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Abstract:  

Although the effectiveness of flushing floods in restoring basic environmental functions in 

highly engineered rivers has been extensively tested, the opportunity cost is still considered to 

represent an important limitation to putting these actions into practice. In this paper, we 

present a two-stage method for the assessment of the opportunity cost of the periodical 

release of flushing flows in the lower reaches of rivers with regimes that are basically 
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controlled by series of dams equipped with hydropower generation facilities. The methodology 

is applied to the Lower Ebro River in Spain. The results show that the cost of the reduced 

power generation resulting from the implementation of flushing floods is lower than the 

observed willingness to pay for river restoration programmes. 
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1. INTRODUCTION 

 

Water is an economic asset necessary to sustaining life, the environment and the production 

of many valuable goods and services and should be managed accordingly. However, the 

prevailing paradigm considers water demand to be exogenous, and water policy, 

consequently, has traditionally focused on guaranteeing the supply of water services at 

affordable prices. As a result, during the last decades population growth and the improvement 

of living standards brought about by development have increased the pressures on water 

resources. The negative environmental effects stemming from this paradigm are especially 

visible in the case of the European and North American rivers, where the need to satisfy a 

continuously growing demand for water and river services has resulted in increased water 

abstractions and polluted discharges along with gravel mining, canalisation, and successive 

modifications in river morphologies (e.g., Furse et al., 2006; Zaqiejska and Wyzga, 2009; Batalla 

and Vericat, 2011).  

Consequently, restoration of river ecosystems has become a priority for water management in 

the developed world, especially in the stressed lower reaches of its rivers (Gupta and Bravard, 

2009; EC, 2000). However, restoration can only be obtained at the cost of impairing the ability 

of water infrastructures to provide valuable socioeconomic goods and services, such as 

hydropower (Bednarek and Hart, 2005; Palmieri et al., 2001; Robinson and Uehlinger, 2003). 

There is thus a considerable interest in learning how to balance river restoration benefits with 

the production of goods and services provided by water infrastructures. 

As a result of this interest, significant effort in scientific research has recently been mobilised 

in two important directions. On one hand, considerable progress has been made in the 
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assessment of current ecological status and trends and in the design of effective technical 

alternatives to restoring some basic environmental functions of rivers. In particular, emerging 

research in biology and ecological engineering (e.g., Granata and Zika, 2007) shows that dams 

and other infrastructures that alter river systems can also be used as tools to reproduce 

artificially a portion of the functions performed in the past by the natural system. For instance, 

modifying the rules of hydropower dam operation to guarantee the periodic release of 

properly designed maintenance flows (namely, flushing flows) may effectively replace the role 

performed in the past by the natural floods characteristic of many rivers, which served to 

maintain the structure and functions of the river ecosystem (see Hueftle and Stevens, 2002; 

Vinson, 2001; Kondolf and Wilcock, 1996). On other hand, social sciences have provided 

methods and results for the valuation of the economic and social benefits of potential 

improvements in the capacity of river systems to increase the quantity and range of those 

environmental services that might result from a successful restoration of river systems (such as 

recreation opportunities, biodiversity support, health services, water security and flood 

control) (see, for example, Hitzhusen, 2007; Turner et al., 2003 and Gupta and Bravard, 2009). 

However, there is still little research on the costs of practically applying the available options 

to improve rivers' ecology, which makes the opportunity cost of water the missing element for 

the assessment of the policy options at hand.  

Information on opportunity costs plays a critical role in the evaluation of river restoration 

alternatives for a series of reasons, including the following: i) first, this information allows us to 

find the most cost-effective way to improve the river environment and thus minimise the 

impact over marketable water services; ii) second, information on opportunity costs is 

essential to judging whether the associated cost is lower than the benefits expected from the 

improvement of the water environment (and to assess later whether the proposed measures 

are justified in the light of cost benefit criteria); iii) additionally, cost analysis might provide the 
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critical information to assessing what would, for example, be the minimum compensation 

demanded by water users for voluntarily adapting the use of the resource to certain new 

requirements; and iv) finally, information concerning opportunity costs is also crucial to 

knowing the real cost of harmonising the provision of water services and the improvement and 

protection of the water environment.  

This paper aims to help bridge this information gap. The paper presents a model for the 

evaluation of the opportunity costs of implementing a given flushing flow programme in an 

area where the flow regime is basically determined by the operation of a hydropower facility. 

In such a situation, the requirement to release the flushing flow means that for certain precise 

periods of time, the outflow of water does not depend on the profit maximising criteria used 

by the hydropower plant (baseline scenario) but rather on an operating constraint somehow 

imposed by an environmental authority (counterfactual flushing-flow scenario). The 

opportunity cost of such measures is therefore represented by the monetary losses of the 

concerned commercial activity, namely, hydropower. The overall question we want to answer 

can be presented as determining a financial value for the minimum compensation required by 

a hydropower operator to voluntarily accept a predetermined programme of periodical 

artificial releases. The model is illustrated with an application to the Lower Ebro River. 

 

2. THE LOWER EBRO RIVER: RIVER DIAGNOSIS AND THE NEED OF FLUSHING FLOWS 

 

The Lower Ebro River is located in the northeast of Spain and comprises the area located 

between the Mequinenza-Ribarroja-Flix Dam Complex (hereafter MRFDC) and the outlet of the 

river to the Mediterranean Sea (see Figure 1). Water demand from agriculture is significant 

(1.200 hm3/yr, i.e., 90% of the total water demand), and runoff has been reduced by more 
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than 20% as a result of increasing pressures from upstream and long-term changes in the land 

use (i.e., afforestation). However, water is still relatively abundant, and droughts are rare 

(ERBA, 2007). The main environmental concern in the area is related to the impoverished 

ecological status that resulted from the alteration of the river's hydrology and, subsequently, 

the channel morphology after the construction of the MRFDC (see Table 1). 

The large Mequinenza and Ribarroja dams built in the 1960s substantially modified the flow 

regime of the lower Ebro. Among other hydrological components, flood magnitude and 

frequency have been altered. Of special interest for the river’s ecological functioning is the 

reduction of 25%, on average, of the relatively frequent floods (i.e., those between 2 and 25 

years of return period) (Batalla et al., 2004). Although the river still experiences natural floods, 

and the impact of regulation is much smaller than that found in comparable large rivers, such 

as, for instance, the Sacramento and the San Joaquin Rivers in California (Kondolf and Batalla, 

2005), the river's physical and environmental conditions have changed notably in the last 

decades, as has been reported in a series of research papers (e.g., Batalla et al., 2006; Vericat 

and Batalla, 2006; Vericat et al., 2006; Batalla and Vericat, 2009). The main dam induced 

changes can be summarised as follows: 

- Reduction of flood frequency and magnitude; floods provide the energy for keeping an 

active river channel morphology, and this reduction has led to the loss of formerly 

sedimentary active areas, the encroachment of riparian vegetation and the narrowing 

of the channel.  

- Reduction of the river's sediment load, which implies the erosion of the gravelly 

fractions in the channel with no replacement from upstream and simultaneous 

riverbed armouring during small frequent floods and during high flow periods. 

- Alteration of the river's ecology, as a compound effect of impoundment, exemplified 

by the low frequency of bed moving floods, slow moving waters, deficit of fine 
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sediment, high temperatures and excess nutrient load. These combined alterations 

create a new functioning in the river ecosystem with consequences regarding the 

river’s ability to provide key environmental services.  

 

[Insert Figure 1 about here] 

[Insert Table 1 about here] 

 

This new set of environmental conditions, together with similar changes in the upstream main 

tributaries, appears in the basis for the uncontrolled proliferation of macrophytes in the Lower 

Ebro River channel (e.g., Goes, 2002; Palau et al., 2004). Macrophytes threaten river 

infrastructures, increasing the operating cost, reducing the productivity of power-generating 

plants and water-pumping devices and reducing the ability of the river to provide navigation 

and recreation services. Competition for space and resources resulting from the stabilisation of 

dense macrophyte stands also affects the biology of the river ecosystem in many different 

ways. Macrophyte stands limit the access to microhabitats that are important for the growth 

and survival of juvenile fish, and the decomposition of growing organic matter depletes the 

water of its oxygen. Macrophytes communities also enhance flow resistance, thus 

exacerbating the reduction in flow velocity and trapping an important portion of fine sediment 

load (Batalla and Vericat, 2009).  

Within this context, a considerable body of research has been devoted to the design and 

implementation of flushing flows as a means to improve the ecological status of the Lower 

Ebro River. These efforts started in 2002 when the previously mentioned problems were 

exacerbated after the succession of two notably dry years. That situation created the 

conditions for an effective cooperation between the hydropower company, the water 
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authorities and the scientific community. With the exception of two dry years in 2004 and 

2005, flushing flows have been regularly performed twice a year (in autumn and spring) 

providing a testing scenario for the increasing improvements in its design to enhance its 

effectiveness, reaching macrophytes removal rates as high as 95% in areas close to the dam 

(Batalla and Vericat, 2009). Despite the need to limit peak floods to avoid damages to riverine 

villages, flushing flows in the lower Ebro are now a tested means to enhance the biological 

productivity of the physical habitat, to entrain and transport sediments to restore the 

dynamism of the river channel, to remove pollution loads and improve the water quality, to 

control salt intrusion and to supply sediments to the delta and the transition waters.  

Figure 2 presents the standard hydrograph of the flushing flow implemented in the lower Ebro 

since 2002 (for an extensive analysis of the flushing flow design and field monitoring, as well as 

a critical discussion on its effectiveness as a river restoration tool, see Batalla and Vericat, 

2009). 

 

[Insert Figure 2 about here] 

 

3. MATERIAL AND METHODS  

 

The opportunity cost of guaranteeing artificial flood flows in modified river reaches, where the 

flow regime is basically determined by the operation of hydropower facilities, can be defined 

as the reduction of the value of the energy produced resulting from the new environmental 

constraints. The assessment of this opportunity cost requires knowing how the power 

company makes profit maximising decisions and how it would react to a change in the 
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operating constraints imposed by the river basin authority. To solve this problem, we present a 

methodology in two stages as follows: i) first, we present a theoretical general model that 

allows the calculation of the opportunity cost of flushing flows based on the previously stated 

characteristics; ii) second, we calibrate the general model to our particular case study in the 

Lower Ebro River. 

 

3.1. The Basic Opportunity Cost Evaluation Model 

 

From the company's perspective, the dam and its associated power production facility are 

capital assets. At any given time, the operating company decides on the flow of energy to be 

produced. This decision is based upon a number of variables, such as the technical 

characteristics of the plant, the current operating rules, the expected evolution of the amount 

of water stored in the reservoir and the current and the expected energy prices. From a 

private business perspective, these decisions aim at maximising the value of the expected flow 

of benefits along the entire life span of the dam (eventually over an infinite horizon). As the 

electricity produced cannot be stored for its future selling, this circumstance implies making 

two kinds of decisions simultaneously. The first decision involves choosing how much water to 

use every day ( ), and the second involves choosing how to distribute the electricity produced 

throughout the day ( ). Both kinds of decisions aim at maximising the flow of financial 

revenues. In what follows, we analyse each one of these key production decisions: 

The first kind of decision (1) involving the amount of water released every day can be 

represented by the following dynamic optimisation programme. For simplicity, we assume a 

zero discount rate: 
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   [1] 

   [2] 

    [3] 

 ,   [4] 

where the decision variable  represents the flow of water used for power generation on day 

; the function  represents the daily financial revenue at the moment , which (see 

below for details) is assumed to increase at a decreasing rate with the amount of water used 

to produce energy. The upper case  underlines the fact that companies' decisions are based 

on imperfect information concerning the future values of critical variables, such as the level of 

the reservoir and future energy prices (i.e., nature and market uncertainty imply that the 

objective function is in fact the expected financial value of the energy produced; thus, the 

model avoids the problem of most optimisation models that assume that companies have 

"perfect hydrological foresight", which leads to unrealistic results). The state variable  

measures the amount of water stored in the reservoir on day ; its dynamics are represented 

by the transition function [2], where the state of the system on the following day depends, 

first, on its state the previous day, second, on the exogenous net inflow of water ( ) obtained 

from the river basin net of the evaporation and the abstractions taken from the reservoir for 

other uses out of the control of the company and, finally, on the decision made by the 

company on day , . 

Constraint [3] shows the boundaries of the state variable  on any day. The left term of this 

constraint shows the minimum level of water stored ( ). This lower bound is the value 

determined by the technical requirements of the infrastructure or by the institutional 
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requirement to guarantee a minimum water availability for other present and future uses. 

Thus, the lower limit may vary in different seasons or months (depending, for example, on 

seasonal crops requirements). The right term of the constraint [3] shows the upper bound of 

the amount of water stored ( ), which also may depend on different factors, such as the 

reservoir's storage capacity or the flood limit to avoid the flooding of downstream riverine 

villages (which may also vary during the year according to flood risk perceptions).  

Constraint [4] shows the boundaries of the daily decision variable, . The lower bound 

( ) may come either from a minimum environmental flow, from the requirement to 

deliver given amounts of water to other water uses downstream or, alternatively, from any 

water authority requirement to release a certain amount of water at the date  (for example, 

for an artificial flood). In a similar way, the relevant upper limit ( ) is the higher value 

among the quantity of water resulting from the hydropower generation plant maximum 

capacity. Provided that the plant is not always functioning at its full capacity, none of the 

above-mentioned constraints is binding, and the company is able to distribute the energy 

produced among the different days of the year in order to maximise its revenue1. 

The second kind of decision (2) consists of choosing the hourly production of electricity in a 

particular day. This decision can be represented by the following daily revenue maximisation 

problem: 

    [5] 

                                                           
1
 In fact, the key role played by hydropower in the stabilization of the electricity supply system implies 

the presence of spare capacity ready to be used to turbine water at peak demand hours. In the last ten 

years, hydroelectricity in Spain used less than 20% of its installed power production capital (Gómez, 

2009). 
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     [6] 

     [7] 

The objective function in this case, , represents the daily financial revenue. This revenue 

depends on the following: i) the decision variable ( ), showing the quantity of water used for 

power generation per hour ( ), ii) the corresponding prices, ( ), which are assumed to vary 

in a predictable way for every day ( ) depending on the season, the day of the week, weather 

conditions and other factors that are known in advance by the company, and iii) an input-

output technical parameter ( ) measuring the quantity of water required to produce one unit 

of electricity. Under these conditions, the company finds the optimal distribution of the energy 

produced during the day (producing at a maximum capacity at peak price and minimising the 

energy delivered to the market when electricity demand is at its lowest). The variable and fixed 

costs of producing hydroelectricity can be considered negligible; accordingly, variations in the 

revenue function reflect changes in financial returns. The decision variable ( ) is subject to 

the same upper and lower bounds as in the first problem, but the relevant time units are now 

hours instead of days (as in [6]). 

Provided that there is detailed data on both the hourly market price of electricity and all of the 

relevant constraints on the decision variable , obtaining a closed solution for decision problem 

(2) becomes straightforward. The solution of this problem for the range of all of the likely 

values of the daily decision  is the financial revenue function . This maximum 

daily revenue function is concave and non-decreasing and varies on different days along the 

year according to random and seasonal changes in electricity demand and supply. 

Problems (1) and (2) are closely linked. On one hand, the overall quantity of water delivered in 

the solution of problem (2) must equal the optimal decision of the first problem for the 



13 

 

corresponding day (as in constraint [7]). On other hand and most importantly, the optimal 

solution of problem (2) is nested in the definition of problem (1). In other words, the maximum 

revenue as a function of the decision variable ( ) becomes the main argument, and its 

expected value in the future is the objective function of problem (1). Thus, when deciding how 

much water to use every day, companies know how this water can be delivered at any time to 

obtain the maximum revenue in the electricity market.  

 

3.2. Calibration of the model 

 

The maximum daily revenue function above is an important step in the calibration of daily 

production decisions as represented in problem (1). Nevertheless, finding the analytical 

solution to problem (1) is not an easy task given its dynamic nature, the wide time span that 

needs to be considered and the uncertainty associated with natural water inflows and energy 

markets. A theoretical solution will require assuming either perfect hydrological foresight or 

accepting strong assumptions about the company's risk attitude. Instead of finding the 

analytical solution of problem 1, we have the option of deducing its solution from the 

decisions that companies have taken in the past under a given set of conditions. 

 In this paper, we use detailed data on the decisions taken by the company in the past (on 

different days, under different decision constraints, and in different states of the river system) 

to obtain econometrically the company's underlying decision function of using water and 

producing energy every day. This function (problem 1) and the maximum daily revenue 

function (problem 2) provide the representation of the optimal behaviour of the company in 

the baseline scenario. These two functions and the information set of observed decisions and 



14 

 

constraints are all that we need to represent the company's behaviour and assess the 

opportunity cost of imposing the delivery of a flushing flow. 

The information used in this work comes first from the daily data on the level of water stored 

in the three reservoirs and their hourly outflow of water provided by the Hydrological 

Information Automatic System (SAIH) of the Ebro River Basin Authority (ERBA, 2012a). We 

have taken data from September 1997 to October 2008 to cover an 11-year period, which is 

long enough to encompass several hydrological cycles during which regulations over water use 

have been relatively stable, as defined in the River Basin Management Plan (ERBA, 2012b). 

Secondly, the River Basin Authority has also provided an entire set of data on the relevant 

constraints with which the company must comply. These data include the following: the 

minimum flows, set at 100 m3s-1; the amount of water that was required to be supplied by the 

reservoir system for other uses different from power generation in any given month; and the 

monthly changing minimum level of water stored in the MRFDC determined by the water 

authorities to guarantee water supply at any time. Finally, the hourly price of electricity was 

obtained from the Spanish Electricity Market Operator (SEMO, 2013), and the quantity of 

electricity produced by the hydropower company at any moment was deduced from the 

outflow of water and the technical characteristics of the power plants in each reservoir (we 

assume a standard 0.8 energy conversion efficiency). In this way, we have observations of all 

of the parameters and for all of the state and decision variables implied in the optimisation 

problems (1) and (2) for a total sequence of 4,017 days. This sample provides both the data 

required for calibrating the base model and the scenario to assess the opportunity cost of the 

flushing flow programme. 

The first stage in calibrating the model deals with optimisation problem 2. The daily financial 

returns are a maximum argument function of the following: the amount of water used for 

power generation, the set of hourly prices of the day, the minimum flow set by water 
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authorities and the maximum production capacity of the plant. Figure 3 shows the daily 

financial return function obtained from using hourly prices and the production capacity and 

the minimum flows for three selected months: i) December, when water demand and the 

average price are that their highest, ii) March, when prices are the lowest, and iii) January, 

when the price is close to the yearly average. As can be observed, the financial return function 

increases at a decreasing rate with the amount of water. Once the minimum flow is satisfied, 

the decreasing marginal productivity of the water input is caused by the fact that at lower 

production levels, the energy is produced at peak price time; any increase in water use implies 

selling the energy at a decreasing price. Daily income is also bounded by the maximum 

capacity of the plant.  

 

[Insert Figure 3 about here] 

 

Once the optimal financial returns are determined, this information is introduced in the 

intertemporal decision problem (1) to obtain the optimal decision profile of how much water 

to use any day, considering the transition equation [2] and the technical and policy constraints 

of the baseline scenario. The ability of the operating company to obtain rents from market 

price variations is one of the key elements that are affected by the requirement to adjust 

water delivery to a pre-designed flushing flow scenario. 

The second stage of model calibration deals with optimisation problem 1, which is associated 

with the decision on the daily outflow of water. Obtaining an explicit functional form of the 

optimal daily decision profile  is not feasible given the amount of parameters involved and 

the stochastic nature of the problem. Nevertheless, the number and the details of the 

available data in the sample allow for an empirical approximation of this optimal value 
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function with econometric techniques; this circumstance allows revealing the functional form 

that better explains the observed behaviour of the company. We thus expect the decision 

variable ( ) to be an increasing function of the amount of water stored (represented by the 

state variable ) and the water inflow received from the basin on the previous days, . As this 

relationship is not linear, we use a maximum likelihood estimation method to obtain the 

better fitting function among the Box Cox power transformation family of functions. In 

addition, as restrictions over the minimum level of the stored water and the other uses of 

water that are different from electricity production vary from month to month, we also used 

dummy variables for every month of the year. The empirical model is then as follows: 

,     [8] 

where ,  and  are the box cox transformation parameters: 

    ,  [9] 

and the coefficients  ( ) represent the fixed effect parameters for any months that 

are included in the model as dummy variables. The variable  measures the overall net inflow 

from the upstream river basin and helps to include variations explained by dry or wet years. 

 

[Insert Table 2 about here] 

 

This function of the private decision on how much water to deliver on any day, along with the 

maximum revenue function determining how to distribute this water during the day to 

produce energy, allows the calibration of the model for the complete sequence of the >4000 
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days of the sample. Table 2 shows the econometric results. Transformation parameters  and 

 were not found to be significantly different from 1; therefore, the associated variables  and 

 enter linearly in the equation. The maximum likelihood value of the nonlinear 

transformation parameter ( ) was determined at 0.35. All of the remaining coefficients are 

significant at a 1% level. Apart from maximum likelihood criteria, the final equation fulfils 

Wald's and Lagrange's multiplier tests for the optimisation of the econometric estimation. The 

size and detail of the sample seem to be important factors behind the robust and efficient 

econometric estimation of the daily decision variable. 

This baseline scenario and the associated optimisation functions are the basis by which to 

assess the impact of flushing flows over the quantity and value of the energy produced. 

 

4. RESULTS 

 

Flushing flows are implemented through the imposition of particular constraints over the 

operating rules of the hydropower plant. This circumstance implies the obligation of firms to 

deviate from the optimal decision profile (baseline scenario) with a negative impact over 

expected financial profits. The revenue variation, or the opportunity cost, is moreover the net 

result of two different effects of opposite sign. The first effect is the immediate revenue 

increase, as controlled floods require the delivery of an amount of water that exceeds the 

quantity that the company would have chosen otherwise. The second effect is the decreased 

revenue resulting from the reduction in the stock of water available after the flood2 during the 

                                                           
2
 Under extreme events, the implementation of flushing flows may lead to additional opportunity costs. 

For example, when the amount of water stored in the reservoirs is below or at its lowest or minimum 
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days or weeks required for the reservoir to come back to its baseline level. Once this 

convergence is complete, not only will the amount of water stored be back to normal but the 

company's decisions and revenues will also be the same as in the baseline scenario. The 

absorption period, or the time during which water stocks, flows and profits diverge from the 

baseline, is a measure of the time required by the system to absorb the shock produced by the 

flood.  

The cost of the flushing flow can be reduced by a careful selection of the right moment at 

which to start delivering the water for the subsequent hours. Although the company cannot 

decide upon the day and the quantity of water to deliver during the artificial flood, it can 

choose the right hour at which to start the flood. This decision allows minimising the foregone 

revenues, as expected energy prices vary in a predictable way during the day. Figure 4 shows 

the market value of the energy obtained during the flood for the autumn and spring seasons 

according to the flushing flow hydrograph shown in Figure 2.  

 

[Insert Figure 4 about here] 

 

The correct selection of the time to start delivering the water might explain differences as high 

as 40% of the maximum revenue. A wrong timing can therefore increase the opportunity cost 

in as much as EUR 160,000 per flood. In what follows, we assume that the delivery of water 

                                                                                                                                                                          
acceptable level, flushing flows would imply a reduction of the water supplied for crops or any other 

uses. In any case, despite being technically feasible, the River Basin Authority clearly establishes a series 

of priorities under extreme events that rule out the possibility of implementing flushing flows (ERBA, 

2007).  
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always starts at a time that maximises the value of the energy produced during the flushing 

flow (thus minimizing the opportunity cost of the flushing flow). 

Provided that the artificial flood is feasible (which occurs when water level is above a minimum 

critical level) and its starting point has been chosen to minimise its impact over the value of 

the electricity produced, we are now ready to analyse the opportunity cost of flushing flows. 

Figure 5 presents the overall opportunity cost for the days in the sample when the flood is 

feasible in autumn (Fig. 5a) and spring (Fig. 5b). The revenue variation is measured on the left 

axis. The figure is complemented with data over the amount of water stored in the upstream 

reservoir on the day of the flood, which is measured on the right axis. 

As expected, the flushing flow cost varies with the varying conditions of the system, and the 

expected revenue variation is negative. This expected revenue variation amounts to EUR -

76,000 and EUR -33,000 for the autumn and spring floods, respectively (a total opportunity 

cost of 99,000 EUR/year). In the same way, the absorption time varies from a few days to 

several months with an average value of 82 days and a standard deviation of 503. 

                                                           
3
 Companies’ decisions in our model are based on expectations over the water inflow that the reservoir 

might receive in the future. These expectations might or might not be fulfilled, and the consequence of 

this circumstance is that the opportunity cost may actually differ from its expected value (depending 

basically on rainfall on the days following the flood) and can even be negative. Given the timing of the 

different effects and, particularly, the fact that the increase in revenue occurs at the start of the flood, 

while the cost is different along the absorption time, the succession of wet days can shorten the 

absorption time, and when the reservoir recovers rapidly enough, it can even avoid a negative 

opportunity cost. This outcome is observed on the days when the revenue variation of the flood is 

negative (see Figure 5). 

 



20 

 

 

[Insert Figure 5 about here] 

 

5. FINAL REMARKS 

 

Flushing flows are an effective means to achieve a successful river restoration (Hueftle and 

Stevens, 2002; Vinson, 2001; Kondolf and Wilcock, 1996). While the benefits and technical 

effectiveness of this alternative are widely known, the cost it might impose over the economic 

uses of water is still considered an important reason against the feasibility of implementing the 

periodical release of artificial floods. In this paper, we present a planning-level methodology 

for the assessment of such opportunity costs in heavily modified downstream areas where 

flushing flows affect the operational rules of hydropower facilities. We show how the model 

can be calibrated with a combination of a deterministic maximum revenue function for the 

hourly delivery of water and an econometrically obtained decision function for the daily 

amount of water delivered.  The model enables us to analyse the impact of imposing a new 

operation rule over a hydropower company's optimal decisions. This rule consists in the 

obligation to release water during certain periods of time in accordance with an artificial flood 

purposely designed to restore the basic functions of a river ecosystem. As the technical design, 

feasibility and opportunity cost of flushing flows heavily depend on the intrinsic conditions of 

river ecosystems, we used the detailed time information about the stocks and flows of water 

in the Lower Ebro River to calibrate and simulate the model for all of the days in spring and 

autumn in the sample when an artificial flood is feasible.  
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Implementing flushing flows on a regular basis will result in a reduction in the asset value of 

the involved hydropower facilities, as they will have to operate under more stringent 

institutional rules. The studied case shows that hydropower facilities in the lower Ebro can 

provide the artificial flows required for the restoration of the river channel at a cost that is 

equivalent to a small fraction of the overall revenue obtained during the year and by only 

accepting a marginal change in the quantity of energy delivered to the market. The expected 

cost of two floods per year (approximately EUR 100,000) is equivalent to only 0.16% of the 

average yearly revenue and is only a fraction of the average revenue obtained every day by the 

company (which amounts to EUR 250,000 in the sample days). 

Provided that flushing flows are implemented with sound economic criteria, their opportunity 

cost is small when compared to the people's willingness to pay (WTP) to secure the benefits of 

river restoration programmes. Original estimations in areas that resemble our policy context 

show that WTP ranges from EUR 5.3 to EUR 63.6 per person per year (Loomis et al., 2000, 

Meyerhoff and Dehnhardt, 2007, Berrens et al., 1998, Brown and Duffield, 1995, Colby, 1993, 

González-Cabán and Loomis, 1997). Depending on the size of the population benefited by the 

programme, the opportunity cost can range from EUR 1 (if we consider the million people 

living in the Lower Ebro River) to EUR 0.1 per person per year (if we consider the ten million 

people living in the entire Ebro Basin). As a result, in spite of the variability in the flushing flow 

opportunity cost attributable to the uncertain behaviour of flows and stocks of water in 

Mediterranean rivers, this cost is expected to be between 5 and over 630 times lower than the 

benefits associated with the river restoration programmes, as measured by individual's WTP. 

The cost of guaranteeing the periodical release of flushing floods by changing the operation 

rules of hydropower facilities also seems to be lower than any other alternative of obtaining 

water from other sources (such as saving water in agriculture and domestic consumption or 

water recycling and desalination) to have the additional stock of water available for these 
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purposes in the reservoirs. Each artificial flood requires the delivery of approximately 36 

million cubic metres over sixteen hours; considering the opportunity cost mentioned above (of 

EUR 76,000 and EUR 33,000 for the autumn and the spring floods, respectively), we can 

conclude that the cost per cubic metre delivered is lower than EUR 0.002 for the autumn flood 

and less than half of that quantity for the spring flood. Experience shows that there are few 

alternatives to obtaining such a large amount of water at a lower cost from other economic 

uses.  

The results obtained suggest that the real policy challenge consists in finding the institutional 

agreement to implement the flushing flood programme and agreeing on the potential financial 

compensations to deal with the incentive problem that must be overcome for this purpose. 

The considerable distance between the opportunity cost and the societal benefits provides 

sufficient room for private operators and the government to conduct a successful bargaining 

and thus agree on the voluntarily compliance of a soundly designed programme of water 

releases to restore the critical functions of the water ecosystem. The cooperation between 

power generation companies and water authorities is also a positive signal, showing that 

flushing flows for river restoration purposes can be compatible with private corporate 

interests. These efforts are now considered to be the pioneering phase of a comprehensive 

restoration programme of the whole river's ecosystem and a key piece of the River Basin 

Management Plan that is being elaborated for the implementation of the WFD. 
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Figure 1. Location of the River Ebro Basin in the Iberian Peninsula and detail of the Lower Ebro 

River. 

  

Source: Own elaboration from ERBA, 2012a. 

 

 

  



Figure 2. Standard hydrograph of the flushing flow implemented in the Lower Ebro River 

since 2002. 

 

Source: Own elaboration. 

 

Figure 3. The optimal daily revenue function in the upstream Mequinenza Power Plant. 

 

Source: Own elaboration. 



 

Figure 4. The optimal timing of the flushing flow in the Lower Ebro River. 

 

Source: Own elaboration. 

  



Figure 5. . The opportunity cost of a flushing flood in the Lower Ebro. (A) Autumn, (B) Spring. 

 

Source: Own elaboration. 

 



Table 1. Characteristics of the Mequinenza-Ribarroja-Flix Dam System 

Reservoir Mequinenza Ribarroja Flix 

Storage Capacity (hm3) 1530 218 5 

Licensed Flow (m3/s) 760 940 400 

Installed Capacity (Kw/h) 324 262.8 42.5 

Height (metres) 74 41 12.1 

Efficiency 0.8 0.8 0.8 

Input Output Ratio (m3/Kwh) 6.2 11.19 37.91 

Source: ERBA, 2012a. 

  



Table 2. Box Cox Estimation of the Daily Outflow of Water 

Variable Coefficient Standard error Significance 

Water stored (hm3)* 0.0009339 0.0368078 99% 

Lag Water stored (hm3)  0.1480627 0.00718118 99% 

Water inflow (hm3/day) 0.48437 8.13874E-05 99% 

October  -12.4484 1.34145119 99% 

November -11.278 1.34805527 99% 

December -10.647 1.3814159 99% 

January  -8.71131 1.39861698 99% 

February -9.53085 1.40190417 99% 

March -8.7341 1.41103021 99% 

April  -10.3591 1.44114208 99% 

May  -10.9435 1.47712765 99% 

June -13.4476 1.48860571 99% 

July  -12.3389 1.44571131 99% 

August  -12.4329 1.37090634 99% 

September  -12.8491 1.32810979 99% 

λ 0.383011 0.00718118 99% 

Wald test 34.07 

  Elasticity of water stored  1.14593 

  Elasticity of water inflow  0.79495 

  Elasticity of lag water inflow  0.35503     

* Variables transformed by  

Source: Own elaboration. 

 





 




