
 

 



http://www.feem.it/
mailto:working.papers@feem.it


1 
 

Robert Marschinski§ and Philippe Quirion$1  

CNRS$, CIRED$, MCC$,§, PIK§, TU-Berlin§ 

 

Tradable Renewable Quota vs. Feed-In Tariff 

vs. Feed-In Premium under Uncertainty 

 

Abstract: We study the performance under uncertainty of three renewable energy policy 

instruments: Tradable Renewable Quota (TRQ), Feed-In-Tariff (FIT), and Feed-In-Premium (FIP). We 

develop a stylized model of the electricity market, where renewables are characterized by a positive 

learning externality, which the regulator aims to internalize. Assuming shocks on the fossil-based 

electricity supply, renewables supply, or on total electricity demand, we analytically derive the 

conditions determining the instruments’ relative welfare ranking. Although we generally confirm the 

key role of the slopes of marginal benefits and costs associated with the policy, the specific ranking 

depends on which type of uncertainty is considered, and whether shocks are permanent or 

transitory. However, a high learning rate generally favours the FIT, while TRQ is mostly dominated by 

the other two instruments. These results are confirmed in a numerical application to the US 

electricity market, in which the FIP emerges as the most and TRQ as the least robust overall choice.  
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1. Introduction 

Policies aiming to increase the share of electricity from renewable sources (RES-E) are now widely 

employed.2 A prominent example is Germany, where the introduction of Feed-In-Tariffs (FIT) in the 

year 2000 has led to a considerable expansion of renewable energy capacity.3 Under a Feed-In-Tariff, 

a fixed price (above the electricity market price) is guaranteed to producers of RES-E for a period of 

typically ten to 20 years. While such policies might be motivated by various reasons such as green 

jobs, energy security, or as a second-best measure for reducing the risks and negative externalities of 

nuclear power or carbon emissions (see, e.g., Fischer and Preonas 2010), their main justification from 

the perspective of economic theory is the internalization of an external effect, which would cause a 

market failure if no policy intervention occurs. In the case of renewables, it is widely assumed that 

positive knowledge spillovers constitute such an externality. Namely, it is argued that renewable 

technologies are still in a relatively early stage of their development, and that therefore further 

capacity expansion as well as R&D will lead to lower costs in the future, but that this effect – because 

it cannot be fully appropriated – is not taken into account properly by individual firms (e.g. Rivers and 

Jaccard 2006).  

It was the choice of Germany to use a FIT for this purpose, but this is not the only policy instrument 

available: a Tradable-Renewable-Quota (TRQ) was employed, e.g. in the UK and in many states of the 

US4 (where it is often labelled RPS - Renewable Portfolio Standard), and Denmark currently resorts to 

a Feed-In-Premium (FIP) 5. The latter, the FIP, seems to be similar to a FIT, offering a fixed mark-up on 

the market price (in effect an output subsidy) to producers of RES-E. The former, the TRQ, requires 

producers of fossil-generated electricity to acquire a certain number of ‘green certificates’ for each 

unit of output. These certificates are generated by the producers of RES-E, who receive one 

certificate for each unit of output. They are then traded on a dedicated market for such certificates.  

In a first-best setting with full information, it is obvious that with each instrument the social optimum 

can be implemented, i.e. the share of renewables can be increased up to the desired level. However, 

in reality many of the parameters that would be needed to optimally set the level of the policy 

instrument (i.e. how high the FIT, or the FIP, or the amount of required green certificates should be) 

are not perfectly known. For example, the exact production costs for RES-E and also for fossil-

generated electricity might be private information of the producers. In addition, the regulator’s ex 

ante knowledge about future electricity demand, which can be expected to significantly influence the 

impact of any renewable policy, is surely less than perfect.  

In the presence of such informational uncertainty, the overall impact of any of the three instruments 

will also be uncertain. This is well illustrated by the case of photovoltaic electricity (solar PV) in 

Germany, where “reality has overtaken model projections” (Schmid et al. 2013), i.e. the capacity 

expansion induced by the FIT paid to solar PV exceeded all previous scenario projections 

(Ibid.,Fig.(8)).6 The reason for this surprising surge is that costs for solar panels went down much 

faster than expected (Bazilian et al. 2013). The resulting large solar PV capacity in Germany is now 

often criticized by economists as an unwarranted overshoot and taken as evidence that in hindsight 

                                                           
2
 See, e.g., the overview given in Table 1 of Fischer and Preonas (2010). 

3
 http://de.wikipedia.org/wiki/Erneuerbare-Energien-Gesetz  

4
 See, e.g., data presented in the review of Schmalensee (2012). 

5
 http://www.eclareon.eu/sites/default/files/denmark_-_res_integration_national_study_nreap.pdf  

6
 See also Fig.(1) in Quaschning (2011). 

http://de.wikipedia.org/wiki/Erneuerbare-Energien-Gesetz
http://www.eclareon.eu/sites/default/files/denmark_-_res_integration_national_study_nreap.pdf
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the FIT for solar PV was set excessively high (Frondel et al. 2012), but an alternative conclusion – that 

this higher than expected PV expansion is justified by the cost decrease – cannot be ruled out a 

priori.  

The research question addressed in our contribution is directly related to this real-world example: 

could the overshoot have been avoided or at least reduced if not a FIT but instead a FIP or a TRQ had 

been employed, i.e. would these other instruments have performed better? More generally, how do 

the three different policy instruments pass on shocks in underlying parameters onto the resulting 

output level of renewable electricity, and what does this imply for their respective expected net-

benefit?     

Although – to the best of our knowledge – our study is the first to propose a full formal analysis of 

the three instruments under uncertainty, it is not the first which compares different renewable 

energy policies. For example, Menanteau et al. (2003), in a qualitative analysis without formal model, 

illustrate and compare the different mechanics of FIT and TRQ, also under uncertainty, and use a 

multi-criteria analysis to derive their conclusion that the efficiency of the former is superior. Butler 

and Neuhoff (2008) corroborate this finding in a comparative case study on onshore wind-energy in 

Germany and the UK, citing as one of the main reasons the lower risk to developers the FIT offers. 

The effect of risk-aversion on the side of investors is also investigated by Fagiani et al. (2013), who 

use a system-dynamic numerical model to compare the performance of FIT and TRQ. They find that 

while in theory FIT again offers a superior performance, the TRQ might be more robust and still offer 

acceptable cost-efficiency as long as risk-aversion is moderate, and actually become the preferred 

instrument in the presence of additional constraints, like excessive time-discounting by investors. 

Similarly, in an ex post analysis of wind power deployment in Denmark, Gavard (2013) concludes that 

due to investors’ risk-aversion a higher subsidy is required if it takes the form of a FIP instead of a FIT. 

More precisely, on average a 21 €/MWh support on top of the laisser-faire electricity price is 

necessary to observe connections of new turbines to the grid with a probability of 0.5, while under a 

FIP this probability is reached for a support policy of 27 €/MWh. 

The more formal study by Rivers and Jaccard (2006) also develops a model of the electricity market 

(which is then simulated numerically), but focusses on the regulatory choice between command-and-

control or market-based instruments. Tamas et al. (2010) study the difference between FIT and TRQ 

under imperfect competition in a theoretical model, but in a purely static setting without learning 

effects and also without uncertainty. The review of Fischer and Preonas (2010) addresses the 

interaction of different policy goals and instruments. They use a formal model, but mainly to 

illustrate the mechanics of the various policy instruments, and do not allow for uncertainty. 

Noteworthy, they report an increasing preference for TRQ as the instrument of choice for stimulating 

the deployment of renewables.  

Finally, in the review provided by Schmalensee (2012), the performance of FIT and the TRQ-like 

Renewable Portfolio Standard (RPS) is compared both by means of empirical evidence from the US 

and the EU, and within a very simple theoretical model. Based on the latter, he objects to the widely 

held notion that FIT is preferable because it involves a lower risk for investors, since this view ignores 

the risk posed by FIT to society at large, which may well be lower under RPS. His model incorporates 

uncertainty on the intercept of the supply curve of renewables and shares some other features with 

ours (two-sector structure, inelastic total demand, increasing marginal costs for renewables), but it 
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does not incorporate the learning (or any other) externality. Moreover, the way the RPS is modelled 

– namely as an instrument which allows to directly set the total output of renewables – differs 

significantly from the market-based TRQ system considered by us, and the FIP is not considered at 

all. 

In sum, the existing literature has not yet provided a full formal analysis of which of the three 

instruments yields the higher expected net benefits under second-best conditions, in which – similar 

to the seminal prices vs. quantities analysis of Weitzman (1974) – the regulator has only imperfect 

knowledge of the parameters needed to optimally set the policy. To keep our basic analysis as 

transparent as possible, we have to ignore several aspects that might also influence instrument 

choice, such as risk aversion (Butler and Neuhoff 2008; Fagiani et al. 2013), the ability of FIT or FIP to 

price-discriminate (Fischer and Preonas 2010), the overlap and interaction with other policies like 

CO2 emission control (Böhringer and Rosendahl 2010; Fischer and Preonas 2010), and the different 

way in which the cost burden is distributed (e.g., the German FIT system is self-financed by a levy 

added to the electricity bill of end-consumers).  

The remainder of this article is organized as follows: Section 2 introduces our model of the electricity 

market and the three policy instruments, and derives the optimal policy intervention in the absence 

of uncertainty. Section 3 characterizes the effect of permanent shocks on the three instruments by 

deriving for each one the expected net benefits. Section 4 describes how these results change if 

shocks are assumed as transitory. Section 5 presents a numerical application of the model to the US 

electricity market. Section 6 concludes. 

 

2. A Simple Model of the Electricity Market and the three Policy Instruments 

2.1 Definition of the Model  

Consider the following two-period model of the electricity market: demand d>0 is inelastic and, for 

simplicity, identical across both periods.7 Electricity is supplied by two competitive sectors, the 

renewables sector (characterized by the letter ‘r’) and the fossil-fuel sector (‘f’). Denoting by qs,t the 

output q of sector s{r,f} in period t{1,2} we have 

                                                                                                        

Like Schmalensee (2012), we assume an upward sloping linear supply curve in the renewables sector, 

justified by the increasing scarcity of suitable sites. In addition, we incorporate a learning-by-doing 

effect that leads to a downward shift of the supply curve in period 2, in proportion to the output qr,1 

of period 1. This specification formalizes the idea that learning-by-doing drives down the unit 

production costs (e.g. $/Watt generation capacity), from which all future output benefits and which 

                                                           
7
 The assumption of a fixed demand allows us to abstract from the distributional aspects arising in this context, 

e.g. the TRQ is financed by the fossil-based sector and consumers, while the FIT could be financed either from 
the government’s general budget or–as in Germany–by a levy on the electricity bill. Although politically 
relevant, for our present analysis of uncertainty performance we deliberately want to defer these issues, as 
there is no one-to-one correspondence between instruments and the financing mechanism, i.e. each 
instrument could be financed in various ways, making it more difficult to arrive at a clear-cut discrimination 
between them.  
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is stronger the more experience was gained. At the same time, it preserves the scarcity of sites (slope 

of supply curve). In formal terms, costs c in the renewable sector are thus given by 

     
    
 

(    )
 
                                                                                  

     
    
 

(    )
 
 (            )                                                            

where cr,1, cr,2 is the sector’s cost for period 1 and 2, respectively, smcr≥0 the slope of the marginal 

cost (or supply curve), imcr≥0 the intercept of the marginal cost, and le≥0 the learning effect. For the 

fossil-fuel sector we assume the same functional forms, with the exception of the learning effect, 

which we assume to be negligible due to the much higher maturity of this technology.8  

     
    

 
(    )

 
                                                                       

There are several models in which marginal costs in the fossil-based sector are assumed to be 

constant (e.g. Schmalensee 2012); however, scarcity of fossil resources, increasing extraction costs 

and capacity constraints suggest that increasing marginal costs are quite plausible (as in, e.g., Fischer 

and Preonas 2010; Schmidt and Marschinski 2009; Fischer and Newell 2008). Nevertheless, to take 

this issue into account one may assume that the increase is lower than for renewables, i.e. smcr
 > 

smcf > 0.9  

Finally, we constrain our model to interior solutions, i.e. equilibria with qs,t>0 t,s which requires: 

                                                                                               (5) 

                                                                                           (6) 

Intuitively, the first condition prevents the fossil-based sector to take all the market, and the second 

prevents the renewable sector to take all the market (at the optimum). Note that the above two 

equations also imply  

                                                                                              (7) 

which is a condition that will be used frequently.10 

 

                                                           
8
 The no-learning assumption in the fossil-sector is a didactic exaggeration for keeping the analysis as clear as 

possible, but it is also commonly adopted in the literature (e.g. Fischer and Newell 2008; Kalkuhl et al. 2012). 
9
 Note that we ignore system costs (grid, storage capacity, etc.), which are generally expected to rise when the 

relative share of renewables increases, due to the variability of sources like wind or sunlight (Ueckerdt et al. 
2013). In this our model may at first sight seem less plausible than the one of Schmalensee (2012), who 
incorporates this aspect by assuming the marginal costs of fossil-generated electricity to be the sum of a 
constant term and one that is proportional to the ratio of renewable and fossil-generated output. However, his 
particular specification is mathematically equivalent to simply adding a constant term to the marginal costs of 
renewables. Therefore our model comprises Schmalensee’s, and is more general as it allows for a non-zero 
slope of the fossil-based supply curve.      
10

 A further noteworthy simplification of our model is that, to keep the model tractable, it uses ‘instantaneous’ 
electricity supply curves and hence ignores the distinction between investment cost and variable cost.  



6 
 

2.1 Social Optimum 

In the present setting, welfare maximization coincides with the minimization of the total costs tc 

incurred for meeting the constant demand d in period 1 and 2:11  

   
{                   }

                                                                                   

                                              {   } 

Given an interior solution, the optimal output – which we identify with a superscript ‘OPT’ – is 

characterized by a pair of first-order conditions with respect to qr,1 and qr,2: 

          
                    

                 
                                                      

          
                 

             
                                                           

Intuitively, the second efficiency condition–relating to period 2–simply equates marginal costs in the 

renewable and fossil-based sector, where the former’s costs are reduced by the learning effect 

induced by the output of the previous period. The first efficiency condition equates period-1 

marginal costs in the renewable sector with period-1 marginal costs in the fossil-based sector and the 

cost-saving effect realized in period 2. Note that the two equations are perfectly symmetric: taking 

one, the other can be obtained by switching the time index. As a consequence, also the optimal 

outputs must be symmetric and hence the last two equations simplify into one, namely   

       
                   

               
                                             

where we have additionally substituted   
   =d-  

   . This expression has a straightforward 

interpretation from a cost-benefit perspective: the costs of renewables (LHS) are justified by the 

avoided costs of fossil-based supply (RHS, 1st and 2nd term), plus the learning effect (RHS, 3rd term). 

The avoided marginal costs of fossil-based output is decreasing, while the learning effect is increasing 

in renewables output. The efficiency condition can be readily solved, yielding 

  
    

                

            
                                                                    

By Eqs.(7) and (5) the denominator and the numerator, respectively, are always positive. It might 

seem surprising that the optimal amount of renewables is the same in both periods, even though the 

marginal cost function of renewables is shifted downwards in the second period, and hence marginal 

costs are lowered by le  qr,1 compared to the first period. However, it is only the ‘instantaneous’ 

marginal costs that are higher in the first period, which is justified by the additional cost-saving effect 

in the second period. Naturally, the optimal fossil-generated supply also becomes symmetric, with 

(using the demand constraint):  

  
     

                     

            
                                                           

                                                           
11

 We ignore discounting and for now assume equal parameters in both periods for the sake of simplicity. 
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To verify that we are facing a cost minimum, we express total costs solely in terms of the qr,1 (qr,2 can 

be expressed in terms of qr,1 by the second efficiency condition Eq.(10)) and take the second 

derivative, yielding 

    

       
 
 

 

         
((         )

 
    )                                             

where the positive sign follows directly from the constraint in Eq.(7).  

 

2.2 Competitive Market Equilibrium 

Competitive firms take the electricity price p1 and p2 for periods 1 and 2 as given and produce 

electricity such as to maximize their profits π. For simplicity we assume one representative firm per 

sector and time period, yielding the following four maximization problems: 

   
    

                                                                                      

The corresponding four first-order conditions, together with the demand constraints, yield for the 

equilibrium output of renewable electricity in period 1 and 2, respectively: 

    
   

                

         
           

   
(                )(            )

(         )
          

where we introduced the superscript shorthand ‘NP’ to indicate the ‘no policy’ case. Comparison with 

Eq.(12) for   
    shows that if le>0, then     

       
     

   . In other words, the market provides 

too little renewables in both periods, especially in period 1, and thus leads to higher total costs than 

in the social optimum whenever le>0.  

This outcome is of course not surprising, since by assumption market participants do not internalize 

the learning effect. However, the fact that period 2 supply of renewables nevertheless increases 

because some learning does occur highlights how the regulator’s problem in this model is to 

implement the optimal supply of renewables in period 1, as the period 2 market equilibrium will be 

optimal by itself if the right amount of learning is induced. 

 

2.3 Policy Instruments 

The policy instruments are applied only in period 1, since there is no externality associated with the 

level of qr,2 or qf,2. We now formalize FIP, FIT, and TRQ, and derive their optimal setting for the 

deterministic case. 

FIT: feed-in-tariff, i.e. a guaranteed fixed price for renewables output 

Under a FIT policy the representative firm’s profit in the first period becomes 
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(where we denote by ‘fit’ the level of the instrument), leading to an associated output of 

    
    

        
    

                                                                                

The regulator sets FIT optimally by equating it to the marginal costs implied by   
    from Eq.(12): 

                
    

    (       )                   

            
                     

Chosen this way, the FIT induces the optimum level     
    of renewables output, and hence also of all 

other model variables. As can be confirmed easily, for le=0 the optimal FIT would simply become 

equal to the price realized in a ‘laisser-faire’ market equilibrium.  

FIP: feed-in-premium, i.e. a per-unit subsidy for renewables added to the electricity price 

Under this instrument, the first-order condition for profit maximization of the representative firm in 

the renewables sectors implies  

                                                                                   

leading to an output level of  

    
    

                    

         
                                                         

Comparing the producers’ efficiency condition Eq.(20) from above with the social efficiency condition 

Eq.(11) immediately shows that producers respond optimally to the market price p1 if the FIP is set to 

    
                    

            
       

                                                

In line with intuition, the optimal FIP strictly increases with the strength of the learning effect and 

equals zero if le=0.  

TRQ: tradable renewable quota, i.e. a share  of renewables per unit of fossil-generated output  

Under this instrument, the regulator requires producers of fossil-generated electricity to buy a 

number  of ‘green’ certificates for every unit of their output. The resulting relative market share of 

renewables becomes /(1+), which we assume to be above the no-policy ‘NP’ case. Green 

certificates are awarded to renewable producers for each unit of their output. Being freely tradable, 

the price pc of these certificates is determined by the market.    

The period-1 profit functions of the renewable and fossil-based representative firm are thus given by 

    
                                                                                    

    
                                                                                   

Together with the market clearing condition  
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the implied equilibrium can be readily computed and implies a price of electricity and of the green 

certificates given by 

   
     (           )    (             )

      
                                    

   
     (         )    (           )

      
                                     

and a resulting output of renewables 

    
    

   

   
                                                                                    

To minimize total costs, the regulator has to choose   as the ratio of the optimal renewables and 

optimal fossil-generated output: 

  
  
   

  
    

                

                     
                                                   

Note that in this case   increases with le, but does not become zero for le=0. This is consistent, since 

for le=0 the laisser-faire market equilibrium is optimal, but nevertheless comprise a share of 

renewables that is greater than zero.  

In sum, all instruments, if set at their optimal value, yield the optimal value of qr,1, and hence of qf,1, 

qr,2, and qf,2, and thus also the optimal welfare. The different instruments are graphically illustrated in 

Fig.(1), which compares (for period 1 only) the no-policy case with the social optimum and indicates 

the optimally set instruments FIT, FIP, and TRQ. The figure shows how the regulator’s challenge 

consists of increasing qr,1 from the conventional static optimum where marginal cost of renewables 

equal marginal costs of fossil based electricity to the point where the positive external effect from 

learning is fully incorporated. Overall, this provides us with a simple but useful framework to analyse 

the instruments’ performance under uncertainty, which will be done in the next section.  



10 
 

 

Figure 1: Graphical illustration of the model (d=4;imcf=1;smcf=0.25;imcr=0.5;smcr=0.75;le=0.4), for period 1. 

Shown are the renewable sector’s marginal costs (rising from lower left to top right) and those of the fossil-

based sector (rising from bottom right to middle left). The third line represent the 'effective' marginal costs of 

using fossil-based electricity, which are obtained by adding the foregone benefits of learning to the marginal 

production costs, as explained after Eq.(11). Social optimum (    
   ) and no-policy market equilibrium (    

  ) are 

indicated. The optimally set policy instruments are highlighted in black (FIP), light grey (FIT) and dark grey 

(TRQ). 

 

3. Instrument Performance under Uncertainty: Permanent Shocks 

This section formally analyses the three instruments’ robustness for three different sources of 

uncertainty. Each instrument should minimize total expected cost, which is equivalent to maximizing 

net surplus (or welfare) if demand–as in our case–is inelastic. We assume that the regulator, being 

affected by uncertainty, sets each instrument to its ex ante optimal level, while firms have perfect 

information (as in Weitzman’s 1974 model).  

Another basic assumption of our model is that shocks occur only in the first period. The reason for 

this restriction is that the second period is not subject to policy intervention, and hence uncertainty 

in this period would not affect instrument choice. Note that uncertainty on the learning parameter le 

is therefore not considered here. The reason for this perhaps unexpected choice–given that le is 

evidently uncertain–is that considering uncertainty on le would not lead to a discrimination between 

the different policy instruments in terms of their robustness. Namely, if le turns out to be lower than 

expected (and vice versa), all three of them would yield the exact same excess output of renewables 

in the first period, and hence induce the same efficiency loss.  

Finally, a specific assumption of this section (but reversed later) is that shocks are permanent. In 

other words, all model parameters have the same value in period 1 and 2. The ‘shock’ can be 

interpreted as a false estimation of the system’s parameters by the regulator, leading to the 

implementation of an ex post non-optimal renewables target qr,1, and hence to excess costs. 
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Importantly, the permanency of shocks implies that the full formal symmetry between period 1 and 2 

– as discussed in Section 2.1 and reflected in Eq.(11) – is preserved. Under this condition, total costs 

are uniquely determined by the value of qr,1 (with given parameter values). Eq.(14) shows that this 

minimization problem is strictly convex with a constant second derivative, allowing to reduce the 

uncertainty analysis to a simple comparison of how shocks impact the first-order condition for qr,1 

under the various instruments.12  

The model admits uncertainty on three model parameters: (i) the level imcf of the marginal costs of 

fossil-generated output (driven by volatility of fossil fuel prices, possibly also of a carbon price), (ii) 

the level imcr of the marginal costs of renewables-based output (uncertain short-term production 

costs and site availability), and (iii) total demand d (uncertainty driven by business cycle 

fluctuations).13 In formal terms, we introduce an additive uncertainty f on the level imcf of the 

marginal costs of fossil-generated power (i.e. on the level of the supply curve), such that the 

expected value is E[f]=0 and the standard deviation SD[f]=f. Analogously, r defines an additive 

uncertainty on the level imcr
 of the marginal costs of renewables, with E[r]=0 and standard deviation 

SD[r]=r. Finally, d denotes the additive uncertainty on demand d, again with expected value 

E[d]=0 and standard deviation SD[d]=d. 

 

3.1 Formal analysis: The Weitzman perspective 

Given the formal similarity of our problem to the one addressed by Weitzman (1974), and the 

prominence of his homonymic ‘rule’ of the relative slopes of marginal costs and benefits, we first 

discuss the cases in which the ranking between instruments can be determined by applying this rule. 

As will be seen, depending on which uncertainty is considered, the different policy instruments will 

varyingly act as price or quantity instrument. For instance, the FIT formally fixes the price for 

renewables, but by doing so it also fixes the level of renewables output if uncertainty is associated 

only with the supply curve of the fossil-based sector, or with total demand. Hence, a FIT acts as a 

quantity instrument in the latter two cases and as a price instrument when uncertainty is linked to 

imcr.    

Since qr,2 will automatically be optimal if qr,1 is optimal, only the first period needs to be considered. 

The efficiency condition Eq.(11) can be written as  

         
         (        )     

                                                         

where the left-hand side corresponds to the price of renewables, i.e. their marginal costs, which 

becomes fixed by a FIT. The right-hand side, as discussed before, represents the marginal benefits 

from employing renewables. Under uncertainty on imcf or imcr the TRQ acts as a quantity instrument, 

since it sets the output level of qr,1 directly through Eq.(28). Consequently, the Weitzman rule can be 

applied to FIT vs. TRQ for these two sources of uncertainty. As by Eq.(30), the slope of the marginal 

                                                           
12

 In addition, we also assume that all uncertainties are uncorrelated. This seems to be a natural starting point, 
given that the assumption of correlation would complicate the analysis significantly. 
13

 The slopes of the marginal cost curves, representing, e.g., the declining quality of grades for renewables, are 
considered to be known by the regulator, an assumption also made in the uncertainty analysis of Weitzman 
(1974). 
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costs is given my smcr, while the absolute slope of the marginal benefits is abs(le-smcf). Hence, we 

obtain the following two results:  

 with marginal cost uncertainty due to shocks on imcr, a price instrument FIT is more efficient 

than a quantity instrument TRQ if smcr>abs(le-smcf), which by Eq.(7) simplifies to 

smcr+le>smcf;  

 with shocks on imcf uncertainty only affects marginal benefits, and hence–as per Weitzman’s 

rule–price (FIT) and quantity (TRQ) regulation become equivalent. 

Using the rule to assess the FIP instrument becomes straightforward when rearranging the efficiency 

condition Eq.(11) into 

(         )    
                            

                                           

Here, the left-hand side represents the wedge between the marginal costs in the renewable and 

fossil-based sector – which is precisely what is fixed by a FIP. Because any such wedge leads to a 

deviation from the cost-minimum for total supply in period 1, the LHS also represents the marginal 

excess costs associated with renewable employment beyond the free-market equilibrium. The right-

hand side captures the corresponding marginal benefit, namely the cost reduction from learning. 

Under a FIP the marginal costs (i.e. the wedge) are fixed, but not the resulting output quantity qr,1. 

Conversely, in the absence of demand shocks a TRQ fixes qr,1, but leaves the marginal cost difference 

uncontrolled. For uncertainty on demand d and imcf, also the FIT acts as a quantity instrument. 

Hence, given the slope smcr+smcf of the marginal costs, and le of the marginal benefits, the 

Weitzman rule can be applied to four more cases of instrument choice:  

 with cost-uncertainty due to shocks in imcf or imcr, the price instrument FIP is more efficient 

than the quantity instrument TRQ if smcr+smcf>le, which by Eq.(7) always holds; 

 with cost-uncertainty due to shocks in imcf, the price instrument FIP is more efficient than 

the quantity instrument FIT if smcr+smcf>le, which by Eq.(7) always holds; 

 with cost-uncertainty due to demand shocks, the price instrument FIP is more efficient than 

the quantity instrument FIT if smcr+smcf>le, which always holds, unless smcf=0, in which case 

uncertainty drops out of Eq.(31) and both instruments become first-best. 

The results obtained so far already allow a full characterization of the instruments’ relative 

performance under uncertainty on imcf, as summarized in the following statement: 

Proposition 1.1 (permanent uncertainty on imcf): Consider the model defined by Eqs.(1)-(7). If 

uncertainty occurs in form of permanent shocks affecting the level of the marginal cost curve in the 

fossil-based sector, then a FIP is always more efficient than both FIT and TRQ, while the latter two are 

equivalent. 

 

3.2 Formal analysis: General perspective 

The previous application of Weitzman’s rule allowed determining the instrument ranking for six out 

of nine possible cases, with FIT vs. TRQ and FIP vs. TRQ for demand uncertainty, as well as FIT vs. FIP 

for uncertainty on imcr as the remaining three cases. Before turning to a more general formal 

approach to address the remaining cases, we use the graphical representation of the model shown in 
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Fig.(1) to develop an intuition for the result just obtained, and prepare the ground for the  

interpretation of later results. 

 

Figure 2: Illustration of a shock of -25% on imcf (all other parameter values as in Fig.(1)). The dashed 

oblique lines indicate ex ante values, solid lines ex post values. The ex post optimum for qr,1 becomes 

lower than in Fig.(1), while output under FIT (light grey) and TRQ (dark grey) remains unchanged. 

Only for FIP (black) a reduction of renewables output can be observed, albeit insufficient.  

Fig.(2) graphically illustrates the impact of a -25% shock of imcf on the optimum and on the output of 

qr,1 implied by the three instruments. Intuitively, if fossil-based electricity has higher (lower) costs 

than expected, then a greater (lower) share of renewables would be required to meet the social 

optimum. However, both FIT and TRQ are–once the instrument level is set–insensitive to the price 

signal from the fossil sector and hence do not respond to shocks. Only under the FIP does the price 

signal reach the renewables sector and induces an adjustment in the right direction. However, this 

adjustment remains too small if le>0, demonstrating that the FIP falls short of being an optimal 

instrument. This is the case because a FIP defines a fixed mark-up on the price of renewables, while 

the size of the external effect it aims to internalize increases with the level of qr,1. Said differently, the 

effect of a FIP is to shift the marginal cost curve of the renewable sector downwards, while the 

optimal correction, as can be seen in Fig.(2), would be a rotation of the curve. 

To derive the remaining dominance conditions of uncertainty performance, we adopt a more general 

formalism allowing to compute all nine conditions within one approach. To do so, note that the 

efficiency condition for     
    can be re-analysed in the following way: substitute     

    by the 

considered (and optimally set) policy instrument. E.g. for a FIT, using Eq.(18), Eq.(30) becomes      

    (        ) 
        

    
                                                         

The instrument leads to an optimal outcome as long as the equation is satisfied, i.e. when the fixed 

marginal costs on the LHS equal the ‘unfixed’ marginal benefits on the RHS. In presence of a shock on 

imcf, imcr, or d this will generally no longer be the case, and the size of the resulting deviation will 
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become a measure of the incurred inefficiency. In other words, the extent to which any of these 

shocks lead to a violation of the instrument-specific efficiency condition directly captures the 

instrument’s robustness.  

Hence, under a FIT shocks in imcf, imcr, or d yield an inefficiency-wedge proportional to the 

corresponding partial derivative, namely 1, (smcf-le)/smcr, and smcf, respectively. Notice that the 

second coefficient implies that under uncertainty on imcr a FIT becomes a first-best instrument 

whenever smcf=le, as in this case the coefficient becomes zero. Next, consider the FIP: from Eqs.(21) 

and (31) the required form of the efficiency condition is obtained as 

       
                    

         
                                                        

implying coefficients of le/(smcf+smcr), - le/(smcf+smcr), and (le smcf )/(smcf+smcr) for shocks in imcf, 

imcr, and d, respectively. Finally, for the TRQ we use Eq.(28) for the substitution, yielding 

(             ) 
   

   
                                                          

and thus implying robustness coefficients 1, -1, and α/(1+α) (smcf+smcr-le) – smcf. Notice that the 

equation shows that a TRQ becomes a first-best instrument under demand uncertainty only if 

imcf = imcr, since in this case d is eliminated from the condition.  

Comparing the coefficients’ absolute magnitude yields the dominance conditions. In particular, for 

shocks on imcf the coefficients of FIP, FIT, and TRQ are le/(smcf+smcr), 1, and 1, respectively, meaning 

that a FIP is always more efficient than FIT and TRQ (by Eq.(7) its coefficient is below unity), and that 

the latter two are equivalent, which confirms the result of the previous section. 

For uncertainty on imcr the (absolute value) coefficients for FIP, FIT and TRQ become le/(smcf+smcr), 

abs(smcf-le)/smcr, and 1, respectively. The FIP evidently dominates the TRQ, and so does the FIT if 

smcr+le>smcf, as already found in the previous section. As a new case, the FIT is superior to the FIP if 

le/(smcf+smcr) > abs(smcf-le)/smcr. For 0<smcf<le, this simplifies to le<smcf+smcr, which by Eq.(7) 

always holds, while smcf>le leads to the non-trivial condition le>smcf (smcf +smcr)/(smcf +2 smcr); in 

the limit case of smcf=0 both instruments become equivalent. The following proposition summarizes:  

Proposition 1.2 (permanent uncertainty on imcr): Consider the model defined by Eqs.(1)-(7). If 

uncertainty occurs in form of permanent shocks affecting the level of the marginal cost curve in the 

renewables sector, then 

(i) FIP is always more efficient than TRQ  

(ii) FIT is more efficient than TRQ if               

(iii) FIT is more efficient than FIP if          (          ) (           )⁄ , except for 

smcf = 0, in which case they are equivalent instruments. 

Hence, the TRQ is not a good choice in this case, as it is dominated by the FIP. The FIT might be an 

even better choice if the marginal cost curve in the fossil sector is relatively flat and if learning is high. 

Intuitively, lower (higher) than expected costs for renewables imply that they should supply a higher 

(lower) share of electricity. The TRQ, however, fixes the share and hence does not respond. The FIP 

reacts exactly as for uncertainty on imcf, i.e. the cost-shock is passed on to the market, albeit 
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imperfectly. The FIT also reacts and adjusts in the right direction, but may overshoot. This is 

illustrated graphically in Fig.(3).  

 

Figure 3: Illustration of a shock of -80% on imcr (all other parameter values as in Fig.(1)). The solid 

(resp. dashed) upward-slopping line is the ex post (resp. ex ante) renewables supply curve. The ex post 

optimum for qr,1 becomes higher than in Fig.(1). Output under TRQ (dark grey) remains unchanged, 

while it is increased under FIP (black) and, even more so, under FIT (light grey). 

Fig.(3) also illustrates why the FIT is first-best if smcf=le: because in this case marginal benefits are flat 

and can therefore be perfectly internalized by a constant price. As a consequence, the FIT will 

dominate both TRQ and FIP whenever smcf and le are sufficiently close.  

Shocks in total demand constitute the last source of uncertainty to consider. In general a positive 

demand shock means that the optimal quantity of both renewable and fossil-generated electricity 

should increase. This, intuitively, might favour the TRQ, which so far did not show any particular 

advantage vis-à-vis the other two instruments. For FIT and FIP we found coefficients of smcf and (le 

smcf)/(smcf+smcr), respectively, thus confirming the last section’s result that under demand 

uncertainty FIP always dominates FIT, unless smcf=0, in which case they become equivalent.  

The TRQ coefficient was α/(1+α) (smcf+smcr -le) - smcf. To derive specific dominance conditions the 

instrument’s parameter α needs to be replaced. This, as before, will be done by using the optimal 

value found in the initial analysis without uncertainty, i.e. Eq.(29). Note, however, that in the present 

case this does not correspond to the ex ante optimal value that minimizes expected total costs. The 

two only coincide when the ex post output of qr,1
 is linear in the shock as well as in the instrument’s 

parameter, e.g. as in Eqs.(18) and (21) for FIT and FIP. For the TRQ this was the case for uncertainty 

on imcf and imcr. However, it is no longer true for the present case of demand uncertainty, since the 

ex post output of qr,1 now depends on the mathematical product of the shock and  (see Eq.(28)). 
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Nevertheless, for reasons of exposition and because it seems quite plausible that a regulator would 

indeed choose the value that would be optimal under certainty, we still proceed this way.14  

Comparing FIT and TRQ shows that the former dominates the latter if 

        [(
 

   
) (            )      ]                                              

which, by using Eq.(29) becomes 

        [
 

 
(                )      ]  

 

 
    [         ]                         

By Eq.(5), the condition can only be fulfilled if imcf-imcr>d smcf. Finally, a FIP is more efficient than 

TRQ if (simply replacing the LHS of Eq.(36) with the FIP’s coefficient) 

       

         
 

 

 
    [         ]                                                        

In sum, for uncertainty on total demand the instruments’ relative performance can be characterized 

as follows: 

Proposition 1.3 (permanent uncertainty on d): Consider the model defined by Eqs.(1)-(7). If 

uncertainty occurs in form of permanent shocks affecting the level of total electricity demand, then 

(i) FIP is more efficient than FIT, except if marginal costs in the fossil-based sector are 

constant, in which case they are equivalent (and both ex post optimal).  

(ii) FIT is more efficient than TRQ if (imcf-imcr)/d > smcf.  

(iii) FIP is more efficient than TRQ if abs(imcf-imcr)/d > (le smcf)/(smcr +smcf) 

As the result shows, TRQ is not a ‘silver-bullet’ instrument for demand uncertainty, which stems from 

the fact that the optimal percentage share of renewables does generally not stay constant under 

demand variations. This would only be the case if imcf equals imcr, and hence the relative difference 

between them – scaled by total demand d – becomes a measure of the TRQ’s expected error, as on 

the LHS of conditions (ii) and (iii) above.  

On the other side, a FIT decouples the renewables sector from the electricity market and thereby 

prevents it from reacting to demand shocks. This, in general, leads to a suboptimal outcome, except 

if the fossil sector’s supply curve is flat, in which case it is optimal that all demand shocks are 

absorbed exclusively by the latter. Hence, the slope smcf of the supply curve becomes a measure of 

the FIT’s expected error, as on the RHS of condition (ii).  

Finally, the FIP always improves upon the FIT, but the induced adjustment of the renewables output 

generally remains insufficient (except for smcf=0, for the same reason as for FIT). This can also be 

understood by thinking in terms of the effective subsidy provided: in case of a permanent positive 

demand shock, the benefits from learning increase, and hence the per-unit subsidy offered to the 

                                                           
14

 We also report results corresponding to the case where demand uncertainty is optimally taken into account 

by the regulator. The value for  that minimizes expected costs is given by 
 (                )        

                                   
, 

and in fact only leads to a slight modification of the dominance conditions given in Proposition 1.3 (ii) and (iii), 

namely the replacement of d with d(1+d/d).  
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renewables sector should become higher. However, under a FIP it stays by definition constant, while 

under a FIT – being the difference between laisser-faire price and fit – it even decreases (and under a 

TRQ it generally becomes too high).  

The behavior of all three instruments is illustrated in Fig.(4). Clearly, if demand uncertainty is the 

regulator’s main concern, the instrument choice comes down to deciding between the FIP and TRQ. 

 

Figure 4: Illustration of a shock of -25% on demand d (all other parameter values as in Fig.(1)). 

Dashed horizontal lines indicate ex ante values, solid lines ex post values. The ex post optimum for qr,1 

becomes lower than in Fig.(1). Output under FIT (light grey) remains unchanged, it becomes lower – 

but not enough – under FIP (black) and also – but too much – under TRQ (dark grey). 

 

4. Instrument Performance under Uncertainty: Transitory Shocks 

Especially at shorter time-scales (e.g. less than one business cycle) it might seem plausible to assume 

transitory rather than permanent shocks. Therefore, this section takes a brief look at how the 

dominance conditions would change in this case. As we will see, the conditions remain very similar. 

In formal terms, the efficiency condition for an ex post optimal output of renewables becomes more 

complicated than Eq.(11), as it now depends explicitly on the different parameter values of the first 

and the second period. If we denote by imcr,1, imcf,1, and d1 the respective parameters’ ex post values 

for the first period, the efficiency conditions for a social optimum read (analogous to Eqs.(9) and 

(10)): 

         
   

               
   

      (       
   

)                                                  

         
                

         (      
   )                                                    

The second equation can be used to the substitute the dependent period-2 output of renewables: 
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                (       

   )            (
       

                    

         
)        

The instruments are still set optimally by choosing the value found in the deterministic analysis of 

Section 2 (except TRQ under demand uncertainty, where we nevertheless assume such a setting, as 

explained above). Hence, we can introduce the instruments one by one in Eq.(40), and then compute 

the uncertainty coefficients as the partial derivatives with respect to the three different possible 

shocks. The calculations are provided in the Appendix and yield the following three propositions for 

each type of uncertainty: 

Proposition 2.1 (transitory uncertainty on imcf): Consider the model defined by Eqs.(1)-(7). If 

uncertainty occurs in form of transitory shocks affecting the level of the marginal cost curve in the 

fossil-based sector, then a FIP is always more efficient than both FIT and TRQ, while the latter two are 

equivalent. 

Proof: See Appendix. 

Hence, the ranking remains exactly the same as in the case with permanent shocks. Next, consider 

uncertainty on the supply curve in the renewables sector: 

Proposition 2.2 (transitory uncertainty on imcr): Consider the model defined by Eqs.(1)-(7). If 

uncertainty occurs in form of transitory shocks affecting the level of the marginal cost curve in the 

renewables sector, then 

(i) FIP is always more efficient than TRQ  

(ii) FIT is more efficient than TRQ if          
       

  

(iii) FIP is more efficient than FIT if     (          )√     (          )⁄ . 

Proof: See Appendix.  

In qualitative terms, the ranking of instruments does not change compared to the permanent 

uncertainty case: the FIP always dominates the TRQ, and the position of the FIT could be anywhere 

from best to worst choice. However, in quantitative terms the FIT’s performance deteriorates, i.e. 

the conditions for it to be superior to TRQ or FIP are less likely to be met under transitory than under 

permanent shocks. This is a consequence of the FIT’s tendency to overshoot which has a less severe 

effect if a shock makes renewables permanently more (or less) attractive, rather than just 

temporarily. Finally, the case of demand uncertainty: 

Proposition 2.3 (transitory uncertainty on d): Consider the model defined by Eqs.(1)-(7). If 

uncertainty occurs in form of transitory shocks affecting the level of total electricity demand, then 

(i) FIP is more efficient than FIT, except if marginal costs in the fossil-based sector are 

constant, in which case they are equivalent (and both ex post optimal).  

(ii) FIT is more efficient than TRQ if            
       (            )

(            )
, or if smcf=0  

(iii) FIP is more efficient than TRQ unless 
          

(         )

(            )

(             )
 < imcr-imcf < 

          

(         )
 

Proof: See Appendix. 
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As for permanent shocks, FIT and FIP become first-best instruments if marginal costs in the fossil-

based sector are flat, but otherwise the FIT is dominated by the FIP. Also as before, the relative 

performance of the TRQ depends on the size of the term (imcf-imcr)/d, but the dominance conditions 

also show that under transitory shocks TRQ has a smaller likelihood to be preferable over FIT or FIP 

than under permanent shocks. This can be explained by the tendency of the TRQ to overreact, as 

seen in Fig.(5), which leads to a smaller efficiency loss if the parameter change to which it reacts 

persists throughout the second period. 

 imcf uncertain imcr uncertain d uncertain 

 perm. trans. Permanent Transitory Permanent Transitory 

FIT 
vs. 

TRQ 

equal equal smcr + le > smcf      
          

  Imcf - imcr > d 
smcf, or if 
smcf=0 

         

 
       (            )

(            )
 

, or if smcf=0 

FIP 
vs. 

TRQ 

FIP sup FIP sup FIP sup FIP sup abs(imcf-imcr) 
> (d le smcf) 
/(smcr+smcf) 

         

 
          

(         )

(            )

(             )
 

or  

           
          

(         )
 

 

FIP 
vs. 
FIT 

FIP sup FIP sup 
   

         

   
    
    

    
         

√   
    
    

 
FIP sup, equal 
only if smcf=0  

FIP sup, equal only if smcf=0 

Table 1: Overview of analytical results. If the stated condition is met, then the first instrument 

dominates the second. 

Table 1 summarizes all analytical findings, allowing highlighting the following insights: First, under 

uncertainty on imcf, the ranking of instruments is unaffected by whether uncertainty is permanent or 

transitory: FIP is always the most efficient choice, and FIT and TRQ are equivalent. This is the case 

because both TRQ and FIT are unresponsive to shocks in the marginal costs of fossil-based supply. 

They act as quantity instruments and Eq.(31) shows that as such they are dominated – because of the 

steepness of marginal costs – by the price instrument FIP. 

Second, in case uncertainty is on imcr, we again find an unambiguous superiority of FIP over TRQ, 

independent of permanent or transitory uncertainty. As before, this is due to the TRQ's behaviour as 

a quantity instrument and the ensuing lack of responsiveness to shocks. On the other side, the rank 

of the FIT is ambiguous: depending on parameter values, it could theoretically be the first-, second-, 

or third-best instrument choice. However, it always fares relatively better under permanent than 

transitory shocks, which – as said before – can be explained by its tendency to overshoot, whereas 

the other two instruments always react too little to shocks. If the shock is ‘neutralized’ in the second 

period, the error of overshooting in the first period becomes relatively more expensive. 

Third, under demand uncertainty FIP dominates FIT, independent of whether uncertainty is 

transitory or permanent. The reason is that under demand uncertainty the FIT acts as a quantity 

instruments, fully equivalent to the TRQ under shocks in imcr – and that marginal costs are steeper 
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than marginal benefits. The relative performance of TRQ under demand uncertainty is a case in 

which the value of new parameters comes into play, namely (imcf-imcr)/d. It captures the error of 

TRQ and hence if this parameter is sufficiently large relative to smcf TRQ will be dominated by both 

FIP and FIT. This is more likely to be the case for the FIP than for the FIT, and under transitory than 

under permanent uncertainty. The latter can be explained by noting that FIP and FIT always under- 

respectively not react to a demand shock, which leads to less costly errors if the shock is transitory. 

The TRQ, on the other side, has a tendency to overreact, as illustrated in Fig.(4).15 

Overall – if no further knowledge on the relative importance of the three sources of uncertainty is 

available – the FIP emerges as the most robust choice, as even in the worst possible case it still ranks 

1st, 2nd, and 2nd with respect to uncertainty on imcf, imcr, and demand. This is in line with economic 

intuition: a per-unit subsidy on renewables most directly conforms to the idea of internalizing a 

positive learning externality. Indeed, in our model the FIP would be an optimal instrument if it were 

not for the scale-effect of learning which it does not capture – i.e. the fact that the benefit of a given 

cost-reduction is not constant but positively dependent on the future employment of renewables, 

since for each unit a benefit is realized. In other words, an optimal subsidy would not be constant like 

the FIP, but increase with the size of the future renewables supply. This calls for a FIP set at a higher 

level for relatively expansive renewable sources, e.g. higher for PV than for onshore wind, and higher 

in locations with moderate wind speeds or sunlight than in locations with high wind speeds or 

sunlight. In fact, some real-world renewable support schemes (e.g. the FIT in Germany or France) 

already feature such a differentiation but with a different rationale, namely to limit the differential 

rent for renewables in sites with the most productive resource. Our conclusions identify an 

alternative justification for this practice. 

If the size of the learning effect le is large, the FIP's error will also become large, which might justify 

the use of a FIT, especially if uncertainty is mainly associated with the renewables sector's costs and 

if the fossil-based sector's supply curve is relatively flat. The latter implies a weak interaction 

between renewables and fossil-based sector, which favours the FIT's effect of sealing off the 

renewables sector. Conversely, a TRQ might be justified if learning le is low, the fossil-based sector's 

supply curve is steep, and uncertainty is mainly rooted in demand. However, the TRQ will generally 

be prone to large inefficiencies if there is a marked difference in the marginal costs of the first output 

units between the two sectors ((imcf-imcr)/d).    

 

5. Numerical Application to the US Electricity Sector 

The analytical model cannot inform on the quantitative difference in expected costs across 

instruments. Hence, based on the stylized US electricity sector model introduced by Fischer and 

Newell (2008), this section provides numerical estimates of the instruments’ performance. Given the 

simplicity of the model which abstracts from many features of the electricity sector, these estimates 

should be considered as illustrative. We deliberately choose to base our numerical application on a 

model calibrated on rather old data (year 2004) in order to quantify realistic shocks, which were not 

                                                           
15

 For demand uncertainty, the four conditions regarding the performance of TRQ change if one uses the actual 
ex-ante optimal setting of α for TRQ (instead of the one without uncertainty). However, the rigorous conditions 

are easily obtained by replacing d with d(1+d/d), making  it relatively easier for TRQ to meet the dominance 
conditions. In addition, the term ‘imcf-imcr’ must be changed into abs(imcf-imcr). 



21 
 

forecasted when the model was designed, but have occurred since then. Hence, our numerical 

exercise is retrospective: we imagine that we have to choose renewables support policy in the mid-

2000’s, based on 2004 data, knowing that shocks on the three variables of interest may happen in 

the following years, but without any more specific knowledge on their timing, sign or magnitudes. 

 

5.1 Model calibration 

We make three modifications of the original Fischer-Newell model, such that it corresponds exactly 

to our analytical specification. First, we merge coal and gas into a single fossil electricity sector. 

Second, we exclude hydro and nuclear, assuming, as Fischer and Newell do, that their supply is 

unaffected by the considered renewable policies. Third, we assume that demand is inelastic and set it 

to its baseline value. As explained above, with an elastic demand a key difference between 

renewable support policies is whether they are financed through the electricity price or through the 

government's general budget, a point which is important but not strictly related to the objective of 

our study. 

To calculate the value of the learning parameter le compatible with Fischer and Newell’s model, we 

take their elasticity of learning of 0.15 and equalize it to our model’s elasticity of the marginal cost of 

renewables in period 2 (mcr,2) with respect to the amount of renewables in period 1:  

      
     

    

     
 

       

                      
                                                                

This calibration leads to the parameter values shown in Table 2. 

Parameter Value Unit 

imcr 0.059 $/kWh 

imcf 0.0439 $/kWh 

smcr 1.2*10^-13 $/kWh² 

smcf 9.9*10^-15 $/kWh² 

d 3.05606*10^12 kWh 

le 7.11764*10^-14 $/kWh² 

Table 2: Parameter values in the numerical application. 

Following Table 1, these values would imply the following instrument ranking: under shocks on imcf 

FIT and TRQ are equal and dominated by FIP; under shocks on imcr FIT is preferred to FIP and FIP to 

TRQ; and under shocks on demand d TRQ is better than FIP which is better than FIT. However, it is 

not possible to say how economically significant the difference between these ranks is.   

A quantitative estimate requires calibrating each type of shock. To do so, we use three real-world 

‘surprises’, which occurred after the Fischer-Newell model was calibrated: the decrease in fossil fuel 

prices in the US electricity sector due to the development of shale gas, the massive drop in solar PV 

cost after 2008, and the decrease of electricity consumption due to the economic downturn in 2008-

2009. In each case, we use a very simple way to quantify the magnitude of the shock, i.e. we 

compare the observed relevant variable after the shock to a hindcast based on a linear projection of 

the pre-shock trend.  
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For the uncertainty on the cost of fossil fuel-based electricity, we take the average cost of fossil fuels 

provided by the US DOE EIA (2013a), calculate a linear trend over 2002-2008, extend the trend up to 

2012 and compare this hindcast to the observed price for 2012 (the latest year with published data, 

see Fig.(5)). In 2012 US dollars, the observed value is 2.83 $/million Btu, against 5.19 expected from 

the linear trend, hence the difference is 2.36 $/million Btu or 0.8 c$/kWh (thermal). To convert this 

value in 2004 dollars, we take the cumulative inflation rate of 22%, which gives 0.624 c$/kWh 

(thermal). Assuming 50% of transformation losses brings 1.248 c$/kWh (electrical), a part of which 

may be due to other factors including the lower demand, so we take -1 c$/kWh as the illustrative 

shock on imcf.
16 

 

Figure 5: Average costs of fossil fuels in the US electricity sector (US DOE EIA 2013a). 

Concerning costs in the renewables sector, we calibrate uncertainty on the unexpected drop in solar 

PV cost observed since 2008, using data from Feldman et al. (2012, Fig.(14)). In 2008, the average 

analyst's expectation for the module selling price for 2010 Q4 in the US was 2.6 $/W, while the actual 

price tuned out to be 1.8, i.e. 30% lower. Since solar PV is not the only renewable energy source used 

to produce electricity and since the costs for wind power also decreased, but by a lower rate, we 

adopt -20% of   
   as the illustrative shock on imcr. 

Finally, for the demand shock we take the sales of electricity to final consumers in the US during 

2001-2007 (US DOE EIA 2013b), i.e. just before the crisis, and use the observed trend to derive the 

'expected' value for 2012 (Fig.(6)). Given that the actual 2012 value was about 9% lower, we take -9% 

as the illustrative shock on demand d. 

                                                           
16

 Another way to estimate the magnitude of this shock is to calculate the gap in electricity price for US 
industrial consumers between the observed 2012 value and a hindcast based on the 2002-2008 linear trend 
(1.4 c$/kWh). Since a part of this gap may be explained by other factors, including the drop in electricity 
demand, taking 1 c$/kWh seems a reasonable illustrative value for the shock on imcr. 
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Figure 6: US electricity demand (US EIA 2013b). 

 

5.2 Model results 

All three instruments are set by ex ante (without the shock) cost minimization for total electricity 

supply, after which we compute for each one the actual ex post total costs. By comparing this 

number to the ex post minimum costs, we can quantify the excess costs incurred by the shock under 

each instrument. Since the relevant shocks have not vanished yet, we apply the model with 

permanent uncertainty. 

Fig.(7) presents the outcome of the numerical model in period 1, comparing the ex ante situation 

with the occurrence of a negative shock of -20% on imcr. It shows the no-policy equilibrium (tick 'NP' 

on the x-axis), the ex ante optimum that also coincides with the outcome under the tradable 

renewable quota (TRQ), the outcome under feed-in premium (FIP), under feed-in tariff (FIT), and the 

ex post optimum (OPT). The ex ante optimal level of renewables is roughly twice as large as the 'no-

policy' level (258 TWh instead of 117), which indicates that learning-by-doing may indeed justify a 

significant support for renewables.  

As a consequence of the lower than expected costs, the optimal level of renewables increases by 

78%, reaching 459 TWh. It can be observed that although under both FIP and FIT an upwards 

adjustment of renewables takes place (with 356 TWh vs. 349 a little more under the latter), the 

realized levels remain far below the optimum. Hence, despite the alleged criticism against the FIT of 

having caused an excessive deployment of renewables when the costs turned out to be lower than 

expected, our numerical model points to the opposite conclusion. Of course, the latter result 

depends on the parameter values, and a simple manipulation of Eqs.(12), (17) and (18) shows that 

under a negative shock on imcr,      
      

                , a condition which is fulfilled in our 

numerical model. 
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For FIP, however, Eqs.(12), (21) and (22) show that the amount of renewables is always too low 

under a negative shock on imcr, irrespective of the parameter values. 

  

Figure 7: Outcome of the numerical model in period 1. The vertical lines represent the no-policy 

equilibrium (NP), the outcome with tradable renewable quota (TRQ) which is also the ex ante 

optimum, the outcome with feed-in premium (FIP) and feed-in-tariff (FIT), and the ex post optimum. 

The solid (resp. dashed) upward-sloping line is the ex post (resp. ex ante) renewables supply curve. For 

clarity, the x-axis only represents low values of qr and does not extend to the full range of demand d 

as in Figs.(1) to (4) but only to d/6. 

Table 4 lists the annual excess cost of each instrument and for each type of uncertainty relative to 

the ex post optimum and to the best performing instrument. Although in each case the cost-

minimizing instrument is a different one, the FIP is either the best choice or very close behind, with 

an extra cost of only 168 million dollars in the worst case (compared to FIT for a shock on imcr). 

Conversely, the TRQ leads to significant extra costs compared to FIP for a shock on imcf (921 million 

dollars) and compared to both FIP and FIT for a shock on imcr (respectively 3 and 3.2 billion dollars). 

It follows that in quantitative terms, if one assumes a similar likelihood for each of the three 

considered shocks, the overall preferred instrument is FIP, followed by FIT, and TRQ as the least 

preferable instrument. 

 FIP excess cost FIT excess cost TRQ excess cost 

Shock compared 
to ex post 
optimum 

compared 
to best 

instrument 

compared 
to ex post 
optimum 

compared 
to best 

instrument 

compared 
to ex post 
optimum 

compared 
to best 

instrument 

imcf : - 1 c$/kWh 396 0 1317 921 1317 921 

imcr : -20% of   
  

 1281 168 1113 0 4267 3154 

d : -9% 29 5 98 74 24 0 

Table 3: Annual excess costs of the instruments compared to the ex post optimum and compared to 

the best performing instrument (in million US dollars of 2004). The excess cost vis-à-vis the ex post 

optimum of the best instrument is shown in bold. 
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5.3 Sensitivity analysis 

As summarized in Table 1, the pairwise ranking of instruments often depends on the values of our 

model parameters, which are not known with certainty and may change over time. In particular, with 

expanding renewables one would expect a decrease in imcr due to both learning-by-doing and 

learning-by-searching, and a decrease in le when renewable technologies become more mature. This 

final section discusses how changes in these two parameters would impact our results if we keep all 

other parameters constant. As will be seen, it depends, once again, on the source of uncertainty.  

First, the results for shocks on imcf (dominance of FIP) do not depend on the value of imcr or le. 

Second, in case of a shock on imcr, TRQ is the worst instrument whatever the values of le and imcr 

(consistent with Proposition 1.2). The ranking of FIP and FIT is unaffected by the ex ante value of 

imcr, but FIP implies a lower expected cost than FIT if the value of le is low enough. However, le has 

to become so low for this to happen (less than 7.3% of its value in our numerical model) that it seems 

questionable whether a renewable energy policy would still be justified at all. 

The instrument ranking is more sensitive to the values of imcr and le for shocks on demand d. The 

cross in Fig.(8) presents the baseline values of these parameters, as presented in Table 3. While FIP 

always remains preferable to FIT (consistent with Proposition 1.3), FIP becomes also better than TRQ 

for low values of le (left of the oblique lines). Moreover, for very low values of imcr (below the 

horizontal line) FIT also becomes better than TRQ. Hence the superiority of TRQ when demand is 

uncertain cannot be considered as robust. 

 

Figure 8. Instrument ranking under uncertainty on d, for lower expected values of imcr and le than in 

the baseline case depicted in Table 2. The cross in the upper right corner indicates the baseline case. 

 

FIP ≻ FIT ≻ TRQ 

TRQ ≻ FIP ≻ FIT 

FIP ≻ TRQ ≻ FIT 

FIP ≻ TRQ ≻ FIT 
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6. Conclusion 

This contribution investigated the comparative performance under uncertainty of three types of 

renewable electricity support policies: (i) feed-in tariffs have been widely used in, e.g., Germany, (ii) 

tradable renewable quotas in some states of the US as well as in some European countries, and (iii) 

feed-in premiums most recently, e.g., in Finland or Denmark (Ragwitz et al. 2012). The main 

economic rationale for employing these policies is to correct the potential market failure associated 

with external learning effects and imperfect appropriation of private R&D. 

However, being relatively young technologies, the future costs of renewables, e.g. the price of solar 

PV panels, are subject to considerable uncertainty. In such a setting, also the impact of renewable 

policies becomes highly uncertain, as illustrated by the solar PV 'explosion' in Germany. Likewise, the 

price of fossil-based electricity and total electricity demand are inherently volatile due to, 

respectively, shocks in fossil fuel or CO2 permit prices and business cycle dynamics.     

To capture these stylized facts and assess their implications for policy instrument choice, this paper 

developed a theoretical model of an electricity market with a learning externality in the renewables 

sector. The simple structure of the model allows deriving the formal conditions that determine the 

welfare ranking of the three support schemes.  

Reflecting the formal relatedness of our analysis to “Prices vs. Quantities” (Weitzman 1974), most of 

these dominance conditions are a function of the relative slopes of marginal benefits and costs 

associated with the policy, where the latter includes the learning effect. However, the specific 

instrument ranking depends on which type of uncertainty is considered, and whether shocks are 

permanent or transitory. In general we find that a high learning rate favours the FIT, and that TRQ is 

mostly dominated by the other two instruments. The latter result can be explained by the fact that 

the TRQ’s response to exogenous shocks, namely to preserve the relative share of fossil and 

renewable energy, is never optimal for cost shocks occurring in one of these two sectors, and only in 

very particular parameter settings for shocks in overall demand. The FIP, on the other side, performs 

increasingly bad if the size of the externality is large, because its underlying assumption of a constant 

positive external effect becomes increasingly at odds with the non-linearly increasing benefits from 

learning. Nevertheless, overall the FIP emerges as a robust policy choice since it always ranks first or 

second among the instruments.   

The latter result is confirmed by a numerical application of our theoretical framework to the US 

electricity market, which builds on the stylized model of Fischer and Newell (2008). Although in each 

case total social costs are minimized by a different instrument, the FIP is either the best choice or 

very close behind, with relatively low excess costs of 168 million dollars per year in the worst case 

(relative to FIT under a shock on imcr). TRQ emerges as the worst choice: even though it provides the 

lowest expected costs in case of a demand shock, the superiority is not robust to a small change in 

the parameter setting. Moreover, in case of a shock on the production costs of either fossil-based or 

renewable electricity, it generates very significant excess costs of up to 3.2 billion dollars per year. 

Naturally, several other and equally relevant criteria exist along which the three instruments may be 

compared, and where a different conclusion may be reached. This includes, e.g., the compatibility of 

the TRQ with political renewable targets which are often expressed in terms of a target share (e.g. EU 

20% renewables target), the political economy argument that a FIT is easier to implement than a TRQ 

because it hands out a subsidy more directly (but at the same time may induce more rent-seeking 
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behaviour), or the ability to overcome market power and strategic behaviour of large fossil-based 

utility companies. For instance, under a binding FIT the renewables sector becomes effectively 

isolated from the electricity market, as the price for suppliers is invariably fixed. Thereby it can 

counteract any prevailing market power of fossil-based firms. Conversely, in case of a TRQ, the green 

certificate market's efficiency may be reduced by the market power of large electricity producers, as 

seems to be the case in Flanders (Dubois et al. 2013). 

Another aspect repeatedly emphasized in the literature is the importance of risk and how different 

instruments allocate risk across the involved actors (e.g. Fagiani et al. 2013). In particular, the low risk 

exposure to investors in renewable capacity has been seen as one of the main reasons for the 

effectiveness of the FIT (Butler and Neuhoff 2008). This low risk reduces the cost of capital (especially 

for smaller investors) and hence the cost of deploying a given amount of renewables (Gavard 2013). 

However, the higher risk to consumers implied by this scheme should also not be neglected, as they 

might face considerable uncertainty on future electricity prices, especially when the renewable policy 

instruments are financed through a levy on the consumer electricity price (or the risk to the public 

budget in case of direct state subsidies).   

The implications of other differences between the three instruments are less obvious: e.g. to some 

the inability of the TRQ to discriminate between different renewable technologies represents a 

drawback, while to others it is a merit because it prevents the government from trying to choose a 

winner. Finally, an open but highly relevant question for future research is the one of instrument 

choice under policy overlap, i.e. the instruments’ uncertainty performance in simultaneous presence 

of a cap-and-trade policy like the EU ETS.  

In the real world many different aspects must be taken into account when choosing the most 

appropriate instrument, which is why it is so challenging to arrive at clear-cut conclusions. In view of 

this, we must qualify the contribution of our paper: it developed a model that is able to isolate one 

aspect–uncertainty–and show how the three different instruments are able to cope with it. 
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Appendix 

This appendix provides the calculations for case of transitory uncertainty. The formal approach is 

described at the beginning of Section 4. In what follows, FIT, FIP, and TRQ are addressed one by one.  

For the FIT we use Eq.(18) – replacing imcr by the first period ex post value imcr,1 – to substitute the 

renewables output in Eq.(40): 
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Taking the partial derivatives with respect to imcf,1, imcr,1 and d1 provides the corresponding 

uncertainty coefficients 1,         ⁄     (               )⁄ , and smcf.  

We proceed analogously for the FIP, using Eq.(21) to re-write Eq.(40) as 
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allowing to obtain the three uncertainty coefficients     (         )
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⁄ . Finally, for TRQ we can substitute using Eqs.(28) and (29), yielding 
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      . By comparing the 

absolute value of these coefficients the Propositions 2.1 to 2.3 can be derived in a straightforward 

manner. 

Proof of Proposition 2.1 (transitory uncertainty on imcf):  

The coefficient for FIP is     (         )
 

⁄ , which by Eq.(7) is below unity, while we get a 

coefficient of 1 for both FIT and TRQ.  □ 

 

Proof of Proposition 2.2 (transitory uncertainty on imcr):  

First consider claim (i): the coefficient for FIP is     (         )
 

⁄ , which by Eq.(7) is smaller than 

the coefficient of 1 found for TRQ. For (ii): The coefficient of FIT is smaller than the one of TRQ if 

   (      
   

         
)      , which for a positive valued parenthesis directly leads to the 

result, whereas in the case with a negative value one finds                    
 , i.e. a more 

stringent condition (one that is sufficient, but not necessary). To derive (iii), one needs to evaluate 
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Taking the parenthesis on the RHS to be positive, one obtains the condition. For a negative value one 

finds the condition smcf+smcr<le that contradicts Eq.(7) and hence can never be fulfilled.  □ 

 

Proof of Proposition 2.3 (transitory uncertainty on d):  

We have the following coefficients (FIT, FIP, TRQ): smcf , (        ) (         )
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     . Claim (i) is shown by invoking Eq.(7) and noting that both 

coefficients become zero for smcf=0. For claim (ii) we have to consider 
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Evidently, this condition can only be met if the value in brackets is positive. By using the fact that 

α/(1+α) – the share of renewables – can be expressed as the ratio of the ex ante optimal renewables 

output Eq.(12) and demand d the last equation becomes 
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Bringing smcf to the LHS and further simplifying then yields the claim. Finally, for claim (iii) we depart 

from 
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If the expression in brackets is positive, we get  
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The term α/(1+α) can be substituted by the ratio of ex ante optimal renewables output and demand: 
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and 
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Conversely, if the expression in brackets is negative we obtain 
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which, together with the previous result, corresponds to claim (iii). □ 





 




