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1. Introduction

Policies aiming to increase the share of electricity from renewable sources (RES-E) are now widely
employed.” A prominent example is Germany, where the introduction of Feed-In-Tariffs (FIT) in the
year 2000 has led to a considerable expansion of renewable energy capacity.® Under a Feed-In-Tariff,
a fixed price (above the electricity market price) is guaranteed to producers of RES-E for a period of
typically ten to 20 years. While such policies might be motivated by various reasons such as green
jobs, energy security, or as a second-best measure for reducing the risks and negative externalities of
nuclear power or carbon emissions (see, e.g., Fischer and Preonas 2010), their main justification from
the perspective of economic theory is the internalization of an external effect, which would cause a
market failure if no policy intervention occurs. In the case of renewables, it is widely assumed that
positive knowledge spillovers constitute such an externality. Namely, it is argued that renewable
technologies are still in a relatively early stage of their development, and that therefore further
capacity expansion as well as R&D will lead to lower costs in the future, but that this effect — because
it cannot be fully appropriated — is not taken into account properly by individual firms (e.g. Rivers and
Jaccard 2006).

It was the choice of Germany to use a FIT for this purpose, but this is not the only policy instrument
available: a Tradable-Renewable-Quota (TRQ) was employed, e.g. in the UK and in many states of the
US* (where it is often labelled RPS - Renewable Portfolio Standard), and Denmark currently resorts to
a Feed-In-Premium (FIP) > The latter, the FIP, seems to be similar to a FIT, offering a fixed mark-up on
the market price (in effect an output subsidy) to producers of RES-E. The former, the TRQ, requires
producers of fossil-generated electricity to acquire a certain number of ‘green certificates’ for each
unit of output. These certificates are generated by the producers of RES-E, who receive one
certificate for each unit of output. They are then traded on a dedicated market for such certificates.

In a first-best setting with full information, it is obvious that with each instrument the social optimum
can be implemented, i.e. the share of renewables can be increased up to the desired level. However,
in reality many of the parameters that would be needed to optimally set the level of the policy
instrument (i.e. how high the FIT, or the FIP, or the amount of required green certificates should be)
are not perfectly known. For example, the exact production costs for RES-E and also for fossil-
generated electricity might be private information of the producers. In addition, the regulator’s ex
ante knowledge about future electricity demand, which can be expected to significantly influence the
impact of any renewable policy, is surely less than perfect.

In the presence of such informational uncertainty, the overall impact of any of the three instruments
will also be uncertain. This is well illustrated by the case of photovoltaic electricity (solar PV) in
Germany, where “reality has overtaken model projections” (Schmid et al. 2013), i.e. the capacity
expansion induced by the FIT paid to solar PV exceeded all previous scenario projections
(Ibid.,Fig.(8)).° The reason for this surprising surge is that costs for solar panels went down much
faster than expected (Bazilian et al. 2013). The resulting large solar PV capacity in Germany is now
often criticized by economists as an unwarranted overshoot and taken as evidence that in hindsight

2 See, e.g., the overview given in Table 1 of Fischer and Preonas (2010).

® http://de.wikipedia.org/wiki/Erneuerbare-Energien-Gesetz

4 See, e.g., data presented in the review of Schmalensee (2012).

> http://www.eclareon.eu/sites/default/files/denmark - res_integration national study nreap.pdf
®See also Fig.(1) in Quaschning (2011).
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the FIT for solar PV was set excessively high (Frondel et al. 2012), but an alternative conclusion — that
this higher than expected PV expansion is justified by the cost decrease — cannot be ruled out a
priori.

The research question addressed in our contribution is directly related to this real-world example:
could the overshoot have been avoided or at least reduced if not a FIT but instead a FIP or a TRQ had
been employed, i.e. would these other instruments have performed better? More generally, how do
the three different policy instruments pass on shocks in underlying parameters onto the resulting
output level of renewable electricity, and what does this imply for their respective expected net-
benefit?

Although — to the best of our knowledge — our study is the first to propose a full formal analysis of
the three instruments under uncertainty, it is not the first which compares different renewable
energy policies. For example, Menanteau et al. (2003), in a qualitative analysis without formal model,
illustrate and compare the different mechanics of FIT and TRQ, also under uncertainty, and use a
multi-criteria analysis to derive their conclusion that the efficiency of the former is superior. Butler
and Neuhoff (2008) corroborate this finding in a comparative case study on onshore wind-energy in
Germany and the UK, citing as one of the main reasons the lower risk to developers the FIT offers.

The effect of risk-aversion on the side of investors is also investigated by Fagiani et al. (2013), who
use a system-dynamic numerical model to compare the performance of FIT and TRQ. They find that
while in theory FIT again offers a superior performance, the TRQ might be more robust and still offer
acceptable cost-efficiency as long as risk-aversion is moderate, and actually become the preferred
instrument in the presence of additional constraints, like excessive time-discounting by investors.
Similarly, in an ex post analysis of wind power deployment in Denmark, Gavard (2013) concludes that
due to investors’ risk-aversion a higher subsidy is required if it takes the form of a FIP instead of a FIT.
More precisely, on average a 21 €/MWh support on top of the laisser-faire electricity price is
necessary to observe connections of new turbines to the grid with a probability of 0.5, while under a
FIP this probability is reached for a support policy of 27 €/MWh.

The more formal study by Rivers and Jaccard (2006) also develops a model of the electricity market
(which is then simulated numerically), but focusses on the regulatory choice between command-and-
control or market-based instruments. Tamas et al. (2010) study the difference between FIT and TRQ
under imperfect competition in a theoretical model, but in a purely static setting without learning
effects and also without uncertainty. The review of Fischer and Preonas (2010) addresses the
interaction of different policy goals and instruments. They use a formal model, but mainly to
illustrate the mechanics of the various policy instruments, and do not allow for uncertainty.
Noteworthy, they report an increasing preference for TRQ as the instrument of choice for stimulating
the deployment of renewables.

Finally, in the review provided by Schmalensee (2012), the performance of FIT and the TRQ-like
Renewable Portfolio Standard (RPS) is compared both by means of empirical evidence from the US
and the EU, and within a very simple theoretical model. Based on the latter, he objects to the widely
held notion that FIT is preferable because it involves a lower risk for investors, since this view ignores
the risk posed by FIT to society at large, which may well be lower under RPS. His model incorporates
uncertainty on the intercept of the supply curve of renewables and shares some other features with
ours (two-sector structure, inelastic total demand, increasing marginal costs for renewables), but it
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does not incorporate the learning (or any other) externality. Moreover, the way the RPS is modelled
— namely as an instrument which allows to directly set the total output of renewables — differs
significantly from the market-based TRQ system considered by us, and the FIP is not considered at
all.

In sum, the existing literature has not yet provided a full formal analysis of which of the three
instruments yields the higher expected net benefits under second-best conditions, in which — similar
to the seminal prices vs. quantities analysis of Weitzman (1974) — the regulator has only imperfect
knowledge of the parameters needed to optimally set the policy. To keep our basic analysis as
transparent as possible, we have to ignore several aspects that might also influence instrument
choice, such as risk aversion (Butler and Neuhoff 2008; Fagiani et al. 2013), the ability of FIT or FIP to
price-discriminate (Fischer and Preonas 2010), the overlap and interaction with other policies like
CO, emission control (Béhringer and Rosendahl 2010; Fischer and Preonas 2010), and the different
way in which the cost burden is distributed (e.g., the German FIT system is self-financed by a levy
added to the electricity bill of end-consumers).

The remainder of this article is organized as follows: Section 2 introduces our model of the electricity
market and the three policy instruments, and derives the optimal policy intervention in the absence
of uncertainty. Section 3 characterizes the effect of permanent shocks on the three instruments by
deriving for each one the expected net benefits. Section 4 describes how these results change if
shocks are assumed as transitory. Section 5 presents a numerical application of the model to the US
electricity market. Section 6 concludes.

2. A Simple Model of the Electricity Market and the three Policy Instruments
2.1 Definition of the Model

Consider the following two-period model of the electricity market: demand d>0 is inelastic and, for
simplicity, identical across both periods.” Electricity is supplied by two competitive sectors, the
renewables sector (characterized by the letter ‘r') and the fossil-fuel sector (‘f). Denoting by g, the
output g of sector s &fr,f} in period t {1,2} we have

d= qT,t + qf,t with t = 1,2 (1)

Like Schmalensee (2012), we assume an upward sloping linear supply curve in the renewables sector,
justified by the increasing scarcity of suitable sites. In addition, we incorporate a learning-by-doing
effect that leads to a downward shift of the supply curve in period 2, in proportion to the output g, ;
of period 1. This specification formalizes the idea that learning-by-doing drives down the unit
production costs (e.g. S/Watt generation capacity), from which all future output benefits and which

" The assumption of a fixed demand allows us to abstract from the distributional aspects arising in this context,
e.g. the TRQ is financed by the fossil-based sector and consumers, while the FIT could be financed either from
the government’s general budget or—as in Germany—by a levy on the electricity bill. Although politically
relevant, for our present analysis of uncertainty performance we deliberately want to defer these issues, as
there is no one-to-one correspondence between instruments and the financing mechanism, i.e. each
instrument could be financed in various ways, making it more difficult to arrive at a clear-cut discrimination
between them.
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is stronger the more experience was gained. At the same time, it preserves the scarcity of sites (slope
of supply curve). In formal terms, costs c in the renewable sector are thus given by

smc

Cr1 = Tr (Qr,l)z + imc, * qra (2)
smec

Cro = Tr (QT,Z)Z + (imcr —le QT,l) qr2 (3)

where ¢, ;, ¢, is the sector’s cost for period 1 and 2, respectively, smc20 the slope of the marginal
cost (or supply curve), imc,20 the intercept of the marginal cost, and le>0 the learning effect. For the
fossil-fuel sector we assume the same functional forms, with the exception of the learning effect,
which we assume to be negligible due to the much higher maturity of this technology.®

Sme 2 . .
cre =5 (qre) +imepxqpe  witht=1,2 (4)

There are several models in which marginal costs in the fossil-based sector are assumed to be
constant (e.g. Schmalensee 2012); however, scarcity of fossil resources, increasing extraction costs
and capacity constraints suggest that increasing marginal costs are quite plausible (as in, e.g., Fischer
and Preonas 2010; Schmidt and Marschinski 2009; Fischer and Newell 2008). Nevertheless, to take
this issue into account one may assume that the increase is lower than for renewables, i.e. smc, >
smcg>0.°

Finally, we constrain our model to interior solutions, i.e. equilibria with g,:>0 Vt,s which requires:
imes —ime, > —d smey (5)
imcs —ime, < d (smc, — le) (6)

Intuitively, the first condition prevents the fossil-based sector to take all the market, and the second
prevents the renewable sector to take all the market (at the optimum). Note that the above two
equations also imply

le < smc, + smey (7)

which is a condition that will be used frequently.*

® The no-learning assumption in the fossil-sector is a didactic exaggeration for keeping the analysis as clear as
possible, but it is also commonly adopted in the literature (e.g. Fischer and Newell 2008; Kalkuhl et al. 2012).
° Note that we ignore system costs (grid, storage capacity, etc.), which are generally expected to rise when the
relative share of renewables increases, due to the variability of sources like wind or sunlight (Ueckerdt et al.
2013). In this our model may at first sight seem less plausible than the one of Schmalensee (2012), who
incorporates this aspect by assuming the marginal costs of fossil-generated electricity to be the sum of a
constant term and one that is proportional to the ratio of renewable and fossil-generated output. However, his
particular specification is mathematically equivalent to simply adding a constant term to the marginal costs of
renewables. Therefore our model comprises Schmalensee’s, and is more general as it allows for a non-zero
slope of the fossil-based supply curve.
19 A further noteworthy simplification of our model is that, to keep the model tractable, it uses ‘instantaneous’
electricity supply curves and hence ignores the distinction between investment cost and variable cost.
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2.1 Social Optimum

In the present setting, welfare maximization coincides with the minimization of the total costs tc
incurred for meeting the constant demand d in period 1 and 2:"

min tc=c¢rq + o+ 1t G (€3]
{%,1'%,2;‘1)“,1"1)“,2

st d=qre +q5; t=1{12}

Given an interior solution, the optimal output — which we identify with a superscript °*" —is

characterized by a pair of first-order conditions with respect to q,;and g, »:

sme, qPit + ime,. = smep q7YT + imep + le q25" 9
sme, qP5" + ime, — le qP5T = smcp q75" + imey (10)

Intuitively, the second efficiency condition—relating to period 2—simply equates marginal costs in the
renewable and fossil-based sector, where the former’s costs are reduced by the learning effect
induced by the output of the previous period. The first efficiency condition equates period-1
marginal costs in the renewable sector with period-1 marginal costs in the fossil-based sector and the
cost-saving effect realized in period 2. Note that the two equations are perfectly symmetric: taking
one, the other can be obtained by switching the time index. As a consequence, also the optimal
outputs must be symmetric and hence the last two equations simplify into one, namely

smey q2FT 4+ ime, = smcep (d — q2PT) + imey + le gPFT (11

where we have additionally substituted qj?PT=d—qr0PT. This expression has a straightforward
interpretation from a cost-benefit perspective: the costs of renewables (LHS) are justified by the
avoided costs of fossil-based supply (RHS, 1% and 2™ term), plus the learning effect (RHS, 3™ term).
The avoided marginal costs of fossil-based output is decreasing, while the learning effect is increasing
in renewables output. The efficiency condition can be readily solved, yielding
imcs — imc, + d smcy

OPT _
4 =

12
smcy + sme, — le (12)
By Egs.(7) and (5) the denominator and the numerator, respectively, are always positive. It might
seem surprising that the optimal amount of renewables is the same in both periods, even though the
marginal cost function of renewables is shifted downwards in the second period, and hence marginal
costs are lowered by le * q,; compared to the first period. However, it is only the ‘instantaneous’
marginal costs that are higher in the first period, which is justified by the additional cost-saving effect
in the second period. Naturally, the optimal fossil-generated supply also becomes symmetric, with
(using the demand constraint):
imc, — imcy + d (smc, — le)

q})PT —

(13)

smcy + sme, — le

1 \we ignore discounting and for now assume equal parameters in both periods for the sake of simplicity.
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To verify that we are facing a cost minimum, we express total costs solely in terms of the g,; (g, can
be expressed in terms of g,; by the second efficiency condition Eq.(10)) and take the second
derivative, yielding

d’tc 1
d(qr1)? smcy + sme,

((smcf + 5>‘ch)2 — lez) >0 (14)

where the positive sign follows directly from the constraint in Eq.(7).

2.2 Competitive Market Equilibrium

Competitive firms take the electricity price p; and p, for periods 1 and 2 as given and produce
electricity such as to maximize their profits it. For simplicity we assume one representative firm per
sector and time period, yielding the following four maximization problems:

nl;ax st = Pt 9st — Csyt (15)
st

The corresponding four first-order conditions, together with the demand constraints, yield for the
equilibrium output of renewable electricity in period 1 and 2, respectively:

_imcp —ime, + d smcy NP

r smcy + smc, r 2

_ (imcf —imc, +d smcf)(smcf + smc, + le) (16)
(smep + smcr)2

where we introduced the superscript shorthand '

Eq.(12) for gPFT shows that if le>0, then g¥ < qN¥ < qPPT. In other words, the market provides
too little renewables in both periods, especially in period 1, and thus leads to higher total costs than
in the social optimum whenever le>0.

to indicate the ‘no policy’ case. Comparison with

This outcome is of course not surprising, since by assumption market participants do not internalize
the learning effect. However, the fact that period 2 supply of renewables nevertheless increases
because some learning does occur highlights how the regulator’s problem in this model is to
implement the optimal supply of renewables in period 1, as the period 2 market equilibrium will be
optimal by itself if the right amount of learning is induced.

2.3 Policy Instruments

The policy instruments are applied only in period 1, since there is no externality associated with the
level of q,, or g;,. We now formalize FIP, FIT, and TRQ, and derive their optimal setting for the
deterministic case.

FIT: feed-in-tariff, i.e. a guaranteed fixed price for renewables output

Under a FIT policy the representative firm’s profit in the first period becomes

7.[11:",11T = fit 9r1 — Cra (17)



(where we denote by fit’ the level of the instrument), leading to an associated output of

fit —imc,

FIT _ 18
qr1 sme, (18)

The regulator sets FIT optimally by equating it to the marginal costs implied by g2F7 from Eq.(12):

OPT _ imcr(smcf - le) + (imcy + d smcy)sme,
OPT —

(19)

it = imc, + smc
f T rd smey + sme, — le

Chosen this way, the FIT induces the optimum level 247 of renewables output, and hence also of all

other model variables. As can be confirmed easily, for le=0 the optimal FIT would simply become
equal to the price realized in a ‘laisser-faire’ market equilibrium.

FIP: feed-in-premium, i.e. a per-unit subsidy for renewables added to the electricity price

Under this instrument, the first-order condition for profit maximization of the representative firm in
the renewables sectors implies

p1 + fip = imc, + smc, g, 4 (20)
leading to an output level of

GFP = fip + imcy — imc, + d smey
rl —

(21)

smcy + smcy

Comparing the producers’ efficiency condition Eq.(20) from above with the social efficiency condition
Eqg.(11) immediately shows that producers respond optimally to the market price p; if the FIP is set to

le(imcy — imc,. + d smcy)

o le gOPT 22
fip smcy + smc, — le ¢ ar (22)

In line with intuition, the optimal FIP strictly increases with the strength of the learning effect and
equals zero if le=0.

TRQ: tradable renewable quota, i.e. a share o of renewables per unit of fossil-generated output

Under this instrument, the regulator requires producers of fossil-generated electricity to buy a
number o of ‘green’ certificates for every unit of their output. The resulting relative market share of
renewables becomes o/(1+a), which we assume to be above the no-policy ‘NP’ case. Green
certificates are awarded to renewable producers for each unit of their output. Being freely tradable,
the price p° of these certificates is determined by the market.

The period-1 profit functions of the renewable and fossil-based representative firm are thus given by
TR

7Tr,1Q =@ +79) qr1—Cra (23)

”;};Q = (P — ap®) dr1 — Cf1 (24)

Together with the market clearing condition



adr1 = qra (25)

the implied equilibrium can be readily computed and implies a price of electricity and of the green
certificates given by

B 1+ a)(imcf +a imcr) +d (smcf + a? smcr)

26

P1 (1+ a)? (26)
¢ _ a1+ a)(imcr - imcf) —-d (smcf -« smcr) @7

1+ a)?
and a resulting output of renewables
da
TRQ _

= 28

q'r,]. 1 + a ( )

To minimize total costs, the regulator has to choose a as the ratio of the optimal renewables and
optimal fossil-generated output:

. gt imep —ime, + d smer 29)
qj?PT imc, — imcy + d (smc, — le)

Note that in this case a increases with /e, but does not become zero for le=0. This is consistent, since
for le=0 the laisser-faire market equilibrium is optimal, but nevertheless comprise a share of
renewables that is greater than zero.

In sum, all instruments, if set at their optimal value, yield the optimal value of g,;, and hence of gy,
G2 and gy, and thus also the optimal welfare. The different instruments are graphically illustrated in
Fig.(1), which compares (for period 1 only) the no-policy case with the social optimum and indicates
the optimally set instruments FIT, FIP, and TRQ. The figure shows how the regulator’s challenge
consists of increasing q,; from the conventional static optimum where marginal cost of renewables
equal marginal costs of fossil based electricity to the point where the positive external effect from
learning is fully incorporated. Overall, this provides us with a simple but useful framework to analyse
the instruments’ performance under uncertainty, which will be done in the next section.
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Figure 1: Graphical illustration of the model (d=4;imc=1;smc=0.25;imc,=0.5;smc,=0.75,le=0.4), for period 1.
Shown are the renewable sector’s marginal costs (rising from lower left to top right) and those of the fossil-
based sector (rising from bottom right to middle left). The third line represent the 'effective' marginal costs of

using fossil-based electricity, which are obtained by adding the foregone benefits of learning to the marginal
production costs, as explained after Eq.(11). Social optimum (qng) and no-policy market equilibrium (qﬁff ) are
indicated. The optimally set policy instruments are highlighted in black (FIP), light grey (FIT) and dark grey

(TRQ).

3. Instrument Performance under Uncertainty: Permanent Shocks

This section formally analyses the three instruments’ robustness for three different sources of
uncertainty. Each instrument should minimize total expected cost, which is equivalent to maximizing
net surplus (or welfare) if demand-as in our case—is inelastic. We assume that the regulator, being
affected by uncertainty, sets each instrument to its ex ante optimal level, while firms have perfect
information (as in Weitzman’s 1974 model).

Another basic assumption of our model is that shocks occur only in the first period. The reason for
this restriction is that the second period is not subject to policy intervention, and hence uncertainty
in this period would not affect instrument choice. Note that uncertainty on the learning parameter /e
is therefore not considered here. The reason for this perhaps unexpected choice—given that /e is
evidently uncertain—is that considering uncertainty on /e would not lead to a discrimination between
the different policy instruments in terms of their robustness. Namely, if e turns out to be lower than
expected (and vice versa), all three of them would yield the exact same excess output of renewables
in the first period, and hence induce the same efficiency loss.

Finally, a specific assumption of this section (but reversed later) is that shocks are permanent. In
other words, all model parameters have the same value in period 1 and 2. The ‘shock’ can be
interpreted as a false estimation of the system’s parameters by the regulator, leading to the
implementation of an ex post non-optimal renewables target q,;, and hence to excess costs.
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Importantly, the permanency of shocks implies that the full formal symmetry between period 1 and 2
— as discussed in Section 2.1 and reflected in Eq.(11) — is preserved. Under this condition, total costs
are uniquely determined by the value of g, ; (with given parameter values). Eq.(14) shows that this
minimization problem is strictly convex with a constant second derivative, allowing to reduce the
uncertainty analysis to a simple comparison of how shocks impact the first-order condition for g, ;
under the various instruments.*

The model admits uncertainty on three model parameters: (i) the level imc; of the marginal costs of
fossil-generated output (driven by volatility of fossil fuel prices, possibly also of a carbon price), (ii)
the level imc, of the marginal costs of renewables-based output (uncertain short-term production
costs and site availability), and (iii) total demand d (uncertainty driven by business cycle
fluctuations).” In formal terms, we introduce an additive uncertainty & on the level imc; of the
marginal costs of fossil-generated power (i.e. on the level of the supply curve), such that the
expected value is E[5]=0 and the standard deviation SD[J/=c;. Analogously, &, defines an additive
uncertainty on the level imc, of the marginal costs of renewables, with E[§]=0 and standard deviation
SD[d/]=0;. Finally, &, denotes the additive uncertainty on demand d, again with expected value
E[5,4]=0 and standard deviation SD[d,]=0.

3.1 Formal analysis: The Weitzman perspective

Given the formal similarity of our problem to the one addressed by Weitzman (1974), and the
prominence of his homonymic ‘rule’ of the relative slopes of marginal costs and benefits, we first
discuss the cases in which the ranking between instruments can be determined by applying this rule.
As will be seen, depending on which uncertainty is considered, the different policy instruments will
varyingly act as price or quantity instrument. For instance, the FIT formally fixes the price for
renewables, but by doing so it also fixes the level of renewables output if uncertainty is associated
only with the supply curve of the fossil-based sector, or with total demand. Hence, a FIT acts as a
guantity instrument in the latter two cases and as a price instrument when uncertainty is linked to

imc,.

Since g,, will automatically be optimal if g, ; is optimal, only the first period needs to be considered.
The efficiency condition Eq.(11) can be written as

sme, q25T + ime, = (le — smep) 257 + imey + smey d (30)
where the left-hand side corresponds to the price of renewables, i.e. their marginal costs, which
becomes fixed by a FIT. The right-hand side, as discussed before, represents the marginal benefits
from employing renewables. Under uncertainty on imc; or imc, the TRQ acts as a quantity instrument,
since it sets the output level of g, ; directly through Eq.(28). Consequently, the Weitzman rule can be
applied to FIT vs. TRQ for these two sources of uncertainty. As by Eq.(30), the slope of the marginal

2In addition, we also assume that all uncertainties are uncorrelated. This seems to be a natural starting point,
given that the assumption of correlation would complicate the analysis significantly.
B The slopes of the marginal cost curves, representing, e.g., the declining quality of grades for renewables, are
considered to be known by the regulator, an assumption also made in the uncertainty analysis of Weitzman
(1974).
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costs is given my smc,, while the absolute slope of the marginal benefits is abs(/e-smc;). Hence, we
obtain the following two results:

e with marginal cost uncertainty due to shocks on imc,, a price instrument FIT is more efficient
than a quantity instrument TRQ if smc>abs(le-smc;), which by Eq.(7) simplifies to
smc+le>smcg;

e with shocks on imcy uncertainty only affects marginal benefits, and hence—as per Weitzman’s
rule—price (FIT) and quantity (TRQ) regulation become equivalent.

Using the rule to assess the FIP instrument becomes straightforward when rearranging the efficiency
condition Eq.(11) into

(smcy + smep)q28T — smep d + ime, — imcp = le qP4T (31)
Here, the left-hand side represents the wedge between the marginal costs in the renewable and
fossil-based sector — which is precisely what is fixed by a FIP. Because any such wedge leads to a
deviation from the cost-minimum for total supply in period 1, the LHS also represents the marginal
excess costs associated with renewable employment beyond the free-market equilibrium. The right-
hand side captures the corresponding marginal benefit, namely the cost reduction from learning.
Under a FIP the marginal costs (i.e. the wedge) are fixed, but not the resulting output quantity g, ;.
Conversely, in the absence of demand shocks a TRQ fixes g, 1, but leaves the marginal cost difference
uncontrolled. For uncertainty on demand d and imc;, also the FIT acts as a quantity instrument.
Hence, given the slope smc+smc; of the marginal costs, and le of the marginal benefits, the
Weitzman rule can be applied to four more cases of instrument choice:

e with cost-uncertainty due to shocks in imcy or imc,, the price instrument FIP is more efficient
than the quantity instrument TRQ if smc,+smcz>le, which by Eq.(7) always holds;

e with cost-uncertainty due to shocks in imcy, the price instrument FIP is more efficient than
the quantity instrument FIT if smc+smcg>le, which by Eq.(7) always holds;

e with cost-uncertainty due to demand shocks, the price instrument FIP is more efficient than
the quantity instrument FIT if smc+smcg>le, which always holds, unless smc=0, in which case
uncertainty drops out of Eq.(31) and both instruments become first-best.

The results obtained so far already allow a full characterization of the instruments’ relative
performance under uncertainty on imc;, as summarized in the following statement:

Proposition 1.1 (permanent uncertainty on imc;): Consider the model defined by Eqs.(1)-(7). If
uncertainty occurs in form of permanent shocks affecting the level of the marginal cost curve in the
fossil-based sector, then a FIP is always more efficient than both FIT and TRQ, while the latter two are
equivalent.

3.2 Formal analysis: General perspective

The previous application of Weitzman’s rule allowed determining the instrument ranking for six out
of nine possible cases, with FIT vs. TRQ and FIP vs. TRQ for demand uncertainty, as well as FIT vs. FIP
for uncertainty on imc, as the remaining three cases. Before turning to a more general formal
approach to address the remaining cases, we use the graphical representation of the model shown in
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Fig.(1) to develop an intuition for the result just obtained, and prepare the ground for the
interpretation of later results.

imc,.+d smc,

imecsg+d le

imecy+d smcy |

im Cy

imc, -

0 opt fip fl'f':fr'q‘ d

Figure 2: Illustration of a shock of -25% on imc; (all other parameter values as in Fig.(1)). The dashed
oblique lines indicate ex ante values, solid lines ex post values. The ex post optimum for q,; becomes
lower than in Fig.(1), while output under FIT (light grey) and TRQ (dark grey) remains unchanged.
Only for FIP (black) a reduction of renewables output can be observed, albeit insufficient.

Fig.(2) graphically illustrates the impact of a -25% shock of imc; on the optimum and on the output of
q.; implied by the three instruments. Intuitively, if fossil-based electricity has higher (lower) costs
than expected, then a greater (lower) share of renewables would be required to meet the social
optimum. However, both FIT and TRQ are—once the instrument level is set—insensitive to the price
signal from the fossil sector and hence do not respond to shocks. Only under the FIP does the price
signal reach the renewables sector and induces an adjustment in the right direction. However, this
adjustment remains too small if le>0, demonstrating that the FIP falls short of being an optimal
instrument. This is the case because a FIP defines a fixed mark-up on the price of renewables, while
the size of the external effect it aims to internalize increases with the level of g, ;. Said differently, the
effect of a FIP is to shift the marginal cost curve of the renewable sector downwards, while the
optimal correction, as can be seen in Fig.(2), would be a rotation of the curve.

To derive the remaining dominance conditions of uncertainty performance, we adopt a more general
formalism allowing to compute all nine conditions within one approach. To do so, note that the
efficiency condition for g2i” can be re-analysed in the following way: substitute go3" by the
considered (and optimally set) policy instrument. E.g. for a FIT, using Eq.(18), Eq.(30) becomes

fit —imc,

fit = (le — smcf) + imcy + smcy d (32)

smc,

The instrument leads to an optimal outcome as long as the equation is satisfied, i.e. when the fixed
marginal costs on the LHS equal the ‘unfixed’ marginal benefits on the RHS. In presence of a shock on
imcy, imc,, or d this will generally no longer be the case, and the size of the resulting deviation will
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become a measure of the incurred inefficiency. In other words, the extent to which any of these
shocks lead to a violation of the instrument-specific efficiency condition directly captures the
instrument’s robustness.

Hence, under a FIT shocks in imc; imc, or d yield an inefficiency-wedge proportional to the
corresponding partial derivative, namely 1, (smcrle)/smc, and smc;, respectively. Notice that the
second coefficient implies that under uncertainty on imc, a FIT becomes a first-best instrument
whenever smcs=le, as in this case the coefficient becomes zero. Next, consider the FIP: from Eqgs.(21)
and (31) the required form of the efficiency condition is obtained as

fip + imcy — imc, + d smey

fip = le (33)

smcy + smcy

implying coefficients of le/(smcqsmc,), - le/(smcqsmc,), and (le smcy )/(smcqsmc,) for shocks in imc;,
imc,, and d, respectively. Finally, for the TRQ we use Eq.(28) for the substitution, yielding

da
1+«

(smcr + smcy — le) = imcy — imc, + d smey (34)
and thus implying robustness coefficients 1, -1, and a/(1+a) (smcqsmc-le) — smcy. Notice that the
equation shows that a TRQ becomes a first-best instrument under demand uncertainty only if
imcy = imc,, since in this case d is eliminated from the condition.

Comparing the coefficients’ absolute magnitude yields the dominance conditions. In particular, for
shocks on imc; the coefficients of FIP, FIT, and TRQ are le/(smcqsmc;), 1, and 1, respectively, meaning
that a FIP is always more efficient than FIT and TRQ (by Eq.(7) its coefficient is below unity), and that
the latter two are equivalent, which confirms the result of the previous section.

For uncertainty on imc, the (absolute value) coefficients for FIP, FIT and TRQ become le/(smcqsmc,),
abs(smcrle)/smc,, and 1, respectively. The FIP evidently dominates the TRQ, and so does the FIT if
smc+le>smcy, as already found in the previous section. As a new case, the FIT is superior to the FIP if
le/(smcstsmc,) > abs(smcgle)/smc.. For O<smcile, this simplifies to le<smcqsmc,, which by Eq.(7)
always holds, while smcp>le leads to the non-trivial condition le>smc; (smc; +smc,)/(smcs+2 smc,); in
the limit case of smc=0 both instruments become equivalent. The following proposition summarizes:

Proposition 1.2 (permanent uncertainty on imc,): Consider the model defined by Egs.(1)-(7). If
uncertainty occurs in form of permanent shocks affecting the level of the marginal cost curve in the
renewables sector, then

(i) FIP is always more efficient than TRQ

(ii) FIT is more efficient than TRQ if le > smcy — smc,

(iii) FIT is more efficient than FIP if le > smcy (smcf + smcr) / (smcf + 2 smcr), except for
smc = 0, in which case they are equivalent instruments.

Hence, the TRQ is not a good choice in this case, as it is dominated by the FIP. The FIT might be an
even better choice if the marginal cost curve in the fossil sector is relatively flat and if learning is high.
Intuitively, lower (higher) than expected costs for renewables imply that they should supply a higher
(lower) share of electricity. The TRQ, however, fixes the share and hence does not respond. The FIP
reacts exactly as for uncertainty on imc;, i.e. the cost-shock is passed on to the market, albeit
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imperfectly. The FIT also reacts and adjusts in the right direction, but may overshoot. This is
illustrated graphically in Fig.(3).

imc,.+d smc,

imcg+d le

im c'd.r—d smey -

imcy

imc, -

la nl 1 1 1

0 r'rq' fip fitopt d

Figure 3: lllustration of a shock of -80% on imc, (all other parameter values as in Fig.(1)). The solid
(resp. dashed) upward-slopping line is the ex post (resp. ex ante) renewables supply curve. The ex post
optimum for q,; becomes higher than in Fig.(1). Output under TRQ (dark grey) remains unchanged,
while it is increased under FIP (black) and, even more so, under FIT (light grey).

Fig.(3) also illustrates why the FIT is first-best if smc=le: because in this case marginal benefits are flat
and can therefore be perfectly internalized by a constant price. As a consequence, the FIT will
dominate both TRQ and FIP whenever smc; and le are sufficiently close.

Shocks in total demand constitute the last source of uncertainty to consider. In general a positive
demand shock means that the optimal quantity of both renewable and fossil-generated electricity
should increase. This, intuitively, might favour the TRQ, which so far did not show any particular
advantage vis-a-vis the other two instruments. For FIT and FIP we found coefficients of smcyand (le
smcy)/(smcrsmc,), respectively, thus confirming the last section’s result that under demand
uncertainty FIP always dominates FIT, unless smc=0, in which case they become equivalent.

The TRQ coefficient was o/(1+a) (smcasmc, -le) - smcy. To derive specific dominance conditions the
instrument’s parameter a needs to be replaced. This, as before, will be done by using the optimal
value found in the initial analysis without uncertainty, i.e. Eq.(29). Note, however, that in the present
case this does not correspond to the ex ante optimal value that minimizes expected total costs. The
two only coincide when the ex post output of g, is linear in the shock as well as in the instrument’s
parameter, e.g. as in Egs.(18) and (21) for FIT and FIP. For the TRQ this was the case for uncertainty
on im¢ and imc,.. However, it is no longer true for the present case of demand uncertainty, since the
ex post output of g,; now depends on the mathematical product of the shock and « (see Eq.(28)).
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Nevertheless, for reasons of exposition and because it seems quite plausible that a regulator would
indeed choose the value that would be optimal under certainty, we still proceed this way."

Comparing FIT and TRQ shows that the former dominates the latter if

< abs|[(+=—) (smey + le) ] 35
smep < abs ({7 g smcy + smce, — le) — smcy (35)
which, by using Eq.(29) becomes
1. , 1 . .
smcy < abs [E (lme —imc, +d smcf) — smcf] =7 abs[tmcf — lmcr] : (36)

By Eq.(5), the condition can only be fulfilled if imcFimc,>d smcy. Finally, a FIP is more efficient than
TRQ if (simply replacing the LHS of Eq.(36) with the FIP’s coefficient)
smcy le 1 ) ,
—_— <= abs[lmcf — lmcr] . (37)
smer +sme,  d
In sum, for uncertainty on total demand the instruments’ relative performance can be characterized
as follows:

Proposition 1.3 (permanent uncertainty on d): Consider the model defined by Egs.(1)-(7). If
uncertainty occurs in form of permanent shocks affecting the level of total electricity demand, then

(i) FIP is more efficient than FIT, except if marginal costs in the fossil-based sector are
constant, in which case they are equivalent (and both ex post optimal).

(ii) FIT is more efficient than TRQ if (imcimc,)/d > smc;.

(iii) FIP is more efficient than TRQ if abs(imcrimc,)/d > (le smcg)/(smc, +smc;)

As the result shows, TRQ is not a ‘silver-bullet’ instrument for demand uncertainty, which stems from
the fact that the optimal percentage share of renewables does generally not stay constant under
demand variations. This would only be the case if imcrequals imc,, and hence the relative difference
between them — scaled by total demand d — becomes a measure of the TRQ’s expected error, as on
the LHS of conditions (ii) and (iii) above.

On the other side, a FIT decouples the renewables sector from the electricity market and thereby
prevents it from reacting to demand shocks. This, in general, leads to a suboptimal outcome, except
if the fossil sector’s supply curve is flat, in which case it is optimal that all demand shocks are
absorbed exclusively by the latter. Hence, the slope smc; of the supply curve becomes a measure of
the FIT’s expected error, as on the RHS of condition (ii).

Finally, the FIP always improves upon the FIT, but the induced adjustment of the renewables output
generally remains insufficient (except for smc=0, for the same reason as for FIT). This can also be
understood by thinking in terms of the effective subsidy provided: in case of a permanent positive
demand shock, the benefits from learning increase, and hence the per-unit subsidy offered to the

" We also report results corresponding to the case where demand uncertainty is optimally taken into account
d(imcg—imcy+d smcg)+smcy og

by the regulator. The value for a that minimizes expected costs is given by — - :
d(imcy—imcg+d(smer—le))+(smecr—le)og

and in fact only leads to a slight modification of the dominance conditions given in Proposition 1.3 (ii) and (iii),
namely the replacement of d with d V(1+c,/d).
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renewables sector should become higher. However, under a FIP it stays by definition constant, while
under a FIT — being the difference between laisser-faire price and fit — it even decreases (and under a
TRQ it generally becomes too high).

The behavior of all three instruments is illustrated in Fig.(4). Clearly, if demand uncertainty is the
regulator’s main concern, the instrument choice comes down to deciding between the FIP and TRQ.

L Himc,.+d smc.
L I Himcg+d le
imcg+d smcy |- 4
L ~imcy
imc, - i
¢ i i L !
0 trqg opt fip fit d E[d]

Figure 4: lllustration of a shock of -25% on demand d (all other parameter values as in Fig.(1)).
Dashed horizontal lines indicate ex ante values, solid lines ex post values. The ex post optimum for q,
becomes lower than in Fig.(1). Output under FIT (light grey) remains unchanged, it becomes lower —
but not enough — under FIP (black) and also — but too much — under TRQ (dark grey).

4. Instrument Performance under Uncertainty: Transitory Shocks

Especially at shorter time-scales (e.g. less than one business cycle) it might seem plausible to assume
transitory rather than permanent shocks. Therefore, this section takes a brief look at how the
dominance conditions would change in this case. As we will see, the conditions remain very similar.

In formal terms, the efficiency condition for an ex post optimal output of renewables becomes more
complicated than Eq.(11), as it now depends explicitly on the different parameter values of the first
and the second period. If we denote by imc, ;, imcg;, and d; the respective parameters’ ex post values
for the first period, the efficiency conditions for a social optimum read (analogous to Egs.(9) and
(10)):

smc, qffit +imc, 1 —le qut = smcy (d1 — qff;t) + imcy 4 (38)
sme, q25T + ime, — le q28T = smep (d — q257) + imey (39)

The second equation can be used to the substitute the dependent period-2 output of renewables:
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OPT ; .
+ smcy d — imc, + imc
7,1 f r f> (40)

smce, + smcy

le g
sme, qPyT + ime,; = smey (dy — qP%T) + imcp 1 + le (

The instruments are still set optimally by choosing the value found in the deterministic analysis of
Section 2 (except TRQ under demand uncertainty, where we nevertheless assume such a setting, as
explained above). Hence, we can introduce the instruments one by one in Eq.(40), and then compute
the uncertainty coefficients as the partial derivatives with respect to the three different possible
shocks. The calculations are provided in the Appendix and yield the following three propositions for
each type of uncertainty:

Proposition 2.1 (transitory uncertainty on imcy): Consider the model defined by Egs.(1)-(7). If
uncertainty occurs in form of transitory shocks affecting the level of the marginal cost curve in the
fossil-based sector, then a FIP is always more efficient than both FIT and TRQ, while the latter two are
equivalent.

Proof: See Appendix.

Hence, the ranking remains exactly the same as in the case with permanent shocks. Next, consider
uncertainty on the supply curve in the renewables sector:

Proposition 2.2 (transitory uncertainty on imc,): Consider the model defined by Eqs.(1)-(7). If
uncertainty occurs in form of transitory shocks affecting the level of the marginal cost curve in the
renewables sector, then

(i) FIP is always more efficient than TRQ
(ii) FIT is more efficient than TRQ if le? + smc,* > smc?

(i) FIP is more efficient than FIT if le < (smcy + smc;) \/ smcy/(smep + 2sme;).

Proof: See Appendix.

In qualitative terms, the ranking of instruments does not change compared to the permanent
uncertainty case: the FIP always dominates the TRQ, and the position of the FIT could be anywhere
from best to worst choice. However, in quantitative terms the FIT’s performance deteriorates, i.e.
the conditions for it to be superior to TRQ or FIP are less likely to be met under transitory than under
permanent shocks. This is a consequence of the FIT’s tendency to overshoot which has a less severe
effect if a shock makes renewables permanently more (or less) attractive, rather than just
temporarily. Finally, the case of demand uncertainty:

Proposition 2.3 (transitory uncertainty on d): Consider the model defined by Egs.(1)-(7). If
uncertainty occurs in form of transitory shocks affecting the level of total electricity demand, then

(i) FIP is more efficient than FIT, except if marginal costs in the fossil-based sector are
constant, in which case they are equivalent (and both ex post optimal).

d smcr (smce+smce,—le
s (smeptsmer ), or if smc=0

(ii) FIT is more efficient than TRQ if imcy — imc, >

(smcp+smep+le)
. . dlesmcy (smcp+smep—le) . . d le smcy
(iii) FIP is more efficient than TRQ unless <imc-ime < ——————
(smcp+smey) (smep+smep+ le) (smcp+smey)

Proof: See Appendix.
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As for permanent shocks, FIT and FIP become first-best instruments if marginal costs in the fossil-
based sector are flat, but otherwise the FIT is dominated by the FIP. Also as before, the relative
performance of the TRQ depends on the size of the term (imcrimc,)/d, but the dominance conditions
also show that under transitory shocks TRQ has a smaller likelihood to be preferable over FIT or FIP
than under permanent shocks. This can be explained by the tendency of the TRQ to overreact, as
seen in Fig.(5), which leads to a smaller efficiency loss if the parameter change to which it reacts
persists throughout the second period.

imcsuncertain imc, uncertain d uncertain
FIT equal equal smc, + le > smcy 5ch2 +le? > smcfZ Imcg - ime, > d imcf —imc,
vs. smc;, or if d smcy (smcr + smey — le)
TRQ smc=0 >

f (sme, + smcy + le)
, or if smc=0

FIP FIPsup | FIPsup | FIP sup FIP sup abs(imcgimc;) | imc, —imce
vs. > (d le smcy) - dlesme;  (sme, + smep — le)
TRQ /(smc+smcy) (smey + smey) (smey + smep + le)

or
. . d le smcy
imc, —imcp > —————~

" 4 (smcr + smcf)

FIP FIP sup | FIP sup le < smc, + smcy le < smc, + smcy FIP sup, equal | FIP sup, equal only if smc=0
vs. 1 4 2 5M&r 14 25mC only if smc=0
FIT smey smcy

Table 1: Overview of analytical results. If the stated condition is met, then the first instrument
dominates the second.

Table 1 summarizes all analytical findings, allowing highlighting the following insights: First, under
uncertainty on imcy, the ranking of instruments is unaffected by whether uncertainty is permanent or
transitory: FIP is always the most efficient choice, and FIT and TRQ are equivalent. This is the case
because both TRQ and FIT are unresponsive to shocks in the marginal costs of fossil-based supply.
They act as quantity instruments and Eq.(31) shows that as such they are dominated — because of the
steepness of marginal costs — by the price instrument FIP.

Second, in case uncertainty is on imc,, we again find an unambiguous superiority of FIP over TRQ,
independent of permanent or transitory uncertainty. As before, this is due to the TRQ's behaviour as
a quantity instrument and the ensuing lack of responsiveness to shocks. On the other side, the rank
of the FIT is ambiguous: depending on parameter values, it could theoretically be the first-, second-,
or third-best instrument choice. However, it always fares relatively better under permanent than
transitory shocks, which — as said before — can be explained by its tendency to overshoot, whereas
the other two instruments always react too little to shocks. If the shock is ‘neutralized’ in the second
period, the error of overshooting in the first period becomes relatively more expensive.

Third, under demand uncertainty FIP dominates FIT, independent of whether uncertainty is
transitory or permanent. The reason is that under demand uncertainty the FIT acts as a quantity
instruments, fully equivalent to the TRQ under shocks in imc, — and that marginal costs are steeper
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than marginal benefits. The relative performance of TRQ under demand uncertainty is a case in
which the value of new parameters comes into play, namely (imcrimc,)/d. It captures the error of
TRQ and hence if this parameter is sufficiently large relative to smc; TRQ will be dominated by both
FIP and FIT. This is more likely to be the case for the FIP than for the FIT, and under transitory than
under permanent uncertainty. The latter can be explained by noting that FIP and FIT always under-
respectively not react to a demand shock, which leads to less costly errors if the shock is transitory.
The TRQ, on the other side, has a tendency to overreact, as illustrated in Fig.(4)."

Overall — if no further knowledge on the relative importance of the three sources of uncertainty is
available — the FIP emerges as the most robust choice, as even in the worst possible case it still ranks
1%, Z”d, and 2™ with respect to uncertainty on imc;, imc,, and demand. This is in line with economic
intuition: a per-unit subsidy on renewables most directly conforms to the idea of internalizing a
positive learning externality. Indeed, in our model the FIP would be an optimal instrument if it were
not for the scale-effect of learning which it does not capture —i.e. the fact that the benefit of a given
cost-reduction is not constant but positively dependent on the future employment of renewables,
since for each unit a benefit is realized. In other words, an optimal subsidy would not be constant like
the FIP, but increase with the size of the future renewables supply. This calls for a FIP set at a higher
level for relatively expansive renewable sources, e.g. higher for PV than for onshore wind, and higher
in locations with moderate wind speeds or sunlight than in locations with high wind speeds or
sunlight. In fact, some real-world renewable support schemes (e.g. the FIT in Germany or France)
already feature such a differentiation but with a different rationale, namely to limit the differential
rent for renewables in sites with the most productive resource. Our conclusions identify an
alternative justification for this practice.

If the size of the learning effect /e is large, the FIP's error will also become large, which might justify
the use of a FIT, especially if uncertainty is mainly associated with the renewables sector's costs and
if the fossil-based sector's supply curve is relatively flat. The latter implies a weak interaction
between renewables and fossil-based sector, which favours the FIT's effect of sealing off the
renewables sector. Conversely, a TRQ might be justified if learning /e is low, the fossil-based sector's
supply curve is steep, and uncertainty is mainly rooted in demand. However, the TRQ will generally
be prone to large inefficiencies if there is a marked difference in the marginal costs of the first output
units between the two sectors ((imcrimc,)/d).

5. Numerical Application to the US Electricity Sector

The analytical model cannot inform on the quantitative difference in expected costs across
instruments. Hence, based on the stylized US electricity sector model introduced by Fischer and
Newell (2008), this section provides numerical estimates of the instruments’ performance. Given the
simplicity of the model which abstracts from many features of the electricity sector, these estimates
should be considered as illustrative. We deliberately choose to base our numerical application on a
model calibrated on rather old data (year 2004) in order to quantify realistic shocks, which were not

™ For demand uncertainty, the four conditions regarding the performance of TRQ change if one uses the actual
ex-ante optimal setting of a for TRQ (instead of the one without uncertainty). However, the rigorous conditions
are easily obtained by replacing d with d\/(1+0'd/d), making it relatively easier for TRQ to meet the dominance
conditions. In addition, the term ‘imc-imc,” must be changed into abs(imc-imc,).
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forecasted when the model was designed, but have occurred since then. Hence, our numerical
exercise is retrospective: we imagine that we have to choose renewables support policy in the mid-
2000’s, based on 2004 data, knowing that shocks on the three variables of interest may happen in
the following years, but without any more specific knowledge on their timing, sign or magnitudes.

5.1 Model calibration

We make three modifications of the original Fischer-Newell model, such that it corresponds exactly
to our analytical specification. First, we merge coal and gas into a single fossil electricity sector.
Second, we exclude hydro and nuclear, assuming, as Fischer and Newell do, that their supply is
unaffected by the considered renewable policies. Third, we assume that demand is inelastic and set it
to its baseline value. As explained above, with an elastic demand a key difference between
renewable support policies is whether they are financed through the electricity price or through the
government's general budget, a point which is important but not strictly related to the objective of
our study.

To calculate the value of the learning parameter le compatible with Fischer and Newell’s model, we
take their elasticity of learning of 0.15 and equalize it to our model’s elasticity of the marginal cost of
renewables in period 2 (mc, ;) with respect to the amount of renewables in period 1:

omey, qra le gr1
0qy, mcy, imc. + (smc, — le)q, 4

=0.15 (41)

This calibration leads to the parameter values shown in Table 2.

Parameter Value Unit
imc, 0.059 S$/kWh
imcy 0.0439 $/kWh
smc, 1.2*¥10n-13 S/kWh?
smc; 9.9*107-15 $/kWh?
d 3.05606*10712 kWh

le 7.11764*10/7-14 S/kWh?

Table 2: Parameter values in the numerical application.

Following Table 1, these values would imply the following instrument ranking: under shocks on imc;
FIT and TRQ are equal and dominated by FIP; under shocks on imc, FIT is preferred to FIP and FIP to
TRQ; and under shocks on demand d TRQ is better than FIP which is better than FIT. However, it is
not possible to say how economically significant the difference between these ranks is.

A quantitative estimate requires calibrating each type of shock. To do so, we use three real-world
‘surprises’, which occurred after the Fischer-Newell model was calibrated: the decrease in fossil fuel
prices in the US electricity sector due to the development of shale gas, the massive drop in solar PV
cost after 2008, and the decrease of electricity consumption due to the economic downturn in 2008-
2009. In each case, we use a very simple way to quantify the magnitude of the shock, i.e. we
compare the observed relevant variable after the shock to a hindcast based on a linear projection of
the pre-shock trend.
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For the uncertainty on the cost of fossil fuel-based electricity, we take the average cost of fossil fuels
provided by the US DOE EIA (2013a), calculate a linear trend over 2002-2008, extend the trend up to
2012 and compare this hindcast to the observed price for 2012 (the latest year with published data,
see Fig.(5)). In 2012 US dollars, the observed value is 2.83 S/million Btu, against 5.19 expected from
the linear trend, hence the difference is 2.36 $/million Btu or 0.8 cS/kWh (thermal). To convert this
value in 2004 dollars, we take the cumulative inflation rate of 22%, which gives 0.624 c$/kWh
(thermal). Assuming 50% of transformation losses brings 1.248 c¢$/kWh (electrical), a part of which
may be due to other factors including the lower demand, so we take -1 ¢5/kWh as the illustrative
shock on imc;.*®
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Figure 5: Average costs of fossil fuels in the US electricity sector (US DOE EIA 2013a).

Concerning costs in the renewables sector, we calibrate uncertainty on the unexpected drop in solar
PV cost observed since 2008, using data from Feldman et al. (2012, Fig.(14)). In 2008, the average
analyst's expectation for the module selling price for 2010 Q4 in the US was 2.6 $/W, while the actual
price tuned out to be 1.8, i.e. 30% lower. Since solar PV is not the only renewable energy source used
to produce electricity and since the costs for wind power also decreased, but by a lower rate, we
adopt -20% of pI'F as the illustrative shock on imc,.

Finally, for the demand shock we take the sales of electricity to final consumers in the US during
2001-2007 (US DOE EIA 2013b), i.e. just before the crisis, and use the observed trend to derive the
'expected' value for 2012 (Fig.(6)). Given that the actual 2012 value was about 9% lower, we take -9%
as the illustrative shock on demand d.

'® Another way to estimate the magnitude of this shock is to calculate the gap in electricity price for US
industrial consumers between the observed 2012 value and a hindcast based on the 2002-2008 linear trend
(1.4 ¢5/kWh). Since a part of this gap may be explained by other factors, including the drop in electricity
demand, taking 1 ¢$/kWh seems a reasonable illustrative value for the shock on imc,.
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Figure 6: US electricity demand (US EIA 2013b).

5.2 Model results

All three instruments are set by ex ante (without the shock) cost minimization for total electricity
supply, after which we compute for each one the actual ex post total costs. By comparing this
number to the ex post minimum costs, we can quantify the excess costs incurred by the shock under
each instrument. Since the relevant shocks have not vanished yet, we apply the model with
permanent uncertainty.

Fig.(7) presents the outcome of the numerical model in period 1, comparing the ex ante situation
with the occurrence of a negative shock of -20% on imc,. It shows the no-policy equilibrium (tick 'NP’
on the x-axis), the ex ante optimum that also coincides with the outcome under the tradable
renewable quota (TRQ), the outcome under feed-in premium (FIP), under feed-in tariff (FIT), and the
ex post optimum (OPT). The ex ante optimal level of renewables is roughly twice as large as the 'no-
policy' level (258 TWh instead of 117), which indicates that learning-by-doing may indeed justify a
significant support for renewables.

As a consequence of the lower than expected costs, the optimal level of renewables increases by
78%, reaching 459 TWh. It can be observed that although under both FIP and FIT an upwards
adjustment of renewables takes place (with 356 TWh vs. 349 a little more under the latter), the
realized levels remain far below the optimum. Hence, despite the alleged criticism against the FIT of
having caused an excessive deployment of renewables when the costs turned out to be lower than
expected, our numerical model points to the opposite conclusion. Of course, the latter result
depends on the parameter values, and a simple manipulation of Eqgs.(12), (17) and (18) shows that
under a negative shock on imc, qfY < q?PTiff le > smcy, a condition which is fulfilled in our

numerical model.
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For FIP, however, Eqgs.(12), (21) and (22) show that the amount of renewables is always too low
under a negative shock on imc, irrespective of the parameter values.

imceg+d smcy

0 ne trg fipfit opt d/6

Figure 7: Outcome of the numerical model in period 1. The vertical lines represent the no-policy
equilibrium (NP), the outcome with tradable renewable quota (TRQ) which is also the ex ante
optimum, the outcome with feed-in premium (FIP) and feed-in-tariff (FIT), and the ex post optimum.
The solid (resp. dashed) upward-sloping line is the ex post (resp. ex ante) renewables supply curve. For
clarity, the x-axis only represents low values of q, and does not extend to the full range of demand d
as in Figs.(1) to (4) but only to d/6.

Table 4 lists the annual excess cost of each instrument and for each type of uncertainty relative to
the ex post optimum and to the best performing instrument. Although in each case the cost-
minimizing instrument is a different one, the FIP is either the best choice or very close behind, with
an extra cost of only 168 million dollars in the worst case (compared to FIT for a shock on imc,).
Conversely, the TRQ leads to significant extra costs compared to FIP for a shock on imc; (921 million
dollars) and compared to both FIP and FIT for a shock on imc, (respectively 3 and 3.2 billion dollars).
It follows that in quantitative terms, if one assumes a similar likelihood for each of the three
considered shocks, the overall preferred instrument is FIP, followed by FIT, and TRQ as the least
preferable instrument.

FIP excess cost FIT excess cost TRQ excess cost
Shock compared | compared compared compared | compared | compared
to ex post to best to ex post to best to ex post to best
optimum | instrument optimum instrument | optimum | instrument
imcs: - 1¢S/kWh 396 0 1317 921 1317 921
imc, : -20% of pllp 1281 168 1113 0 4267 3154
d:-9% 29 5 98 74 24 0

Table 3: Annual excess costs of the instruments compared to the ex post optimum and compared to
the best performing instrument (in million US dollars of 2004). The excess cost vis-a-vis the ex post
optimum of the best instrument is shown in bold.
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5.3 Sensitivity analysis

As summarized in Table 1, the pairwise ranking of instruments often depends on the values of our
model parameters, which are not known with certainty and may change over time. In particular, with
expanding renewables one would expect a decrease in imc, due to both learning-by-doing and
learning-by-searching, and a decrease in le when renewable technologies become more mature. This
final section discusses how changes in these two parameters would impact our results if we keep all
other parameters constant. As will be seen, it depends, once again, on the source of uncertainty.

First, the results for shocks on imc; (dominance of FIP) do not depend on the value of imc, or le.
Second, in case of a shock on imc,, TRQ is the worst instrument whatever the values of le and imc,
(consistent with Proposition 1.2). The ranking of FIP and FIT is unaffected by the ex ante value of
imc,, but FIP implies a lower expected cost than FIT if the value of /e is low enough. However, le has
to become so low for this to happen (less than 7.3% of its value in our numerical model) that it seems
guestionable whether a renewable energy policy would still be justified at all.

The instrument ranking is more sensitive to the values of imc, and le for shocks on demand d. The
cross in Fig.(8) presents the baseline values of these parameters, as presented in Table 3. While FIP
always remains preferable to FIT (consistent with Proposition 1.3), FIP becomes also better than TRQ
for low values of /e (left of the oblique lines). Moreover, for very low values of imc, (below the
horizontal line) FIT also becomes better than TRQ. Hence the superiority of TRQ when demand is
uncertain cannot be considered as robust.

imc,

0.06f -
L | FIP > TRQ > FIT _— X

0.05[ —

0.03F —
- FIP > TRQ > FIT

oozl

0.01f
i FIP > FIT > TRQ

oool o o oy e
0 1Lx1071 2 w107 3. <100 4 <1078 51071 gxi0id 7oc107M

Figure 8. Instrument ranking under uncertainty on d, for lower expected values of imc, and le than in
the baseline case depicted in Table 2. The cross in the upper right corner indicates the baseline case.
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6. Conclusion

This contribution investigated the comparative performance under uncertainty of three types of
renewable electricity support policies: (i) feed-in tariffs have been widely used in, e.g., Germany, (ii)
tradable renewable quotas in some states of the US as well as in some European countries, and (iii)
feed-in premiums most recently, e.g., in Finland or Denmark (Ragwitz et al. 2012). The main
economic rationale for employing these policies is to correct the potential market failure associated
with external learning effects and imperfect appropriation of private R&D.

However, being relatively young technologies, the future costs of renewables, e.g. the price of solar
PV panels, are subject to considerable uncertainty. In such a setting, also the impact of renewable
policies becomes highly uncertain, as illustrated by the solar PV 'explosion' in Germany. Likewise, the
price of fossil-based electricity and total electricity demand are inherently volatile due to,
respectively, shocks in fossil fuel or CO, permit prices and business cycle dynamics.

To capture these stylized facts and assess their implications for policy instrument choice, this paper
developed a theoretical model of an electricity market with a learning externality in the renewables
sector. The simple structure of the model allows deriving the formal conditions that determine the
welfare ranking of the three support schemes.

Reflecting the formal relatedness of our analysis to “Prices vs. Quantities” (Weitzman 1974), most of
these dominance conditions are a function of the relative slopes of marginal benefits and costs
associated with the policy, where the latter includes the learning effect. However, the specific
instrument ranking depends on which type of uncertainty is considered, and whether shocks are
permanent or transitory. In general we find that a high learning rate favours the FIT, and that TRQ is
mostly dominated by the other two instruments. The latter result can be explained by the fact that
the TRQ's response to exogenous shocks, namely to preserve the relative share of fossil and
renewable energy, is never optimal for cost shocks occurring in one of these two sectors, and only in
very particular parameter settings for shocks in overall demand. The FIP, on the other side, performs
increasingly bad if the size of the externality is large, because its underlying assumption of a constant
positive external effect becomes increasingly at odds with the non-linearly increasing benefits from
learning. Nevertheless, overall the FIP emerges as a robust policy choice since it always ranks first or
second among the instruments.

The latter result is confirmed by a numerical application of our theoretical framework to the US
electricity market, which builds on the stylized model of Fischer and Newell (2008). Although in each
case total social costs are minimized by a different instrument, the FIP is either the best choice or
very close behind, with relatively low excess costs of 168 million dollars per year in the worst case
(relative to FIT under a shock on imc,). TRQ emerges as the worst choice: even though it provides the
lowest expected costs in case of a demand shock, the superiority is not robust to a small change in
the parameter setting. Moreover, in case of a shock on the production costs of either fossil-based or
renewable electricity, it generates very significant excess costs of up to 3.2 billion dollars per year.

Naturally, several other and equally relevant criteria exist along which the three instruments may be
compared, and where a different conclusion may be reached. This includes, e.g., the compatibility of
the TRQ with political renewable targets which are often expressed in terms of a target share (e.g. EU
20% renewables target), the political economy argument that a FIT is easier to implement than a TRQ

because it hands out a subsidy more directly (but at the same time may induce more rent-seeking
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behaviour), or the ability to overcome market power and strategic behaviour of large fossil-based
utility companies. For instance, under a binding FIT the renewables sector becomes effectively
isolated from the electricity market, as the price for suppliers is invariably fixed. Thereby it can
counteract any prevailing market power of fossil-based firms. Conversely, in case of a TRQ, the green
certificate market's efficiency may be reduced by the market power of large electricity producers, as
seems to be the case in Flanders (Dubois et al. 2013).

Another aspect repeatedly emphasized in the literature is the importance of risk and how different
instruments allocate risk across the involved actors (e.g. Fagiani et al. 2013). In particular, the low risk
exposure to investors in renewable capacity has been seen as one of the main reasons for the
effectiveness of the FIT (Butler and Neuhoff 2008). This low risk reduces the cost of capital (especially
for smaller investors) and hence the cost of deploying a given amount of renewables (Gavard 2013).
However, the higher risk to consumers implied by this scheme should also not be neglected, as they
might face considerable uncertainty on future electricity prices, especially when the renewable policy
instruments are financed through a levy on the consumer electricity price (or the risk to the public
budget in case of direct state subsidies).

The implications of other differences between the three instruments are less obvious: e.g. to some
the inability of the TRQ to discriminate between different renewable technologies represents a
drawback, while to others it is a merit because it prevents the government from trying to choose a
winner. Finally, an open but highly relevant question for future research is the one of instrument
choice under policy overlap, i.e. the instruments’ uncertainty performance in simultaneous presence
of a cap-and-trade policy like the EU ETS.

In the real world many different aspects must be taken into account when choosing the most
appropriate instrument, which is why it is so challenging to arrive at clear-cut conclusions. In view of
this, we must qualify the contribution of our paper: it developed a model that is able to isolate one
aspect—uncertainty—and show how the three different instruments are able to cope with it.
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Appendix

This appendix provides the calculations for case of transitory uncertainty. The formal approach is
described at the beginning of Section 4. In what follows, FIT, FIP, and TRQ are addressed one by one.

For the FIT we use Eq.(18) — replacing imc, by the first period ex post value imc,; — to substitute the
renewables output in Eq.(40):

it —imc
fit — ime, , le (%) + smep d — ime, + imcy
T, r

fit = smcy (dl - ) + imcg, + le (A1)

smc, smc, + smcy

Taking the partial derivatives with respect to imc;, imc,; and d; provides the corresponding
uncertainty coefficients 1, smcy/smc, — le? /(smc,(smc, + smcy)), and smcy.

We proceed analogously for the FIP, using Eq.(21) to re-write Eq.(40) as

le ip + imcg ; — imec,- 1 + dq SMmcC
fip = (le <f p 1 1 1 Ji

= + smcp d — ime, +imcy |, (A2)
smc, + smcy smcy + smcy

2 2
allowing to obtain the three uncertainty coefficients lez/(smcr + smcf) ,lez/(smcr + smcf) ,

and (le2 smcf)/(smcr + smcf)z. Finally, for TRQ we can substitute using Eqgs.(28) and (29), yielding

le dl_(?; + smcy d — imce, + imcy

(smcr + smcf) dl—a + imc,; = smcy dy +imesy + le 1+ (43)
l1+a ’ ' sme, + smcy
. - le? .
and uncertainty coefficients 1, 1, and (smcr + smcp — e—) = smcy . By comparing the
smeptsmer) 1+a

absolute value of these coefficients the Propositions 2.1 to 2.3 can be derived in a straightforward
manner.

Proof of Proposition 2.1 (transitory uncertainty on imc;):

The coefficient for FIP is le?/(smec, +smcf)2, which by Eq.(7) is below unity, while we get a
coefficient of 1 for both FIT and TRQ. O

Proof of Proposition 2.2 (transitory uncertainty on imc,):

First consider claim (i): the coefficient for FIP is lez/(smcr + smcf)z, which by Eq.(7) is smaller than
the coefficient of 1 found for TRQ. For (ii): The coefficient of FIT is smaller than the one of TRQ if

le?

abs(smcf - )< smc,, which for a positive valued parenthesis directly leads to the

smeyp+smcy
result, whereas in the case with a negative value one finds le? — smce, smep > smcfz, i.e. a more
stringent condition (one that is sufficient, but not necessary). To derive (iii), one needs to evaluate
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le?

1 le?
5 < abs| smcg — ———— (44)
(smcr + smcf) smc, smce, + smcy

Taking the parenthesis on the RHS to be positive, one obtains the condition. For a negative value one
finds the condition smcqsmc,<le that contradicts Eq.(7) and hence can never be fulfilled. o

Proof of Proposition 2.3 (transitory uncertainty on d):

We have the following coefficients (FIT, FIP, TRQ): smc; , (le2 smcf)/(smcr + smcf)z, (smcr +

2
smcf—le—) i—smcf. Claim (i) is shown by invoking Eqg.(7) and noting that both

smept+smer) 1+a

coefficients become zero for smc=0. For claim (ii) we have to consider

le? a
smcr < abs || smc, + smcy — —smc A5
f [( " ! SmCr+Sme> 1+a f] (45)
Evidently, this condition can only be met if the value in brackets is positive. By using the fact that
o/(1+a) — the share of renewables — can be expressed as the ratio of the ex ante optimal renewables
output Eq.(12) and demand d the last equation becomes

2 1 (imcp — ime, + d smcy
2 smce(smc, + smer) < ((smc, + smep)” — le?) = A6
(smey ) (( " ) )d< sme, + smcy — le (46)
which further simplifies to
2 smcg(smce, + smc imcrs — imc
f( 4 f) ! s smcg (A7)

smc, + smcy + le d
( 7+ le)

Bringing smc; to the LHS and further simplifying then yields the claim. Finally, for claim (iii) we depart
from

(1e? smcy)/(sme, + smc )2 < abs || smc, + smc, — le” ? _ sme (A8)
y " ! " T sme, +smer) 1+a !

If the expression in brackets is positive, we get

smc, + smcyp)? — le?
( T f) ) a (49)

(lez/(smcr + smcf)2 + 1) smep < ( Tra

(smc, + smcy)

The term a/(1+a) can be substituted by the ratio of ex ante optimal renewables output and demand:

(lez/(smcr + smcf)2 + 1) smey < < ) (A10)

(smey + smep)? — le? > 1 (imcf —imc, + d smcy
d

(smc, + smcy) smc, + smcy — le

which can be simplified to

le? le le imcy — imc,
5~ smep < |1+ ( ) (A11)
(smcr + Sme) smce, + smey smce, + smcy d

31



and

smcy le smc, + smey — le (imcf - imcr) (412)
(sme, + smcy) \smey + smey + le d
Conversely, if the expression in brackets is negative we obtain
—smcy le le imcg — imc
(1e? smep)/(sme, + smcf)2 <—T= _(1+ ( ! r) (A13)
(smc,. + smey) (smc, + smey) d
and
smcy le imce — imc
- ! > ( ! r) (A14)
smce, + smcy d

which, together with the previous result, corresponds to claim (iii). O
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