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1. Introduction

At the Durban UNFCCC conference of the parties in 2011, the international
community agreed on limiting the mean temperature increase to 2 degrees Cel-
sius with respect to pre-industrial level. While there is an agreement on this
long-term goal, there is much debate on the design of the policy mechanisms
to achieve this objective. International negotiations are at a standstill, and the
potential successor of the top-down Kyoto protocol is likely to be a minimal
agreement, leaving room to countries to implement their own climate policies
in a bottom-up architecture (Rayner, 2010).

For cost-effectiveness reasons, economists advocate emissions pricing for
abatement, in the form of a tax (price instrument) or tradable permits (quan-
tity instrument), rather than command-and-control regulation. Following the
seminal paper of Weitzman (1974), a considerable literature has developed,
comparing these two instruments or hybrid systems in terms of administra-
tive costs, political acceptance and the way they address uncertainties, among
others (Goulder and Schein, 2013).

For climate change mitigation, this Weitzman argument favors the carbon
tax, since there is an important inertia of accumulation of carbon emissions
in the atmosphere, so the marginal abatement cost curve is steeper than the
marginal benefit curve (Hoel and Karp, 2002; Newell and Pizer, 2003). However,
tradable permits have been the most frequent chosen option among the few
carbon pricing pioneers such as the European Union in 2005, New Zealand
in 2008 or California in 2012. At the federal level of the United States, the
prevailing view has been that a tax was a political taboo (Newell and Pizer,
2008; Webster et al., 2010). However, this option may now attract decision
makers as a part of a broader tax reform (Goulder and Schein, 2013).

In a cap-and-trade system, the level of emissions is fixed, and the price of the
allowance varies and is therefore uncertain. This may induce two potential prob-
lems (Conte Grand, 2013) linked to “twin uncertainties” (Kim and Baumert,
2002). In case of higher than expected economic activity, the soaring of abate-
ment costs constitutes an “economic risk”. Conversely, during an economic
recession, emissions may be greater in the presence of a cap-and-trade scheme
than without any policy, which represents an “environmental risk”. Then, if
there is a demand for allowances in other regions or other sectors, “hot air” is
generated leading to unjustified rent such as in the Former Soviet Union within
the context of the Kyoto protocol. Otherwise, a surplus of allowances makes
the allowance price plummet like in the European Union Emissions Trading
System (EU ETS). As the uncertainty of abatement costs federates opposition
to climate policies and so bear political costs, decision makers have given more
importance to the economic risk. However, the severe crisis of the EU ETS
threatening its very existence made a case for the second problem and attracted
the attention of policy makers.

To cope with these issues, some authors proposed a price cap, also known as
“safety valve” (Jacoby and Ellerman, 2004; Webster et al., 2010) or to replace
a fixed cap by an “intensity target”, where the cap of emissions is indexed on



the gross domestic product. Argentina proposed such a cap in 1999 (Barros
and Grand, 2002) and after its opposition to sign the Kyoto protocol, the Bush
administration announced in February 2002 a decrease in emissions intensity by
2012 of 18% compared to 2002'. While advocating for intensity-based caps at
the international level, Chinese officials opted for absolute caps in their pilot
ETS projects (Ecofys, 2013; Wang, 2013).

The main case for intensity targets is to foster the participation of developing
countries (Baumert et al., 1999; Frankell, 1999) which fear that climate policies
would stifle their economic development. At the company level, an indexed
regulation would act as a production subsidy and thereby generate an inefficient
allocation of resources (Dudek and Golub, 2003; Fischer, 2003; Holland, 2012).
This argument is justified for policies like the phasing out of lead in gasoline,
when the index is taken into account in firms’ decisions. However as noted in
Sue Wing et al. (2006), a nationwide intensity target would not have the same
effect on firms production processes, as GDP is not considered in firms’ decisions
and economic growth is pursued by countries for its own sake.

As categorized by Marschinski and Lecocq (2006), there are two strands of
literature comparing the effectiveness of the different economic instruments un-
der uncertainty. The first one is derived from Weitzman (1974) “price versus
quantities” article and is reasoning in terms of welfare, weighting environmental
benefits against abatement costs. As mentioned, in this framework, authors ad-
vocate for the superiority of the carbon tax (Newell and Pizer, 2003). Quirion
(2005) extended this approach to indexed regulation with a stochastic analytical
model featuring uncertainty in business-as-usual emissions and in the slope of
the marginal abatement curve. He found that intensity targets ranked better
than price instrument when uncertainty in abatement costs was high. Newell
and Pizer (2008) reexamined this problem with an additive uncertainty in abate-
ment cost and a correlation between shocks in abatement costs and economic
activity (Quirion (2005) had a multiplicative uncertainty and an implicit perfect
correlation). They found that the ranking of policies depended on parameters
describing the first and second moment of the index and the ex post optimal
quantity level.

The second strand of literature studies the impact of the different policies on
the uncertainties of different policy variables, mainly uncertainty in abatement.
Sue Wing et al. (2006) established a formula to rank intensity targets over abso-
lute targets (if the correlation coefficient of shocks on GDP and business-as-usual
(BAU) emissions is greater than a parameter-dependent threshold, intensity tar-
gets are preferred). An equivalent condition was obtained by Marchinski and
Lecocq (2006) in a more generalized version and in Marschinski and Edenhofer
(2010). Jotzo and Pezzey (2007) obtained a different condition due to a different

IThe majority of analysts noted that this objective was not far from a business as usual
scenario, and the US indeed decreased their emission intensity by more than 30% during this
decade.



framework?, but the general idea was identical: the more emissions and GDP
are linked the better intensity targets compared to absolute targets.

The purpose of this paper is to extend Newell and Pizer’s model so as to
unify these two strands of literature. For this we consider three types of un-
certainty: uncertainty in abatement costs, BAU emissions and future economic
output. Only the latter two uncertainties are correlated. In this more general
context, we confirm Weitzman’s result that prices are preferred to quantities
when marginal benefits are relatively flat compared to marginal costs, and that
intensity targets are preferred to absolute targets when the correlation of uncer-
tainty in emissions and economic output is greater than a parameter-dependent
threshold. An intermediary condition is obtained to compare a tax and inten-
sity cap. Further, we are able to compare our results to the literature which
minimizes the variance of abatement costs, including Sue Wing et al. (2006),
and show that reasoning in terms of abatement costs only and setting environ-
mental benefits aside introduces a bias favoring relative caps, but that this bias
is small in the case of climate change mitigation.

We then estimate the model for seven different regions (China, the United
States, Europe, India, Russia, Brazil and Japan) using past GDP and emissions
data, and International Energy Outlook forecasting. There is a high uncer-
tainty in the value of model parameters which are sensitive to the estimation
method. However some relatively robust findings can be drawn. First, the price
instrument is preferred to absolute or relative caps. Second, relative caps are
preferred to fixed caps in the US and emerging countries (except Brazil where
it is ambiguous), whereas fixed cap are preferred to relative cap in Europe and
Japan.

The rest of the article is structured as follows. Section 2 explains the model
which is used for the price versus quantities problem in Section 3. Next, section
4 studies intensity targets. Empirical estimation of the model is given in section
5. Proofs are in the Appendix.

2. The model
The total environmental costs (TEC) depend on the level of emissions:
TEC, = by + bie + %erZ (1)
while the total abatement costs (TAC) are a function of abatement é® — e where

é are business-as-usual emissions i.e. emissions without a price on emissions
(parameters with a tilde are random variables).

1
TAC, = ¢ (8" —e) + 502((517 —e)? (2)

2In their model, a share alpha of the emissions has a perfect correlation with GDP, and
the rest has no correlation, which is different than an imperfect correlation rho for all the
emissions.



Abatement costs are uncertain through a random additive shock in marginal
cost: ¢1 = ¢1+¢€., with €., random variable of zero mean and standard deviation
0.. Business as usual emissions are uncertain in a similar way, e = eg + &g,
with €., random variable of zero mean and standard deviation o..

We do not model uncertainties in marginal environmental costs as in this
framework they do not influence the instruments ranking (they would matter
only if correlated to abatement costs (Stavins, 1996), and there are no obvious
arguments for suspecting such a correlation in the case of greenhouse gases).

Quadratic functions are a simplification to facilitate the tractability of the
model and could be considered as approximations of real functions near arbitrary
points (Weitzman, 1974). The uncertainties are modeled in an additive way for
tractability and to be comparable to the post-Weitzman literature.

The total social costs are then:

TSC, =TAC.+TEC,
1 1
= by + bre + 5bzeQ + (e —e) + §cz(éb —e)?

Developping and sorting the different terms, we have:

1
TSC, = by + (c1 +£.)(eb +€.) + 562(68 + )2

— [Cl — b+ + 02(68 + 8;)]6
1
+ 5(1)2 +02)62

For each policy instrument, we will look for the policy variable (which could
be the carbon price, the fixed cap or relative cap) that minimizes the ezpected
total social costs. Then we will calculate the differences of expected total social
costs for pair-wise comparison of policies, rank the policies according to key
parameters and represent the best policy in a two-dimension diagram.

3. Price versus Quantities revisited

3.1. Quantity instrument (Q)
The expected total social costs depending on emission level e are

1 1
E(TSC,) = by +crel + 502((68)2 +02) —[c1 — by + coeble+ i(bg +c2)e? (3)

It is a quadratic function of e with a positive coefficient for e? so it has a
unique minimum.
The optimal cap minimizing the expected total social costs is:

b
*762604-61—1717 € Cl—bl

- by + o o by

6268



c1— by

b
(the second formulation using two adimensional parameters = and
2 c26]
will be useful in the rest of the paper?)

Proposition 1. Using the quantity instrument Q, the cap set is identical to the
cap set if there were no uncertainty.

Proof. e* does not depend on parameters o, or o.. O

This is the “uncertainty equivalence” of Weitzman (1974). The cap is biding
(e* < €b) and strictly positive (e* > 0) if and only if (¢; — by) < bgel and
(b1 — ¢1) < cael. We suppose that it is the case.

The relationship between emissions and carbon price (allowance price in case
of a quantity instrument or value of the tax in case of a price instrument) is as
follows: the carbon price equals the marginal abatement cost at the emissions

level:

_9TAC

ple) = MAC(e) = -

=c1 + ca(el — e) + o, + €. (5)
In the case of a quantity instrument, emissions are equal to the (ex ante) optimal
emissions level e* and then:

bgeg —c1+ b1

ple’) =c1+co by + Ca

+ €, ¢+ 62676 (6)

In case of a quantity instrument, emissions are capped but the allowance
price is not known in advance. Once the cap is fixed, a positive cost shock or
a positive BAU emissions shock will increase the allowance price necessary to
achieve it because these shocks induce a larger than expected abatement. Would
they be known in advance (optimal policy, see further), the cap would have been
set higher to trade off reduced abatement costs and increased environmental
costs.

3.2. Price instrument (P)

Replacing e by p thanks to equation (5) in T'SC,. and minimizing the ex-
pected total social costs leads to (see detailed proof in AppendixB):

p*=0b1+be" (7)
The corresponding emissions are

2, c—bi g
= e +—+¢ 8
ba + co 0 by + co Co ¢ ()

e(p®)

3Specifically, instead of 10 dimensional parameters: b1, ba c1, c2, eg, acg, Oc, Oc, Oz, Oex
(see further for the two latter ones), all the results can be expressed with 6 adimensional

by c1—b1 oc Oe
parameters: —, o Ve (:—b)7 Ve (:—b), vy and pea
c2 6260 ca€e 60



We have the relationships:

€ .
e(p) =e* + =+
C2
p(e*) = p* + €. + cace
Proposition 2. Without uncertainty on abatement costs and future BAU emis-
sitons, the price instrument P and the quantity instrument Q) are equivalent.
Proof. If €, =0 and €, = 0, then e(p*) = e* and p(e*) = p*. O
3.3. Optimal policy (O)

We can define the ex post optimal policy for both the quantity and the price
instrument as in Newell and Pizer (2008). The optimal cap is

c1 — by + .+ ca(el + &)

€opt

b2+02
=e W 62(6e+02)
* b2 ~ {'«:c
=e - €+ —
Rl v C )

and the optimal price is

) baca by . .
o =CcC1 — —|(c¢C —b —|— € 6c+c<€€
Popt = €1 172-|-C2(1 2 by +cg ° b2+62( 2¢)
bo
=p*+ €.+ coEe
p b2+CQ( 2 )
* C2 ~ ~
=ple’) — Ec + Coce
§e) = et )

Then if £, and €, are positive:

p* < Popt < p(e*)
e* < eopt < e(p*)

And vice-versa if they are negative.
8.4. Comparison of P, @ and O

To compare instruments we compare the minimum expected total social
4
costs™.

1
4We have E(TSCe¢)|e=ex = bo +crel+ %cz((eg)Z—‘rUg) - 5(1)2 +c2)(e*)?, E(TSCp)jp=p* =
co —
20%

1 b
bo+c1el + %CQ((eg 2402)— 5(1)2 +e2)(e*)? + 2 (02 +c202) and E(T'SCopt) = c1€f +

N

zc2((ef)? +02) — = (b2 + c2)(e*)? — (02 + c302)

2(1)2 + C2)

N =



Ap—q = E(TSCy)jp—p — E(TSCe)jc=c-
. Cy — b2
2c3

(08 + c50¢)

(9)

Proposition 3. (Weitzman’s result). The price instrument P performs better
than the quantity instrument Q if marginal environmental costs are flatter than
marginal abatement costs: P - Q < by < ca.

Proof. As we reason in terms of social costs (and not in terms of benefits or
welfare), a policy is preferred to another when expected total social costs are
lower (so when the difference of expected total social costs are negative, e.g
P>Q& Ap_g<0). O

This is the classical Weitzman criterion (Weitzman, 1974). The magnitude
of the difference in expected total social costs between the two policies depends
on uncertainty in incurred costs ((02 + c302)): the bigger it is and the bigger
is the difference. Uncertainty in incurred costs come from both uncertainty in
marginal abatement costs (¢.) and uncertainty of future baseline emissions (o)
which determine the abatement needed to meet the target (Marschinski and
Edenhofer, 2010). Uncertainty in BAU emissions and uncertainty in abatement
costs are commensurate, the former being “converted” into the latter through
the marginal abatement cost curve. The steeper is the curve (¢q high), the bigger
is the impact of uncertainty in BAU emissions into uncertainty in incurred costs.

The criterion to prefer tax or trading remains the same compared to Newell
and Pizer (2008), but the difference in expected total social costs are larger be-
cause of the additional term c302. Numerical estimations (see part 5.2) lead to
the conclusion that in terms of incurred costs uncertainty, BAU emissions uncer-
tainty matters more than structural abatement costs uncertainty (caoe > o).
Pezzey and Jotzo (2012) find similar observation in their multi-party numerical
model incorporating these two uncertainties: the inclusion of BAU emissions
uncertainty increases the tax versus trading advantage by a factor 40. This
point gives a justification for the introduction of BAU emissions uncertainty
compared to Newell and Pizer (2008) model®.

We can compare P and @ to the ex post optimal policy O:

Ao_q = E(TSCopt) — E(TSCe)jc—c-

— 1 2 2 2
- 2(b2 +CQ)(UC +CZUe)

5 Actually in the earlier working paper version (Newell and Pizer, 2006), emissions uncer-
tainties are introduced, but only in the empirical part to estimate o.. The comparison between
P and R does not take uncertainty in future BAU emissions into account.



Ao_p = E(TSC,py) — E(TSC,)

lp=e~
C2
(B;)2 2 2 2
= —m(ac + c307)

Proposition 4. The bigger the uncertainties on abatement costs and/or BAU
emissions, the bigger the advantage of O over P and Q.

Proof. Because of the factor (02 + c30?), the bigger o, or o., the bigger the
difference in total expected social costs. O

4. Relative cap
4.1. Relative cap (R)

In this policy (called relative cap, indexed regulation or intensity target in
the literature), the cap is set proportionally to the future economic output Z (in
the case of nationwide climate policies, Z is the gross domestic product) through
a ratio r: e = rZ. The future economic output is uncertain, where & = zf + £,
with e, random variable of zero mean and standard deviation o,.

Uncertainty in economic output is correlated to uncertainty in BAU emis-
sions: cov(Ee,Ex) = Tex = PexTc0z = pewyeuwegacg, noting the two adimensional

o o
parameters v, = —g and v, = —Z (and in the rest of the paper we will note
€o Lo
o
Ve = —Cb) Indeed, uncertainty in BAU emissions depends on future economic

())&
output bout not only, in particular the type of economic development (predom-
inance of services or industry) and the energy mix matter as well (Kim and
Baumert, 2002). We suppose that p., > 0 (although theoretical formulations
would also work for p., < 0).
Replacing e by r(x4+¢,) in TSC,, taking the mean and minimizing with re-
spect to r leads to the optimal rate of intensity target (see proof in AppendixC):

. e’ i PexVelz
b1+ v2) c1 *bbl

C2€(

(10)

1+

Contrary to the fixed cap, the relative cap is not equivalent to the one chosen
e*

if there was no uncertainty (which would be 7* = —-). The relative cap takes
x

0
into account the uncertainties about BAU emissions, future economic output
and their correlation in order to minimize the expected total social costs.

Proposition 5. The more prediction errors of future economic activity and
future BAU emissions are correlated, (i) the better the R instrument performs
(ii) the less stringent the ex ante relative cap v* is.



Proof. The more prediction errors of future economic activity and future BAU
emissions are correlated means the bigger pe,. (i) E(T'SC,) is increasing with
Pex (see AppendixC) (ii) r* is also increasing with pe;. O

Indeed, the bigger pe., the more future economic output is a good proxy for
future BAU emissions, and then it is not necessary to set a more stringent cap
to hedge against unexpectedly high future BAU emissions.

4.2. Relative or absolute cap?
Proposition 6. When targets are set at their optimal level (e = e* andr = r*),
the relative cap R performs better than the absolute cap QQ when the correlation
between uncertainty in future economic output and uncertainty in future BAU
emissions (pes) is higher than a parameter- dependent threshold pi"

R = Q & pex > pi™ with

- 1 Vg c1— by
76":7;‘11’7/ — — + ].].
P T i Trugve[ > ] (11)
Proof. See AppendixD O

As in Quirion (2005), the comparison between absolute and relative caps does
not depend on uncertainty in abatement costs. In this framework it depends
only on uncertainty in future BAU emissions, uncertainty in future economic
output, and their correlation. A strong correlation between the two or a high
uncertainty in BAU emissions favors relative caps, while a high uncertainty in
future economic output favors fixed caps®.

This condition applies only if caps (relative or absolute) are set at their
optimal level. If we compare the expected total social costs of the two policies
for any “comparable target ” (like in Marschinski and Edenhofer (2010), e**"9¢t

etarget ,rtarget
and r*T9¢ such as —5— = ——— or /9% = ptar9clgh) e the targets are
e e
0 0

b

0
the same in expectation, we have the following proposition.

Proposition 7. When targets are not set at their optimal level but are “com-
parable”, e.g. etor9et — ptargetyd the relative cap R performs better than the
absolute cap Q when the correlation between prediction errors of future economic
activity and future BAU emissions (pes) is higher than a parameter dependent
threshold. Contrary to the threshold for optimal targets, this threshold depends
on the stringency of the cap, and on the ratio of slopes of marginal benefits and
marginal costs.

R R 16t<1'r‘gei§l/m b2
R>Q & pex > = — 1+ = 12
Qe pea> 5= 0+ ) (12)

Vg

14 +/1+ 02

10

6 A derivative calculus shows that always increases when v, increases.



Proof. See AppendixD O

We use the notations R and Q instead of R and @ to symbolize subopti-
mality” (R = R and Q > Q with equivalence if and only if r**"9¢* = y* and
elarget — e* respectively).

Relative caps are favored over absolute caps when: (i) uncertainty in future
economic output is low (ii) uncertainty in future BAU emissions is large (ii)
the correlation between the two is high (iii) the target is stringent compared to
BAU emissions (iv) the ratio of slopes of marginal environmental and marginal
abatement costs is low.

The last point is a specificity of this model. Indeed the previous condition
can be rewritten in two ways:

~ ~ 1 target . 1

R>Q<:>7€7b<pemi (13)

2 €] Vg bo

1+ =

)

and

~ ~ 1rtargetyw b2
R-Q&pey>-———1+2 14
Q& pex > 3 7 Ve(+62) (14)

b
Lo

These formulas can be compared, converting the notations, to those of

1 target 2
Sue Wing et al. (2006) formula (18) pll1, 3 o < pezy—, and Marschin-
ed Vg
ski and Edenhofer (2010) formula (4) p5050 or Marschinski and Lecocq (2006)
1 target -
proposition 1 for “pure” intensity target pe, > S

2 elo’ Ve

b

Zo
In these papers the studied criteria is the variance of abatement (and there-
fore abatement costs) while environmental costs are left aside. These conditions

b
differ from (13) and (14) only by a factor 1+ 2 favoring relative caps. Indeed,
¢

the reduction of the variance of environmental c20sts provided by the fixed target
is accounted for in our model but not in an “abatement costs only” framework.

So taking into account abatement costs only and setting aside environmental
benefits introduces a bias favoring relative caps over fixed cap. The larger the

*

e
— (which is different than
z

0

7If etar9et = e* the “comparable” relative target is rter9¢t =

r*, so suboptimal). The former condition can be rewritten with p7%" as R»Q e Pex >

14 4/1+ 12 gtarget . 1+4/140v2
3 o pm so we have R > Q & pes > fp’gy"
condition to meet than peg > pI%™, especially if uncertainty about future economic output is

large.

which is a harder
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b
ratio — (the same underlying the price versus quantities preference®), the larger
2

b
the bias. So far numerical estimates in the literature have suggested that 2«1
C2
(Pizer, 2005), so that this bias would be very low.

4.3. Prices vs relative caps
We now compare P and R.

Proposition 8. The price instrument P is preferable to the relative cap R
when correlation between uncertainty in future economic output and uncertainty
in future BAU emissions (pes) is lower than a parameter dependent threshold,
depending among other on the ratio of slopes of marginal environmental and
marginal abatement costs.

min b
PR & pe < P2 [\/(ax T2 el = () +1-ar]  (15)
2
with
V1i+v2+1
Qp = ———(>1 16
and
1+ 12 V2 V2
e = ———o2 (14 £ 2 17
/B,(‘,e (m—l)Z( Vg)(1+cl_b1)2 ( )
6268
Proof. See AppendixE O
4.4. Diagram

Instead of the 10 dimensional parameters by, b, c1, c2, €8, 28, ve, 0¢, 0u

and o.,; we have shown that all the results can be expressed as a function of
c1—b b
17171, Ve, Ve, and v,. The first one, —2,
c2eg co
could be called the Weitzman criterion (ratio of slopes of marginal costs and
abatement). If it is lower than one, P is preferred to Q. The second one is the

correlation of future economic output and future BAU emissions, which has a

. . b2
6 adimensional parameters: —, pe,
C2

1 —
crucial role in the efficiency of the R instrument. The third one, 17171, is more

C2€(
difficult to apprehend, but can be considered as negligible compared to one?,

81f this ratio is superior to 1, quantity instrument is preferred

9Indeed, if we consider that marginal abatement costs near total abatement (or zero
emissions) (cze) are (i) much bigger than marginal abatement costs near BAU emis-
sions (c1 < czef) (ii) much bigger than marginal environmental costs near zero emissions
c1—b

2ed

(b < 0268), then we have (iii) <1

12
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Figure 1: Diagram of optimal instrument (v.=3%, v.=15% and v,=15%)

—b

6268
is involved in formulas). Finally, the other ones, v., v, and v,, correspond to
normalized values of the magnitude of uncertainty in future abatement costs,
future BAU emissions, and future economic output.

b
Except for the P-Q comparison (P > @ < 2 < 1), more than two
c

C1

so it has no influence on the results (because it is the term (1 + ) which

2
parameters are involved in the R-() and R-P comparisons, so representing

the optimal policy in a 2-axis diagram is not straightforward. As p/" =

er
v c1—b
Z L 1] does not depend on the ratio —, we will repre-

1
14+ 1+ 2 ve coed 2

b
sent the optimal policy in the diagram (—z,pez), other parameters being fixed.
C2

Then, in a second time, we will see how change in the magnitude of uncertainty
in abatement, future economic output, and BAU emissions (v, v, and v,) mod-
C1 —-bl

6268
of its little influence. Simplification of formulas is given in AppendixA with
this approximation, and in the empirical section this approximation will also be
undertaken (saving the estimation of by, ¢; and b9).

Results are presented in Figure 1. The comparison of P and ) on one

b
hand, and R and @ on the other hand, are direct: P > @Q < 2 <1 and
C2

R = Q & pex > p™" respectively. An intermediate condition is found to

exr
compare P and R thanks to the previous section. The frontier between R and

because

ify the diagram. We do not consider a change in the parameter

b ,
P is a decreasing function of -2 which is equal to p'™ for by = ¢y, and to 1
C2
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Figure 2: Change in the diagram of optimal instrument with change in uncer-
tainty in future (i)Abatement costs (v,) (ii)Emissions (v.) (iii)Economic output
(vz). The solid lines indicate the frontiers after the increase in uncertainty, the
dashed lines the frontiers before.
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b b
for a value of — between 0 and 1'°: for low values of —, R cannot beat the
c

c
price instrumen‘? even if the correlation of BAU emissions2 and future economic
output is perfect.

Figure 2 shows how the diagram evolves with changes in v., v, and v,.
Beyond single example for visualization in the diagram, proofs are given in

AppendixF. As the P — Q comparison only depends on the -2 ratio and not

C2
on v, Ve and v, we will only dicuss changes in the @ — R and P — R frontiers.
Uncertainty in abatement costs (v.), BAU emissions (v.) and economic output
(vz) have the following effects on the optimal policy diagram:

e An increase of uncertainty in abatement costs (v.) has no effect on the

b
@ — R comparison, but favors P over R, especially when the ratio 2 s
C2
low.

e For the R — @ frontier: an increase of uncertainty in BAU emissions ()
favors R over ), and on the contrary an increase of uncertainty in economic
output (v,) favors R over Q.

b

e For the R — P frontier, things are clear when the ratio =2 s relatively
C2

high (closer to 1 than 0): an increase of uncertainty in BAU emissions

(ve) favors R over P, and on the contrary an increase of uncertainty in
economic output favors (v,) P over R. The situation can be opposite

when -2 decreases, but it depends on the specific values of v., v, and v,.
C2

5. Empirical application

Contrary to the Kyoto Protocol, the architecture of post-Kyoto international
agreements is likely to be bottom-up: most likely, countries or groups of coun-
tries will decide a target to achieve and will be free to decide the instrument
to achieve this target (for the instruments that concern us in this article: price
instrument, absolute or relative caps). In terms of timing, these targets are
likely to apply after 2020. Based on the EU ETS, a period of five years before
rules can be changed seems reasonable.

b
OWith the expression (F.7) in AppendixF (and the simplification), when 2 = 0, the
Cc2
1

P — R frontier is at [\/(1 +v2)(1+v2+v2) —1]. A study of the function f(z,y) =

elVzx

1
—[4/ (1 + x2)(1 + y2) — 1] shows that it is always superior to one for x an y values between
Yy

0 and 1. As the frontier is a decreasing function with a value > 1 in 0, and a value < 1 in 1,

b
it reaches 1 for a value of —= comprised between 0 and 1.
Cc2
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Therefore, we will empirically test our model for the period 2020-2025 and
for seven countries!! which represented two thirds of world COy emissions in
2010: China, the United States, Europe!'?, India, Russia'®, Brazil and Japan.

5.1. Estimation of parameters ve, v, and peg

Both future GDP and BAU emissions are highly uncertain and cannot be
predicted with accuracy, especially over the medium term. Further, if there is
a consensus that emissions and economic output are not independent, there is
much debate around the nature of their interaction. The Environmental Kuznets
Curve (Grossman and Krueger, 1995) implies an inverted U-shaped relationship
between pollution and economic development, but its validity, especially for
carbon emissions, has been more and more criticized (Stern, 2004).

However in our case it is not the relationship between absolute values of
BAU emissions and GDP that is relevant, but the correlation of their forecasting
errors. We then need to estimate forecasting errors of emissions and GDP under
a common framework to estimate v,, v,, and their correlation pe,.

A first option would be to gather estimates of GDP and BAU emissions for
2020-2025 in different models, consider the mean as the reference value, and
compute variances in results, like in Marschinski and Lecocq (2006). On the
contrary, we choose to estimate these parameters by confronting past forecast-
ing results on real data (historical forecasting error). An evident advantage of
this method is that (if we consider that measurement errors are negligible) the
reference values, z§ and e}, are exact values. However it implies an implicit
hypothesis of temporal stability, that is forecasting errors for a certain coun-
try computed in the 2000’s are a good approximation of forecasting errors for
2020-20254.

Few institutions forecast both GDP and CO5 emissions for fossil fuel com-
bustion on a yearly basis. It is the case of the US Energy Administration with its
International Energy Outlook (IEQ). We compute forecasting errors'® of GDP
and emissions forecast of year 2005 (IEO 1999 to 2003) and year 2010 (IEO
2004 to 2008), and resulting values of v., v, and p.,. Results are reported in
Table 1.

Another way to forecast emissions and GDP is to simply extend trends. We
compute forecasting values of GDP'® and carbon emissions!” in year X (between
2000 and 2010) by using the mean average growth of period [X-9,X-5] to year

11We do not consider that the World as a whole is a relevant jurisdiction in terms of climate
policy in a post-Kyoto world.

12For the Trend estimation, EU 27, and for the IEO estimation, Western Europe or OECD
Europe (for IEO versions after 2005).

13Former Soviet Union for IEO versions before 2004

141f this hypothesis seems too bold; the obtained results can still be considered as an ex
post analysis.

15The “real” value being those reported in IEO 2013 to avoid break in time series.

16GDP data comes from the IMF (http://www.econstats.com/weo/V001.htm) in constant
prices in national currency

17Carbon emissions come from the World Bank database (World development indicators)
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X-5. Forecasting errors are then obtained by comparing these estimates to real
values. Results are also reported in Table 1.

Table 1: Empirical estimation of parameters v, v, and pe,

Vg Ve Pex
Region IEO Trend IEO Trend IEO Trend
China 22% 14%  30% 33% 0,95 0,38
Us &% 6% 10% ™% 0,78 0,55
Europe 17% 14% 4% 8% -0,74 0,01
India 17% 10% 1% 13% 0,71 0,83
Russia  29% 32%  23% 16% 0,90 0,96
Brazil 24% 8% ™% 19% 0,78 0,63
Japan 23% 5% 5% 9% 0,36 0,02

Year 2005 and year 2010 are very different in terms of forecasting: the
economic crisis after 2008 was certainly not anticipated. We consider that it
is a good thing for our numerical analysis: v,, v. and pe,, which are mean
and correlation of random variables, are better estimated when a wide range of
possibilities is considered. However, knowing if considering estimations based
on “common” or crisis year (2005 or 2010) only would totally change the results
is a legitimate question. Separated results of estimations based on “common”
or crisis year are given in see AppendixG. In the rest of the paper we will make
particular attention to the robustness of the mentioned results.

Despite its simplicity, the Trend forecast performs better at predicting GDP'®
(except for Russia). However the IEO forecasts are more accurate for emissions
(except for the US, Russia and India). For the IEO forecasts, the errors are big-
ger in GDP predictions than in emissions, whereas they are in the same order
of magnitude for the Trend forecasts. For Europe however, as half of emissions
have been covered by the Emission Trading Scheme since 2005, emissions cannot
technically be considered as business-as-usual.

Table 2: Summary findings of v, v, and pe,

Vg Ve Pex

Western Countries 12% 7% 0,16
BRIC Countries 20% 20% 0,77

Individual values remain quite sensitive to the method employed. In order
to give stylized facts, we split the countries into two groups: BRIC countries
(Brazil, Russia, India and China) and Western countries (Europe, the United

18 Though as IEO forecasts are in dollars (whereas the Trend forecasts are in national cur-
rencies), it adds the uncertainty of currency valuation

17



States and Japan), and make a double averaging, by group of countries and by
forecasting method (IEO and Trend). Results are visible in Table 2.

Three observations can be made (these observations are still valid for sepa-
rated estimations based on “common” or crisis year):

e Forecasting errors are bigger in magnitude for BRIC countries both in
GDP and in emissions: v, (BRIC) > v,(Western) and v.(BRIC) >
ve(Western).

e Forecasting errors of emissions and GDP are in the same order of mag-
nitude for BRIC countries, whereas GDP are comparatively more uncer-
tain than emissions for Western countries: v, (BRIC) ~ v.(BRIC) and
vy, (Western) > v.(Western).

e Forecasting errors are much more correlated for BRIC countries than for
Western countries: pey(BRIC) > pe,,(Western)

These three observations favor fixed caps for Western countries and relative
caps for BRIC countries. To confirm these findings, we reason from now on for
individual regions/countries.

Based on 4.2, using the approximation |c; —b;| < coel (see part AppendixA),
when targets are set at their optimal level, relative caps are preferred to fixed
caps, when the following ratio

K= (1+\/1+u£)pez§ (18)

is superior to one. If we want to compare policies when they are not at their
optimal level (but comparable i.e. etm9¢t = ptargetyhy the relevant ratio is:

& w

etarget Pex Vs

K= (19)

When reasoning in terms of uncertainty of abatement, like in Sue Wing et al.
(2006) (and Marschinski and Lecocq (2006) and Marschinski and Edenhofer
(2010) which are equivalent), R > () < K > 1. But if we reason in terms of

Aoa o b
welfare, R = Q & K > 1+ = (see part 4.2).
C2

b
However, because (i) the ratio — is significantly lower than one (ii) uncer-
C2

tainties regarding the key parameters are high; these differences (optimality /non
optimality and abatement/welfare) can be neglected in the light of this numer-
ical analysis when comparing R and Q'°.

N K 68 2
9Indeed we have: = K x . For respective values of

1+b£ ezm«gdl—i—\/l—&-y%l_,_bﬁ

c2 Cc2
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In order to give results as robust as possible in the light of the various
estimations of (v, V. and pe,); we compute two ratios for each country, picking
whichever value of TEO or Trend favoring fixed caps (v, high, v, and pe, low)
or relative caps (v, low, v, and p., high). Results are reported on Table 3.

Table 3: Fixed or Relative Caps?

K min max Instrument

China 1.0 4.7
Uus 09 25
Europe -04 0.0
India 1.1 2.7
Russia 1.0 1.6
Brazil 0.3 3.5 Ambiguous
Japan 0.0 1.2 Q

THO T

Fixed caps are preferred in Europe (where they have been in place since
2005) and in Japan, while in other countries, relative caps are favored (except
in Brazil where it is ambiguous).

5.2. Estimation of v,

We do not consider differentiated abatement costs per country but base our
estimates on global abatement simulated by CGE models, because there is no
consistent multi-model ensemble of estimates for our seven countries/regions
. Abatement costs are derived from the Energy Modeling Forum 21 (Weyant,
2006). For 18 different models, we gather: (i) the percentage of emissions
reduction in 2025 for the fossil fuel/cement sector (compared to the reference
case) in the COg only scenario (found in Table 5 of Weyant (2006)), noted
A, and the carbon permit price (in G $ 2000/tCOqeq (found in Table 15 of
(Weyant, 2006) converting carbon into carbon dioxide), noted P. Estimates are
reported in Figure 3.

In the model we have (see equation (5)):

MAC = éi + coel — &) = & + c2eb A (20)

In these CGE models, the price of the carbon permit equals the marginal
cost of abatement, so we perform the linear regression:

Pi = )\0 + )\1A1 + 51’(: C~1 + CQGSAZ’) (21)
2
10% and 30% for vy, ————— equals 0.998 or 0.978. So because of the high uncertainties
14+4/14v2
regarding the other parameters we can consider that 3 ~K~K.
1+ =
Cc2
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Figure 3: Abatement costs in EMF 21. Each point represent a different model.

The linear regression (regression coefficient R? = (.78 gives an intercept of
-18 (standard deviation 10) and a coefficient of 315 (standard deviation 41), i.e.
at the global level, each additional percent reduction in COs emissions raises
marginal costs by 3.15$/tCOs. Therefore we assess g, = 10 $ tCOq, c2e=315$

o
tCO,, and then v, = —Cb:?)%.
C2€

Is it reasonable to use this estimation based on a global level for all the
different regions? As in the models, the less costly mitigation options are used
first, an absolute emission reduction at the global level is then less costly than
at the regional level, so ¢ is likely to be bigger for smaller geographical entities.
However, €} is also smaller, so the effect on the product czef is undetermined.
Further, errors in the assessment of abatement costs can compensate at the
global level, therefore it is likely that o is higher for smaller geographical en-
tities. Altogether, we consider that v.=3% is a low bound estimation of abate-
ment costs uncertainty, and consider a double of this estimate (6%) as well in
the following.

We are now able to compare values of v, and v, for different configurations
(see Table 4). We compute the ratio (%)2 = (?)2 (as it appears several

(&

€

time in part 3) for a high (31.5%) and low (6%) value of v.2° and a high (6%)
and low (3%) value of v.. We recall that if this ratio is lower than one, it means
that in terms of incurred costs uncertainty, BAU emissions uncertainty matters
more than structural abatement costs uncertainty.

As for all configurations, v, > v, it was straightforward that this ratio
was lower or equal to one (and so that BAU emissions uncertainty had the
biggest impact on incurred cost uncertainty). In case of important emissions

20In Table 1, we take the mean of the IEO and Trend forecasts, and then choose the lowest
and highest value for v. (for Europe and China respectively).
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Table 4: Which among structural abatement costs uncertainty and BAU emis-

sions uncertainty matters most in term of incurred costs? Value of the ratio
()2 = (92

C20¢ Ve

ve low v, high

v low 0.25 0.01
V. high 1 0.04

v
uncertainty (such as in BRIC countries), we have (—)? < 1, and so abatement
v

€
costs uncertainty is negligible in incurred costs uncertainty.

5.3. Around the ratio ZCE
2

To compare tax and intensity target, we consider the inverse problem. For

b
high and low values of v, Ve, pe, and v., we compute the limit value of the =2

C2
ratio which makes P and R equivalent?!.
b by ;.
If 2 < (—2)“’", P = R (we can also see indirectly that when @ > R,
C2 C2

, by
—2)lim > 1). Results are reported in Table 6. The lowest value of (—)!™ is
Co o

b
for Russia at 0.34. How this value compares to plausible estimations of 29
C2

Table 5: Price or Relative Caps?

b2 lim
()
China 0.62 0.98
US 0.66 1.09
Europe 1.87 4.43
India 0.60 0.91
Russia  0.34 1.05
Brazil 0.71 2.96
Japan 0.96 4.65

min max

The damages caused by carbon emissions are much more uncertain than
abatement costs. The most recent IPCC report (Field et al., 2014) p.19 states
that “estimates of the incremental economic impact of emitting carbon dioxide
lie between a few dollars and several hundreds of dollars per tonne of carbon

21 As in the rest of the empirical part, we use the simplification |c1 — b1| < czeg
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(3.668 tCO2) (robust evidence, medium agreement). Estimates vary strongly
with the assumed damage function and discount rate”.

b
Table 6 summarizes values of the ratio — used in the literature. It seems

C2
that it has increased over the past years, but that it remains significantly lower
than 1 (and than 0.1).

b
Table 6: Estimations of the ratio — used in the literature
C2

Reference Value

Newell and Pizer (2003) 5x 1076
Newell and Pizer (2006) from 2 x 1075 to 5 x 107 depending on ¢z
Newell and Pizer (2008) < 1 so that only R and @ are compared
Jotzo and Pezzey (2007) be chosen “to be a small constant times” ¢y

b
Uncertainty is then very large for —2, but it is still more likely that this ratio
c

2
is less than one (and also likely than it is less than 0.1). Therefore, we can be
confident that P is the best instrument, superior to R and () in our 2020-2025
policy framework.

6. Conclusion

Our model, including three types of uncertainty (on abatement costs, BAU
emissions and future economic output, the latter two being correlated), allowed
to unify Newell and Pizer (2008) and Sue Wing et al. (2006) frameworks. Two
parameters proved to be crucial to rank the three considered policies (tax, fixed
cap and relative cap). The first one, related to the Weitzman (1974) literature,
is the ratio of slopes of marginal benefit and marginal costs. The lower it is,
the more the price instrument is preferred. The second one, related to the
Sue Wing et al. (2006) literature, is the correlation between BAU emissions and
future economic output. The bigger it is, the more the relative instrument is
preferred.

The model allowed displaying the optimal policy in a diagram with each one
of these two parameters as an axis, and seeing how this diagram changed when
the magnitude of the three considered types of uncertainty changed. Further,
we showed that reasoning in terms of abatement costs only and setting environ-
mental benefits aside introduces a bias favoring relative caps, but that this bias
was likely to be small in the case of climate change mitigation.

Testing empirically the model led us to the following points. First, as we
considered a short-time period policy (2020-2025) and as greenhouse gases are a
stock pollutant (so marginal benefits are relatively flatter than marginal costs),
tax dominates cap, whether the cap is absolute (Weitzman criterion) or relative
to economic output (our own contribution). As mentioned, the tax is often seen

22



as difficult to implement in practice for political reasons, so the policy choice is
often narrowed to picking between absolute and intensity targets. Our model
allowed us to compare these two policies, whether or not caps were put at their
optimum level, which is virtually impossible in practice. Empirical estimation
revealed that the situation differed among countries. Emerging countries (except
for Brazil where it is ambiguous) and the United States would be better off with
intensity targets, whereas fixed caps would be preferable for Europe and Japan.

Admittedly, our model remains simple in its assumptions and other aspects
(reviewed in Kim and Baumert (2002), Marschinski and Edenhofer (2010) and
Goulder and Schein (2013)) have to be considered when determining the choice
of an instrument, such as acceptability by population or industry, administrative
costs, issues with reporting and verification or carbon price volatility, among
others.

As recent evidence in climate science suggests (Matthews et al., 2009), main-
taining the global increase in temperature below two degrees would be closely
linked to not exceeding one trillion ton of cumulative carbon emissions at the
global level, regardless of the emission trajectory. This notion of “carbon bud-
get” (half being already consumed, and a quarter since 1990) would make a case
for a quantity instrument at a global level and in a theoretically infinite tem-
poral horizon. However the implementation of such a “first best” policy would
necessitate a temporal and geographical burden sharing of the cap, as well as
strong enforcement at the international level, which currently seems far from
achievable by international negotiations on climate change.
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AppendixA. Simplification
The simplification is:
ler — b1| < co€d (A1)

In Newell and Pizer (2008), they justify ¢; = b; by reasoning around the
social optimum.

It implies:
1
"= —-¢ (A.2)
14+ 2
C2
baco b
f=e - A3
p C2 by + Ca ( )
* 68 68
r= b2 (1 + pe:vaVe) = 7{)2(1 + pezl/mue) (A4)
ro(1+v2)(1+ ) 1+ 2)
with 12 < 1.
min __ 1 Vp lVi

(A.5)

Pev = Tri2ve 20

with 12 < 1.

1+v2+1 4
Y, _ A6
/I r2-1 v (A.6)

with 12 < 1.

2
Lt 22y = Loz (A7)

BCL‘CEZ— —a
Tt (VT2 —1)2 vy

with 12 < 1.

AppendixB. Optimal price instrument proof

Remplacing directly e by p leads to a too complicated formula. First we
rewrite T'SC, with e*:

26



1
TSC, = by + (c1 + ) (e} +€.) + 502(68 + )2

1 - -
- §(b2 + 62)(6*)2 — (e + cage)e

1
+§(b2+02)(6—6*)2 (B.l)
. . 1 . -
(5) is equivalent to e = Z[(bQ +cp)e" + by —p+ €.+ el
2

Then we have:

1
TSC, = by + (c1 + &) (e} 4+ €.) + =calel + £.)*

2
1 1 ~ * ~ -
- §(b2 +c2)(e*)? - ;(51 + c2€e)[(ba + ca)e” — (by — p+ €. + cage)]
2
1
+ @(% + co)(boe™ + by — p+ €. + 2€e)? (B.2)
2

The regulator chooses p* in order to minimize the expected total social costs:

1
E(TSC,) = by + c1e} + 5«:2((63)2 +02)
. Co — b2
2c3

2

(b2 + c2)(e")? (02 + c307)

1
2
1
+ F(bQ + CQ)(bQB* + b —p)2 (B3)
)
We find:

p* = by + boe” (B4)

AppendixC. Optimal relative cap instrument proof

Replacing e by 7(z8 + €,) in TSC, (written with e*) gives:

1
TSC, =by+ (c1 + 56)(68 +é&.) + 562(68 + E~e)2
21
2
1 b ~\ k)2
+ 5 (b + o) (r(ag +e2) —€) (C.1)

(by + c2)(e*)? — (6. + czée)(mg + )T

The regulator chooses r* so as to minimize the expected total social costs:

27



1
E(TSC,) =by+ 0168 + 502((68)2 + ag)

Co
— (ba + c2)(e* + pewyeuweg)rxg

ba + ¢
1
+ 5+ en)(1+ ey
We find:
1 c
x b __ * 2 b
riz) = ) [e* + bt PexVeVs€y)
by, e* —-b
Using the formula (1 + —2)% —14+ 4 7 L we have:
C2 60 6260
. e’ PexVelz
r= 1+
x%(l—ku%)[ 1+C1—b1]
0268

AppendixD. Absolute or Relative caps proof

1
E(TSC,) |y = by + c16f + 562((68)2 +02)

1b2+02(* C2
= e
21+ 02 by + c2

As

1 1
E(TSC.) = by + cre} + 5@((@3)2 +02%) - 5 (b2 + c2)(e*)?

1
+ 5(1)2 +c3)(e — e*)?
and
1
E(TSCe)|e:e* =bo + 0168 + 502((68)2 + 0’3) -

‘We have:
Agr_qg = E(TSC, )‘T ~ — E(TSC, )\e:e*

b\2
PexVeVz€q)

S+ e2)(e)?

103+ c2 . Co
=35 [(V1+vZe ) — (" + b2 T o PewVeVzeg)Q]

ba e
5 )
C 60

~ Pez]

(D.1)

21+02
1b2+02 2 * 2
:§1+V2[(\/1+1/m—1)e 5 + peml/ez/xeo [(vV/1+v241)e
1(1/61/9568)2 3 J1+v2-11
[ —(1+
T2 1412 bytoe Vg Ve
~/1+y2+11 e
(1+ )b+pex]
Ve 2’ e}
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Noting

. Vi+vZ—-11 by e* 1 v by e*
i - Y 2 (14D s —————(14+ =) D.3
o U S S e U gy (03
We have
1 (verzel)? ¢ , 14+v24+1
Ap H=— e”r-0 2 min V- T"x T = min D.4
R-Q 2 1_’_]/% b2+62 [pew peﬂ?][m_ 1pew +p6l] ( )
As the second factor is always positive (for pe, > 0), we conclude to
R>= Q& pey > plim (D.5)
With etarget — rtarget$87
1
ETSC, — ETSC, = *Cgpezueljﬂcegetmﬂget + §(b2 + CQ)ng(et‘“"get)2
1 b v etarget
_ bt t 2\ Yz
= Colelgege "9 [5(1 + E)IZT = Peal
Then
R R 1 6target Vg b2
R>~Q«& > = —(1+—= D.6
AppendixE. Prices versus relative caps proof
V1 2+1
Noting a, = vitrtl we have (see equation (D.4)):
Vi+v2 -1
1 V202 c3 ) )
BR-Q = 5T 0 gy P Pesllonps™  peal
1 V20?2 c3 ; ;
= 5 1 _:L’_ 1220 b2 'ECQ [Oéaa(PZngm)z + (1 - aaﬁ)pZachnpez - (pez)2]
We first rewrite Ag_p (equation (9)) in a similar way:
2 —by, 5 2 2
AQ—P = 202 (Uc + 0206)
2
1 vaoe 3(pe")?  (ca—ba) 2 2
- 5 2 X 2 (Uc + CQUe)
21402 by+co c5
1+v2by+co y vio?
2,52 2 o — b
G (TR
1 v2e?2 3 b2\ o 2
= = X 1—(— i E.1
21+1/% b2+62 /Bw,c,e( (02> )(pew ) ( )
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with

1402 o? o?
ﬁw,c,e = = (1+ 20 ) < (EQ)
N R U
2
Then, as Agr_p = AR_Q + AQ_p,
1 V202 62 bQ min min
B = 320 (5 (1= () ) (1= e )

(E.3)

The right term is a degree 2 polynom in p., with a discriminant:

D = (P10 — ) + 41~ (2)) e + )]

2
min b2
= (Pex )2[(1+aw)2 + 46937076(1 - (5)2)] (E.4)
D > 0 when by < ¢o (which is a relevant domain because when by > ¢, P is
dominated by Q so it cannot be the optimal instrument).
The roots are:

min

P12 = Per [i\/(az +1)2 = 4Bsc.e(1 — (bi

C2

: )2) — (0 — 1) (E.5)

One root is always negative because o, > 1.
Therefore we conclude that:

min b
P=R& per < pe; [\/(az +1)2+ 484 .ce(1 — (6—2)2) +1— oy (E.6)
2

ba s b
We note (—)"™ the value of the ratio — for which R and P are equivalent.

C2 C2
, . . bo b b2\ tim
Apr_p is a decreasing function of —=. So when —= < (—=)"™, P > R and
Co Co C2 .
conversely. With the approximation |c; — b1| < c2€} (see AppendixA), pmin =

1 Ve . . 2
———— — is independent of —.
1+ /14020 C2

Then (E.3) brings the equation:

(Bore(1— (2

- )™)Y 4 ) (P2 + (1 = ) Pl pew — (pew)? = 0 (E.T)

which is equivalent to

bj)lim)Q) ta, = ( Pex )2 + (aw - 1) Pex (E8)

min min
C2 Pex Pex

ﬁw,c,e(l - ((
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or

b2 li 2 1 Pex 2 Pex
=)rmMe =1+ Qg — - + (1 — ay - E.9
()™ ﬁme[ ( pg;;n) ( ) p%n] (E.9)

) by .
If pe = p™, which means that R and @ are equivalent, then (—2)1”” =1.
C2
Under this configuration of parameters, R, P and @ are equivalent. If p., <

) by ;. )
pin which means that Q > R, then (—)4™ > 122, If p,, < p™" which means
co

by,
that R > @, then (—2)“"I < 1.
C2

AppendixF. Diagram changes proof

With the simplification |c; — b;| < coef we have:

i 1 =
ex -
/ 2
]. —+ ]. —+ Vr Ve
VI . . . . ; .
Because ————=——= is an increasing function of v,, pI" increases (respec-

+ /1412

tively decreases) when v, (respectively v, ) increases.

The P — R frontier is given by the function of ¢ = 2.
2

7O = "= [la+ F 4 450~ ) +1 -] (1)

with

V1 2+1
a:&@ 1) (F.2)
Vi+v2 -1

and

RS L Y (F3)

(VI+02—1)2

To ease calculus we need to express the formulas with different notations.
We note

uy =14+ 0v2(>1) (F.4)

22The factor multiplying is a polynom of degree 2 in ’:an with roots 1 and —a, < 0,
z,c.e Pex
Pex

between 0 and 1.

therefore is positive for :
LN
exr
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Then

Up + 1
= - F.5
Uy — 1 (F.5)
and
b= 02+ i) ®.6)
o (ug —1)20° ¢ :
f(&) can be simplified to (by factorizing by 1):
Uy —
1
f(g) = Y [uac V A&,c,e - 1] (F?)
with
Agee =14 (7 +v2)(1 - &) (F.8)

ba
Ag c.e is a decreasing function of £: when — varies from 1 to 0, A¢ . . varies
c

2
from 1 to 1412 +v2. To see a change in the P — R frontier (for example with an

af (&)
v

xr
the frontier goes up (so the zone where P dominates expands at the expense of
the zone where R dominates).

increase of v, ), we compute . For a given &, if it is positive, it means that

We have
% =0 (F.9)
% >0 (F.10)
o = e 1
Ous _ _ ¥ (F.12)

@ V1+v2

After these preliminary steps, it is relatively straightforward to obtain:

f(&) _ ()  0Acce
e () ow >0 (F.13)
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af(§) 7%\/1%,2 N (F.14)

af) _ () 1+ Vs 2 2
= A c.e z A c.e + I/e F.].5
e () [VAe., T 3( &, )] (F.15)
We recall that A¢ .. = 14 (V2 + 12)(1 — €?) is a decreasing function of ¢&:
b
when 6—2 varies from 1 to 0, A¢ .. varies from 1 to 1 + y + 1/ . Therefore:
2
0
e An increase of v, always favors P over R ( g(f) > 0)
Ve

b
When —= is close to one (€ close to 0 or A¢ . close to 1); an increase of

C2
v, favors P over R (Gg(ﬁ) > 0, but an increase of v, favors R over P
Vg
af(€)
( o, < 0)

b

When —= is close to zero, it is possible that the situation is opposite (an
C2

increase of v, favors R over P and an increase of v, favors P over R), but

in each case it depends on the value of parameters v,, v. and v.. More
specifically:

For an increase of v, it is the case if v2 < (v2+12) (however the situation

is policy relevant if f(£) < (because Pez < 1) so if v, < v.). More
2

Vw

precisely the situation is opposite whenever &2 is lower than 1 — 5
VC VE

This situation does not happen in Figure 2.

For an increase of v,, it is the case if \/1 +v2+v2 > (1 +v2)(1 +v2).
The situation happens in Figure 2.

AppendixG. Estimations of parameters v,, v, and p., with IEO fore-

casts for “common” and crisis year

Estimations are given in Tables G.7 and G.8 for year 2005 (no crisis) and
2010 (crisis). General patterns are:

v, is much higher for 2010 (crisis) in Western countries, but in the same
order of magnitude for BRIC countries.

v, is higher for 2010 (crisis) for both Western and BRIC countries

Pex 1s higher for 2010 (crisis) for both Western (especially Japan and the
US) and BRIC countries
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Table G.7: Estimations of parameters v., v, and pe, with IEO forecasts (Year
2005)

Region Vg Ve Pex

China 20% 33% 0.95
US 6% 3% -0.24
Europe 2% 3% -0.73
India 14% 8% 0.28
Russia 9% 8% 0.23
Brazil 31% % 0.78
Japan 11% 5% -0.89

Table G.8: Estimations of parameters v, v, and p., with IEO forecasts (Year
2010)

Region Vg Ve Pex

China 23% 28% 0.97
Us 10% 14% 0.96
Europe 24% 5% -0.85
India 20% 22% 0.86
Russia 40% 32%  0.94
Brazil 14% 6% 0.84
Japan 31% 5% 0.83
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