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Abstract

Pairing Games or Markets studied here are the non-two-sided NTU generalization of as-

signment games. We show that the Equilibrium Set is nonempty, that it is the set of stable

allocations or the set of semistable allocations, and that it has has several notable structural

properties. We also introduce the solution concept of pseudostable allocations and show that

they are in the Demand Bargaining Set. We give a dynamic Market Procedure that reaches

the Equilibrium Set in a bounded number of steps. We use elementary tools of graph theory

and a representation theorem obtained here.

Keywords : Stable Matching, Competitive Equilibrium, Market Design, NTU Assignment

Game, Roommate Problem, Coalition Formation, Bargaining Set, Bilateral Transaction, Gallai

Edmonds Decomposition

1 Introduction

Matching models in economics mostly have a two-sided structure, e.g., workers and firms, buyers

and sellers. In this paper we study Pairing Games or Pairing Markets where an arbitrary set of

players partition into pairs and singletons. Each pair of players has a continuum of activities to

jointly choose from if they form a pair - call it a partnership or a bilateral transaction. We are

interested in outcomes that are stable or in competitive equilibrium and in designing a procedure

to achieve them.
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Our model is a generalization of the assignment game (Shapley and Shubik (1972)) in two ways.

First, players are not a priori partitioned into two sides. Second, utility realizations permit income

effects and are not restricted to the quasilinear, i.e., transferable utility (TU) domain.

The assignment game has been very fruitful in modelling a wide range of economic situations,

e.g., markets with indivisibles, marriage, fair allocations, principal-agent matching.1 An important

property of the assignment game is the existence and coincidence of pairwise stable and competitive

equilibrium allocations. Also, two sidedness has permitted the design of rather simple coordinated

market procedures2 for attaining desired outcomes, and the results carry over to more general cases.

For example, players’ preferences may belong to the general nontransferable utility domain3, players

on one side may have multiple partners if preferences satisfy gross substitutability4, and players on

both sides may have multiple partners if preferences are additive separable.5

Yet many markets are not two-sided : For example many mergers occur among firms that are

alike. Likewise, acquisitions and joint ventures.6 Various swap markets are example to the multiple

partners version of our model.7 So are organized markets for bilateral contracting in electricity

where some players are seller to one partner and buyer to another.8 It is only recently on the other

hand that Pairing Games and Markets are being explored.9

One reason why non-two-sided models have not been much considered is the possible nonex-

istence of stable or competitive equilibrium allocations. This possibility is not uncommon. For

example, in the three-player game where two players may share a cake and none of the cakes is suf-

ficiently large in comparison to the other two cakes, the odd-man-out will be able to lure away one

of the partners in any pair that forms. So there is no stable allocation or equilibrium in partnership

prices.

In this paper we offer a comprehensive analysis for pairing games. We use elementary tools

from graph theory and and a representation theorem that we obtain here. We address Existence

1As in Beckmann and Koopmans (1957), Becker (1973), Alkan, Demange and Gale (1991), Dam and Perez-

Castrillo (2006) respectively.
2The multi-item auctions in Crawford and Knoer (1981), Demange, Gale and Sotomayor (1986), Perez-Castrillo

and Sotomayor (2002).
3Alkan (1989,1992,1997), Alkan and Gale (1990).
4Kelso and Crawford (1982), Gul and Stachetti (2000), Milgrom (2009).
5Sotomayor (1992,2009).
6Gong et al (2007) report that most joint ventures especially those succesful are bilateral.
7Our main results in this paper would carry over to the multiple partners model under additive separability.
8As in the Free Contract Market ACL in Brazil.
9This is in contrast to the discrete counterpart of our model, the roommate problem (Gale and Shapley (1962)),

which has a fairly substantial literature including the interesting application for kidney exchange - e..g., Irving (1985),

Tan (1990,1991), Diamantoudi, Miyagawa and Xue (2004), Inarra, Larrea and Molis (2008), Klaus, Klijn and Walzl

(2011), and Roth, Sonmez and Unver (2005).
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of Solutions, Structural Properties, Bargaining Aspects, and Procedure Design. The reason for

including all in one paper is the common underlying mathematics.

One of our interests is to address what may happen when stable allocations do not exist. To this

end, we first consider half-partnerships and allow a player to have two half-partners as an alternative

to having one full partner. We call an allocation with no blocking pair stable if only full-partnerships

can form and semistable if both full-partnerships and half-partnerships can form. We then show

that there is an Equilibrium Set always nonempty (Theorem 1) and that this set is the set of stable

allocations or the set of semistable allocations (Theorem 2.) Stable and semistable allocations are

competitive equilibrium allocations when players’ utilities are interpreted as partnership prices.

The structural properties of the Equilibrium Set do not depend on whether it consists of stable or

semistable allocations. The reason for this is that the variable part of the Equilibrium Set is always

associated with full-partnerships (Proposition 2.) Then, on the TU domain, the players under full-

partnership endogenously partition into two sides (Proposition 3) ; hence, the Equilibrium Set of a

pairing game is essentially identical to the Equilibrium Set of an assignment game, in particular, it

has a lattice structure and admits a median allocation. This may be somewhat surprising but, not

surprisingly, is not true on the NTU domain. We also show that the Equilibrium Set has a median

property and is a virtually convex set (Propositions 4 and 5.)

Then we consider what would happen if stable allocations do not exist and half-partnerships

are not viable. Specifically we look at Bargaining Set allocations where no player joins a blocking

pair if she sees disadvantageous counterblocking. Interestingly the Equilibrium Set enters the scene

again. We show that each payoff vector in the Equilibrium Set generates a set of maximum-

stable allocations (Proposition 6) and a particular subset of these - which we call pseudostable - is

contained in the Demand Bargaining Set10 (Theorem 3.) While they pertain to different institutional

environments, semistable and pseudostable allocations are closely related. To illustrate, in the three-

player game, the allocation where each player is half-partner to the other two players and the cakes

are shared “equally” is semistable. And each of the three allocations where two players share the

cake “equally” and the third player gets nothing is pseudostable.11

Another important part of our work is the Market Procedure for reaching the Equilibrium Set.

It is a non-two-sided and NTU generalization of the Demange Gale Sotomayor (1986) auction. The

NTU aspect is based on the key lemma behind Theorem 1. The non-two-sidedness aspect utilizes -

10Introduced for TU games by Morelli and Montero (2003) as a refinement of the Zhou Bargaining Set (Zhou

(1994)).
11The three-player game was taken up by Binmore (1985) for a study of bargaining with pair formation. The

three-player game is of course special. Binmore remarked that “the four-player game is less easily dealt with” citing

“combinatorial difficulties intrinsic to the problem.”
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one of our main results in the paper - the representation theorem (Theorem 5) already mentioned.

We present the Market Procedure at two levels. We first show that it reaches the Equilibrium

Set in a bounded number of steps (Theorem 4.) Then we spell out (in Appendix D) how the

computations can be done recursively at each step. Thus the dynamics are specified at a basic level

and respect computational efficacy.

In addition to our main results summarized above, we show that stable allocations exist when

there are an even number of players in each type (Proposition 1). This result generalizes to the NTU

domain the main result of Chiappori, Galichon and Salanie (2012). We also give a characterization

of the Demand Bargaining Set for pairing games (Proposition 7.)

The organization of the paper is as follows : In the first subsection below, we review the existing

literature on pairing games and point out our contributions ; in the second subsection, we give

an analytical overview and describe Theorem 5. Section 2 gives our model and basic definitions.

Sections 3 to 6 contain the results mentioned above. Appendix A presents the mathematical tools

we use and Theorem 5. Appendix B contains proofs for Sections 3 and 4. Appendix C is an

addendum to Section 5 and Appendix D to Section 6.

1.1 Current Literature and Summary of Contributions

The existing literature on pairing games or markets consists of a small number of papers and they

are all on the TU domain. The earliest one is by Eriksson and Karlander (2001) ; they give a

characterization for stable allocations - at a given matching - that is similar to the characterization

for roommate problems by Tan (1991) and then use linear programming duality for optimal match-

ings. Talman and Yang (2011) also give a characterization that uses linear programming duality.

Sotomayor (2005) has a characterization that is based on “simple outcomes” and is self-contained

but of a nonconstructive nature. Our Theorems 1 and 2 generalize these results by offering a com-

plementary solution concept - semistable allocations - for when stable allocations do not exist and

by covering the NTU domain. Our approach is self-contained and constructive.

Chiappori, Galichon and Salanie (2012), as already mentioned, consider games with player types

and show that stable allocations exist for populations with an even number of players in each type.

We infer this result for the NTU domain from our Theorems 1 and 2.

More recently, Biro et al (2012) have given an algorithm that finds a stable allocation via

satisfying blocking pairs, but not in a genuine sense, as it makes use of a preconceived target

stable allocation, and Andersson et al (2013) a market procedure that finds a stable allocation -

via equal-surplus-division allocations at overdemanded sets - without, however, addressing bounded

convergence.

4



Our Market Procedure is a genuine procedure that converges in a (polynomially) bounded

number of steps and is on the NTU domain (Theorem 4.) It has moreover a recursive basic-level

specification through the Algorithm we describe in Appendix D.

Our results on the properties of the Equilibrium Set (Propositions 2 to 6) are entirely new.

So is the Bargaining Set analysis we offer, in particular, our result (Theorem 3) on the stability

of pseudostable allocations - a solution concept introduced here - and the characterization of the

Demand Bargaining Set for pairing games (Proposition 7.)

As one of the major contributions of our paper, lastly, we mention our “demand analysis” and

the representation theorem (Theorem 5) in the Mathematical Section in Appendix A. These we

describe in the subsection below.

1.2 The Analytical Aspect

We make no interpersonal comparison of utility : We work with aspirations that are payoff vectors

which assign a maximum-utility to each player that she can achieve given the maximum-utilities of

other players.12 These utilities can be seen as prices that players ask for entering into partnership.

At an aspiration, a player may find herself indifferent among a number of players for forming a

partnership, thus have a non-singleton demand set. We typically deal with aspirations where many

players have non-singleton demands sets.

At an aspiration, we look for demand-compatible matchings that leave a minimum number of

active players unmatched - “active” meaning “above reservation utility”. We call these matchings

active-minimum.

Aspirations are of two types : At any aspiration, either there is a subset of players that partition

into two sides, with an excess of (say) “buyers” over “sellers”, in which case we say there is a

seller-market - a definition we introduce here13 - or there is no such subset of players. We call an

aspiration of the latter type balanced. If it is possible to match all active players at a balanced

aspiration then that aspiration is a stable allocation. Otherwise it is a semistable allocation. The

Equilibrium Set is the set of all balanced aspirations.

The Market Procedure starts from any aspiration, traces a path of aspirations with seller-

markets, and eventually reaches a balanced aspiration. It is fundamental - in this Procedure as

well as in all our basic results - what properties seller-markets have, in particular, how they can

be identified. A relevant fact here is that union of seller-markets need not be a seller-market. But

there are unitary seller-markets - that we introduce - and their union is a seller-market. We define

12Aspirations in cooperative games go back to Cross (1967), Albers (1974), Bennett (1983).
13That is closely related to the definition of an overdemanded set in Demange, Gale and Sotomayor (1986).
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the union of all unitary seller-markets to be the Seller-Market at an aspiration which coincides with

the minimum-size maximum-excess seller-market. The Market Procedure is a Seller-Market tracing

procedure that minimizes excess.

Our main result (Theorem 5) in the Mathematical Section says that the Seller-Market can

be identified by a particular class of matchings. These are active-minimum matchings where the

number of active unmatched players who do not belong to an odd-cycle with three or more players

- therefore stand “solitary” - is minimum. We call them solitary-minimum matchings.14

Theorem 5 gives a representation for Seller-Markets via solitary-minimum matchings. We exploit

this fact in designing the Market Procedure as well as in getting other essential results. The recursive

Seller-Market Algorithm in Appendix D, for example, involves a judicious selection of successive

solitary-minimum matchings along the Procedure Path. In particular, it is on the basis of Theorem

5 that we are able to specify the Market Procedure at a basic level and - a separate matter - prove

that it converges in a bounded number of steps. As another example, our results on semistable

allocations and pseudostable allocations use the fact that a balanced aspiration that is not a stable

allocation admits a solitary-null matching.

2 Model and Basic Definitions

A pairing game is a triplet (N, r, f) where N is a finite set of players, the vector r = (ri) gives the

stand alone utilities of players, and the array f = (fij) consists of partnership functions for pairs of

players : fij(uj) is the utility ui which i achieves as partner of j when j achieves the utility uj. In

particular

fij = f−1ji .

We assume fij are continuous decreasing functions and fij(rj) < ∞. In the special class of TU or

quasilinear games, ui = fij(uj) = cij − uj and cij = cji.

14Active-minimum matchings are essentially maximum-cardinality matchings and our work is closely related to

the Gallai-Edmonds Decomposition Theorem (1963,1964,1965) although we nowhere use it explicitly. This Theorem

says that, in any graph, players partition into three types - let us say, “independent”, “central”, “substitutable” -

such that (i) every maximum-cardinality matching pairs an independent player with an independent player, a central

player with a substitutable player, and leaves unmatched only a subset of the substitutable players, and that (ii) each

unmatched player resides in an odd-cycle defined with respect to the matching. An odd-cycle may be a singleton.

(In the Gallai Edmonds Theorem there is no distinction of active vs nonactive players : A solitary player is an active

singleton player.) We do not know whether singleton-minimum matchings have been utilized.
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Figure 1: Partnership Functions

2.1 Stable Allocations

A payoff is a vector u ∈ RN that assigns a utility to each player. A pair ij is said to block a payoff

u if there exists (u′i, u
′
j) > (ui, uj) satisfying u′i = fij(u

′
j). A payoff is stable if it cannot be blocked

by any pair. We throughout restrict attention to individually rational payoffs u ≥ r.

A matching is a set of pairs where each player is in at most one pair. Given a matching µ, a

payoff u ≥ r is realizable by µ if

ui = fij(uj) for ij ∈ µ

and ui = ri for i unmatched. An allocation is a payoff that is realizable by some matching. We

also give an allocation u in the form (u, µ) when u is realizable by µ. A stable allocation is a stable

payoff that is an allocation.

An aspiration is a stable payoff u that is individually feasible in the sense that ui = ri or

ui = fij(uj) for some j for every i. An aspiration is equivalently a payoff u where ui is

max

{
ri,max

j
fij(uj)

}
,

namely, the maximum-utility that player i can achieve, through some partnership or by standing

alone, given all the other maximum-utilities.15

Remark 1 The aspiration utility of a player may be seen as her individually feasible price for

entering into partnership. A pairing game then is equivalently a pairing market where a competitive

15One can construct an aspiration in |N | simple steps : Order the players in any way and let Nk be the

top k players in that order. Let u1 be the stand alone utility r1 of the first player and step by step let

uk = max {rk,maxj∈Nk
fij(uj)} for the remaining players.
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equilibrium allocation is a list of prices or an aspiration that is realizable. Thus stable allocation,

competitive equilibrium allocation and realizable aspiration are equivalent.

We let r = 0 with no loss of generality and regard (N, f) as describing a pairing game or market

fixed in the rest of the paper.

2.2 Demand at Aspirations and Seller-Markets

Let u be an aspiration. Define Di(u) = {j|ui = fij(uj)}. We say i demands j ∈ Di(u) and call

Di(u) the demand set of i. The set of all pairs ij who demand each other, D(u), is the demand

graph. For S ⊂ N , DS(u) = {ij ∈ D(u)|i ∈ S}.
A matching

µ ⊂ D(u)

is said to be demand-compatible or a matching at u. A player set S ⊂ N is matchable into T ⊂ N

if there is a demand-compatible matching µ such that, for every i ∈ S, there is a pair ij ∈ µ with

j ∈ T .

A player i is active if ui > 0 and nonactive if ui = 0. Note that u is realizable - hence, a stable

allocation - if and only if the set of all active players is matchable into N .

We call a pair of player sets (B, S) a submarket at u if

(i) B consists of active players,

(ii) the demand set of every B-player is in S, and

(iii) S is matchable into B.

By (iii), the excess |B| − |S| is nonnegative.

Our interest is in bipartite submarkets (B, S) where B ∩ S is empty.16 We refer to B-players

and S-players as buyers and sellers respectively.

Definition 1 A seller-market at u is a bipartite submarket with positive excess and a balanced-

market is a bipartite submarket with zero excess.

If there is a seller-market at u, we say that u has a seller-market or that u is an aspiration with

a seller-market. It is clear that if u has a seller-market then u is not a stable allocation. As we will

show, on the other hand, a seller-market at u points the way to an aspiration with no seller-market.

Let us consider the three-player games to illustrate our basic definitions :

16Note that a bipartite submarket is not exactly a “two-sided buyers-and-sellers” market because a seller may

demand a seller.
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Example 1 Let N = {1,2,3}. Consider the TU games where fij(uj) = cij−uj and say cij = 1 for

every i, j. Take any aspiration u = (u1, u2, u3). There are two cases. Case 1: ui = 1/2 for every i.

Then Di(u) = N−i for every i and there is no submarket, in particular, N is not matchable into N .

Case 2: wlog u1 = min {u1, u2, u3} and u1 < 1/2. Then u2 = u3 > 1/2, D1(u) = {2,3} , D2(u) =

D3(u) = {1} and u has the seller-market (B = {2,3} , S = {1}). No stable allocation exists.

In general wlog c12 = 1, c13 ≤ 1, c23 ≤ 1. It is straightforward to show that, when player 3 is

”small” in the sense that c13 + c23 ≤ 1, there are aspirations where player 3 is nonactive and any

such aspiration is a stable allocation. When c13+c23 > 1, on the other hand, (Case 1) Di(u) = N−i
for every i at the aspiration u = (u1, u2, u3) = 1/2(1 + c13− c23, 1− c13 + c23,−1 + c13 + c23), (Case

2) every aspiration u′ 6= u has a seller market, therefore no stable allocation exists. The same goes

for NTU three-player games as well.

2.3 An Extension : Half-Partnerships and Semistable Allocations

Stable or competitive equilibrium allocations do not necessarily exist as in Example 1. Here we give

an extension of our model where they exist and are equivalent.

The extension is in the notion of an allocation or realizability : We allow a player to have two

half-partners as an alternative to one full-partner, understanding that half-partnership is reciprocal,

namely, a player i is half-partner to j if and only if j is half-partner to i. We actually assume that a

pair of players i, j can achieve the “half-partnership utilities” (vij, vji) = (hij(vji), hji(vii)) through

the “half-partnership functions” hij that satisfy

hij(z) = fij(2z)/2 for all z

(constant-returns-to-scale) and that the utility of a player with two half-partners is the sum of

her half-partnership utilities (separability.) Under these assumptions, when |Di(u)| ≥ 2, a player

i is indifferent between any player in Di(u) as a full-partner and any two players in Di(u) as

half-partners.

We will show that if there is no stable allocation then there is a “stable” allocation where every

player has one full-partner, two half-partners or no partner. In three-player games for instance,

when there is no stable allocation, there is an aspiration where Di(u) = N − i for each player i, and

each player fulfils her demand by having the other two players as half-partners.

Formally, a half-matching χ is a set of pairs where each player in χ belongs to two pairs, in

other words, has two distinct half-partners. Let us note that any half-matching is a disjoint union

of cycles where each half-partnerhip in a cycle shares one player with each of its two neighbors in

the cycle. A semi-matching is a pair (µ, χ) where µ is a matching, χ is a nonempty half-matching

and µ, χ have no player in common.
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A payoff u ≥ r is realizable by a semi-matching (µ, χ) if there is an array (vij) of half-partnership

utilities such that

ui = fij(uj) for ij ∈ µ,

ui = hij(vji) + hij′(vj′i) for ij, ij′ ∈ χ,

and ui = 0 otherwise. An allocation now is a payoff u that is realizable by a matching or by a

semi-matching.

Definition 2 We call a stable payoff semistable if it is realizable by a semi-matching but not

realizable by a matching.

Let us note that a semistable allocation u is a competitive equilibrium allocation where ui is the

price of player i for full-partnership and ui/2 for half-partnership.

Remark 2 By our definition, a matching is not a semi-matching and a stable allocation not a

semistable allocation. On the other hand, a payoff may be realizable both by a matching and by

a semi-matching : For example, in a four-player game with N = {1, 2, 3, 4} and an aspiration u

where Di(u) = {(i− 1) mod N, (i+ 1) mod N}, u is realizable by the half-matching {12, 23, 34, 41}
- a cycle of even cardinality, namely, an even-cycle - as well as by the matching {12, 34}. In general,

if u is an aspiration that is realizable by a semi-matching (µ, χ) and η is any even-cycle in χ, then

there is a demand-compatible matching ν that covers the η-players, so that u is realizable by the

semi-matching (µ ∪ ν, χ − η). In particular, a semistable allocation is always realizable by a semi-

matching that contains odd-cycles only. In Section 4, we make use of ”essential” semi-matchings

that contain a minimum number of odd-cycles.

3 Existence of Stable and Semistable Allocations : The

Equilibrium Set

We call an aspiration that has no seller-market a balanced aspiration. Our first theorem says that

there always exists a balanced aspiration. Let U be the set of all balanced aspirations.

Theorem 1 U is nonempty.

The proof of this result is of a constructive nature, based on the Direction Lemma which says

that, an aspiration with a bipartite submarket (B, S) can be altered to an aspiration with higher

S-utilities and lower B-utilities at which (B, S) is still a bipartite submarket.
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We state here a key lemma that is the analog of the Decomposition Lemma in the two-sided

matching literature. For any two aspirations u, u′, consider the disjoint player sets

N+
uu′ = {i|ui > u′i}, N−uu′ = {i|ui < u′i}.

Note N+
u′u = N−uu′ .

Lemma 1 (N+
uu′ , N

−
uu′) is a balanced-market at u for every u, u′ ∈ U .

Our second main result says that a balanced aspiration is a stable allocation or a semistable

allocation. More precisely :

Theorem 2 U is the set of all stable allocations or the set of all semistable allocations.

We call a matching at an aspiration active-minimum if the number of active players it leaves

unmatched is minimum among all matchings at that aspiration. The underlying fact behind Theo-

rem 2 is that, at any balanced aspiration, there is an active-minimum matching with the following

odd-cycle property : every active unmatched player i belongs to a distinct cycle - with at least

three players - in which every player demands her two neighbors and every player other than i is

matched to a neighbor. So any balanced aspiration that is not realizable by a matching is realizable

by a semi-matching. The proof then follows from the fact (based on Lemma 1) that if a balanced

aspiration is not realizable by a matching then no balanced aspiration is.

Let us recall that aspiration utilities can be seen as prices and stable or semistable allocations as

competitive equilibrium allocations. We call U the Equilibrium Set. In the next section we consider

the structural properties of U . Below we give a sufficient condition for the existence of a stable

allocation.

Players i and i′ are of the same type if

fij = fi′j

for all j other than i, i′.17

Proposition 1 U is the set of all stable allocations if there are an even number of players in each

type.

17This condition allows fii′ to be any partnership function for i, i′ of the same type. If there are more than two

players in their type, however, it is easy to show that fii′ is neccessarily “symmetric” with respect to equal utility

realization.
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Our demonstration is based on the fact that, when there are an even number of players in each

type, a balanced aspiration cannot admit any odd-cycle of half-partnerships, therefore, cannot be

a semistable allocation.18

Remark 3 It is easily seen that, if there is an even number of players in each type, then there

is a stable allocation where same-type players have same-utility. This is not true at every stable

allocation, though, as is evident upon considering a two-player game. If there is an even number

but more than two players in each type, however, it is easily shown that same-type players have

same-utility at every stable allocation.

4 Structural Properties of the Equilibrium Set

In this section we look at situations where the Equilibrium Set U is not a singleton and consider

its structural properties. As pointed out in Example 1, U is a singleton for three-player games that

admit a semistable allocation, and as another example, U is a singleton for four-player games that

admit a stable allocation where each player demands each of the other players. In general though

U is not a singleton. Our first result below shows that the structural properties of U do not depend

on whether U consists of stable or semistable allocations.

4.1 The Variable Set and Stable Bipartitions : TU vs NTU

Given a half-matching χ, let o(χ) be the number of cycles in χ. Let u be a semistable allocation

and (u, µ, χ) a realization of u. We say that (u, µ, χ) is essential if o(χ) ≤ o(χ′) for every realization

(u, µ′, χ′) of u.

Let us call a player in X = {i ∈ N |ui = u′i for all u, u′ ∈ U} a constant player and a player in

Y = N −X a nonconstant player. We show below that any player who has a half-partner at some

essential semistable allocation is necessarily a constant player, more generally, that a nonconstant

player is always full-partner with a nonconstant player.

For any matching µ and player set S, let µ(S) = {j|ij ∈ µ, i ∈ S}.

Proposition 2 µ(Y ) = Y at every stable allocation (u, µ) and µ(Y ) = Y at every essential

semistable allocation (u, µ, χ).

18Proposition 1 can be gotten in two other ways : One involves the fact that the stable allocations of a two-fold

pairing market coincide with the stable allocations of the two-sided market which has one copy of each type. The

other way is to set up a similar equivalence in our extended model with half-partnerships.
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Let us call V = {uY |u ∈ U} - the projection of U to Y - the Variable Equilibrium Set. Proposi-

tion 2 says that payoffs in V are realizable (only) by matchings in Y × Y .19,20 For further insight,

we ask whether Y partitions into two sides anywhere in V :

We say that (i) (Y1, Y2) is a stable bipartition at v ∈ V if Y = Y1 ∪ Y2, Y1 ∩ Y2 = ∅ and

µ(Y1) = Y2

for every matching µ by which v is realized, and that (ii) (Y1, Y2) is a stable bipartition over V if

(Y1, Y2) is a stable partition at every v in V .

Our finding is that, while a stable bipartition exists in general at every v ∈ V (see Lemma 11),

a stable partition over V exists for TU but not necessarily for NTU games.

Proposition 3 Let (N, f) be a TU game. (i) If some v ∈ V is realizable by a matching µ, then

every v ∈ V is realizable by µ. (ii) There is a stable bipartition over V .

This result says that, on the TU domain, V has essentially the same properties as the Equilibrium

Set of a TU assignment game. In particular, with respect to a stable partition (Y1, Y2) of the

nonconstant player set Y ,21 V has a lattice structure and a Y1-optimal allocation that is Y2-pessimal.

Moreover, with reference to Schwarz and Yenmez (2011), we can conclude that V - therefore U -

has a unique median allocation.

Below is a heterogenously linear game where there is no stable bipartition over V = U .

Example 2 There are six players in N = {1,2,3,4,5,6}. The partnership functions are

ui = fij(uj) = cij − qijuj

where the pair (cij, qij) is equal to

(15, 2) for ij ∈ {12,23,31} and (15/2, 1/2) for ij ∈ {21,32,13}
19Recall the players labelled independent in the Gallai-Edmonds Decomposition Theorem (Footnote 14.) Every

nonconstant player is an independent player except possibly at u on the boundary of U .
20It is worthwhile to add the following observation : Consider the game restricted to constant players, i.e., (X, f).

It is easily seen that the Equilibrium Set of (X, f) is identical to UX = {uX |u ∈ U}. The Equilibrium Set of (Y, f)

on the other hand is in general a superset of UY = V . For example, when N = {1,2,3} and the worth of a pair is

3 for {1,2} and 1 otherwise, U = {x, 3 − x, 0} where 1 ≤ x ≤ 2. Y = {1,2} and the Equilibrium set of (Y, f) is

{x, 3− x} where 0 ≤ x ≤ 3.
21It is clear that there is a unique stable bipartition over V unless V is a ”product” : In general, let V 1× ...× V K

be the factorization of V where Y 1∪ ...∪Y K is the finest partition of Y such that (i) V k ⊂ RY k

and (ii) if ij ∈ DY (u)

for some u ∈ U then i, j ∈ Y k for some k. Then there is a unique stable bipartition over each V k.
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(30, 10) for ij ∈ {46,65,54} and (3, 1/10) for ij ∈ {64,56,45}

(10, 1) for ij ∈ {14,41,25,52,36,63}

and (0, 0) otherwise. It is straightforward to check that the demand graphs at the three allocations

u = [7, 9, 3, 3, 2, 10], u′ = [3, 7, 9, 10, 3, 2], u′′ = [9, 3, 7, 2, 10, 3]

are

D(u) = {(14),(23),(56)},D(u′) = {(13),(25), (46)},D(u′′) = {(12), (45), (36)}

respectively (see Figure 2) and that each allocation is realizable by a unique matching. It is easily

seen that N has no partition to two sides such that each of these matchings matches one side to the

other.

1 2 3

4 5 6

(a) D(u)

1 2 3

4 5 6

(b) D(u′)

1 2 3

4 5 6

(c) D(u′′)

Figure 2: Example 2

4.2 Median Property and Virtual Convexity

Let K =
{
uk
}

be any finite collection of payoff vectors. Let m = |K| /2 for |K| even and m =

(|K| + 1)/2 for |K| odd. For every player i, let Ki be any nondecreasing ordering of
{
uki
}

. Let u∗i

be the mth payoff in Ki, namely, the median of Ki for |K| odd and the lower median of Ki for |K|
even. Let u∗∗i = u∗i for |K| odd and u∗∗i be the m+ 1st payoff or upper median of Ki for |K| even.

We define

med {Ki} = [u∗i , u
∗∗
i ]

and say that U has the median property if, for every finite collection K =
{
uk
}

with uk ∈ U , there

is a u ∈ U with ui ∈ med {Ki} for every i.

Proposition 4 U has the median property.
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Proposition 4 is a generalization to pairing games of the median property Schwarz and Yenmez

(2011) have shown for TU assignment games and of the median property Eriksson and Karlander

(2001) have shown for TU pairing games when |K| = 3.22

Clearly U is a closed bounded set. Our next result says that U is akin to a convex set. Say that

a vector z is between two vectors z, z′ if

zi ∈ (min {zi, z′i} ,max {zi, z′i})

in case zi 6= z′i and zi = zi = z′i otherwise. Call any set Z in RN virtually convex if for every z, z′

in Z there is a z ∈ Z that is between z, z′.

Proposition 5 U is a virtually convex set.

It can be shown that a virtually convex set is equivalently a set Z such that (i) any pair z, z′ in

Z can be connected by a continuous “monotone” path in Z or (ii) any z not in Z can be separated

from Z by an orthant. See Alkan and Gale (1990). It is a straightforward conclusion that U is a

convex polyhedral set when the partnership functions fij are linear.

5 Pseudostable Allocations

In this section we consider what may happen in a pairing game when no stable allocation exists

and half-partnerships are not viable.

This question has been taken up in the context of the roommate problem by Tan (1990) who of-

fered maximum stable matchings as a solution concept, namely, the matchings that leave a minimum

number of players unmatched and are stable when the unmatched players are excluded.23 Below we

first introduce the analogous concept of maximum-stable allocations and show that every balanced

aspiration generates a set of maximum-stable allocations. There are, however, non-balanced aspi-

rations that generate maximum-stable allocations as well. Our primary interest in this section is to

introduce pseudostable allocations - a further refinement of maximum-stable allocations - as a solu-

tion concept for pairing games. Our main result (Theorem 3) shows that pseudostable allocations

have a bargaining-set stability property.

22For even collections K, Schwarz and Yenmez (2011) show the stronger result that U contains the upper median

and the lower median of K.
23See Inarra, Larrea and Molis (2008) for another soultion concept.
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5.1 Maximum-Stable Allocations and Balanced-Aspiration-Allocations

For any payoff z and T ⊂ N , let zT = (zi)i∈T . For any allocation (v, µ) and T ⊇ µ(N), consider the

“restricted” game (T, f) and note that (vT , µ) is an allocation for (T, f); in particular vi = 0 for i

in T − µ(N).

We say that an allocation (v, µ) is restricted-stable if there is a player set T ⊇ µ(N) such that

(vT , µ) is a stable allocation in (T, f). Given a restricted-stable allocation (v, µ), let T ∗ be the

largest T ⊇ µ(N) such that (vT , µ) is stable in (T, f) and call the players in N − T ∗ the outcasts of

(v, µ).

Definition 3 A maximum-stable allocation is a restricted-stable allocation with a minimum number

of outcasts.

For any payoff z and matching µ, we denote zµ the payoff where

zµi = zi for i ∈ µ(N) and zµi = 0 for i /∈ µ(N).

Definition 4 An aspiration-allocation is an allocation (v, µ) such that v = uµ for an aspiration u.

A straighforward observation, which we state without proof, is that an allocation is restricted-

stable if and only if it is an aspiration-allocation. We call an aspiration-allocation uµ balanced if u

is balanced and maximum if µ is active-minimum.

Proposition 6 Every maximum balanced-aspiration-allocation is maximum-stable.

Remark 4 When no stable allocation exists, there exist - a plethora of - maximum-stable allocations

that are not balanced-aspiration-allocations : This may be seen by considering any aspiration u =

(u1, u2, u3) in a three-player game where each player is active and demand is {12, 13}. Clearly

(u1, u2, 0) is a maximum-stable allocation and u is not balanced. This shows that maximum-stability

may have less appeal as a solution concept for pairing games than for roommate problems.

5.2 Pseudostable Allocations and Bargaining Set Stability

Recall that a three-player pairing game with no stable allocation has a unique balanced aspiration

u = (u1, u2, u3) and so - the null allocation (0, 0, 0) aside - the balanced-aspiration-allocations

(u1, u2, 0), (u1, 0, u3), (0, u2, u3).

Binmore (1985) showed that (u1, u2, u3) is the only mutually consistent endogenous outside-option

vector - when any two players may bargain and the outside player is a potential partner in case
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they cannot agree - and argued that the three allocations above is the “stable set” of the game.24

Another argument to support this view is the following two-step farsighted stability or Bargaining

Set argument : Each of the three allocations would survive - because a prudent player would not

be lured into forming a blocking pair with the odd-man-out since he could in turn become the

odd-man-out - and every other allocation would be blocked even under prudence.

Here we consider whether there is a natural generalization of the “stable set” above to pairing

games with any number of players. We give a partial answer. We show that there is a particular

subset of maximum balanced-aspiration-allocations - that we call pseudostable - which is always in

an “exclusive” Bargaining Set of the game.

Let us recall that, at any balanced aspiration, there is a particular active-minimum matching

with the following odd-cycle property : Each active unmatched player i belongs to a distinct cycle

- with at least three players - in which every player demands her two neighbors and every player

other than i is matched to a neighbor ; namely, no active unmatched player is “solitary”. We call

such a matching solitary-null.

Definition 5 We call a balanced-aspiration-allocation uµ pseudostable if µ is solitary-null.

Remark 5 Let u be any balanced aspiration. Recall that the set of maximum-stable allocations

generated by u is BAA(u) = {uµ|µ active-minimum at u}. The set of pseudostable allocations

generated by u is

PSA(u) = {uµ|µ solitary-null} ⊂ {uµ|µ active-minimum} = BAA(u).

Not surprisingly, pseudostable and semistable allocations are closely related : Let (u, µ, χ) be any

essential semistable allocation at u and H ⊂ N be the players in the half-matching χ. As previously

noted, H partitions into k odd-cycles Ci each associated with an active unmatched player i. In fact,

µ′ is a solitary-null matching at u iff

µ′ = µ ∪ µ1... ∪ µk

where µi is a matching in Ci that leaves any one player in Ci unmatched. So there is a solitary-null

matching µ′ at u for every selection of k players from C1 × ...×Ck. Associated with each essential

semistable allocation (u, µ, χ) then, we obtain a set of |C1| × ... × |Ck| solitary-null matchings or

pseudostable allocations. PSA(u) is their union over all the essential semistable allocations at u.

24Binmore also showed that each allocation in the “stable set” is the unique subgame perfect equilibrium of a

sequential bargaining game. Bennett (1997) has shown for a general class of cooperative games that there always

exist “consistent endogenous outside-options”, that they are aspirations, and that a large set of aspirations turn out

as the SPE outcomes of sequential bargaining games.
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Having defined pseudostable allocations, let us define a Bargaining Set. There are several

definitions and variants. We employ the Demand Bargaining Set proposed by Morelli and Montero

(2003) which is a refinement of the well-known Bargaining Set proposed by Zhou (1994)). The

latter has the following definition :

Let υ be an allocation. An objection against υ is a pair (T, υ′) where T ⊂ N and υ′ is an

allocation for the restricted game (T, f) such that

υ′i > υi for i ∈ T .

A counterobjection to (T, υ′) is a pair (Q, υ′′) where Q ⊂ N and υ′′ is an allocation for the restricted

game (Q, f) such that

Q− T 6= ∅, T −Q 6= ∅, T ∩Q 6= ∅,

υ′′i ≥ υi for i ∈ Q− T and υ′′i ≥ υ′i for i ∈ T ∩Q.

An objection against υ is justified if there is no counterobjection to it. An allocation is in the Zhou

Bargaining Set Z if there is no justified objection against it.

It is well known that a Bargaining Set - Z included - is typically “large” and not sufficiently

exclusive in describing bargaining outcomes. Our main reason in employing the Demand Bargaining

Set D is that D is more exclusive than Z. We give the definition of D by stating the differences

it has with the definition of Z.25 There are four differences :

(i) the allocation υ is an aspiration-allocation, let υ = uµ,26

(ii) υ′′i = ui for i ∈ Q,

(iii) υ′′i > υ′i for i ∈ T ∩Q,

(iv) Q− T or T −Q may be empty.27

Remark 6 There will in general be many allocations that belong to Z but not to D. This is because

D admits aspiration-allocations only and because - primarily by condition (ii) - counterobjection in

D is highly restricted than in Z.

In Appendix C we give a characterization for the Demand Bargaining Set from which follows

our main result :

25The definition of D in Morelli and Montero (2003) is for TU games.
26Morelli and Montero (2003) allow more general allocations but then show that the Demand Bargaining Set

consists of aspiration-allocations.
27Note that if condition (iv) were excluded then D would be a subset of Z. We show in Appendix C (Lemma 12)

that condition (iv) is in fact vacuous and D is a subset of Z. Morelli and Montero (2003) show the same for TU

games.
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Theorem 3 Pseudostable allocations are in the Demand Bargaining Set.

Theorem 3 says that pseudostable allocations are “stable” from an “exclusive” Bargaining Set

perspective. By the same perspective, on the other hand, there may be other “stable” allocations.

Examples in Appendix C show that these may in fact be various not fitting into a classification at

hand. The Demand Bargaining Set may actually contain a non-balanced aspiration-allocation even

when there is a competitive equilibrium at some other aspiration.28 In the next section, we give a

coordinated Market Procedure that always arrives at a balanced aspiration.

6 Market Procedure

Here we give a Procedure for finding a balanced aspiration. For simplicity, we restrict our presen-

tation to heterogenously linear partnership functions that have the form fij(uj) = cij− qijuj.29 The

Procedure starts from any aspiration, generates a piecewise linear path of aspirations, and stops in

a bounded number of steps at a balanced aspiration.

Here is a preview : The Procedure is coordinated by a Center that displays an aspiration at each

moment and players register their demand sets at that aspiration. (Since demand is reciprocal, i

registers j if and only if j registers i.) The Center observes all demand and stops if there is no seller-

market. Otherwise, the Center identifies a set of players who constitute a seller-market and alters

the aspiration continously along a suitable direction. The direction is reset when the seller-market

changes.

The Center can actually choose any seller-market. In the Procedure we present here, it is the

“grand” Seller-Market - the union of all “unitary” seller-markets - that is chosen at each aspiration.

The Center is able to identify the Seller-Market continuously by a simple recursive algorithm that

we spell out in the subsection below. This is based on the characterization of Seller-Markets via

“solitary-minimum” matchings that we give in Theorem 5 in Appendix A.

There is a single criterion for admitting a direction d at any aspiration u on the path, namely the

requirement that the Seller-Market at u+λd be identical to the Seller-Market at u for all sufficiently

small λ > 0. When the Seller-Market changes at an aspiration and d is no longer “Seller-Market-

Preserving” (definition below), the Center needs to find a new Seller-Market-Preserving direction.

On the quasilinear domain, the direction that has the entry +1 for every Seller, −1 for every Buyer

and 0 for all other players ensures this. On the heterogeneously linear domain, the Center determines

28This may be compared with Klijn and Masso (2003) who show that the core in the discrete two-sided case is

essentially equivalent to the Zhou Bargaining Set.
29The extension to games with piecewise linear partnership functions can be carried by adaptation from Alkan

(1992,1997).
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differential rates by interacting with the Sellers and Buyers about their “marginal” demand sets.

This is described in the Direction Procedure below.

To conclude the preview, there is actually one other situation where the Center has to reset

the direction. This occurs when the path arrives at an aspiration where the Seller-Market has not

changed but would change for any continuation along the current direction. Such a situation may

arise only when a new demand is registered by a Buyer Seller pair. This does not occur on the

quasilinear domain.

Formally, let u be an aspiration and d be a feasible direction (namely, a vector in RN such that

u + λd is an aspiration for λ > 0 sufficiently small.) By linearity of the partnership functions, the

demand graph

D(u+ λd) = {ij|j ∈ Di(u+ λd)}

is identical for all sufficiently small λ > 0. We denote this graph

D+(u, d)

and call it the outgoing directional demand graph at u in the direction d. We will say that d is

Seller-Market-Preserving at u if the Seller-Market at u is identical to the Seller-Market in D+(u, d).

Similarly D(u− λd) = {ij|j ∈ Di(u− λd)} is identical for all sufficiently small λ > 0 which we

denote

D−(u, d)

and call the incoming directional demand graph. Likewise the set of active players A(u − λd) is

identical for all sufficiently small λ > 0 which we denote

A−(u, d).

Clearly, demand changes at u if and only if

D(u) 6= D−(u, d) or A(u) 6= A−(u, d).

It is important to note this may happen finitely often and when it does

D(u) ⊃ D−(u, d),

A(u) ⊂ A−(u, d).

Market Procedure
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Step 0 : Take any aspiration u = u0.

Step t : End if there is no seller-market at ut. Otherwise, find a Seller-Market-

Preserving direction dt by the Direction Procedure below. Then, display the aspiration

ut + λdt

as λ increases above 0 and let the Buyers in the Seller-Market register the changes in

their demand sets or indicate whether they become nonactive. Stop at the smallest

λ = λ∗ such that dt is not Seller-Market-Preserving at ut + λ∗dt. Set

ut+1 = ut + λ∗dt.

Let us suppress reference to ut and write D = D(ut),D+(e) = D+(ut, e). Let (B∗, S∗) be the

Seller-Market at ut. The Procedure below utilizes the information

f ′ij = −qij.

The Direction Procedure

Step 0 : Set the initial direction to be the vector e0 where e0i is equal to 1 if i ∈ S∗,
minj εDi{qij} if i ∈ B∗, and 0 otherwise.

Step k : End if the Seller-Market (B∗, S∗) in the demand graph D is the Seller-

Market in the directional demand graph D+
B∗(e

k) and set dt = ek. Otherwise, find the

Seller Set Sk in D+
B∗(e

k) and set eki (δ) equal to

(1 + δ)eki for iεSk,

eki for iε(S∗ − Sk),

min
j εDi

{qijekj} for iεB∗.

Then alter the direction ek(δ) by increasing δ continuously above 0 to δ∗ where a new

pair joins D+
B∗(e

k(δ)). Set ek+1 = ek(δ∗).

The Direction Procedure30 finds a Seller-Market preserving direction at ut : This can be seen in

the proof of Lemma 7 in Appendix B.

30Has been adapted from Alkan (1992,1997) where it is given for arbitrary piecewise linear partnership functions.

On the present domain, it is a “multiplicative” analog of the well-known DGS auction (1986) and has identical

convergence properties.
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Theorem 4 The Market Procedure reaches a balanced aspiration in a bounded number of steps.

It is immediate from the stopping rule that the Market Procedure ends at a balanced aspiration.

We state below the main reason why it converges in a bounded31 number of steps : Three attributes

of the Seller-Market - the excess in the Seller-Market, the number of Sellers, the Seller-Market itself

- are lexicographically monotone along the Procedure Path.

Lemma 2 Let (ut) be any sequence of aspirations generated by the Market Procedure, (Bt, St) be

the Seller-Market at ut and at = |Bt| − |St| , bt = |St|. Then, for all t,

at+1 ≤ at,

and if at+1 = at then

bt+1 ≥ bt,

moreover if at+1 = at and bt+1 = bt then

(Bt+1, St+1) = (Bt, St).

We prove Lemma 2 and Theorem 4 in Appendix D.

Remark 7 The Market Procedure is based on identifying the Seller-Market at aspirations on the

Procedure Path where demand changes. It would be computationally demanding if this had to done

from scratch each time. This is not the case. In Appendix D, we give a simple Algorithm that gen-

erates successive solitary-minimum matchings and solitary-player sets - recursively - at aspirations

where demand changes. By Theorem 5, then, the Seller-Market is identifiable recursively. In result,

the Algorithm and the Direction Procedure together specify a “dynamic” Market Procedure that is

computationally efficacious.

7 Concluding Remarks

We have given a comprehensive analysis for pairing games or markets which are the non-two-sided

and NTU generalization of assignment games. The complexity that these two aspects bring remain

separate : In fact the Direction Lemma (Appendix B) captures nearly all that is essential in our

31It can be shown by an argument similar to the one given in Alkan (1992,1997) that, in fact, the number of steps

is polynomially bounded.
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treatment of the NTU aspect32 and a substantial part of our work would have to be carried in nearly

the same way if we had stayed on the TU domain - e.g, our characterization of the Seller-Market and

its identification on the Procedure Path or our Bargaining Set analysis. Also, there are significant

differences between what results hold on the TU vs NTU domains but these are not so surprising.

The sharpest difference we have pointed out is the fact that the Equilibrium Set does not have the

stable bipartition property on the NTU domain that it has on the TU domain.

We have looked at pairing games from both a coalitional game and a market equilibrium per-

spective. In our context essential blocking coalitions are pairs. Relatedly, stable and competitive

equilibrium allocations coincide when they exist. In fact, in our first solution concept extension

- half-partnerships and semistable allocations - stable and competitive equilibrium allocations do

coincide.

In the second extension - Bargaining Set stability and pseudostable allocations - coalitions of

all sizes may be essential, coincidence breaks down and “market forces” may be ineffective. The

exclusive Demand Bargaining Set (Morelli and Montero 2003) we have employed here is in a way

market-based because it admits aspiration-allocations only and aspirations are market-prices.33

Still, as we have shown, it may contain allocations ”distant” to market equilibrium. It would be of

interest what refinement of the Demand Bargaining Set would still contain pseudostable allocations

or what additional criteria characterize them. Pairing games are surely a relatively tractable class

of coalitional games. Our work here shows that they are at the same time an interesting class for

reviewing the various Bargaining Set solution concepts.

Finally a remark about a limiting case of our model : The partnership functions in our model do

not allow “flats” that arise under budget constraints for example. The broader model that allows

for flats can be uniformly approximated by our model and existence results would carry over. On

the other hand, some of our results on the properties of the Equilibrium Set do not and designing

a Market procedure appears more involved.34

32 We have adapted the Direction Lemma from our earlier work on the NTU assignment game where it has

sometimes been referred to as the Perturbation Lemma : Alkan (1989,1992,1997),, Alkan and Gale (1990), Alkan,

Demange and Gale (1991). There are only a few other papers on the NTU assignment game : Moldovanu (1990),

Kucuksenel (2011).
33Bennett (1983,1997) and Bennett and Zame (1988) have elaborated on the market aspect of aspirations in their

work on general coalitional games.
34Alkan, Anbarci and Sarpça (2012) is an exercise in this domain.
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A Mathematical Section

Let (N, f) be a pairing game and u be any aspiration. In this section we use elementary notions

from graph theory to make some observations about the demand graph D(u). The main tool is a

“maximum-cardinality” matching that we call active-minimum. Our main objective is to define a

unique Seller-Market at u and to identify it via certain active-minimum matchings.

A.1 Definition : the Seller-Market is the Union of all Unitary Markets

Definition 6 A unitary market at u is a seller-market (B, S) where |B| − |S| = 1 and S is

matchable into B − i for every i ∈ B.

It is in general not true that the union of two seller-markets is a seller-market : For example, sup-

pose D(u) = {13, 23, 34, 45} among five active players. Both ({1, 2, 4} , {3, 5}) and ({1, 2, 5} , {3, 4})
are seller-markets but not their union ({1, 2, 4, 5} , {3, 4, 5}). Note that each of the two seller-markets

here contains the unitary seller-market ({1, 2} , {3}).
The importance of unitary markets is that union of unitary markets is a seller-market. We omit

the straightforward proof. We call the union of all unitary markets the Seller-Market at u.

A.2 Active-Minimum Matchings and µi−Markets

Let µ be a matching at u. A player i is active-unmatched if i is active at u and not matched by µ.

Let A(µ) be the set of active-unmatched players at µ.

Let i ∈ A(µ). The following are standard definitions : We say j is µ-reachable from i if there is

a sequence of distinct players

i0, i1, ..., in−1; j1, ..., jn

where i0 = i, jn = j 6= i, ik−1jk ∈ D(u), and

ikjk ∈ µ,

for every k ≤ n− 1. Let i0, i1, ..., in−1; j1, ..., jn be such a sequence from i = i0. If jn is unmatched,

then µ can be augmented to the matching that contains the pairs ik−1jk - instead of the pairs ikjk

- and matches at least one more active player. If jn is matched with a nonactive player, then µ can

be alternated to the matching that contains the pairs ik−1jk - instead of the pairs ikjk and jnµ(jn)

- and matches one more active player.
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Definition 7 A matching µ is active-minimum if |A(µ)| ≤ |A(µ′)| for every matching µ′ at u.35,36

Let µ be active-minimum and i ∈ A(µ).

We refer to the sequence i0, i1, ..., in; j1, ..., jn - where i0 = i, jn = j, ik−1jk ∈ D(u), ikjk ∈ µ - as

a µ-sequence from i ; we say it is cyclic or a µi−cycle if

i0in ∈ D(u),

and call it cycle-free if there is no player im such that

imin ∈ D(u).

We say player i is µ−cyclic if there is a µi−cycle.

i0 i1 i2

j1 j2

(a) cycle-free

i0 i1 i2

j1 j2

(b) cyclic

i0 i1 i2

j1 j2

(c) not cycle-free

Figure 3: µ-sequences

Definition 8 Let (I, J) be the pair of player sets where J is the set of all µ-reachable players from

i and I = i ∪ µ(J). We call (I, J) the µ-market from i or the µi-market at u.

Note that, in a µi-market (I, J), I consists of active players for otherwise µ could be alternated

to match an additional active player. Also, by “reachability”, the demand sets of I-players are in

J and µ(J) ⊂ I. Thus a µi-market is a submarket at u. It need not be bipartite.

Example 3 Suppose there are three players all active at u and D(u) = {(1, 3), (2, 3)}. Consider

the matching µ = {2, 3}. The µ-sequence 1, 2; 3 reaches 3 from 1. The µ1-market is (I, J) =

({1, 2} , {3}) and bipartite. Now suppose D(u) = {(1, 2), (1, 3), (2, 3)}. In this case, the µ1-market

is ({1, 2, 3} , {2, 3}) and not bipartite.

35A matching at u has maximum-cardinality if it contains a maximum number of pairs. A characterization

statement for active-minimum matchings, similar to the characterization for maximum cardinality matchings by

Berge (1957), would say : A matching µ is active-minimum if and only if every µ-reachable player from an active-

unmatched player is matched with an active player.
36An active-minimum matching has maximum-cardinality unless it can be augmented to a matching that contains

two additional nonactive players. There is always an active-minimum matching which has maximum-cardinality.
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The following is a straightforward observation.

Lemma 3 A µi-market is bipartite if and only if every µ-sequence from i is cycle-free.

Proof. The “only if” part is clear from Example 3. For the “if” part, note that since µ is active-

minimum, the demand set of every I-player is in J , so it remains to show I ∩ J = ∅. Suppose not :

Then there are two µ-sequences i0, i1, ..., in; j1, ..., jn and i′0, i
′
1, ..., i

′
m; j′1, ..., j

′
m from i0 = i′0 = i and

a smallest index k such that (say)

jk = i′k′

for some 1 ≤ k ≤ n and 1 ≤ k′ ≤ m . Then k 6= 1 for otherwise the µ-sequence i′0, i
′
1, ..., i

′
k′ ; j

′
1, ..., j

′
k′

is cyclic. For k ≥ 2, the µ-sequence i′′0, i
′′
1, .., i

′′
n′′ ; j

′′
1 , ..., j

′′
n′′ where i′′0, i

′′
1, .., i

′′
k′ = i′0, i

′
1, .., i

′
k′ and

j′′1 , ..., j
′′
k′ = j′1, ..., jk′ also i′′k′+1, .., i

′′
n′′ = jk−1, ..., j1 and j′′k′+1, ..., j

′′
n′′ = ik−1, .., i1 is cyclic because

i′′n′′ = j1. Contradiction.

Remark 8 A bipartite µi-market (I, J) is a unitary market : To see this, note first that (I, J) is a

seller market with unit excess, and that, for any i′ ∈ I − i, since µ(i′) is µ-reachable from i, µ can

be alternated to a matching that matches J to I − i′.

Below we introduce a class of active-minimum matchings µ for which µ-markets from solitary

players are bipartite.

A.3 Solitary-Minimum Matchings and Solitary-Player Markets

Let µ be an active-minimum matching. We distinguish between the players in A(µ) according to

whether they are µ-cyclic : We call a µ-cyclic player nonsolitary and a non-µ-cyclic player solitary.

Lemma 4 Let µ, µ′ be any two active-minimum matchings at u. A player who is nonsolitary

(solitary) at µ is either matched or nonsolitary (solitary) at µ′.

Proof. If a player i is nonsolitary at µ, then there is a µ-cycle i0, i1, ..., in; j1, ..., jn from i0 = i.

Let ν be an active-minimum matching where in is unmatched. Suppose i is unmatched at µ′ and

consider the µ′-sequence C = i′0, i
′
1, ..., i

′
m; j′1, ..., j

′
m from i′0 = i with j′k = υ(i′k−1) and maximum

length m. If i′m is matched in ν, say ν(i′m) = j, then either µ′ is not active-minimum (when j is

unmatched in µ′) or m is not maximum length. Therefore, i′m must be unmatched in ν and then

i′m = in (otherwise i′m is ν-reachable from in and so ν is not active-minimum). Hence, C is cyclic

and so i is nonsolitary at µ′.

We now give our main definition : Let Z(µ) denote the set of all solitary players at µ.
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Definition 9 An active-minimum matching µ is solitary-minimum if |Z(µ)| ≤ |Z(µ′)| for every

active-minimum matching µ′ at u. A µi-market is a solitary-player market if i is solitary and µ is

solitary-minimum.

1 3 5

2 4

(a) not solitary-minimum

1 3 5

2 4

(b) solitary-minimum

Figure 4: Active-Minimum Matchings

Lemma 5 A solitary-player market is bipartite.

Proof. Suppose to the contrary that i is a solitary player at µ and the µi-market is not bipartite.

By Lemma 3, there is a µ-sequence i0, i1, ..., in; j1, ..., jn from i0 = i such that

imin ∈ D(u)

for some player im 6= i0. Alternate µ to µ′ which matches i0 but not in. Now in is nonsolitary at µ′.

This is because the µ′-sequence i′0, i
′
1, ..., i

′
n−m; j′1, ..., j

′
n−m from i′0 = in where i′n−m = im is cyclic.

Note that, except for i0 and in, the unmatched players at µ and µ′ are identical, hence by Lemma

4, except i, the solitary players at µ and µ′ are identical. Then µ′ has one less solitary player than

µ. This contradicts the fact that µ is solitary-minimum.

It follows from Remark 8 that a solitary-player market is a unitary market. The converse is not

true : Consider an aspiration u where demand consists of {(1, 4), (2, 4), (3, 4)} among four active

players. Then (B = {1, 2}, S = {4}) is a unitary market but not a solitary-player market at the

solitary-minimum matching µ = {(3, 4)}. Still, the union of all solitary-player markets gives the

union of all unitary markets.

A.4 Main Result : The Seller-Market is the Union of all Solitary-Player

Markets

For any solitary-minimum matching µ, let Sµ be the set of all µ-reachable players from players in

Z(µ) and Bµ = Z(µ) ∪ µ(Sµ). Note that (Bµ, Sµ) is the union of all solitary-player markets at µ.

By Remark 8, (Bµ, Sµ) is a seller-market.
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Theorem 5 Let µ be any solitary-minimum matching at u. The Seller-Market at u is the union

of all solitary-player markets, i.e., (B∗, S∗) = (Bµ, Sµ).

Lemma 6 Let (B, S) be any bipartite submarket and µ be an active-minimum matching at u. Then

there is (i) no unmatched player in S and (ii) no nonsolitary player in B.

Proof. Suppose there is an unmatched player in S. By definition of a submarket, there is a

matching ν that matches S into B. The matching µ′ that agrees with ν for S-players and with

µ for other players matches more active players than µ does. But then µ is not active-minimum.

Contradiction.

Suppose there is a nonsolitary player i ∈ B ∪ S. Then i ∈ B by (i) and there is a µ-cycle

i0, i1, ..., in; j1, ..., jn from i0 = i with j1 ∈ S. But then, by alternation, there is an active-minimum

matching that leaves j1 unmatched. This contradicts (i).

Proof. (Theorem 5) By Lemma 5 and Remark 8, (Bµ, Sµ) ⊂ (B∗, S∗). We complete the proof by

showing that (Bµ, Sµ) contains every unitary seller-market.

Let (B, S) be any unitary seller-market at u, B0 be the set of all B-players unmatched at µ,

S ′ be the set of all µ-reachable players from B0-players and B′ = B0 ∪ µ(S ′). By Lemma 6(ii)

B0 ⊂ Z(µ) so (B′, S ′) ⊂ (Bµ, Sµ). We will show (B, S) = (B′, S ′).

By construction, no B′-player has demand for any player in S−S ′ (since S−S ′ is “unreachable”

from B0). Also µ(B − B′) ⊂ (S − S ′) since µ(S ′) ⊂ B′. Therefore µ matches B − B′ to S − S ′

(otherwise S is not matchable into B.) Then B − B′ and S − S ′ must be empty because (B, S) is

unitary (otherwise S is not matchable into B − i for some i ∈ B −B′.)
The Market Procedure we give in Section 6 is a Seller-Market tracing procedure. We use the

following fact in proving its convergence.

Corollary 1 The excess in the Seller-Market at u is equal to the number of solitary players at any

solitary-minimum matching at u.

We refer to a solitary-minimum matching with no solitary player as a solitary-null matching.

Corollary 2 An aspiration is balanced if and only if it admits a solitary-null matching.

The statement below gives a characterization for solitary-minimum matchings : The “only if”

part follows from the proof of Lemma 5 and the “if” part follows from Theorem 5.

Corollary 3 An active-minimum matching µ is solitary-minimum if and only if all the µ-sequences

from solitary players are cycle-free.37

37Corollary 3 is the counterpart of the characterization for active-minimum matchings in Footnote 35 and would

be used to find a solitary-minimum matching in any demand graph.
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Remark 9 It also follows from Theorem 5 that the Seller-Market is the maximum-excess bipartite

submarket with minimum size. In particular, maximum-excess bipartite submarkets are closed under

intersection hence there is a unique minimum-size maximum-excess bipartite submarket, namely,

the Seller-Market.

B Proofs for Sections 3 and 4

The proof of Theorem 1 uses the key result below. We say (N, f) is piecewise linear if every fij is

piecewise linear.

Recall that a feasible direction at an aspiration u is a nonzero vector d ∈ RN such that u + λd

is an aspiration for all sufficiently small λ > 0. Given a feasible direction d at u, if fij are piecewise

linear, the demand graph D(u + λd) is identical for all sufficiently small λ > 0 which we denote

D+(u, d).

Lemma 7 ( Direction Lemma) Let (N, f) be piecewise linear. If (B, S) is a bipartite submarket at

an aspiration u, then there is a feasible direction d with

di < 0 for i ∈ B,

di > 0 for i ∈ S,

di = 0 for i ∈ N −B ∪ S

such that (B, S) is a bipartite submarket at u+ λd for all sufficiently small λ > 0.

Proof. Let f ′ij denote the right-hand derivative of fij. Take any d ∈ RN such that

di > 0 for i ∈ S,

di = max
j∈Di (u)

{f ′ij(uj)dj} for i ∈ B,

di = 0 for i ∈ N −B ∪ S.

Clearly, d is a feasible direction at u. Let ν be any active-minimum matching in D+
B(u, d). If ν

matches every S-player, then (B, S) is a bipartite submarket at u + λd for all sufficiently small

λ > 0. Therefore, suppose ν does not match every S-player. Let B′ be the set of all unmatched

B-players and S ′ be the set of all S-players which are ν-reachable from B′-players in D+
B(u, d).

We claim that there is a feasible direction d∗ such that ν ⊂ D+
B(u, d∗) and (i) D+

B(u, d∗) contains

a matching of greater cardinality than ν or else (ii) the set of all S-players, say S∗, which are
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ν-reachable from B′-players in D+
B(u, d∗) has a greater cardinality than S ′. By recursion, this will

prove the lemma since S is a finite set.

Set di(δ) equal to

(1 + δ)di for i ∈ S ′ and di for i ∈ S − S ′,

max
j∈Di (u)

{f ′ij(uj)dj(δ)} for i ∈ B,

0 for i ∈ N −B ∪ S.

Alter the direction d(δ) by increasing δ continuously above 0 up to δ∗ where a new pair ij joins

D+
B(u, d(δ)). Set d∗ = d(δ∗). Note that D+

B(u, d) ⊂ D+
B(u, d∗) and hence ν ⊂ D+

B(u, d∗). Let

B = B′ ∪ ν(S ′). See that (i, j) ∈ B × (S − S ′). Therefore, player j is ν-reachable from B′, i.e.,

j ∈ S∗. If j is unmatched at ν, then ν is not active-minimum at D+
B(u, d∗), in which case claim (i)

holds. Otherwise, S∗ has a greater cardinality than S ′ since j ∈ S∗ − S ′ and S ′ ⊂ S∗. In this case,

claim (ii) holds. End of claim.

PROOF OF THEOREM 1 : Suppose (N, f) is piecewise linear. For any aspiration u and any

seller-market (B, S) at u, let gS(u) be the sum of ui for i ∈ S, and let g(u) be the maximum of

gS(u) over all seller-markets at u. Since the set of aspirations is nonempty and closed, there is an

aspiration u∗ such that g(u∗) is maximum among all aspirations. Then u∗ has no seller-market,

for otherwise by the Direction Lemma, there is an aspiration u′ with g(u′) > g(u∗) contradicting

maximality of u∗. So there exists a balanced aspiration for every piecewise linear (N, f) and by

uniform approximation for (N, f). �

Lemma 8 The demand set of every N+
uu′-player at u is in N−uu′.

Proof. If i demands j at u and u′ is an aspiration with u′i < ui, then u′j ≥ fji(u
′
i) > fji(ui) = uj.

Lemma 9 Let u be a balanced aspiration and u′ be any aspiration. Then N+
uu′ is matchable into

N−uu′ at u.

Proof. Every player in N+
uu′ is active at u (otherwise u′i < 0 for some i ∈ N+

uu′ hence u′ is not an

aspiration.) Suppose N+
uu′ is not matchable into N−uu′ at u. Let µ be a matching at u that matches a

maximum number of players in N+
uu′ and let i be a player unmatched. Let (B, S) be the µi-market

at u. By Lemma 8 and maximality of µ, using induction, S ⊂ N−uu′ and µ(S) ⊂ N+
uu′ . But then

(B, S) is a seller-market at u. Contradiction.

PROOF OF LEMMA 1 : By Lemma 9, N+
uu′ is matchable into N−uu′ at u and symmetrically

N+
u′u is matchable into N−u′u at u′. Then, (N+

uu′ , N
−
uu′) and (N+

u′u, N
−
u′u) are bipartite submarkets at u

and u′ respectively, so
∣∣N+

uu′

∣∣ =
∣∣N−uu′∣∣, therefore they are balanced-markets. �
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Lemma 10 Let u, u′ be any two balanced aspirations. Then u is a stable allocation if and only if

u′ is a stable allocation.

Proof. Suppose (u, µ) is a stable allocation. Then µ matches N+
uu′ and N−uu′ to each other (otherwise

µ leaves a player i in N+
uu′ unmatched, which is not possible, because i is active). So

µ(N0
uu′) ⊂ N0

uu′ ,

where N0
uu′ = N − (N+

uu′ ∪ N
−
uu′). Let µ0 be the set of all pairs ij ∈ µ with i, j ∈ N0

uu′ . By

Proposition 1, there is a matching ν at u′ that matches N+
uu′ and N−uu′ to each other. The matching

that agrees with µ0 for N0
uu′-players and with ν otherwise is u′-compatible and leaves no active

player unmatched. So u′ is a stable allocation.

PROOF OF THEOREM 2 : Case (i) : There is a stable allocation. By Lemma 10, U is the set

of all stable allocations.

Case (ii) : There is no stable allocation. Take any u ∈ U . Let µ be a solitary-minimum matching

at u. By Corollary 2, every active-unmatched player is nonsolitary. For every nonsolitary i, pick

a µ-cycle Ci = i0, i1, ..., in, j1, ..., jn. Let µi and νi respectively be the matchings that consist of all

pairs ikjk and ik−1jk with jk ∈ Ci. Let ν ′i = νi ∪ i0in and µ+, ν+ respectively be the union of µi, ν
′
i

over all unmatched i. Denote ν the matching µ − µ+ and χ the half-matching µ+ ∪ ν+. Thus the

semi-matching (ν, χ) leaves no active player unmatched. Hence u is a semistable allocation. �

PROOF OF PROPOSITION 1 : By Theorem 1, there is a balanced aspiration, say u. We will

show that u is a stable allocation. Suppose not.

Let µ be a solitary-minimum matching at u. Since u is nonrealizable, µ leaves an active player

unmatched, say i. Note that i is nonsolitary at µ, because otherwise by Lemma 5 u has a seller-

market and is not balanced.

Let C be a µ-cycle from i which consists of a maximum number of players. Since there are an

odd number of players in C, there must be two same-type players, say j, j′, such that j is in C and

j′ is not in C. We claim

uj = uj′ .

If not, then uj < uj′ (otherwise no C-player demands j at u contradicting j ∈ C). Then no

player other than j demands j′ at u. So Dj′(u) = {j} (otherwise Dj′(u) is empty but j′ is active

at u). Hence j′ is unmatched at u. But then µ is augmentable contradicting the fact that µ is

active-minimum. End of claim.

Therefore there is a C-player who demands j′ at u. Then j′ must be matched at u (otherwise

µ is augmentable therefore not active-minimum). But then there is a µ-cycle from i (obtained by

“adding” the pair (j′, µ(j′)) to C) which contains a greater number of players. Contradiction. �
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PROOF OF PROPOSITION 2 : Let i be a nonconstant player and let u be any aspiration in

U. Take any u′ ∈ U such that ui 6= u′i. By Lemma 1, (N+
uu′ , N

−
uu′) is a balanced-market at u.

Case (i) : Let (u, µ) be a stable allocation. Every N+
uu′-player is active at u so in µ(N). Then µ

matches N+
uu′ to N−uu′ . Recall i is in N+

uu′ ∪N
−
uu′ . So µ(i) is also in N+

uu′ ∪N
−
uu′ hence a nonconstant

player.

Case (ii) : Let (u, ν, χ) be a semistable allocation. Any player with whom an N−uu′-player is in

half-partnership or full-partnership must be in N+
uu′ , for otherwise by balancedness there would be

an N+
uu′-player unmatched or single-half-matched contradicting (u, ν, χ) is semistable. In particular

ν(N−uu′) ⊂ N+
uu′ . Also no N−uu′-player is in half-partnership because otherwise there would be an

even half-partner cycle in N+
uu′ ∪ N

−
uu′ contradicting (u, ν, χ) is essential. Then ν(N−uu′) = N+

uu′

because otherwise an N+
uu′-player is unmatched contradicting (u, ν, χ) is semistable. Thus ν(i) is in

N+
uu′ ∪N

−
uu′ hence a nonconstant player. �

Lemma 11 There is a stable bipartition at any υ in V.

Proof. Suppose there is no stable bipartition at some υ in V. Let υ′ be any payoff in V where

N+
υυ′ ∪N

−
υυ′ contains a maximum number of players. Then, there exist a nonconstant player i such

that υi = υ′i (otherwise (N+
υυ′ , N

−
υυ′) is a stable bipartition at υ by Lemma 1). Let υ′′ be a payoff

in V such that υ′′i 6= υ′i. By Lemma 1, (N+
υ′υ′′ , N

−
υ′υ′′) is a bipartite market at υ′. By Lemma 7, pick

a payoff υ∗ in V that is sufficiently close to υ′ such that υ′i 6= υ∗i . Then, υ∗j 6= υj for every j in

N+
υυ′ ∪ N

−
υυ′ since υ′j 6= υj for every j in N+

υυ′ ∪ N
−
υυ′ . Also, υi 6= υ∗i (since υ′i = υi and υ′i 6= υ∗i ).

Contradiction.

PROOF OF PROPOSITION 3 : (i) Let υ, υ′ any payoffs in V and suppose υ and υ′ are realizable

respectively by µ and µ′. We claim µ ⊂ D(υ′) which completes the proof.

By Lemma 1, µ, µ′ both match N+
υυ′ and N−υυ′ to each other. Suppose the claim is not true. Then

there is a pair (i, j) ∈ (N+
υυ′ , N

−
υυ′) such that ij ∈ µ − D(υ′). Let i1 = i and I = {i1, ..., in} , J =

{j1, ..., jn} be the player sets defined recursively by setting jk = µ(ik) and ik+1 = µ′(jk). Then

(in+1, jn+1) = (i1, j1).

Clearly I ⊂ N+
υυ′ and J ⊂ N−υυ′ (since µ(N+

υυ′) = µ′(N+
υυ′) = N−υυ′ .) Then cikjk−1

− υ′jk−1
≥ cikjk − υ′jk

since ikjk−1 ∈ D(υ′) and cikjk − υjk ≥ cikjk−1
− υjk−1

since ikjk ∈ D(υ) for all k. So

υ′jk−1
− υjk−1

≤ υ′jk − υjk

for all k. But then υ′j1 − υj1 = υ′jn − υjn . Therefore i1j1 ∈ D(υ′) (since i1j1 ∈ D(υ), i1jn ∈ D(υ′)).

Contradiction.
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(ii) By Lemma 11, let (Y1, Y2) be a stable bipartition at some υ in V . By Lemma 3, (Y1, Y2) is

a stable bipartition at V . �

PROOF OF PROPOSITION 4 : Consider any piecewise linear game. Let K be any finite

collection of balanced aspirations. Let u be any balanced aspiration in U at which ui ∈ med(K)i

for a maximum number of players. We claim ui ∈ med(K)i for every i. Suppose not. Then the sets

B = {i ∈ N | u∗∗i < ui} and S = {i ∈ N | ui < u∗i } cannot both be empty. Note that players in B

and S are nonconstant players.

Define U ′ = {u′ ∈ U |u∗∗i ≤ u′i for i ∈ B, u′i ≤ u∗i for i ∈ S, and u′i = ui for i /∈ B ∪ S}. Clearly

U ′ is nonempty and closed. So there is a υ ∈ U ′ such that
∑
i∈B

υi ≤
∑
i∈B

u′i for every u′ ∈ U ′. If

υi = u∗∗i for some i ∈ B or υi = u∗i for some i ∈ S, then there would be an additional player i

with υi ∈ med(K)i. Contradiction. So B = {i ∈ N | u∗∗i < υi} and S = {i ∈ N | u∗i < υi}. By

Proposition 2, there is a matching at υ, say µ, that matches all the nonconstant players (among

each other.)

Let n = m when |K| is odd and n = m+ 1 when |K| is even.

Let i be any player in S and j = µ(i). By Lemma 1, u′j < υj for every u′ ∈ U such that u′i > υi.

Since at least n elements of K give a higher payoff to i than υ, at least n elements of K give a lower

payoff to j than υ. Hence j ∈ B. Thus S is matchable into B at υ.

Let i be any player in B and j ∈ Di(υ). By Lemma 8, u′j > υj for any u′ ∈ U such that u′i < υi.

Since at least n elements of K give a lower payoff to i than υ, at least n elements of K give a higher

payoff to j than υ. Hence j ∈ S and the demand set of every B-player is in S at υ.

Thus (B, S) is a balanced-market at υ. But then, by Lemma 7, there exists υ∗ ∈ U ′ such that∑
i∈B

υ∗i <
∑
i∈B

υi. Contradiction. This proves our claim and the Proposition 4 for any piecewise linear

game. Proposition 4 holds for any game by uniform approximation. �

PROOF OF PROPOSITION 5 : Suppose U is the Equilibrium Set of a piecewise linear game.

Take any u, u′ in U . By Proposition 1 the pair of player sets (N+
uu′ , N

−
uu′) is a balanced-market and

by Lemma 7 there exist payoffs between u, u′ that belong to U . By uniform approximation, the

result holds for any game. �

C Addendum to Section 5

PROOF OF PROPOSITION 6 : Let u be a balanced aspiration and u′ be any aspiration. Let µ′

be any matching at u′ and

µ′+ =
{
ij ∈ µ′|i ∈ N+

uu′

}
.

33



By Lemma 8 the demand set of every N−uu′-player is in N+
uu′ at u′. So the matching µ′0 = µ′ − µ′+

contains only players in N0
uu′ = N − (N+

uu′ ∪N
−
uu′) = {i ∈ N |ui = u′i}. Using Lemma 9, let µ+ be a

matching at u that matches N+
uu′ into N−uu′ . It is clear that

µ = µ′0 ∪ µ+

is a matching at u. We show below that the number of active-unmatched players that µ′ leaves at

u′ is more than that of µ leaves at u.

Since the demand set of every N−uu′-player at u′ is in N+
uu′ ,

µ′(N−uu′) ⊂ N+
uu′ .

Let A be the set of all players in N −N0
uu′ who are unmatched at µ and active at u. By definition

of µ, A ⊂ N−uu′ − µ(N+
uu′). Hence∣∣N−uu′∣∣ ≥ ∣∣µ(N+

uu′)
∣∣+ |A| =

∣∣N+
uu′

∣∣+ |A| .

Let A0 be the set of N0
uu′-players who are unmatched at µ and active at u but matched at µ′. Then

µ′(A0) ⊂ N+
uu′ . Therefore ∣∣µ′(N−uu′)∣∣ ≤ ∣∣N+

uu′

∣∣− ∣∣A0
∣∣ .

So
∣∣N−uu′∣∣− ∣∣µ′(N−uu′)∣∣ ≥ |A|+ |A0|. Recall that N−uu′-players are active at u′. �

C.1 A Characterization of the Demand Bargaining Set

Let D be the Demand Bargaining Set at an aspiration u. Consider the set of active-unmatched

players A(µ). We say that an aspiration-allocation uµ is maximal if there is no ij ∈ D(u) with

i, j ∈ A(µ).

Proposition 7 An aspiration-allocation uµ is in D if and only if uµ is maximal and u has no

balanced market (B, S) with B ⊂ A(µ).

Proof. (⇒) Let uµ be a maximal aspiration-allocation and suppose there is no balanced-market

(B, S) at u such that B ⊂ N − µ(N). Suppose to the contrary that there is a justified objection

(T, u′) to uµ.

Let (u′, µ′) be an allocation for the restricted market (T, f). Let B = {i ∈ T |u′i < ui}. Then

ui > u′i > uµi for all i ∈ B, so B ⊂ A(µ).

We claim |T −B| ≤ |B| . Suppose not. Since (u′, µ′) is an allocation for (T, f), there is a pair

ij ∈ µ′ with i, j ∈ T−B . So (u′i, u
′
j) ≥ (ui, uj). Since u is an aspiration, (u′i, u

′
j) = (ui, uj). Therefore

ij ∈ D(u) and (ui, uj) > (uµi , u
µ
j ), saying of uµ is not maximal. End of claim.
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Now let S be the union of the demand sets of B-players. Suppose S  T. Then, there is a

pair ij ∈ D(u) with i ∈ B and j ∈ S − T. So ((i, j), (ui, uj)) is a counterobjection to (T, u′).

Contradiction. Therefore, S ⊂ T. By maximality of uµ, S ∩A(µ) = ∅. Hence S ⊂ T −B. So from

the claim above |S| ≤ |B| .
Finally let ν be any active-minimum matching in DB(u). It is not possible that ν matches B into

S for otherwise (B, S) would be a balanced-market at u with B ⊂ A(µ). Therefore, since |S| ≤ |B|
as shown above, it must be that ν leaves a player i in B unmatched. Let (Bi, Si) be the νi-market.

Then (Bi, Si) ⊂ (B, S) and (Bi− i, Si) is a balanced-market at u with Bi− i ⊂ A(µ). Contradiction.

(⇐) Suppose uµ is not maximal. Then there is a pair ij ∈ D(u) with i, j ∈ A(µ). Then

((i, j), (ui, uj)) is a justified objection to uµ. Therefore uµ /∈D.

Consider any piecewise linear game. Suppose there is a balanced-market (B, S) at u wth B ⊂
A(µ). By Lemma 7, let u′ = u + λd, where d is a feasible direction such that di > 0 for all i ∈ S
and di < 0 for all i ∈ B. It is clear that (B∪S, u′) is a justified objection to uµ for sufficiently small

λ > 0. Hence uµ /∈D. By uniform approximation, the same holds for any game.

C.2 Proof of Theorem 3, Inclusion Lemma and Examples

PROOF OF THEOREM 3 : Suppose uµ is a pseudostable allocation not in D. By Proposition

7, there is a balanced market (B, S) at u such that B ⊂ N − µ(N). But then, by Corollary 2,

B-players are nonsolitary at µ. This contradicts with Lemma 6(ii). �

Theorem 3 says that pseudostable allocations are “stable” from an “exclusive” Bargaining Set

perspective. It is on the other hand true that the Demand Bargaining Set may contain non-

pseudostable allocations. We show in the examples below that these may in fact be various not

fitting into a classification at hand. First, we show that the Demand Bargaining Set is a refinement

of the Zhou Bargaining set :

Lemma 12 D ⊂ Z.

Proof. Suppose to the contrary that there is an aspiration-allocation uµ in D but not in Z. Then,

there is an objection (T, u′) to uµ such that any counterobjection (Q, u) to (T, u′) satisfies either

Q ⊂ T or T ⊂ Q.

There can be no counterobjection (Q, u) to (T, u′) with Q ⊂ T : Otherwise ui > u′i > uµi for

i ∈ Q so (Q, u) is a justified objection to uµ, implying uµ /∈D. Contradiction.

Consider now any counterobjection (Q, u) to (T, u′) with T ⊂ Q. Then ui > u′i > uµi for i ∈ T .

Now let (u, µ′) be any allocation for the restricted game (Q, f) and i be any player in T . If µ′(i) ∈ T,
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then ((i, j), (ui, uj)) is a justified objection to uµ, implying uµ /∈ D. Contradiction. If µ′(i) /∈ T ,

then ((i, µ′(i)), (ui, uµ′(i))) is a counterobjection to (T, u′), but then it is not true that T ⊂ {i, µ′(i)}
since there are at least two players in T . Contradiction.

Example 4 shows that D may contain some non-pseudostable maximum balanced-aspiration-

allocations but not all. Example 5 shows that D may contain maximum non-balanced -aspiration-

allocations. Example 5 also displays dominated allocations that are in Z and not in D. It is worth

adding that the null-allocation is not in D but may be in Z, for instance, in any three-person game

where there is no stable allocation.

Example 4 There are five players in N = {1,2,3,4,5}. The worth of a partnership is 2 for the

pairs in

{12,13,23,34,45}

and 0 otherwise. Let u = (1, 1, 1, 1, 1) and µ = {12,34} (see Figure 6a). Clearly uµ is a maximum

balanced-aspiration-allocation but µ is not solitary-null at u. Let T = {4,5} and u′ = (u′4, u
′
5) =

(1 + ε, 1− ε) where 0 < ε < 1. It is easily checked that (T, u′) is a justified objection to uµ so uµ is

not in Z and therefore not in D.

Now consider the extended game with four additional players {6,7,8,9} where the worth of a

partnership is 2 for the pairs in

{12,13,23,34,45,56,67,78,79,89}

and 0 otherwise. Let u = (1, 1, 1, 1, 1, 1, 1, 1, 1) and µ′ = µ∪{67,89} (see Figure 6b). Clearly, again,

uµ
′

is a maximum balanced-aspiration-allocation but µ′ is not solitary-null at u. Using Proposition

7, it is easy to see that uµ
′
is in D and therefore in Z.

3

2

1

4 5

(a)

3

2

1

4 5 6 7

8

9

(b)

Figure 5: Example 4

Example 5 There are two sets - I and J - of same-type players where |I| = n ≥ 3 and J consists

of two players say j, j′. The worth of a pair with one player from each set is 2 and with both players

from I is 2− 2ε (where 0 < ε < 1.) The players j, j′ cannot form a pair with each other.
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The demand is equal to {ij, ij′|i ∈ I} for δ < ε (see Figure 7a) and equal to {ij, ij′|i ∈ I} ∪
{ii′|i, i′ ∈ I} for δ = ε (see Figure 7b). The payoff u where ui is equal to 1− δ for i ∈ I and 1 + δ

for j ∈ J is an aspiration for every δ ≤ ε. (It is a non-balanced aspiration for every δ < ε and a

balanced aspiration for δ = ε.) Let µ be any matching that consists of two pairs ij and i′j′ where

i, i′ ∈ I and j, j′ ∈ J .

It is easily seen that uµ is in Z for any odd n for all δ ≤ ε. Note that uµ is dominated for

n ≥ 5 : There are n − 2 unmatched I-players all but one of whom can form a pair with another

unmatched I-player and achieve a payoff equal to 1− ε strictly above her stand alone utility.

On the other hand, by Proposition 7, uµ is not in D for n > 3 for any δ ≤ ε. To see this, let

I0 = {i, i′} ⊂ I be any two unmatched players. In case δ < ε, (I ′, J) is a balanced-market with I0

⊂ N − µ(N), and in case δ = ε, uµ is not maximal, so in both cases uµ is not in D by Proposition

7.

It is easily checked that uµ is in D for n = 3 for any δ ≤ ε.

i1

j1

i2

j2

· · · ik · · · in

(a) δ < ε

i1

j1

i2

j2

· · · ik · · · in· · ·· · ·

(b) δ = ε

Figure 6: Example 5

D Identifying the Seller-Market Recursively along the Mar-

ket Procedure Path and Proof of Convergence

Here we present the Seller-Market Algorithm by which the Seller-Market can be identified recursively

along the Procedure Path.

Let u be any aspiration on the (piecewise linear) Path and consider the demand graphs D,D′,D′′

where D is the incoming directional demand graph, D′ the demand graph and D′′ the outgoing

directional demand graph at u. Likewise consider the respective sets of active players A,A′, A′′ at

u. (We will say that (D, A), (D′, A′) are successive and so are (D′, A′), (D′′, A′′).) For all but a finite

number of aspirations on the Path, (D, A) = (D′, A′) = (D′′, A′′).
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Our main task here is to identify the Seller-Market (B∗′, S∗′) in (D′, A′) given the Seller-Market

(B∗, S∗) in (D, A) when (D′, A′) 6= (D, A). From Theorem 5, this is equivalent to finding a solitary-

minimum matching µ′ and the set of solitary players Z(µ′) in (D′, A′) given a solitary-minimum

matching µ and the set of solitary players Z(µ) in (D, A).

Let (D, A), (D′, A′) be successive and recall

D ⊂ D′, A ⊃ A′.

The Seller-Market Algorithm consists of the Solitary-Minimal-Matching Routine (SMMR) and

the Solitary-Player Set Routine. The first finds a solitary-minimum matching µ′ in (D′, A′) given a

solitary-minimum matching µ in (D, A). The second identifies Z(µ′) given µ, Z(µ) and µ′ found by

SSMR.

Remark 10 There may be several changes between (D, A), (D′, A′). Our Algorithm takes the

changes in D′ − D and A − A′ one at a time in any order. Below we assume that either A − A′

consists of a single player and D = D′ or D′ −D consists of a single pair and A = A′.

Solitary-Minimal Matching Routine

Let µ be a solitary-minimum matching in (D, A).

Step 1 : If µ is not active-minimum in (D′, A′) then augment/alter µ to an active-

minimum matching µ1. Otherwise, let µ1 = µ.

Step 2 : If µ1 is not solitary-minimum in (D′, A′) then alter µ1 to a solitary-minimum

matching µ2. Otherwise, let µ2 = µ1.

Then let µ′ = µ2.

The Routine above finds a solitary-minimum matching µ′ in (D′, A′). It is an elementary recur-

sion38 and we omit the straightforward proof. It remains to identify Z(µ′).

Lemma 13 If (B, S) is a unitary market in (D′, A′), then (B, S) is a seller-market in (D, A).

Proof. Since A′ ⊂ A and D ⊂ D′, we only need to show that S is matchable into B in D. Let ν

be a matching that matches S into B in D′. In all cases except when the pair ij in D′ −D is in ν

38Take any active-unmatched player. If an unmatched player is µ-reachable, then augment µ. If a nonactive

matched player is µ-reachable, then alter µ. Since (D′, A′) differs from (D, A) by a singleton, the active-unmatched

player and the reachability sequence can be selected judiciously. Step 1 thus can be carried out in a simple way. In

particular, µ1 differs from µ by at most a single pair. Similar comments go for Step 2 and µ2 differs from µ1 by at

most a single pair.
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and i ∈ B, j ∈ S, it is clear that ν also matches S into B in D. In the remaining case, let ν ′ be a

matching that matches S into B − i in D′, then ν ′ is in D.

It is worth pointing out that the result above holds neither for successive unitary markets nor

for successive seller-markets. We use it in proving our key lemma below which says that successive

solitary-player sets Z(µ′), Z(µ) are nested when µ′ is selected by SMMR.

Let Z0 be the set of all players in Z(µ) who are in A′ and not matched by µ′.

Lemma 14 Z(µ′) ⊂ Z0 ⊂ Z(µ).

Proof. A player i ∈ Z(µ′) is in A′ and therefore in A. Also, i is not matched by the matching µ1

that is constructed in SMMR (for otherwise i would not be in Z(µ′)). Therefore i is not matched by

µ (otherwise i would not be in A′). By Theorem 5, then, i belongs to a unitary market in (D′, A′),
and therefore by Lemma 13, to a seller-market in (D, A). Therefore i ∈ Z(µ) by Lemma 6(ii).

Solitary-Player Set Routine

Let µ be a solitary-minimum matching and Z(µ) the solitary-player set in (D, A).

Let µ′ be the solitary-minimum matching in (D′, A′) found by the Solitary-Minimum

Matching Routine. If

µ′ = µ and D′ −D = b1b2 for some b1, b2 ∈ B∗

then b1, b2 are in a µ′-cycle C ⊂ D′, the unmatched player b in C is nonsolitary at µ′,

and

Z(µ′) = Z(µ)− b,

otherwise

Z(µ′) = Z0.

Let Z(µ) = Z,Z(µ′) = Z ′. The Routine above merely involves checking which of two cases

occur and updating the solitary-player set accordingly. One of these cases is very particular. Apart

from this case, Z ′ is equal to Z− : In words, the solitary players at µ′ consist of the solitary players

at µ excluding (naturally) those who have become matched or nonactive. In the remaining case,

one solitary player at µ - say b - becomes nonsolitary at µ′ and all the other solitary players (if any)

remain solitary. Thus Z ′ = Z − b. As we show below, this particular case occurs when the “new”

demand in D′ − D is a pair b1b2 where b1, b2 are two Buyers in (D, A) and SMMR finds µ′ to be

the same as µ. (So b1b2 /∈ µ′.) Then, it is a fact that, there is a µ′-cycle in D′ to which b1, b2 belong

and whose unmatched player is b = Z−Z ′. To be precise, b is the player b1 if b1 ∈ Z, b2 ∈ (B∗−Z);

otherwise both b1, b2 ∈ (B∗−Z) and b is a player other than b1, b2. We prove these assertions below.
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Proposition 8 The Solitary-Player Set Routine finds the solitary set Z ′ in (D′, A′).

Proof. Suppose Z ′ is not equal to Z0. Then, by Lemma 14, Z ′ is contained in but not equal to

Z0. Let i be any player in Z0 − Z ′ and (B∗i , S
∗
i ) be the µi-market in D. We will show that (Claim

1) D′ −D = b1b2 where b1, b2 ∈ B∗i , (Claim 2) µ = µ′ and Z ′ = Z − i.
Note i is nonsolitary at µ′ in (D′, A′) (since i is in Z0 − Z ′), so there is a µ′-cycle C =

i0, i1, ..., in, j1, ..., jn in (D′, A′) from i0 = i. Since D′ − D is at most a singleton, i0j1 or i0in is

in D. Then j1 or in is in S∗i (since i ∈ B∗i ). Say j1 ∈ S∗i . Let ν be an active-minimum matching in

D′ that leaves j1 unmatched.

Claim 1 is true, because otherwise the demand set of every B∗i -player except possibly one (say

player k) in D′ would be in S∗i , implying (B∗i − k, S∗i ) is a bipartite submarket in (D′, A′) (since S∗i

is matchable into B∗i − k in D and so in D′), and contradicting the fact that ν is active-minimum

by Lemma 6(i) in D′.
We prove Claim 2 in two steps :

Step (i) µ is active-minimum in (D′, A′) : Otherwise, since µ is active-minimum in (D, A) and

b1b2 is the only demand in D′−D, any matching that is active-minimum in (D′, A′) would necessarily

contain b1b2. But consider the active-minimum matching ν constructed above and let νS∗i , µS∗i be

the restriction of ν, µ respectively to the pairs that have a player in S∗i . Note that the matching

(ν − (νS∗i ∪ b1b2)) ∪ µS∗i is active-minimum (because νS∗i ∪ b1b2 and µS∗i have equal cardinality and

contain an equal number of active players) but does not contain b1b2. Contradiction.

Step (ii) µ = µ′ and Z ′ = Z − i : A′ = A since D 6= D′. Then, any µ-cycle in D is also a µ-cycle

in D′ because D ⊂ D′. Therefore, Z contains the solitary set at µ in (D′, A′). By Lemma 4, i is

nonsolitary at µ in (D′, A′) since i is nonsolitary at µ′ in (D′, A′). Therefore there is a µ-cycle C

in D′ from i. Note that b1b2 ∈ C (otherwise C is in D and so i /∈ Z). Take any i′ ∈ Z − i and

let C ′ be any µ-sequence from i′ in D′. Then, b1b2 /∈ C ′ (since C ∩ C ′ = ∅ by the fact that µ is

active-minimum in (D′, A′)) and so C ′ is in D. Then, C ′ is cycle-free (otherwise µi
′
-market is not

bipartite by Lemma 3 in (D, A) and so i′ /∈ Z by Lemma 5). Then, Z − i is the solitary set at µ

in (D′, A′) and by Corollary 3 µ is solitary-minimum in (D′, A′). So, µ′ = µ (recall SMMR) and

Z ′ = Z − i.
Case 1 : b1 ∈ Z, b2 ∈ (B∗ − Z),

Case 2 : b1, b2 ∈ (B∗ − Z).

Note that, in Case 2, both b1, b2 are matched in µ and there exists a player

b3 ∈ Z
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such that b1 and b2 are both µ′-reachable in D′ from only b3 in Z. Now we are able to state the two

cases:

Case 1) If i is b1 or b2, say b1. Then, Z ′ = Z − b1.
Case 2) Otherwise, say i is b3. Then, Z ′ = Z − b3.

Thus the Seller-Market Algorithm finds a solitary-minimum matching µ′ and the set of solitary

players Z(µ′) in (D′, A′) given a solitary-minimum matching µ and the set of solitary players Z(µ)

in (D, A).

Remark 11 It remains to specify a solitary-minimum matching µ′′ and the solitary-player set Z(µ′′)

in (D′′, A′′). This is routine : Let d be the Seller-Market preserving direction selected by the Direction

Procedure at u, νnew be any matching that matches S∗′ into B∗′ in D+
B∗′(d) and νold = {ij ∈ µ′|i ∈

B∗′}. Define

µ′′ = (µ′ ∪ νnew)− νold and Z(µ′′) = B∗′ − νnew(S∗′).

In particular, (D′, A′), (D′′, A′′) have the same Seller-Market and |Z(µ′′)| = |Z(µ′)|.

This completes the description of how solitary-minimum matchings and solitary player sets -

therefore the Seller-Markets - can be generated recursively along the Procedure Path.

D.1 Proofs of Lemma 2 and Theorem 4

Lemma 15 (i) Z ′ ⊂ Z. (ii) If Z ′ = Z then (B∗, S∗) ⊂ (B∗′, S∗′). (iii) If Z ′ = Z and S∗′ = S∗

then (B∗′, S∗′) = (B∗, S∗).

Proof. (i) Z ′ ⊂ Z by Lemma 14.

(ii) Suppose Z ′ = Z and (B∗, S∗)  (B∗′, S∗′). Let B = B∗ −B∗′ and S = S∗ − S∗′.
The demand set of every B∗′-player in D is in S∗′ since D ⊂ D′. The set B cannot be empty,

because otherwise the demand set of every B∗-player in D is in S∗′, implying S∗ ⊂ S∗′ and contra-

dicting with (B∗, S∗)  (B∗′, S∗′).

No player in B∗−B demands an S-player in D′ and so in D since D ⊂ D′. Therefore, µ matches

S into B since µ(S∗) ⊂ B∗ and in particular |S| ≤ |B| . If |S| = |B|, then µ matches S to B and

S∗−S into B∗−B. Then, Z ⊂ B∗−B and so any µ-market from any player in Z is in (B∗−B, S∗−S)

since the demand set of each player in B∗ − B in D is in S∗ − S and µ(S∗ − S) ⊂ B∗ − B. By

Theorem 5 B is empty. Contradiction. Thus, |S| < |B| .
Using Z ′ = Z, it must be that |B∗′| − |S∗′| = |B∗| − |S∗|. Then, |S∗′ − S∗| < |B∗′ −B∗| since

|S| < |B|. The demand set of each player in B∗′−B∗ in D′ is in S∗′. By using D ⊂ D′, the demand
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set of each player in B∗′ − B∗ in D is in S∗′. Then by using the fact that µ matches S∗ into B∗,

there is a player i ∈ B∗′ − B∗ unmatched at µ since |S∗′ − S∗| < |B∗′ −B∗|. Player i is in A since

A′ ⊂ A. By Theorem 5 player i is in a unitary seller-market in (D′, A′) and then in a seller-market

in (D, A) by Lemma 13. Therefore i ∈ Z by Lemma 6(ii). By Theorem 5, i ∈ B∗. Contradiction.

(iii) If Z ′ = Z and S∗′ = S∗, then |B∗| − |S∗| = |Z| = |Z ′| = |B∗′| − |S∗′|. Then, B∗ = B∗′ since

|S∗| = |S∗′| and B∗ ⊂ B∗′.

PROOF OF LEMMA 2 : By Corollary 1 and Lemma 15(i), the Seller-Market excess in (D′, A′)
is not greater than the Seller-Market excess in (D, A). By Remark 11, the same is true for

(D′′, A′′), (D′, A′). By succession, at = |Bt| − |St| ≥ |Bt+1| − |St+1| = at+1 on the Procedure

path. This gives the first assertion in Lemma 2. The remaining two assertions follow, similarly,

from Corollary 1, Lemma 15(ii) and (iii) respectively, and Remark 11. �

PROOF OF THEOREM 4 : Clearly (at) is bounded below and (bt) bounded above. Therefore

Theorem 4 would fail to hold only if there is a T such that at = at+1 and bt = bt+1 for all t ≥ T .

In that case, the Seller-Market remains unaltered while only the direction changes for all t ≥ T.

But by linearity there are only a finite number of directions that can be encountered for all t ≥ T .

Therefore it must be that dτ = dτ
′

at two distinct steps τ < τ ′. However, this is impossible because

then Step τ need not have stopped at uτ+1. �
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——— (1964): “Maximale Systeme Unabhanginger Kanten,” Magyar Tud. Akad. Mat. Kutató
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