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Summary

Characterizing the future performance of energy technologies can improve the development
of energy policies that have net benefits under a broad set of future conditions. In particular,
decisions about public investments in research, development, and demonstration (RD&D)
that promote technological change can benefit from (1) an explicit consideration of the
uncertainty inherent in the innovation process and (2) a systematic evaluation of the
tradeoffs in investment allocations across different technologies. To shed light on these
questions, over the past five years several groups in the United States and Europe have
conducted expert elicitations and modeled the resulting societal benefits. In this paper, we
discuss the lessons learned from the design and implementation of these initiatives in four
respects. First, we discuss lessons from the development of ten energy-technology expert
elicitation protocols, highlighting the challenge of matching elicitation design with a
particular modeling tool. Second, we report insights from the use of expert elicitations to
optimize RD&D investment portfolios. These include a discussion of the rate of decreasing
marginal returns to research, the optimal level of overall investments, and the sensitivity of
results to policy scenarios and selected metrics for evaluation. Third, we discuss the effect of
combining online elicitation tools with in-person group discussions on the usefulness of the
results. Fourth, we summarize the results of a meta-analysis of elicited data across research
groups to identify the association between expert characteristics and elicitation results.
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Abstract

Characterizing the future performance of energy technologies can improve the development of
energy policies that have net benefits under a broad set of future conditions. In particular,
decisions about public investments in research, development, and demonstration (RD&D) that
promote technological change can benefit from (1) an explicit consideration of the uncertainty
inherent in the innovation process and (2) a systematic evaluation of the tradeoffs in investment
allocations across different technologies. To shed light on these questions, over the past five
years several groups in the United States and Europe have conducted expert elicitations and
modeled the resulting societal benefits. In this paper, we discuss the lessons learned from the
design and implementation of these initiatives in four respects. First, we discuss lessons from the
development of ten energy-technology expert elicitation protocols, highlighting the challenge of
matching elicitation design with a particular modeling tool. Second, we report insights from the
use of expert elicitations to optimize RD&D investment portfolios. These include a discussion of
the rate of decreasing marginal returns to research, the optimal level of overall investments, and
the sensitivity of results to policy scenarios and selected metrics for evaluation. Third, we
discuss the effect of combining online elicitation tools with in-person group discussions on the
usefulness of the results. Fourth, we summarize the results of a meta-analysis of elicited data
across research groups to identify the association between expert characteristics and elicitation

results.
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1. Introduction

Governments throughout the world justify their investments in energy technology research,
development and demonstration (RD&D) (Chan, Anadon, Chan, & Lee, 2011) on the basis of
three broad public policy challenges—environmental externalities, energy security, and
economic competitiveness (Anadon, 2012)—in addition to the knowledge spillovers associated
with scientific research in general (Arrow, 1962). Country members of the International Energy
Agency' invested $13.7 billion PPP in public energy RD&D in 2008, which rose to $17 billion
PPP (Purchasing Power Parity) in 2012 (IEA, 2013).2 A recent review of the largest developing
countries (Brazil, Russia, India, Mexico, China, and South Africa) indicates that in 2008, public
energy RD&D was of a comparable scale to IEA countries, totaling $13.8 billion PPP

(Gallagher, Anadon, Kempener, & Wilson, 2011).

While total energy RD&D investments are smaller than public subsidies for energy deployment,®
the relative social benefits of RD&D investments may be larger than that of subsidies. The
relatively large returns to energy RD&D are due to the long-term, high risk, and skewed benefits
associated with the innovation process (Nemet, 2013). Based on this view, since 1996 expert

panels in the United States (American Energy Innovation Council, 2010; NCEP, 2004; NCEP,

! The IEA has 28 Member countries (Australia, Austria, Belgium, Canada, Czech Republic, Denmark,
Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, Luxembourg,
Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Spain, Sweden, Switzerland,
Turkey, United Kingdom, and United States), but no data are provided for Luxembourg or the Slovak
Republic. Iceland, Chile, and Mexico are OECD members, but are not IEA members.

% In 2012, the United States alone invested just over $4.7 billion PPP, while European countries’ invested
totaled $5.8 billion PPP.

® The United States government spent about $33.2 billion in 2010 in energy subsidies for deployment
(EIA, 2011). A recent report estimated that global energy subsidies for deployment in 2007 were $483

billion (IEA, OPEC, OECD, & World Bank, 2010).



2007; PCAST, 1997; PCAST, 2010) and in the European Union (EERA, 2010; European
Commission, 2007) have called for significant increases to public energy RD&D investments.
These studies, however, offer little analytic support to justify their recommendations and often

do not include substantiated estimates of benefits, costs, and associated uncertainties.

The U.S. Department of Energy (DOE), the largest single funder of energy RD&D in the United
States, often conducts estimates of the expected benefits of individual RD&D programs.
However, the DOE does not consistently evaluate the positive and negative interactions of its
programs across its investment portfolio; for example, energy storage may complement
intermittent renewables. Nor does it systematically consider uncertainty in its benefit
calculations. In short, the DOE does not conduct robust consistent and transparent cost-benefit

analysis to support its portfolio of RD&D investment decisions in different technology programs.

As a result of some of these shortcomings, a 2007 study of the National Research Council
recommended that the DOE make probabilistic assessments of the benefits of RD&D programs
when making decisions (NRC, 2007). For a short review of the literature estimating the benefits
of R&D investments in energy the reader is referred to the Supplementary Information (SI). But
the political economy conditions within an RD&D funding organization make generating
credible estimates of the impact of RD&D more difficult. For example, in the case of DOE,
competition between the different technology programs creates incentives for self-serving biases
and erodes trust between programs. One strategy that appears feasible given DOE’s existing
organizational incentives is eliciting the knowledge to develop technical assumptions from
external (as well as some internal) experts and integrating this knowledge into internally-

acceptable assessment frameworks (Chan & Anadon, 2013).



In this vein, research groups at the Harvard Kennedy School (HKS) and at Fondazione Eni
Enrico Mattei (FEEM) recently conducted expert elicitations to estimate the relationships
between public RD&D investments and technology outcomes (costs and performance). The main
objective was to provide insights to both DOE and EU policy makers about the allocation of
RD&D funding across several technology areas: nuclear power, solar photovoltaics, concentrated
solar power, biofuels, bioelectricity, vehicles, utility scale energy storage, and fossil power with
and without carbon capture and storage.* > Elicitations for the US were carried out between 2009
and 2011 and were designed so that their results could be used in MARKAL (Fishbone &
Abilock, 1981), a widely -used energy-economic model, to provide insights about DOE funding
decisions across different programs. Elicitations for the EU were carried out by FEEM between
2009 and 2011 within the FP7 project ICARUS and designed for use in WITCH

(www.witchmodel.org), an integrated assessment energy model.

This paper discusses lessons emerging from these data collection and modeling efforts regarding
how expert elicitations can be designed, implemented, and utilized to support decisions about the
allocation of public energy RD&D investments. It also includes insights and findings from a
meta-analysis of the nuclear technology elicited data, identifying how elicitation design affects
results. The rest of the paper is structured as follows. Section 2 presents a literature review on
the previous use of expert elicitations for energy technologies. Section 3 describes the methods

used in this research, in particular, the design and implementation of expert elicitations in an

*Theee results from these elicitations can be found at: Anadon et al., 2011; Anadon et al., 2012; Bosetti,
et al., 2012; Bosetti et al., 2012; Catenacci et al., 2013; Chan et al., 2011; Fiorese et al., 2013.

®> Some similar studies also utilized energy technology expert elicitations, but were not explicitly
developed to provide insights about portfolios of investments at a large scale (e.g., for technology
programs funded by DOE or the EU Commission) or across multiple technologies (Baker, Chon, &
Keisler, 2009a; Baker, Chon, & Keisler, 2008; Baker, Chon, & Keisler, 2009b; Curtright, Morgan, &
Keith, 2008).



energy-economic modeling context (MARKAL and WITCH) conducted by the Harvard and the
FEEM groups, respectively. Section 4 discusses key insights from the analysis organized in five

sub-sections. Section 5 concludes with a summary of findings and thoughts for future research.

2. Expert Elicitations of Energy Technologies to and RD&D investment decisions

Estimating the benefits of energy RD&D investments requires estimation of two relationships.
First is the relationship between a given RD&D investment and individual technology outcomes,
which are typically measured in terms of cost or performance. Second is the relationship between
the technology outcomes and policy goals, such as economic growth, energy prices, CO,

emissions, or oil imports.

Expert elicitations are being increasingly used to estimate the first relationship (Anadon et al.,
2011; Anadon et al., 2012; Bosetti et al., 2012; Catenacci M. et al., 2013; Chan et al., 2011;
Fiorese et al., 2013); Baker, Chon, & Keisler, 2009a; Baker, Chon, & Keisler, 2008; Baker,
Chon, & Keisler, 2009b; Curtright, Morgan, & Keith, 2008). These studies gather the opinions
of experts on technical questions that fall within their area of expertise. Data collection is carried
out using elicitation protocols carefully designed to reduce biases (Cooke, 1991; Hogarth, 1987;

Morgan & Henrion, 1990; Evans, 2013).

However, few studies have designed elicitations with the objective of supporting specific energy
RD&D policy decisions on a continuous basis. In addition, even though previous studies
indicated the importance of protocol design and expert selection as key for elicitation results,
(Keeney & Winterfeldt, 1991; Meyer & Booker, 1991; Raiffa, 1968) there are no empirical

assessments in energy of the impact and size of differences in elicited results from expert



selection and elicitation design (e.g., whether the survey is conducted in person, via mail, or

online).

Expert elicitation estimates can also be used to inform the second relationship by introducing
them as inputs to technologically-detailed models of the economy, thus linking technology
outcomes to social benefits. Such an approach allows decision makers to understand how
technological uncertainty propagates from the first relationship through the second relationship,
providing important insights on the distribution of outcomes from RD&D. This type of two-
stage analysis to support policy decisions is common in environmental policy decisions, such as
those that Fann et al. (2013) inform with their analysis of approaches to estimate concentration-

response functions for PMs.

3. Methods

3.1 Design and implementation of expert elicitations

The Harvard studies were designed to inform the DOE on the allocation of RD&D investments
across large scale technology programs, while the ICARUS project, funded by the European
Research Council aimed at designing optimal allocation of the EU research budget on energy
technologies, with specific attention to the role of European climate and energy policies. We

highlight here some key features of both data collection efforts.

Each institution conducted six elicitations. Four of Harvard’s elicitations were distributed by
mail (bioenergy, utility scale storage, fossil energy and carbon capture and storage, and vehicles)
and the remaining two were online (nuclear power and solar PV). Four of FEEM’s elicitations
were extensive in person interviews (batteries for EDV, bioenergy, biofuels, solar) and two were

online (carbon capture and storage, and nuclear power).



The core objective of the elicitations in both cases was to gain insights on the relationships
between public RD&D investments and technological change for specific technologies in a
parameterization that could be naturally introduced into an economic model of aggregate
benefits. Specifically, the Harvard elicitations included questions on experts’ estimates about
various technology specific cost components (e.g., overnight capital cost, operations and
maintenance costs) and performance parameters (e.g., efficiency, yield, fuel efficiency) in 2030
under different DOE RD&D budgets. Two exceptions were the bioenergy survey—in which
experts were given the option of providing a cost breakdown or providing an overall cost per unit
of biofuel or electricity delivered—and the vehicles survey—in which experts were asked about
the total purchasing cost of different types of vehicles and specific performance characteristics

without a breakdown of cost components (e.g., battery cost).

FEEM’s elicitations of batteries for electric vehicles, bioelectricity, biofuels, and solar power
asked experts to provide an aggregated metric of the 2030 cost under different EU RD&D
budgets. FEEM’s carbon capture and storage (CCS) survey investigated both the cost and energy
penalty of alternative CCS technologies. Finally, FEEM’s nuclear survey was conducted in
coordination with the Harvard study and used a two-step methodology combining an online

individual elicitation with a workshop in which a subset of experts participated.®

The choice of the media for the elicitation is an important one which involves tradeoffs. Among
other possible benefits, in-person interviews imply greater interaction between the expert and the

researcher and can reduce biases and availability heuristics. However, conducting online or mail

® In the survey and the workshop experts were asked questions about cost components and different
performance parameters. For more detailed information the readers are referred to the papers on the
Harvard and FEEM elicitations provided in Section 1.
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elicitations reduces costs, for both respondents and researchers, and increases flexibility, thereby

expanding the pool of participants.

Independent of the media chosen, developing the elicitation protocol took around 3-5 months for
both research groups, consistent with previous energy technology expert elicitations. A crucial
step was testing and revising the elicitation protocol through pilot interviews and an iterative

process in which a few experts on a given technology were involved.

In line with the literature, the elicitations included a background calibration section which
contained a summary of the purpose of the survey, background information on either DOE’s or
EU current activities and investments in the technology of interest, and a statement about
avoiding bias and overconfidence. All Harvard surveys and most of FEEM’s surveys also asked
participants to rate their own expertise in several sub-technology areas on a 6-point scale, where
6 was described as “I am one of the top experts in this technology/system” and 1 was described
as “I am not familiar with this technology/system.” This information was subsequently used to
test for correlations between areas of expertise and recommendations for RD&D funding or
particularly optimistic technology forecasts, which would have suggested experts make self-

interested recommendations. The Sl includes for more information on details on the elicitations.

The second half of the protocol contained the core questions of the elicitations. The Harvard
studies included four sections with questions on: (1) the commercial viability, cost and
performance of different technologies in 2030 under a business as usual (BAU) public RD&D
funding scenario; (2) the expert’s recommendation of total public investments in the technology
area of interest and their recommended allocation of funds to sub-technologies, including
questions about the specific technical hurdles to be addressed by their allocation; (3) how future

technology costs and performance would change if their reccommended RD&D investments were



implemented, and how this would change under alternative RD&D investment levels; and (4)
other technology-specific policies and factors affecting technology deployment. We also

considered using self-rated expertise to weight experts, but we ultimately did not conduct this analysis.

The FEEM elicitations on batteries for EDV, bioenergy, biofuels, and solar, asked experts to (1)
assess different technological options based on their level of maturity and possible bottleneck;
(2) suggest a breakdown of public research expenditures across the different technological paths
that would maximize the chance of a breakthrough; (3) provide estimates of future costs and the
surrounding uncertainty conditional on different levels of public RD&D investment;’ (4) assess
the potential additional bottlenecks that additional RD&D investment could not address (i.e.
concerns about competition of biofuel with food for land); and (5) assess the potential
international diffusion of a given technology, if cost-competitive, to both OECD and non-OECD

countries.

All elicitations included interactive visual aids. The Harvard mail surveys included a set of chips
and a “board game” to help experts think through allocating their recommended budget across
different technology areas and technology development “stages”.8 The Harvard and FEEM
online surveys included a virtual game board and chips as well as graphical feedback for all

quantitative input from the experts, allowing them to visualize probability distributions of their

" The FEEM elicitations asked the expert to first provide estimates of the 10", 90" and 50™ percentile of
future costs. The same experts were subsequently asked to provide probabilities that under the same
different RD&D scenario the cost of a given technology would be below some level chosen by the
researchers. This effectively meant eliciting the same information twice, but under different format, and
allowed to check the consistency of expert’s responses.

® The Harvard board game included 100 poker chips, one for each percentage of their total
recommendation, that experts allocated across sub-technology areas, which included an “other category”
that allowed them to indicate additional areas. The stages of RD&D that experts could allocate across
were basic research, applied research, pilots, and demonstration.
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cost and performance estimates under the different RD&D scenarios.” The FEEM in person
surveys allowed experts to plot their cost estimates in real time and check for the consistency of

their own answer.

To evaluate the effectiveness of online elicitations, FEEM and Harvard conducted nearly
identical elicitations in nuclear energy. Following the surveys, the groups convened a subset of
the European and U.S. experts for a 1.5-day workshop to discuss the results of the survey and to
bring forward any questions or misunderstandings that surfaced during the online elicitations.
Experts discussed their answers and talked through their disagreements regarding the
interpretation of the questions. Following each session of the workshop, experts were given the

opportunity to privately change their answers to the survey.

Finally, both research groups worked at connecting the technical outcomes and/or the costs and
uncertainty estimates to societal benefits (e.g., CO, emissions, energy costs, oil imports, etc.).
The Harvard group selected the MARKAL model, while the FEEM worked with the WITCH
model. MARKAL is a bottom up energy-economic model that is publicly-available and has
institutional buy-in from many government agencies in the US and elsewhere. The use of
MARKAL was coupled with an importance sampling technique which allowed changing input
assumptions without requiring additional model runs, thus solving a computational constraint

faced by many decision-making entities (Pugh et al., 2011)."° Because of this method’s ability to

° The graphical feedback on the online surveys included plots of the 90", 10", and 50" percentile
estimates for each technology and different budget scenarios, allowing experts to modify their answers as
they were filling out the graphs in real-time.

' The computational challenge comes after the challenge of building internal trust and buy-in, achieving
external transparency and consistency, which currently contributes to decision-making entities not
estimating the benefits of RD&D investment portfolios.
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test different input assumptions, the benefits associated with RD&D investments under more

optimistic or more pessimistic experts’ assumptions were estimated.™

3.2 Meta-analysis of expert elicitations

Anadon et al. (2013) conducted a meta-analysis of three recent nuclear expert elicitations
(Abdulla, Azevedo, & Morgan, 2013; Anadon et al., 2012) given the scarcity of information
regarding the impact of expert selection and elicitation design on elicitation results. Meta-
analysis is a set of statistical techniques used to reconcile and aggregate the results of multiple
studies testing similar hypotheses and to thus enhance the overall reliability of findings
(Borenstein, Hedges, Higgins, & Rothstein, 2009; Glass, 1976). Systematic reviews and meta-
analyses, which typically follow very strict rules in healthcare applications, are very systematic
and time consuming (Morton, 2013). Meta-analysis complements the qualitative insights about
expert selection and elicitation design and has been used in environmental economics since the
1990s (Matarazzo & Nijkamp, 1997; Nelson & Kennedy, 2009), with several recent applications

in energy (Barker & Jenkins, 2007; Rose & Dormady, 2011; Zamparini & Reggiani, 2007).

Using the individual elicited values from multiple elicitations,> (Anadon et al., 2013) estimate

how public RD&D investment affects experts’ 2030 central estimates (50" percentile) and the

I This approach can potentially be used to conduct other sensitivity analysis such as including
experts internal to the decision making process vs. experts from stakeholder groups, experts from
different countries, etc (Chan & Anadon, 2013). It also can be used to understand the sensitivity of
aggregated results to decisions about whether to include or exclude the outlier expert responses (Jenni,
Baker, & Nemet, 2013).

12 The use of primary data (IPD) is considered the gold standard for systematic reviews because it avoids

many of the shortcomings of aggregate meta-analysis: it enables controlling for confounding factors at the
individual level and for treatment differences between studies. Moreover, using IPD the study derived
results directly and independent of study reporting. This increased the aggregate power of the study,
which allowed to more thoroughly scrutinize modeling assumptions (such as the presence of interactions
and the linearity of associations) and explore subgroup effects (Borenstein et al., 2009; Ghersi, Berlin, &
Askie, 2013; Reade et al., 2009).

12



uncertainty (defined as the difference between the 90" and the 10" percentile of expected costs,
normalized by the median, (p90-p10)/p50) surrounding it, after controlling for a wide range of
observed characteristics.. As a result, the study also informs on how elicitation protocol
differences and expert geographical and sector characteristics affected technology outcomes.
Independent variables in the central estimates and uncertainty regressions were the level of
public RD&D budgets, expert background (industry, academia, and public institution), expert
country (American vs. European), technology type (large-scale Gen. 111/111+ designs, large-scale
Gen. IV designs, and small modular reactor designs), and elicitation mode (in-person vs. online).
The relationship between expected costs and RD&D investment was tested both using a log-log
specification, usually applied in the learning-by-searching literature, and a linear specification
with a squared RD&D term, in line with the literature on diminishing marginal returns to RD&D

investments (Evenson & Kislev, 1976; Hall, Mairesse, & Mohnen, 2009; Popp, 2002).
4. Key Findings

This section describes the key findings regarding the role of public RD&D on the future of

energy technologies and the use of elicitations to inform the policy process.
4.1 Including questions about self-rating of expertise

Including a section on self-assessed expertise in the elicitation protocol helped assess whether

experts were biased towards favorable treatment for the sub-technology area which they were

It is also important to point out that expert elicitations are used to estimate the distribution of the
underlying beliefs held by experts with the largest information sets over an uncertain quantity. Therefore,
an expert elicitation study does not rely on asymptotic convergence of sample estimates through the
collection of a large number of individual observations, but rather develops the highest quality
representation of the underlying distribution among the most informed experts. In this sense the use of
IPD meta-analysis that treats individual experts as single observations relies on a random sampling
assumption that the original data collection did not make.

13



most knowledgeable. However, we found little evidence of experts systematically recommending
greater funding levels for the technology areas with which they were most familiar (Figures 1

and 2 for US and EU experts, respectively).

X- axis: Self-rated expertise (1: lowest; 6: highest)
Y- Axis: Fraction of expert’s total investment for a particular technology area
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Figure 1: Analysis of expert—recommended budget allocations in areas of self-assessed expertise
in Harvard elicitations. The x-axis corresponds to the self-rated expertise (1: | am not familiar
with this technology; 6: | am one of the top experts in this technology). The y-axis corresponds
to the fraction of the recommended budget that an expert devoted to a particular technology. The
graphs represent 6 different elicitations: (a) Bioenergy; (b) Utility scale energy storage; (c)
Nuclear energy; (d) Fossil energy and CCS; (e) Vehicle technologies; (f) Solar photovoltaics.

X- axis: Self-rated expertise (1: lowest; 6: highest for nuclear, 1: lowest; 5: highest for all the other technologies)
Y- Axis: Fraction of expert’s total investment for a particular technology area
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Figure 2: Analysis of expert—recommended budget allocations in areas of self-assessed expertise
in FEEM elicitations. The x-axis corresponds to the self-rated expertise (1: I am not familiar with
this technology; 6: | am one of the top experts in this technology). The y-axis corresponds to the
fraction of the recommended budget that an expert devoted to a particular technology. The
graphs represent 4 different elicitations: (a) Nuclear energy; (b) Biofuels; (c) Vehicle
technologies; (c) Solar photovoltaics.
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4.2 Conducting elicitations online

Online elicitations emerge as the lowest cost option, followed by mail and in person elicitations.
An extremely conservative back of the envelope calculation of the monetary benefits (i.e.,
excluding benefits in future years, assuming that researchers travelling to interview experts do
not need accommodation, and ignoring the time and effort savings to researchers and experts)
indicates that online surveys with 11 experts are at least 40% cheaper than in-person elicitations
with the same number of experts. During the online surveys, some experts did contact the
research team for clarification, but it is virtually impossible to rule out that the lower interaction
between experts and researchers decreased the value of the information contained in the online
estimates, as some experts may have found some of the questions ambiguous (even after

extensive pilot testing of the elicitation instruments).

The discussion during the nuclear group workshop, which included 18 out of the 60 experts that
participated in the FEEM and Harvard nuclear expert elicitations, confirmed that the online tools
providing real-time feedback were useful and that expert interpretation of the questions was
consistent with the researchers’ intentions. In addition to the qualitative discussion, the
robustness of the online elicitation tool was further validated by virtue of very few experts

requesting to make changes to their original answers by the end of the workshop.*?

Differences in the media chosen for the elicitations (online as well as by mail), RD&D scenarios,
time periods and technology focus can be used to quantitatively investigate any possible

systematic differences in the normalized uncertainty range ((90™-10™)/50" percentile cost

3 The workshop was divided into discussion sessions that were design to match the elicitation questions.
Each session included a presentation of the results of that part of the elicitation, a moderated group
discussion, and a final session in which each expert was provided with a sheet allowing him to privately
make changes to his answers to that section (all nuclear experts were men).

16



estimates of the experts). Table 1 shows the results of the analysis of the normalized uncertainty
range provided by the experts in the Harvard elicitations using dummy variables for online
surveys and for different RD&D and technology scenarios. Table 2 shows similar regression

results for the four in-person FEEM elicitations.

Model 1 in Table I shows that the normalized uncertainty range in the Harvard data is greater for
online rather than paper sent by mail elicitations. However, we must note that the technology
areas are perfectly collinear with the online dummy, which means that further work is needed to
disentangle the effect of conducting elicitations online from the differences in normalized
uncertainty across technology areas. Model 3 and Model 4 in Table | shows respectively that: (a)
controlling for unobserved expert-level heterogeneity with expert fixed effects, RD&D scenarios
with greater investment than the BAU RD&D scenario had significantly lower normalized
uncertainty ranges; and (b) the bioenergy, storage, solar, and nuclear surveys were associated
with significantly greater normalized uncertainty ranges than the fossil survey, with the smallest
difference for nuclear; conversely, there was not a significant difference in the uncertainty metric

between the fossil and vehicles survey.

Turning to Table 1, we find in the 4 in-person FEEM higher RD&D scenarios are associated
with greater normalized uncertainty ranges. This result is in contrast with the Harvard results in
Table 1. There are several possible explanations for this difference, none of which can be
formally tested at present. One hypothesis is that U.S. experts believe that more RD&D reduces
uncertainty while E.U. experts believe that it increases it. Another hypothesis is that the results
depend on the framing of questions by FEEM and Harvard. Specifically, the Harvard surveys
asked experts to recommend the total amount and specific allocation of RD&D investments,

while the FEEM survey asked experts about fixed increases from the BAU scenario without

17



asking them to design their ideal RD&D program. It is possible that when experts think about
their ideal RD&D program they have less uncertainty about the results of their recommendations.
It is also possible that when experts think about the impact of RD&D on the aggregated cost of
the technologies (as is the case in most of FEEM elicitations) they think about uncertainty
differently when compared to components of technology cost (as is the case in most of Harvard

elicitations).

Table I: Analysis of factors associated with differences in normalized uncertainty ranges in the 6
Harvard expert elicitations. The 2030 BAU RD&D scenario and the fossil technology category
serve as reference points. Y = In(uncertainty).

Variable Model 1 Model 2 Model 3 Model 4
Online 0.1430**

(0.0622)
2010 8AU ooz ©oso4 (0084
2030 recommended budget E09609924 45) (83238; * (88222)
2030 10X recommended budget (88522) (883;12; * (88%83)
Vehicles (81(1)(258)
Bioenergy ?06391&3**
Storage ?0732()55**
Nuclear ?020567;;)**
Solar PV ?06(??;;**
Expert fixed effects NO NO YES NO
Constant 0.6010%** 0..4987%* LAITATE g gosge
R-squared 0.0077 0.0019 0.7419 0.1465
Observations 635 635 635 635

Robust p-values in brackets
*** P<0.01, ** p<0.05, * p<0.1
Notes: The nuclear and solar PV elicitations were conducted online, and the others via mail.
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The difference between the impact of RD&D on the estimates by US and EU experts highlights
the complex set of factors involved when making these estimates. They therefore should be
carefully considered when using the results from different elicitations on similar topics. Overall,
the launch, data acquisition, and data processing for the online surveys were faster than for the
paper surveys. Both groups also learned valuable lessons from the development of their first
elicitations (bioenergy energy for Harvard and solar survey for FEEM) that made the

development of the remaining elicitations faster.

Table I1: Analysis of factors associated with differences in normalized uncertainty ranges in the 4
FEEM in person expert elicitations. The 2030 BAU RD&D scenario and the biofuels technology
category serve as reference points. Y = In(uncertainty).

Model al Model a2 Model bl Model b2 Model cl Model c2

+50% RD&D 0.167* 0.186*** 0.165* 0.186*** 0.165* 0.186***
(0.0847) (8.50e-06) (0.0868) (8.50e-06) (0.0750) (4.86e-06)
+100% RD&D 0.305*** 0.327%** 0.298*** 0.327%** 0.298*** 0.327%**
(0.00231) (3.00e-09) (0.00304) (3.00e-09) (0.00244) (2.16e-09)
Solar -0.110 -0.0267
(0.338) (0.862)
Vehicle -0.151 0.380**
(0.152) (0.0490)
Cost_CSP -0.476*** -0.0267
(0.000400) (0.863)
Cost_EV -0.104 0.427**
(0.376) (0.0313)
Cost_PHEV -0.197 0.333*
(0.105) (0.0919)
Cost_PV 0.0429 0.362**
(0.725) (0.0421)
Constant -0.623*** -0.439*** -0.515%*** -0.819*** -0.515*** -0.819***
(0) (0.00412) (1.91e-06) (4.16e-10) (1.75e-06) (5.66e-10)
Observations 161 161 161 161 161 161
R-squared 0.058 0.857 0.071 0.857 0.142 0.867
Expert FE NO YES NO YES NO YES

Robust standard errors in parentheses
*** n<0.01, ** p<0.05, * p<0.1

Note: the “b” and “c” versions of the regression models represent different levels of aggregation in the solar and
vehicle technologies elicitations.
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4.3 Combining elicitations with a group workshop

The Harvard and FEEM groups carried out the same nuclear two-step elicitation in the US and in
the EU. First, experts provided individual estimates through and online survey. Then, a subset of
experts was involved in a workshop and group discussion (see Figure 3 for a schematic of the
process). This identified issues that could arise when each of the two steps is followed as a stand-

alone procedure.

Introductory phase
Experts selection and Definition of the Pilot tests and
engsgement guestions’ areas corrections
1
\ Y I
Individual questionnaires
Motivational and
informative letter to the Submission of on line Follow up summary
experts guestionnalres reparts and phane calls
Workshap
Discussion an the main . .
thernatic areas and Experts’ revision of Presentation of the final
rasults their answers results
(a)
Background informaticn
! Y
Purpoce Current budget, technology Bias and "
Q efficiency, costs overconfidence Percentiles
Questions
i
Self- BAU R&D funding: Public R&D Revised R&ED Other factors
assessment of budget funding: affecting
expertise = Commercially recommendation deployment:
viable products * Gen IV goals )
* Gen |V goals *  Production *  Hisk
* Production costs, costs, factors
performance and performance = Global
praspects of Gen and prospects avents
Y1l and Gen 1Y of Gen IV *  Nuclear
technologies In technologies In growth
2030 2030 scenarios
(b)

Figure 3: (a) Structure protocol employed in the design of the online elicitation and group
discussion; (b) structure of the individual online elicitation instrument (Anadon et al. 2012).
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As discussed in section 4.2, while cost and performance estimates did not change substantially
during the workshop from the individual expert elicitations, the workshop did enrich the
information obtained from the elicitations on other topics. The workshop had some impact on
the stated RD&D policy objectives that recommended investments were meant to address.
Experts who participated in the workshop made some changes (mainly in the form of additions),
suggesting that the workshop discussion was helpful in building consensus in this area. RD&D
policy objectives that gained priority after the workshop were development of SMRs, risk and
safety, and proliferation resistance. EU experts also increased recommended funding for

sodium-cooled fast reactors and fuels and materials.

The workshop also resulted in an improved understanding of how some experts perceived
definitional and framing issues that were originally taken for granted. For example, while some
experts thought of climate change mitigation as the main goal when making RD&D
recommendations, others had multiple goals in mind, such as non-proliferation concerns and
hydrogen production.’* This variation in the experts’ reasoning would not have been revealed
had we pursued only individual elicitations. The workshop also helped clarify the reasons why
U.S. experts placed more emphasis on RD&D to understand fuel cycle economics and reduce
fuel cycle costs than E.U. experts and why EU experts thought that it was unlikely that there
would be a market for small modular reactors (SMRs) in the future. Due to the (obviously

unplanned) timing of the workshop after the Fukushima disaster, we were also able to determine

 Here we include two other examples: (a) While experts displayed a clear understanding of the questions
asked about cost and performance, different experts were using a different definition of “major
radioactivity releases caused by an accident or sabotage.” (b) Some experts thought that the Fukushima
accident would fall under their personal definition of “major radioactivity release,” others felt that such a
description would only apply to a larger accident with more direct casualties.
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that the Fukushima disaster did not alter the expert’s answers regarding the future of nuclear

deployment in the United States and the European Union.

Overall, the combination of the individual online elicitation and expert workshops served to
validate the online tool and build consensus on parts of the survey, while allowing the research
team to better understand some of the reasons behind expert answers. The combination of online
tools and other tools to increase expert interaction without incurring additional costs is an area of

growing interest (Siddharth, Khodyakov, Srinivasan, Straus, & Adams, 2011).
4.4 Designing expert elicitations to use as modeling inputs

Even though the elicitations were explicitly designed to provide insights about the optimal
allocation and total level of RD&D investments across different technology areas, some design
needs were not foreseen. Chan & Anadon (2013) identify ways to improve the elicitation to
better match analysis needs.'® First, obtaining experts’ estimates of future technology cost over a
very large range of RD&D investments, including RD&D ranges well-beyond current levels, can
yield additional insights. Experts in the Harvard study were asked to provide estimates of 2030
technology cost and performance under a BAU RD&D funding scenario, their recommended
RD&D funding level, and 10 times their recommended funding level. When designing the

survey, researchers believed that this was the maximum feasible range that experts would be able

> The work by Chan & Anadon (2013) on estimating and optimizing the benefits of energy RD&D
portfolios presented here relates to three other pieces of work. Although Blanford (2009) and Davis and
Owens (2003) present two frameworks to support investment decisions, they do not justify their
assumptions regarding the impact of RD&D on future technology cost and performance, and they do not
provide computational flexibility to allow the estimation of optimal RD&D investment levels in a range
of technologies at a sufficiently small level of granularity (in the range of millions of dollars) and with the
ability to optimize for different goals and risk considerations. Baker & Solak (2011) use elicitation data
for three technologies not targeted to inform government investments at the program level and, unlike this
work, the R&D investment optimization relies on assumptions about climate damages.
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to consider; 10-times the recommended levels amounted to 10 to 80 times current funding levels.
Outside of this range, the elicitations could not inform the relationship between RD&D funding
and technology cost and performance without heroic assumptions to extrapolate beyond the
range experts were asked to consider. The funding levels selected in the Harvard work were
sufficient to determine that the current RD&D investment level is too low and that, if properly
allocated, $15 billion in aggregate US RD&D funding could be justified on the basis of
aggregate economic benefits. However, because the calculated benefits of RD&D were so large,
this range proved too small to estimate the optimal level of RD&D investment. Even though the
Harvard study could calculate the rate of decreasing marginal benefits, benefits (in terms of
aggregate economic surplus) were still increasing 10% faster than costs at the maximum
aggregate range considered, $15 billion per year (see Figure 4). Other than aggregate economic
surplus, there are many other metrics of benefits that one could use (for example, one could use

avoided CO; emissions for benefits and incorporate opportunity costs for the RD&D costs).
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83% CO2 Reduction
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Figure 4: Optimal R&D portfolios under an 83% CO; reduction policy. The figure shows the
allocation of RD&D funding at different RD&D budget constraints between $2.5 billion - $15
billion per year, relative to the Fiscal Year 2009 and 2012 allocations. The dark blank line in the
main plots is the maximum expected increase in economic surplus (above the an arbitrary
reference point, the expected surplus in the optimal $2.5bil budget) that can be attained under a
given RD&D budget constraint. The small numbers along the black line are estimated marginal
returns on investment, calculated by linear approximations to the derivative of the optimal
expected surplus at different budgets (Chan & Anadon, 2013).

Second, future elicitations in this area should incorporate questions about the extent to which
advances in a particular technology co-develop with advances in other related technologies. The
Harvard researchers felt that it was reasonable to assume that future advances in some
technologies would be uncorrelated with advanced in other technologies (e.g. solar photovoltaics
and nuclear technologies). However, due to knowledge spillovers between technology areas, it

seemed unreasonable to make this assumption for all technologies (Nemet, 2012). For example,

24



the Harvard bioenergy technology elicitation consisted of technology processes for three bio-
based fuels: gasoline substitutes, diesel substitutes, and jet fuel substitutes. Because of the
similarity in the technology to produce any of the three products, assuming independence across
the impact of RD&D on the future costs of these technologies did not seem reasonable.
Complete independence also did not seem reasonable across other technology areas, such as
utility-scale energy storage and electric or plug-in-hybrid vehicles, which could feasibly share
battery technology. Thus, a correlation table was developed based on Harvard’s expertise in
various technology areas (see section Sl4 in the SlI). To inform future elicitations, the Harvard
vehicles elicitation implemented a pilot approach to utilize expert knowledge to estimate cross-
technology correlations. The pilot asked experts to revise their 90", 10", and 50" percentile
estimates for a technology considering several future scenarios with different realizations of
2030 costs in a related technology. While most experts were willing and able to think through
and answer these questions thoughtfully, including these questions lengthened an already long
elicitation. Third, asking qualitative questions to justify experts’ recommended level of
investments and allocation increased our own confidence in the results and their external

credibility.*®

Fourth, the large number of experts included in the elicitations (more than 100 per research
group), required substantial preprocessing before summary results could be presented. Harvard
developed an importance sampling technique to reduce the computational requirements of

assessing the RD&D allocations and forecasts of many different experts. However, for the

'® This is something that the Harvard group did not include in the first bioenergy elicitation, but did
include in the subsequent five elicitations. For more information on what some of these qualitative
questions focused on, the reader can access the links to the nuclear survey in the SI of Anadon et al.
(2012).
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parsimony of presenting results, experts’ responses were eventually selected or aggregated.
Anadon et al. (2011), for example, relied on three “expert scenarios”, labeled, “optimistic,”
“middle,” and “pessimistic”, each of which grouped the answers of the 6 most optimistic, central,
and pessimistic experts. As shown in Figure 5, even increasing RD&D investments from a BAU
budget of $2 billion to $82 billion/year, and utilizing assumptions from the most optimistic
experts, CO, emissions are not expected to decrease substantially from current levels. Thus,
creating “expert scenarios” allowed researchers to calculate high and low bounds of benefit

metrics that did not depend on the choice of expert.

Middle Experts Optimistic Experts
6000 . 5000 -
2 — - —_— 2 e
= 5000 = 2 5000 =
E 4000 E 4000 -
S 3000 § 3000
= 2000 = 2000
o) o)
O O
1000 1000
0 0
2010 2020 2030 2040 2050 2010 2020 2030 2040 2050

Figure 5: U.S. energy-related CO, emissions under (a) business-as-usual federal energy RD&D
investment and no additional demand-side policies (blue) and (b) ten times the experts’ average
recommended federal energy RD&D investments (somewhere between $49 and $82 billion/year)
(red), with no additional demand-side policies, using “middle of the road” and “optimistic”
experts’ technology cost projections. Note that optimistic experts were optimistic about
technological progress in general, and not necessarily optimistic about the effects of RD&D
(Anadon et al., 2011).
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4.5 Using meta-analysis to improve elicitation usability and design

The meta-analysis of the nuclear elicitations evaluated the impact of expert selection
(background and country) and elicitation design (technology granularity and online vs. in person
mode) on the elicited costs of nuclear technologies. The goal of this exercise was to inform
future elicitations and to better capture the experts’ thinking on the impact of public nuclear

RD&D on future technology costs for modeling and policy analysis.

Here, we discuss the key insights from the log-log model of the experts’ central estimate of
nuclear power overnight capital cost in 2030 (see section 3.2).'” Expert composition has a
qualitatively large impact on the range of estimates available for policy analysis. Controlling for
expert affiliation, expert country of origin, and technology type, the coefficient of the RD&D
variable increases by 25% relative to the estimated coefficient in the reduced form model
(namely, RD&D on costs). On average, a doubling of the yearly public nuclear RD&D budget in
the US and the EU is associated with an 8% decrease in nuclear costs in 2030, ceteribus paribus.
Experts from public institutions have estimates of overnight capital costs that are about 14%
higher on average than those of academics and that estimates from industry experts are even
higher, on average around 31% higher than academics. Expected overnight capital costs are
approximately 22% lower for experts in the USA when compared to experts in the European

Union. Technology type also is a statistically significant determinant of 2030 expected costs:

" The results of the two non-linear models we specified, log-log and linear-quadratic, were consistent in
terms of the statistical significance and sign of the estimated effects. Also, the estimated negative
guadratic coefficients in the linear model are consistent with diminished returns to RD&D (and are not
necessarily inconsistent with learning-by-searching).
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overnight capital costs are expected to be higher for both Gen. IV and SMR technologies with

respect to Gen. I111/111+ technologies by roughly 23% and 24%, respectively.'®

Focusing on uncertainty—defined as the 90™ percentile estimate less the 10" percentile estimate,
normalized by the 50" percentile estimate—higher or lower levels of RD&D investment are not
systematically associated with narrower or wider uncertainty ranges. However, US experts have
around 16% wider uncertainty ranges compared to EU experts. The uncertainty range for SMRs
is about 14% smaller than that for large scale Gen. I1I/l1l+, suggesting that experts are more
confident about their cost estimates for these systems. This was a somewhat surprising finding
considering that SMRs are expected to be delivered to the site fully constructed from the
manufacturing facilities, yet current experience is limited and no operating licenses have been

issued in the United States or the EU.

Ongoing work is now focusing on validating these results across a wide range of technologies
through a larger meta-analysis The increased variation among these studies, as well as the
increase observations, will enable more precise estimation of both expert and elicitation design
effects and will allow to gauge differences in experts’ assumptions about the returns of RD&D in

different technological areas.

¥ The Anadon, Nemet & Verdolini (2013) study found that the in-person variable (accounting for the
observations obtained through an in-person interview as opposed to through an online tool) becomes
negative and significant when expert fixed effects are included, although it is difficult to draw conclusions
about this effect since it requires inclusion of unobserved expert characteristics for it to become
significant. This tentative result is consistent with results in Table 1 in this paper, but the tentative nature
of this analysis requires that the inn-person effects be a focus of future work assembling additional
elicitation data ensuring that more than the 3% of observations are in-person.
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5. Conclusions and future work

The findings presented in this paper provide lessons for the future design and use of expert
elicitations to inform policy decisions on public RD&D investments. The findings presented in
this paper stem from several pieces of work related to 10 expert elicitation exercises
encompassing 6 energy technology areas and conducted between 2009 and 2011 by Harvard

researchers and FEEM researchers. Below we summarize five key findings.

First, mail and online expert elicitation tools can be used to obtain expert elicitation estimates
more cost-effectively than in-person interviews without introducing bias. This finding relies on
insights from the expert workshop that followed FEEM and Harvard nuclear elicitations and is
conditional on appropriate preparatory work by the eliciting research team. This work includes
extensive background research on the topic, pilot testing the elicitation instrument, background
material that discussed biases and confidence, and the utilization of numerous interactive visual
aids. In particular, conducting elicitations online can contribute to an easier institutionalization

of the process.

Second, asking experts to self-assess their level of expertise in specific technologies and
processes, to justify their RD&D priorities, and to identify non-RD&D-related factors that would
affect the future of specific technologies, increases both the researchers’ confidence in the level
of intellectual engagement of the experts and in the external credibility of the results. For
example, experts were not systematically recommending larger amounts of funding to their areas

of expertise, providing some evidence that they were not solely motivated by self-interest.

Third, to support decisions about RD&D investments in different technology programs, it can be

useful to push experts to consider a wide range of scenarios, including scenarios at the boundary
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of their private information set, to explore potentially-desirable scenarios far from current
activities without undue extrapolation bias. In addition, elicitations should include questions to
allow the deduction of correlations across technology improvements. Alternatively, researchers

(or analysts) can create a separate elicitation targeting correlations.

Fourth, some important policy insights can be derived by creating scenarios without aggregating
experts. Insights regarding the need to put in place additional policies beyond RD&D
investments to meet CO2 emissions reductions goals, and the decreasing marginal returns to
RD&D investments, were independent of whether or not modeling included experts that were

optimistic, central, or pessimistic regarding forecasted 2030 technology costs.

And fifth, expert selection has a large and significant impact on elicitation results, indicating that
experts from the private sector, academia, and public institutions, as well as experts from
different countries, have different private information sets and beliefs. An elicitation exercise
that sought to include all perspectives would need to include experts from all of these
backgrounds. Further, the meta-analysis exercise allowed researchers to better understand

estimates of the impact of RD&D on technology costs.

The lessons from this work are applicable not only to energy, but also to other technology areas
that receive substantial government RD&D support, such as health, defense, and agriculture.
Public RD&D investments in other sectors also face questions regarding the extent to which they
should be guided purely by scientific merit or by mission. For example, there have been calls to
increase the extent to which funding in the R&D budget of the National Institutes of Health
(NIH) should consider disease burdens (see review by Sampat (2012)). This approach would

require not only that greater fractions of the NIH budget be allocated to specific diseases, but
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also some consideration of the extent to which additional research could result in improvements.
Industrial research institutions could also implement some of the insights and methods discussed
in this paper, as they also deal with investing in projects with uncertain returns that will only

impact their bottom line if they are diffused in the market.

Although the combination of insights from this body of work improves our confidence in the use
of expert elicitations to inform RD&D decisions in the energy sector and (we would argue)
beyond, there are several avenues for ongoing and future research that will further improve our
understanding. Experts could be randomized into three different groups to complete the same
elicitation in-person, online, or via mail, respectively to conduct a more systematic evaluation of
whether there are any systematic differences in the results. Additional meta-analysis work
including elicitations for energy technologies beyond nuclear energy would establish the extent
to which expert background, country variables and returns to RD&D change across technologies.
Ongoing work involving three major teams involved with energy economic models (GCAM at
the Pacific Northwest National Laboratory, WITCH at FEEM, and MARKAL at Brookhaven
National Laboratory) is using aggregates of elicitation results from different studies. This effort
will develop probability distributions of technology costs conditional on R&D levels by applying
equal weights in a mixture distribution of individual expert assessments collected from major
studies conducted at the University of Massachusetts Amherst, FEEM, and Harvard University.
Finally, the question of whether or not to aggregate expert answers to model future technical
change and the uncertainty around it was not a focus of this paper (the focus was on insights
robust to different “expert scenarios”). Identifying the benefits of aggregating expert
assessments may ultimately require ex-post analysis of previous elicitations against the realized

technical change.
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