QHEC, a professional performs a 

one-hour walk through the home to assess insulation levels, air leakage, heating and cooling 

systems, windows and doors, lighting and appliances, and water heating equipment. A report is 

prepared and handed to the homeowner that summarizes findings and recommends 

improvements and opportunities to save energy use and costs. Equipment and supplies, such as 

compact fluorescent light bulbs, faucet aerators, efficient-flow showerheads, water pipe 

insulation or water heater tank wraps, are offered. The QHEC is free to the residential customer 

and costs about $200 to the utility (which employs a contractor to do this service).  

We do not know exactly what a household does after the free energy audit. It is possible 

that, in addition to accepting and installing the products offered at the time of the QHEC, the 

audited households replace major equipment or install insulation, but we do not know this.  
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We wish to assess the effect on electricity usage of participation in the heat pump rebate 

program or the QHEC in first quarter of 2011.  As mentioned, the goal of the rebate and the 

QHEC program is to help the utilities meet the requirements of the EmPower Maryland program, 

which in turn aims at a 15% reduction in energy use and at the associated CO2 emissions. 

Additional incentives have been available from the federal government in the form of tax credits 

on the purchase of high-efficiency heat pumps since 2006, with major revisions to tax credits and 

caps in 2009 as part of the American Reinvestment and Recovery Act.  

 

3. The Data 

 We have assembled a unique dataset from state and private sources which contains 

monthly electricity usage and bills for a sample of about 17,000 households in Maryland. This 

sample is comprised of households who received a Quick Home Energy Check-up (QHEC) or a 

rebate for an energy-efficient air-source heat pump in the first quarter of 2011 (Q1 2011), plus 

households living in homes that are representative for age and construction type of the stock of 

single-family homes and townhomes in the area served by the utility, but did not participate in 

any utility programs during our study period.  

Although the local utility provided us with monthly billing and usage information from as 

early as December 2006, in this paper attention is restricted to 2008-2012.  Specifically, we use 

observations from 2008 for benchmarking purposes, and 2009 and the later years for analysis 

purposes (see the time line in figure 1). We use 2008 for benchmarking as this period was one of 

little or no programmatic activity targeted at energy efficiency. Since we are interested in 

assessing the effect of audits and incentives towards a major heating and cooling device, we 

exclude from the sample households that received multiple incentives during our study period or 
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during any period after the first quarter of 2011. We include in our sample only households with 

accounts that were active in 2008 and remained active until at least Q2 2011 at the same home. 

Our cleaned sample is thus comprised of 378 QHEC households, 430 households who received a 

rebate on the purchase of air-source heat pumps with SEER of 14 or better, and 10,676 “control” 

households.
2
 A total of 6,645 out of these 10,676 households live in homes served by air-source 

heat pumps. 

Information about electricity usage for this cleaned sample is displayed in table 1. Annual 

average consumption in 2008, our “benchmark” year, ranges from 17,000 to over 20,000 kWh. 

This figure is above the US average (which is about 11,000 kWh
3
), in part because of the 

reliance on air conditioning in the summer in our study area and because over half of the homes 

in our sample are served by air-source heat pumps, which are heavy users of electricity. T tests 

(reportd in table 2) fail to reject the null that the audit and the control households have different 

mean consumption levels in 2008, and find that rebate recipients are significantly different from 

the full control group (control group (a)) and those in the control group that use heat pumps as 

their main heating and cooling system (control group (b)).  

The distributions of electricity usage in 2008 for the different groups of households are 

depicted in figures 2 and 3. The figures suggests that, after some trimming at the upper end of the 

distribution, there is a wide common support for 2008 usage for treatment and control 

households.   

Table 1 also reports information about electricity usage in 2009, 2010, 2011, and Q2 

2011 – Q1 2012, i.e., the twelve months after the utility programs. Usage appears to be 

                                                           
2
 The original sample contained a total of 1300 households who received a QHEC or a heat pump rebate in Q1 2011, 

so our data cleaning procedures drop about one-third of the original households that participated in these utility 

programs in Q1 2011. 
3
 See http://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3 (last accessed 26 December 2014). 

http://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3
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especially high in 2009 and 2010 among the recipients of the heat pump rebates, and appears to 

decline substantially thereafter.   Control households that use heat pump experience a 

comparatively much more modest decline in usage. 

For each of the homes in our sample, we have extensive information about the structural 

characteristics of the dwelling and the type of heating and cooling system. This information 

comes from MDPropertyView, a database compiled by the State of Maryland that documents all 

properties in the state. Descriptive statistics of selected housing characteristics from 

MDPropertyView are displayed in table 3. Briefly, the average home is about 1900 square feet 

and  62% of the homes use heat pumps as their main heating and cooling systems. The bulk of 

the homes in our sample—some 60%--were built in the 1980s and 1990s, and a majority (over 

54%) are classified as of “average” construction quality. We note that higher construction quality 

includes “tighter” homes with regard to energy efficiency.  

In table 4 we compare the structural characteristics of the homes across groups—the two 

treated groups, the full control group (control group (a)), and the subset of the control group that 

use heat pumps (control group (b)). This comparison suggests that the QHEC group and the full 

control group are reasonably similar to each other, as are the heat pump rebate group and the 

controls with heat pumps. Some differences exist, however, in terms of the share of relatively 

new homes, construction quality, presence of basement and construction techniques and 

materials. 

Finally, we use the daily average temperature in our study area from the National 

Climatic Data Center’s Global Summary of the Day to compute daily heating and cooling degree 

days (HDDs and CDDs, respectively). Since the weather is a major determinant of the demand 
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for electricity, we aggregate daily HDDs and CDDs to the seasonal totals and enter them in the 

right-hand side of our regressions.  

 

4. Econometric Approach  

A. The Model  

We are interested in assessing the effect of two alternate treatments, the energy audit and 

the rebate on the purchase of an efficient heat pump, on electricity consumption. We focus on 

households that received the energy audit, or received and redeemed the rebate for a new heat 

pump, in Q1 2011. We have their electricity consumption before and after Q1 2011, but do not 

know exactly when the audit took place or the heat pump was installed within the first quarter of 

2011. For this reason, we aggregate the monthly electricity usage records to seasonal totals, and 

in our estimations (described below) we exclude the observations from Q1 2011. Electricity 

consumption is likewise aggregated to seasonal totals over the same study period for the control 

subjects. We define the seasons as winter (season 1), which is comprised of December, January, 

February, and March, spring (April and May), summer (June, July, August and September), and 

fall (October and November). In our study region, electricity consumption is especially high in 

the winter and the summer (even if we account for the different lengths of these seasons 

compared to spring and fall). This pattern is clear in figures 4 and 5, which display average log 

seasonal electricity use by customer group.  

To control for all possible confounders, we estimate the following “difference-in-

difference-in-difference” equation: 

(1)` istististitstisist DE   Wln  ,  
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where E is household’s i electricity usage in season s in year t, is  denotes a household-by-

season fixed effect, st  a season-by-year fixed effect, and 
it  a household-by-year fixed effect. 

istW  is a vector of weather controls, and istD  is the treatment dummy.  We are especially 

interested in estimating , the average treatment effect on the treated (ATT). 

The household-by-season fixed effects capture preferences for a warm house in the 

winter and a cool house in the summer, insulation and ventilation characteristics of the home, the 

presence of tree shade, etc. The season-by-year fixed effects capture the shocks represented by 

unusually cold or warm winters or summers, and the household-by-year fixed effects any 

changes in the composition of the household or structural characteristics of the home from one 

year to the next that may influence electricity usage.
4
 The effect of the treatment is identified by 

variation within the household-season-year cell.  

In practice, equation (1) implies a large number of household fixed effects—a total of 16 

effects per household times the over 10,000 households. Estimation is simplified by first taking 

the fourth-lag difference, namely the difference between each observation and its counterpart 

from the same season one year earlier.  This swipes out the household-by-season fixed effects 

and yields 

(2)  isttisisttisistitsttisist eDDWWEE    )()(lnln 1,1,1, , 

where st   and it   denote new season-by-year and household-by-year fixed effects. 

 In certain runs, as when the sample is restricted to the summer just before and that just 

after participation in the utility program, the fourth lag difference results in a single observation 

                                                           
4
 The household-by-season and the season-by-year fixed effects also account for the different lengths of winter and 

summer compared to the other seasons.  
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per household. It is therefore not possible to fit a model with household-by-year fixed effects, 

and we estimate a simplified version of the “triple difference” model, namely: 

(3)  isttisisttisiststtisist eDDWWEE    )()(lnln 1,1,1, . 

 While the interactions between the household, season and year units should help capture 

unobserved heterogeneity, equation (1) is linear in the logs of the continuous variables and the 

treatment dummy, which means that the model relies on extrapolation if certain cells are sparsely 

populated or are imbalanced with respect to the treatment and control households.  To 

circumvent this problem, we deploy matching techniques in order to restore balance and near or 

plausible exogeneity of the treatment.  

 

B. Matching 

For each treated household, we look for a match, namely a control household with 

roughly the same levels of electricity usage in 2008 and/or similar dwelling characteristics. The 

simplest way to estimate the ATT is to compute the difference between log usage for each 

treated household and its control-group match, and then average these differences over all 

possible pairs of matched households.  

 We remind the reader that average treatment effect is defined as 

(4)  𝛾 𝐴𝑇𝑇 = 𝐸(𝑌1 − 𝑌0| 𝐷 = 1) = 𝐸(𝑌1| 𝐷 = 1) − 𝐸(𝑌0|𝐷 = 1) 

where 𝑌1 denotes the outcome for a household in the treated state, 𝑌0 denotes the outcome in the 

untreated state, and D indicates treatment status—in our case either participation in the audit or 

rebate program (Angrist and Pischke, 2009). Of course, we cannot observe 𝐸(𝑌0|𝐷 = 1) (the 

untreated outcome for treated households) which leads to utilizing data from the 𝐷 = 0 group to 

estimate 𝐸(𝑌0|𝐷 = 0). All matching estimators of the ATT are weighting estimators of the form 
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(5)   ∆=
1

𝑛1
∑ [𝑌1𝑖 − ∑ 𝑤(𝑖, 𝑗)𝑗∈{𝐷𝑗=0} 𝑌0𝑗]𝑖∈{𝐷𝑖=1}  

where 𝑤(𝑖, 𝑗) sums to 1 for all i. These estimators are exact matching estimators, which means 

we can simply construct matches without concern for selection into the treatment. Application of 

matching estimators in observational data requires addressing this selection issue conditional on 

a rich set of observables, X, which in our case include historical usage and dwelling 

characteristics.  

If the matching covariates X are solely binary indicators or categorical variables, then it 

is straightforward to construct strata defined by all possible combinations of X values and place 

the treated households and the controls in the appropriate stratum. The control households in the 

same stratum as any given treated households serve as matches for the latter. Under mild 

assumptions, the ATT in (5) is consistent and asymptotically normally distributed. 

The inability to match for each continuous variable in X leads to usage of inexact 

matching estimators, such as distance-based measures as in Abadie and Imbens (2011) and 

propensity score approaches as first employed by Rosenbaum and Rubin (1983).These 

approaches produce a measure of the ATT based upon 

(6)    𝛾 𝐴𝑇𝑇 = 𝐸(𝑌1|𝑔(𝑋), 𝐷 = 1) − 𝐸(𝑌0|𝑔(𝑋), 𝐷 = 0), 

differing only in the construction of g(X) but all assuming implicitly or explicitly that (𝑌0 ⊥

𝐷)|𝑔(𝑋), i.e., that conditional on X treatment is as good as randomly assigned. This is the so-

called conditional independence assumption. 

 In Abadie and Imbens (2006, 2011) a measure of distance between households (e.g., the 

Euclidean or Mahalanobis distance) is constructed, and the closest match to a treated household 

is thus the control household at the shortest distance from the treated household. Abadie and 

Imbens (2011) show that in this case, the matching estimator in equation (5) is biased for the true 
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ATT, propose a regression-based bias correction, and derive the asymptotic variance of the bias-

corrected estimator, which is asymptotically normal (Abadie and Imbens, 2006). 

A convenient and computationally less intensive alternative is to deploy propensity score 

matching, which relies on the fact that conditioning on the propensity score (a single-index 

value) is equivalent to conditioning on X. One first fits a logit or probit model to explain 

treatment status as a function of the covariates X, and computes a predicted probability of 

treatment pi for each household. Each treated household is matched with the control household(s) 

with the closest pi, and the ATT is computed using equation (6) under a variety of weighting 

schemes for w(i,j) from equation (5).
5
 One then checks that the covariates are balanced post 

matching, which hopefully implies that conditional independence is satisfied.  However, neither 

approach guarantees that the matched samples will be balanced with respect to the covariates X. 

Both approaches can be relatively time-consuming to implement. Iacus et al. (2011) propose 

coarsened exact matching (CEM) to get around these two limitations.  

With CEM, continuous variables are converted to discrete interval data, and exact 

matching strata are constructed. The algorithm that implements this conversion seeks to select 

intervals that make the treated units and their matches among the controls balanced with respect 

to X. The procedure produces weights. Unmatched units receive a weight of zero. Matched units 

receive a weight equal to one if they belong to the treatment group, and 
s

C

s

T

T

C

m

m

m

m
  if they belong 

to the control group, where Cm  is the total number of control units, Tm  is the total number of 

                                                           
5
 In practice, by changing the definition of w(i, j) it is possible to identify multiple matches for each treated 

household including kernel approaches that weight “near” observations more heavily than distant observations or 

uniform approaches such as single or many nearest neighbors each weighted equally. They may also impose 

additional requirement on the matches (for instance, that they lie within a specified radius or “caliper” around each 

treated unit). 
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treatment units, and s

Cm  and s

Tm  are their counterparts in stratum s. The weights make the 

treatment and control groups balanced with respect to X.
6
  

Finally, one runs regression (3), where the right-hand side is augmented with the 

matching variables to control for any residual imbalance, by weighted least squares, where the 

weights are the CEM weights. Iacus et al. (2011) compare various matching approaches using 

Monte Carlo simulations and conclude that CEM outperforms the others in terms of bias and 

variance of the ATT, as well as execution time. For this reason, we deploy CEM in this paper as 

our primary matching method, and run the final weighted least square regression using the full 

panel dataset.  

We perform each matching exercise twice, first using energy usage in the winter and the 

summer of 2008 (well before participation in the utility’s programs) as the matching variables, 

and then again with a broader set of matching variables—namely 2008 winter and summer usage 

and house characteristics, including the type of heating system. The first approach considers a 

treatment and control household a matched pair if their 2008 winter and summer electricity 

consumptions levels were roughly the same. We expect the second approach to be more 

stringent: the two households would not be considered good matches for each other if, for 

example, one of them had a very large house and the other a very small house, as the implied 

energy intensities would be very different.  

We wish to check if the estimation results are very sensitive to using a coarser matching 

criterion (prior usage only), which presumably yields more matched households, versus a more 

stringent one, which is expected to yield fewer matches, for a smaller final sample size. We 

                                                           
6
 Unless restrictions are imposed on the CEM algorithm by the researcher, CEM will by default uses all possible 

matches for the treated units, and is thus different from distance-based approaches or propensity score matching, 

where the number of matches used to estimate the ATT is arbitrarily defined by the researcher. Using CEM allows 

more matches where the counterfactuals are thick and fewer matches where good counterfactuals do not exist. 
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emphasize that the former approach is easily deployed when the only information about 

households available to the researcher is their usage itself (i.e., the billing and usage data from 

the utility), while the latter is possible only when usage data are merged with household or house 

structure information.  

As a robustness check, we also estimate the ATT using both a traditional matching 

method based on minimizing the Mahalanobis distance and propensity score matching. Both use 

cross-sectional samples from control and program participating households from season s and 

year t, where s and t are post-treatment periods for the participating households. For consistency 

with equation (3), the outcome variable is the difference between log electricity usage in season s 

in year  and its counterpart in the same season the prior year.  

 

5. Results  

A. Main Results  

We begin our discussion of the estimation results with those for the QHEC energy audit 

treatment. The results of the CEM where the matching variables are 2008 winter and summer 

usage are reported in table 5. We dub this “CEM 1.”  Most of the households, and their seasonal 

usage totals, are retained in the final regressions. The CEM 1-weighted averages of the matching 

variables (the household’s winter and summer usage in 2008) are virtually identical across the 

treatment and control households (first panel of table 6).  

 Table 7, column (A), reports the results from fitting the triple difference model without 

attempting to trim the sample or attain covariate balance. The QHEC appears to reduce usage by 

2.74%, but this effect is only marginally statistically significant at the 5% level. When the same 

model is re-run with the CEM 1 weights, the average treatment effect of participating in the 

energy audit program is similar, and statistically weaker (the t statistic is -1.75, which indicates 
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significance at the 10% level). When attention is restricted to summertime billing cycles 

(columns (C) and (D)), participation in the home energy audit program brings a slightly stronger 

reduction in energy use (a 3.3% decline), which is again marginally statistically significant at the 

5% level.  

The second CEM approach (“CEM 2”) uses 2008 winter and summer usage and dwelling 

characteristics to create the matching strata. As shown in table 5, this discards many more 

observations than CEM 1. Only about one-third of the available sample is retained in the final 

regression. The CEM 2-weighted averages of the matching variables are, again, practically 

identical across the treatment and control groups (second panel of table 6). 

In spite of the dramatically smaller sample used in the final regression (where we control 

for 2008 electricity usage and dwelling characteristics), when applying the CEM 2 weights the 

average treatment effect of QHEC is stronger, indicating a decline in usage by up to 5.5%. 

Summertime savings in electricity usage are of similar magnitude, and likewise statistically 

significant at the conventional levels.  

Turning attention to the other treatment—the heat pump rebate—the results of the CEM 

algorithms are similar to those with the home energy audit. If the matching variables are limited 

to 2008 winter and summer usage levels, then some 98% of the households are matched. When 

house characteristics are further included, only about one-third of the households are matched 

controls, and so the final sample size for the regression is greatly reduced (table 9).  

We run the triple difference model of equation (1) without any weights or trimming the 

sample, and the results are displayed in table 10, column (A). They indicate that participating in 

the heat pump rebate program (which means that the existing heat pump is replaced with an 

energy-efficient one) brings a 5.3% reduction in energy usage. On trimming the sample and 
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applying either set of CEM weights—CEM 1 or CEM 2—the average treatment effect of 

changing the heat pump becomes slightly smaller (a 4% reduction in electricity usage) but 

remains strongly statistically significant (table 10).  

Quantifying the summertime savings is, however, more difficult. If the CEM 1 weights 

are applied, replacing the heat pump seems to produce 3.7% reductions in electricity usage, but 

the summertime average treatment effect is much smaller (about 2%), and statistically 

insignificant, when we use the CEM 2 weights (table 11).  

 

B. Robustness Checks 

The results discussed so far are based on utilizing the full panel dataset—obviously our 

preferred approach. We also created cross-sections from the existing panel dataset, and used 

them to apply propensity score and distance-based matching algorithms. The results derived 

from these estimation approaches provide useful robustness checks. Tables A.1 and A.2 in the 

Appendix present results from the PSM and distance based estimators across multiple choices for 

nearest neighbor, again with and without structural characteristics included in the matching 

variables.  

 There is ample evidence of variability in these results if one compares results across 

matching approaches or within approaches using different numbers of neighbors or a richer set of 

matching variables (usage and dwelling data). In both rebate and audit treatments the strongest 

effects arise from the heaviest usage period during the summer months with the audit reduction 

of 4 to 5% and the rebate reduction in differences of ~3%. While the preponderance of results are 

of similar magnitude and significance to our preferred specification and approach (CEM plus the 
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panel), this variability and reliance on the researcher’s choice of the number of neighbors make 

the CEM weighting approach all the more attractive. 

 

6. Conclusions. 

 We have used a unique set of data from Maryland that combines electricity usage levels 

and utility program participation records with structural characteristics of the dwelling to 

estimate the electricity usage reductions that can be attributed to residential energy audits and 

incentives to replace existing heat pumps with new, and more energy efficient, ones. We have 

observations on usage for participating households and for a group of similar, non-participating 

households, which we regard as control units. We have observations on usage before and after 

program participation (which took place in Q1 2011) for all households. 

 Since program participation is voluntary, naïve estimates of its effects are likely affected 

by selection bias, which we have attempted to address by deploying household-by-season fixed 

effects, season-by-year fixed effects, and household-by-year fixed effects, plus matching 

methods to restore a quasi-experiment design. Most applications of matching methods in 

economics are for cross-sections. By contrast, our dataset is a panel, and we fully exploit it by 

applying coarsened exact matching on households and then running regressions that use the full 

panel of observations on usage.  

 Our findings suggests that past usage alone—as is often done in studies that lack 

information among other determinants of residential energy usage, such as house and household 

characteristics (e.g., Ito, 2014)—may not be not sufficient and that house characteristics are 
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important. We find that residential energy audits reduce usage by about 5%, and that the heat 

pump rebate has an effect of similar magnitude.
7
  

 For policy purposes, it is of interest to compute the cost-effectiveness of these programs, 

namely the cost per ton of CO2 emissions removed. With our programs, however, these 

calculations are not simple. Consider for example the QHEC program. Starting from a baseline 

of 18,000 kWh per year, a 5% reduction implies that 900 kWh are saved per year. Since we do 

not know whether these savings were attained with simple behavioral changes or by replacing 

equipment or making other energy-efficiency investments, it is difficult to say what the time 

horizon over which these savings are accrued is.  

If we assume that it is 7 years (as assumed by the utility), then a participating household 

would avoid 3.830 tons of CO2. Assuming that the cost of the audit to the utility is $200, and 

that an additional $60 worth of products are offered to the household, for a total of $260 per 

QHEC, then the cost per ton of CO2 emissions abated is $67.88.
8
  The cost falls to $47.50 per 

ton of CO emissions if we assume that the usage reductions would be sustained for 10 years.  

This is above the $21 “typical” social cost of carbon used by federal agencies in benefit-cost 

analyses, but well within the range of values in Greenstone et al. (2013), which are obtained 

under various scenarios and discount rate assumptions.  

With the heat pumps rebate, we assume that the lifetime of a heat pump is 10 years, a 

figure commonly indicated in utility and federal government agency calculations. This means 

that, starting from a baseline of 21,000 kWh a year and assuming a rebate of $400, the cost per 

ton of CO2 emissions avoided is about $59. The problem with this calculation is that evidence 

from other studies (Boomhower and Davis, 2014; Alberini et al., 2014), and the high levels of 

                                                           
7
 This is a greater saving that than estimated by the utility, which is 375 kWh a year. See 

http://www.smeco.coop/saveEnergy/quickHomeEnergyCheckup/comparisonChart.aspx (accessed 13 June 2014). 
8
 We assume 0.608 Kg of CO2 emissions per kWh generated. 

http://www.smeco.coop/saveEnergy/quickHomeEnergyCheckup/comparisonChart.aspx
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usage observed in our own sample prior to replacing the heat pump, suggest that people replace 

heat pumps when their existing equipment is about to die and essentially free ride on the 

incentives. Since we find that replacing heat pumps with new and more efficient ones does 

indeed decrease energy usage, energy efficiency standards for new heat pumps might be 

sufficient to ensure such usage reductions, which would presumably occur at no additional cost 

to the entity issuing the rebates.  
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Figure 1. Time line. 
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Figure 2. Density of 2008 electricity usage. Households who received a heat pump rebate v. 

control households with heat pumps. 

 

Figure 3. Density of 2008 electricity usage. Households who received a Quick Home Energy 

Check-up (QHEC) v. control households. 
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Figure 4. Average log electricity consumption by season. Household who received a Quick 

Home Energy Check-up (energy audit) v. control households.  

 

Figure 5. Average log electricity consumption by season. Household who received heat pump 

rebates v. control households with heat pumps. 
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Table 1. Electricity consumption by year and household group. 

 N Mean 

electricity 

usage in 

2008 

(benchmark 

year) (kWh) 

Mean 

electricity 

usage in 

2009 

(kWh) 

Mean 

electricity 

usage in 

2010 

(kWh) 

Mean 

electricity 

usage in 

2011 

(kWh) 

Mean 

electricity 

usage Q2 

2011 – 

Q1 2012 

(kWh) 

Audit (QHEC) 378 17,438 18,046 19.049 17,640 16,407 

Control group 

(control group (a) 

10676 17,385 17,652 17,853 17,970 16,846 

Heat pump rebate  430 20,136 21,154 21,950 19,775 18,222 

Control group with 

heat pump (control 

group (b)) 

6645 18,586 18,893 18,963 18,902 17,479 

 

Table 2. 2008 electricity usage comparison across groups.  

 T statistic of the null that the 

group means are the same  

Audit (QHEC) v. control group (a) -0.1065 

Heat pump rebate v. control group (a) -6.9494 

Heat pump rebate v. control group with heat pumps (control 

group (b)) 

-3.8586 
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Table 3. Descriptive statistics of the sample. N=11,552 households. 

 Mean (unless otherwise indicated) 

Sqft feet Mean     1928.19 

Median  1808 

Basement present 0.4209 

Brick construction 0.0828 

Frame construction 0.1229 

Siding 0.7337 

Single family home 0.8800 

Heat pump present 0.6225 

Built before 1960 0.0594 

Built 1960-69 0.0649 

Built 1970-79 0.1572 

Built 1980-89 0.2170 

Built 1990-99 0.3921 

Built 2000 and later 0.1094 

1 floor  0.3198 

2 floors 0.5583 

2.5 floors 0.0065 

3 floors 0.0132 

Missing floor info 0.1022 

Fair construction quality 0.3544 

Average construction quality 0.5414 

Good construction quality 0.0776 

Very good construction quality 0.0088 

Other construction quality 0.0178 
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Table 4. Comparison of structural characteristics of the homes by group. 

  Audit 

Control 

Group 

(a) 

Group 

means 

t test 

(audit 

v. 

control 

group) 

HP 

Rebate 

Control 

Group w/ 

heat 

pump (b) 

Group 

means t 

test 

(HP 

rebate 

v. 

control 

group 

w/ heat 

pumps) 

Sqft 1917.95 1931.22 -0.33 2072.4 2029.01 1.07 

heat pump 0.6085 0.6224 -0.52 1.0000 1.0000 -- 

Basement 0.3052 0.4285 -5.02** 0.4332 0.4582 -0.90 

Frame 0.0736 0.1238 -3.59** 0.1217 0.0908 1.70 

Brick 0.1062 0.0832 1.41 0.0534 0.0420 0.91 

Siding 0.7411 0.731 0.43 0.813 0.8413 -1.30 

Built Pre 1960  0.0763 0.0612 1.07 0.0059 0.0104 -1.03 

Built 1960-69  0.0518 0.0665 1.25 0.0059 0.0051 0.20 

Built 1970-79  0.2071 0.1565 2.36* 0.0356 0.0508 -1.45 

Built 1980-89  0.2507 0.2124 1.67 0.3145 0.2735 1.58 

Built 1990-2000 0.3787 0.3879 -0.36 0.5964 0.5117 3.08** 

Built 2000+  0.0354 0.1155 -7.89** 0.0415 0.1485 -9.10** 

1 floor 0.3578 0.3540 0.14 0.2614 0.2461 0.60 

2 floors 0.6147 0.6236 -0.33 0.732 0.7205 0.44 

2.5 floors 0.0122 0.0074 0.79 0.0033 0.0103 -1.98* 

3 floors 0.0153 0.0150 0.04 0.0033 0.0232 -5.23** 

Average construction 

quality 
0.4796 0.5404 -2.29* 0.6291 0.6113 0.66 

Fair construction quality 0.4142 0.3559 2.23* 0.2463 0.2721 1.07 

Good construction quality 0.0899 0.0770 0.85 0.1128 0.1011 0.66 

Very good construction 

quality 
0.0054 0.0092 -0.94 0.0089 0.0133 0.84 

 

* = significant at the 5% level 

** = significant at the 1% level 
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Table 5. Coarsened exact matching (CEM) results. QHEC households v. control households. 

 

 CEM 1 CEM 2 

Matching variables  - 2008 usage - 2008 usage 
- House characteristics 

Matched households 10,580 
(97.85%) 

3603 
(33.33%) 

Nobs used in the final regression  177,550 
(97.88%) 

60,763  
(33.50%) 
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Table 6. Weighted means of matching variables in the QHEC treatment and control groups. 

Model Variable 
control 
group 

QHEC 
treatment 

group 

CEM1 summer 2008 usage 5779.081 5745.573 

 winter 2008 usage 6572.229 6618.136 

CEM2 summer 2008 usage 5424.801 5404.673 

 winter 2008 usage 6178.023 6206.095 

 square feet 1788.557 1788.143 

 heat pump 0.642857 0.642857 

 vintage  4.030612 4.030612 

 SF home 0.70068 0.70068 

 brick 0.061225 0.061225 

 frame 0.054422 0.054422 

 siding  0.836735 0.836735 
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Table 7. DDD model. Dep. variable: ln Electricity use. Treatment: Quick Home Energy Audit. 

  
Full DDD 

No weights 

Full DDD 

CEM 1 weights 

Simplified DDD  

(summers 2010-

11) 

CEM 1 weights 

Simplified 

DDD  

(summers 

only) 

CEM 1 weights 

Regressors or fixed effects from equation (1): 

Treatment Dummy 
-0.0278 

(-2.04) 

-0.0250 

(-1.75) 

-0.0340 

(-2.15) 

-0.0344 

(-2.26) 

Household  

season FE 
Yes Yes Yes Yes 

Season  year FE Yes Yes n/a Yes 

Household  year 

FE 
Yes Yes No No 

weather controls Yes Yes Yes Yes 

Matching variables to control for any residual imbalance:  

Benchmark year 

usage 
No* No* Yes Yes 

house 

characteristics 
No No No No 

Number 

observations 
108,387 106,501 16,125 26,394 

* absorbed into the hhold-year FE 
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Table 8. DDD model. Dep. variable: ln Electricity use. Treatment: Quick Home Energy Audit. 

  
Full DDD  

no weights 

Full DDD  

CEM 2 weights 

Simplified DDD  

(summers 2010-

11) 

CEM 2 weights 

Simplified DDD  

(summers only)  

CEM 2 weights 

Regressors or fixed effects from equation (1): 

Treatment 

Dummy 

-0.0278 

(-2.04) 

-0.0544 

(-3.63) 

-0.0480 

(-4.61) 

-0.0479 

(-2.86) 

Household  

season FE 
Yes Yes Yes Yes 

Season  year FE Yes Yes Yes Yes 

Household  

year FE 
Yes Yes No No 

Weather controls Yes Yes Yes Yes 

Matching variables to control for any residual imbalance: 

Benchmark year 

usage 
No* No* Yes Yes 

house 

characteristics 
No* No* Yes Yes 

Number 

observations 
108,387 37,511 5,780 9,338 

* absorbed into the hhold-year FE 
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Table 9. Coarsened exact matching (CEM) results. Heat pump households v. control households 

with heat pumps. 

 

 CEM 1 CEM 2 

Matching variables  - 2008 usage - 2008 usage 
- House characteristics 

Matched households 6681  
(97.45%) 

3603 
(33.33%) 

Nobs used in the final regression  112,326 
(97.65%) 

60,763  
(33.50%) 
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Table 10. DDD model. Dep. variable: ln Electricity use. Treatment: Heat Pump rebate. 

  
Full DDD 

No weights 

Full DDD 

CEM 1 weights 

Simplified 

DDD  

(summers 

2010-11) 

CEM 1 weights 

Simplified DDD  

(summers only) 

CEM 1 weights 

Regressors or fixed effects from equation (1): 

Treatment Dummy 
-0.0546 

(-3.15) 

-0.0430 

(-2.68) 

-0.0375 

(-3.01) 

-0.0373 

(-3.15) 

Household  

season FE 
Yes Yes Yes Yes 

Season  year Yes Yes  Yes 

Household  year 

FE 
Yes Yes No No 

Weather controls Yes Yes Yes Yes 

Matching variables to control for any residual imbalance: 

Benchmark year 

usage 
No* No* Yes Yes 

House 

characteristics 
No No No No 

Number 

observations 
68,754 67,604 10,209 16,735 

* absorbed into the hhold-year FE 
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Table 11. DDD model. Dep. variable: ln Electricity use. Treatment: Heat Pump rebate. 

 

Full DDD 

No weights 

Full DDD 

CEM 2 weights 

Simplified 

DDD  

(summers 

2010-11) 

CEM 2 weights 

Simplified DDD  

(summers only) 

CEM 2 weights 

Regressors or fixed effects from equation (1): 

Treatment Dummy 
-0.0546 

(-3.15) 

-0.0419 

(-2.49) 

-0.0202 

(-1.52) 

-0.0202 

(-1.65) 

Household  

season FE 
Yes Yes Yes Yes 

Season  year Yes Yes No Yes 

Household  year 

FE 
Yes Yes No No 

Weather controls Yes Yes Yes Yes 

Matching variables to control for residual imbalance: 

Benchmark year 

usage 
No* No* Yes Yes 

House 

characteristics 
No* No* Yes Yes 

Number 

observations 
68,754 33,268 10,209 16,735 

* absorbed into the Household-year FE 
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Appendix.  

Table A.1 Summary of ATT estimates using Mahalanobis-distance and propensity score 

matching. QHEC. 

 

 Distance Based Matching   Propensity Score Matching 

Number 

Nearest 

Neighbors 

Outcome 

Diff 2011 

and 2010 

by Quarter 

Usage 

and 

dwelling 

data 

 Usage 

data 

only 

 Usage 

and 

dwelling 

data 

 Usage 

data 

only 

 

3 Q2  -0.036  -0.020  -0.030  -0.033  

3 Q3 -0.051 * -0.037 * -0.048 ** -0.064 ** 

3 Q4 -0.014  -0.003  -0.011  -0.029 ** 

5 Q2 -0.037  -0.019  -0.026  -0.033 * 

5 Q3 -0.051 * -0.036 * -0.046 * -0.048 * 

5 Q4 -0.011  -0.005  -0.011  -0.016  

7 Q2 -0.038  -0.017  -0.023  -0.032  

7 Q3 -0.053 * -0.038 * -0.044 * -0.053 ** 

7 Q4 -0.012  -0.004  -0.013  -0.017  

11 Q2 -0.035  -0.018  -0.025  -0.025  

11 Q3 -0.054 ** -0.036 * -0.040 * -0.050 ** 

11 Q4 -0.013  -0.006  -0.014  -0.012  

*** at 1%, ** at 5%, * at 10% 

Note: all specifications balance using conventional tests and the PSM standard 

errors are bootstrapped with 1,000 replications. 
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Table A.2 Summary of ATT estimates using Mahalanobis-distance and propensity 

score matching. Heat pump rebate. 

 
 

 

Distance Based Matching - Mahalanobis Propensity Score Matching 

Number 

Nearest 

Neighbors 

Outcome 

Diff 2011 

and 2010 

by Quarter 

 Usage 

and 

dwelling 

data 

 

Usage 

data 

only 

 

Usage 

and 

dwelling 

data 

 

Usage 

data 

only 

 3 Q2 -0.005 

 

-0.004 

 

-0.002 

 

0.002 

 3 Q3 -0.025 

 

-0.032 ** -0.030 

 

-0.030 ** 

3 Q4 -0.022 * -0.030 ** -0.004 

 

-0.009 

 5 Q2 -0.006 

 

-0.005 

 

-0.006 

 

-0.001 

 5 Q3 -0.024 

 

-0.029 ** -0.039 ** -0.024 

 5 Q4 -0.020 

 

-0.025 * -0.011 

 

-0.003 

 7 Q2 -0.005 

 

-0.004 

 

0.000 

 

0.000 

 7 Q3 -0.020 

 

-0.029 * -0.035 ** -0.016 

 7 Q4 -0.020 

 

-0.021 

 

-0.007 

 

-0.004 

 11 Q2 -0.002 

 

-0.004 

 

0.001 

 

0.006 

 11 Q3 -0.016 

 

-0.028 * -0.032 * -0.024 

 11 Q4 -0.021 

 

-0.017 

 

-0.006 

 

-0.003 

 *** at 1%, ** at 5%, * at 10% 

Note: all specifications balance using conventional tests and the PSM standard errors 

are bootstrapped with 1,000 replications. 

 




