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Summary

Network structure has a significant role in determining the outcomes of many
socioeconomic relationships, including the antagonistic ones. In this paper we study a
situation in which agents, embedded in a network, simultaneously play interrelated bilateral
contest games with their neighbors. Interrelatedness of contests induces complex local and
global network effects. We first characterize the equilibrium of a game on an arbitrary fixed
network. Then we study a dynamic network formation model, introducing a novel but
intuitive link formation protocol. As links represent antagonistic relationships, link
formation is unilateral while link destruction is bilateral. A complete k-partite network is the
unique stable network topology. As a result, the model provides a micro-foundation for the
structural balance concept in social psychology, and the main results go in line with
theoretical and empirical findings from other disciplines, including international relations,
sociology and biology.
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Abstract

Risk allocation games are cooperative games that are used to attribute the risk
of a financial entity to its divisions. In this paper, we extend the literature on risk
allocation games by incorporating liquidity considerations. A liquidity policy specifies
state-dependent liquidity requirements that a portfolio should obey. To comply with
the liquidity policy, a financial entity may have to liquidate part of its assets, which
is costly.

The definition of a risk allocation game under liquidity constraints is not straight-
forward, since the presence of a liquidity policy leads to externalities. We argue that
the standard worst case approach should not be used here and present an alternative
definition. We show that the resulting class of transferable utility games coincides
with the class of totally balanced games. It follows from our results that also when
taking liquidity considerations into account there is always a stable way to allocate

risk.
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1 Introduction

If a financial enterprise (bank, insurance company, investment fund, etc.) consists of several
divisions (individuals, products, subportfolios, risk factors, etc.), not only is it important
to measure the risk of the entire financial enterprise properly, but also to attribute this
risk to the divisions using a proper risk allocation method.

To measure risk appropriately, we apply coherent measures of risk (Artzner, Delbaen,
Eber, and Heath, 1999), which are defined by four axioms: monotonicity, subadditivity,
positive homogeneity, and translation invariance. Cséka, Herings, and Kéczy (2007) show
that these axioms are supported by a natural general equilibrium approach to measure risk.
Of these axioms, subadditivity is the most essential one, and captures the notion that the
risk of the financial enterprise is at most as large as the sum of the risks of the divisions.

Risk or capital allocation has many applications: the division of capital reserves among
business units by financial institutions; strategic decision making regarding new business
lines; product pricing; performance measurement; the formation of risk limits; see Denault
(2001), Kalkbrener (2005), Buch and Dorfleitner (2008), Homburg and Scherpereel (2008),
Kim and Hardy (2009), and Cséka, Herings, and Kéczy (2009).

The various applications have the following question in common: how to allocate the
risk of the financial enterprise over its constituents? A natural approach to answer this
question comes from cooperative game theory. First one defines a risk allocation game, the
cooperative game where a player is a portfolio and the payoffs of a coalition are negatively
related to the risk of the coalition’s portfolio. The risk of a portfolio is measured by a
coherent measure of risk. Next, one can use one of the point-valued solution concepts in
cooperative game theory like the Shapley value (Shapley, 1953) or the nucleolus (Schmei-
dler, 1969) to attribute risk to the players, or one of the set-valued solution concepts like
the core (Gillies, 1959) to determine stable allocations of risk.

Liquidity is a major concern in financial markets. The usual mark-to-market valuation
of assets does not take the assets’ liquidity into account. Acerbi and Scandolo (2008) extend
the axioms of coherent risk measures to incorporate two types of liquidity considerations.
First, requirements on the composition of the portfolio, captured by the so-called liquidity
policy and, second, the liquidity of asset markets as expressed by marginal demand curves,
corresponding to the order books of the assets at a given future point in time.

In this paper we extend the notion of risk allocation games to include liquidity consid-
erations. In doing so, the financial enterprise faces an externality problem, as any division
of the enterprise can liquidate some of its assets in order to satisfy the liquidity policy,
and the more assets one division liquidates, the less assets have to be liquidated by other
divisions. The standard approaches to define a game in characteristic function form in the

presence of externalities are a—effectiveness and [—effectiveness as suggested by Aumann



(1961), thereby generalizing the two—player case treated by von Neumann and Morgenstern
(1944) to the case with an arbitrary number of players.

The notion of a—effectiveness defines the payoff of a coalition as the payoff it can achieve
irrespective of the actions taken by its complement. In a sense, the coalition acts first in
anticipation of the worst actions its complement can take. The notion of f—effectiveness
is less stringent and defines the payoff of a coalition as what it can achieve for sure given
the worst actions of its complement, so now the complementary coalition acts first. We
will argue that as soon as the liquidity considerations are non-trivial, the two standard
approaches should not be applied. We also argue that the approach where the portfolio of
the coalition’s complement is ignored, or equivalently, put equal to zero, is not satisfactory.

Rather than taking a worst—case approach for the behavior of the complementary coali-
tion, we will fix the portfolio holdings of the players outside the coalition to their initial
values, thereby placing the burden of satisfying the liquidity policy entirely on the coalition
itself, but not putting an extra burden because of adversary behavior of the coalition’s com-
plement. The resulting cooperative games with transferable utility are called risk allocation
games with liquidity constraints. Our main theorem claims that the class of risk allocation
games with liquidity constraints are totally balanced, thereby generalizing the result for
risk allocation games without liquidity constraints in Cséka, Herings, and Kéczy (2009).
A direct consequence of this result is that risk allocation games with liquidity constraints
have a non-empty core. Thus it follows that even when taking liquidity considerations into
account, there is always a stable way to allocate risk, meaning that no coalition of players
would object to it.

It has been shown in Csdka, Herings, and Kdéczy (2009) that any totally balanced
game is generated by some risk allocation game without liquidity constraints. Since a risk
allocation game without liquidity considerations results as a special case when the liquidity
policy is trivial and assets are perfectly liquid, it holds that any totally balanced game is
generated by some risk allocation game with liquidity constraints. We therefore obtain an
equivalence between the class of risk allocation games with liquidity constraints and the
class of totally balanced games.

The structure of the paper is as follows. In Section 2 we set up risk environments with
liquidity considerations and in Section 3 we define risk allocation games with liquidity

constraints. Section 4 contains our main theorem and Section 5 concludes.

2 Risk Environments with Liquidity Considerations

Acerbi and Scandolo (2008) study coherent measures of risk in a framework where portfo-

lios are subject to liquidity considerations. Csdka, Herings, and Koéczy (2009) study risk



allocation games that are generated by coherent measures of risk in a set-up where lig-
uidity considerations are absent. In this section we extend the analysis of Csoka, Herings,
and Kéczy (2009) and we define risk environments that take liquidity considerations into
account. We denote such risk environments by (N, J, S, 7,0, m, L, p).

The group of players in a risk environment is denoted by NV, it consists of the n divisions
of a financial enterprise, and it is referred to as the firm. Each division holds cash as well
as assets belonging to a set J. The initial portfolio 8" = (0i,0%) € R x R’ of divisioni € N
shows the amounts of cash and assets held initially by division i. The initial porfolio of the
firm is given by the aggregate portfolio §(N) = >, 6°. We denote the space of portfolios
by P = R x R’. Cash has a number of special properties which we explain in the sequel.
The addition of an amount of cash a € R to a portfolio p € P is denoted by p & a and
results in the portfolio ¢ € P defined by ¢y = pyo + a and ¢; = p;, j € J. The tuple of the
initial portfolios of the various divisions is denoted by 6 = (0);cn.

The future value of the initial portfolio is subject to uncertainty. One out of a set S of
possible states of nature materializes in the future, where state of nature s € .S occurs with
probability 7y > 0. Clearly, it holds that ) _m, = 1. The value of the initial portfolio
in state s depends on the order books for the various assets and the liquidity policy of
the firm, both of which are allowed to be state dependent. We follow Cetin, Jarrow and
Protter (2004) and Jarrow and Protter (2005) in modeling the order book for asset j in
state s by a marginal demand curve mj. A function is cadlag if it is right continuous with

left limits and ladcag if it is left continuous with right limits.

Definition 2.1. The marginal demand curve (MDC) for asset j € J in state s € S is
given by the map m3 : R\ {0} — R satisfying

(i) m3(x) > mi(a’) if @ < 2;

(ii) m3 is cadlag at z < 0 and ladcag at x > 0.

The amount m$(x) for x > 0 expresses the marginal bids that have been made to buy
an amount x of asset j. Similarly, mj(x) for x < 0 represents the marginal asks that have
been made for an amount z of asset j to be sold. We call m?*(0}) the best bid and m*(0;)
the best ask price of asset j. Note that the MDC is not defined at zero.

So far the issue of liquidity has not been considered at all in risk allocation games.
Implicitly, it has been assumed that the MDCs are all flat, corresponding to perfectly

liquid asset markets.

Definition 2.2. Asset j € J is perfectly liquid if for every s € S, there is ¢ € R such that
for all x € R\ {0}, mj(z) = c.

Since the constant c is allowed to depend on s, the price against which the asset can be

bought or sold is allowed to be stochastic, even when an asset market is perfectly liquid.
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The MDC can be used to calculate the liquidation value of a portfolio.

Definition 2.3. The liquidation mark-to-market value of a portfolio p € P in state s € S
is defined by

CE) =p+ Y / " 3 (@)d. 1)

jeJ

The liquidation mark-to-market value of a portfolio equals the portfolio’s amount of
cash plus the proceeds of selling all long positions minus the payments needed to close

short positions. Acerbi and Scandolo (2008) prove the following result.
Proposition 2.4. For every s € S, the function ¢° : P — R is continuous and concave.

The set of portfolios attainable from some given portfolio p € P in state s € S is given
by

A*(p) ={q€ P|q = po,ps—aqi)}

The portfolio ¢ € A%(p) is obtained by liquidating the amounts p; — ¢; of assets in J and
adding the proceeds to py.

Proposition 2.5. For every s € S, for every p € P, the set A*(p) is closed.

Proof. Let (¢").en be a sequence in A*(p) with limit § € P. We have to show that
g € A%(p). For every r € N, it holds that ¢ = ¢*(po, ps — ¢%;). By Proposition 2.4 it holds

that ¢° is continuous, so
Go = *(po, s — qs)-

It now follows from the definition that ¢ € A%(p). O

The liquidity policy (Acerbi and Scandolo, 2008) incorporates the requirements imposed
by a regulator or the contractual obligations that have to be met, and specifies that the
portfolio of the firm should belong to the set L®* C P in state of nature s € S. We denote
L = (L*)ses- The state dependence of the liquidity policy enables us to model regulatory
risk as well as short sale constraints which depend on market conditions as expressed in
the prevailing MDC.

The literature on risk allocation games has so far ignored liquidity policies.

Definition 2.6. The liquidity policy is trivial if for every s € S it holds that L° = P.

Throughout the paper we make the following assumption on L.



Assumption 2.7. For every s € S, it holds that
(i) L* is closed and convex;
(ii) for every p € L*, for every a > 0, p @ a € L?;
(iii) A5(6(N)) N L* # ).

The first two items in Assumption 2.7 are inherited from Acerbi and Scandolo (2008).
Closedness as required in Assumption 2.7.(i) is a standard technical assumption. Convexity
means that if two portfolios are acceptable, then so is their weighted average. Assump-
tion 2.7.(ii) implies that it is always acceptable to have more cash. Assumption 2.7.(iii)
guarantees that in every state there is a feasible choice to meet the requirements of the
liquidity policy. Assumption 2.7 is satisfied if the liquidity policy is trivial.

In case all assets are perfectly liquid, the liquidity policy is irrelevant. This is the case
which has been studied in the existing literature on risk allocation games. Even if the
liquidity policy is trivial, the liquidity of assets can matter if there is a bid-ask spread.

For a portfolio p € P, we denote the assets hold long by J*(p) = {j € J | p; > 0} and
the assets hold short by J~(p) ={j € J | p; < 0}.

Definition 2.8. The uppermost mark-to-market value of a portfolio p € P in state s € S
is defined by

= po + Z 2(0%)p; + Z m;(07)p;. (2)
J€T*(p) jeJ=(p)

The uppermost mark-to-market value of a portfolio can be interpreted as the value
of a portfolio in the long run. Long positions are valued using the best bid prices and
short positions using the best ask prices. In case all asset markets are perfectly liquid, the
uppermost mark-to-market value of a portfolio is equal to its liquidation mark-to-market

value. Acerbi and Scandolo (2008) prove the following result.

Proposition 2.9. For every s € S, the function u® : P +— R s continuous, concave, and

positive homogeneous of degree one.

Two portfolios p, ¢ € P are said to be concordant if p;q; > 0 for all j € J. Two portfolios
are concordant if there is no asset which is held long in one portfolio and short in the other.
It is easily verified that u® is additive for concordant portfolios. The concavity and positive
homogeneity of «*® imply that «* is superadditive on P, i.e. u®(p) 4+ u®(q) < u®*(p + q) for
all p,q € P.

Corollary 2.10. For every s € S, the function u’® is superadditive on P and additive for

concordant portfolios.



Given some state s € S, the firm might have to liquidate part of its assets to obtain
a portfolio in L*. The initial portfolio’s value in state s is given by the highest attainable
uppermost mark-to-market value satisfying the liquidity policy. These considerations lead

us to the following definition.

Definition 2.11. The realization vector X (N) € R for the firm is equal to
X*(N) = sup{u’(q)lg € A°(B(N)) N L*}, seS. (3)

Since A*(O(N)) N L* # 0 by Assumption 2.7, it follows that X*(NN) is not equal to —oc.
We will show in Proposition 3.5 that X*(V) is bounded from above by u*(8(V)), so X*(N)
is finite.

The following example shows why in Equation (3) we need a supremum rather than a

maximum.

Example 2.12. Consider the case where §(N) = (0y(N),0;(N)) € R3, so we have two
assets, called 1 and 2, and cash. There is no uncertainty, so the cardinality of S is one.
The liquidity policy L specifies that the asset portfolio ¢; should satisfy ¢; > (—1,—1)
and (¢1 +1)(g2 + 1) > 1. Moreover, for simplicity assume there are no constraints on cash
holdings. We assume the initial asset portfolio to be §(N) = (0,—1,—1) and we assume
asset 2 to be perfectly liquid.

Trading in asset 1 involves liquidity costs. For instance, consider the case where there is
a simple bid-ask spread, so for some v > 0, my(z) = 1+~ if x <0 and my(z) = 1if 2 > 0.
Since we have to go to a portfolio of assets where holdings of both assets strictly exceed —1,
we would like to buy € > 0 of asset 1, buy 1/e of asset 2, and go short in cash, resulting in
a portfolio q(e) = (—(1+7v)e —m2(07) /e, —14+¢,—1+1/¢). It is straightforward to verify
that u(q(e)) = u(6(IN)) — ve. The uppermost mark-to-market value would be maximized,
and liquidity costs would be minimized, by taking the smallest positive €, something which

clearly does not exist, so we need a supremum rather than a maximum in Equation (3).

We will show in Proposition 3.6 that optimal portfolios exist under the mild and rea-
sonable additional assumption that going infinitely short or long involves liquidity costs.
Under such an additional assumption, one can use a maximum in Equation (3).

Artzner, Delbaen, Eber, and Heath (1999) have introduced coherent measures of risk.
A measure of risk is a function p : R® — R measuring the risk of a realization vector
from the perspective of the present. It corresponds to the minimal amount of cash the
regulated agent has to add to his portfolio, and to invest in a reference instrument today,
such that the risk involved in the portfolio is acceptable to the regulator. We assume that
the reference instrument has payoff 1 in each state of nature at ¢ = 1, thus its realization
vector is 1% = (1,...,1). It is most natural to think of it as a zero coupon bond. The price

of the reference instrument can be thought of as the discount factor and is denoted by 9.
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Definition 2.13. A function p : R® — R is a coherent measure of risk if it satisfies the

following axioms.

1. Monotonicity: for all X,Y € R® such that Y > X, we have p(Y) < p(X).

[\

. Subadditivity: for all X,Y € R, we have p(X +Y) < p(X) + p(Y).
3. Positive homogeneity: for all X € R¥ and h € R, we have p(hX) = hp(X).

4. Translation invariance: for all X € R¥ and a € R, we have p(X +al®) = p(X) — da.

This completes the definition of a risk environment with liquidity considerations

(N, J,S,7,0,m,L,p).

3 Risk Allocation Games with Liquidity Constraints

A cooperative game with transferable utility consists of a set of players N and a value
function v : 2V — R, which assigns to every coalition C' € 2V of players a worth v(C) € R.
By assumption it holds that v(()) = 0. An allocation is a vector y € R", where y; is the
payoff of player i € N. An allocation y yields payoff y(C) = >, - y; to the members of
coalition C. An allocation y € R" is called efficient if y(N) = v(N), individually rational
if y; > v({i}) for all i € N, and coalitionally rational if y(C) > v(C) for all C € 2V. The
core is the set of efficient and coalitionally rational allocations.

Denault (2001) introduces risk capital allocation problems. The question is how the risk
of the firm as measured by a coherent measure of risk has to be attributed to its divisions.
The risk allocated to a coalition of divisions C' € 2V should be stable, meaning that it does
not exceed the risk of the aggregate portfolio of coalition C'.

Denault (2001) abstracts both from MDCs and liquidity policies, and thereby implicitly
assumes that all assets are perfectly liquid and the liquidity policy is trivial. Under perfect
liquidity of all assets and a trivial liquidity policy, we can define the realization vector
of division i € N by X*({i}) = u*(#"), s € S. A coalition of divisions C' € 2V has
the realization vector X(C) = Y .., X({i}). Finally, the worth of coalition C' is defined
by v(C) = —p(X(C)). In this way we have obtained a cooperative game with transferable
utility (N, v). Standard solution concepts from cooperative game theory can now be applied
to (N,v) to solve the risk allocation problem. A stable risk allocation corresponds to a
core allocation.

When we incorporate liquidity constraints, we face an externality problem, as any
division of the firm can liquidate some of its assets in order to satisfy the liquidity policy,

and the more assets one division liquidates, the less assets have to be liquidated by other



divisions. The standard approaches to define a game in characteristic function form in the
presence of externalities are a—effectiveness and [—effectiveness as suggested by Aumann
(1961), thereby generalizing the two—player case treated by von Neumann and Morgenstern
(1944) to the case with an arbitrary number of players. The notion of a—effectiveness defines
the payoff of a coalition as the payoff it can achieve irrespective of the actions taken by its
complement. The next example illustrates why a—effectiveness is not useful to study risk

allocation in the presence of liquidity constraints.

Example 3.1. Consider the case where we have one asset, J = {1}, and no uncertainty.
The liquidity policy L specifies that the firm’s portfolio ¢ should satisfy ¢; > —1. The firm
has two divisions, N = {1,2}, with identical initial portfolios given by ' = (1, —1) and
6? = (1,—1). Consider the case where there is a simple bid-ask spread, so for some vy > 0,
we have my(z) = 1+ if 2 <0 and my(x) = 1 if z > 0. Under a—effectiveness, division 1’s

realization is equal to

X({1}) =sup{u € R| 3¢' € A(0"),Vq* € A(6*), ¢' +¢* € L and u(q') > u}.
For i = 1,2, we have that ¢' € A(#") if and only if

[p > —Land gy =1 — (g1 + 1)(L+ )] or [¢ < —1 and g5 = —q;].

Since for any choice of ¢' € A(6') there is ¢*> € A(0?) such that ¢* + ¢*> € L, in fact any
q? such that ¢ < —¢} — 1 would do, we find that X ({1}) = —oo. Notice that the same
conclusion would follow even in the absence of a bid-ask spread.

The notion of [—effectiveness is less stringent and defines the payoff of a coalition
as what it can achieve for sure given the worst actions of its complement, so now the
complementary coalition acts first. We continue Example 3.1 by demonstrating that also

[P—effectiveness leads to undesirable consequences.

Example 3.2. Consider the primitives of Example 3.1. Under S-effectiveness, division 1’s

realization is equal to
X({1}) =sup{u e R| Vg? € A(92), ¢! € A(Gl), ¢'+¢* €L and u(ql) > u}.

Consider some ¢*> € A(6?) with ¢ < —1. To satisfy ¢! + ¢*> € L, it should hold that
qi > —q¢? — 1 and therefore that ¢i > 0. It can easily be computed that

u(qt) = —y — gt < =y + (¢t +1) = g2

Since ¢} can be chosen arbitrarily negative, we find that X ({1}) = —oc.



Both a-effectiveness and [-effectiveness lead to undesirable properties of the value
function, even in the simplest of examples. Both approaches share the feature that the
complement of a coalition C' is supposed to take the worst possible action. Rather than
making such an extreme assumption, we will instead assume that the complement of coali-
tion C' remains inactive, so the burden of satisfying the liquidity policy will be put entirely
on coalition C. The portfolios which are attainable for coalition C' in state s € S are given
by A*(0(C)), where 0(C) = >~ 0". Inactivity of the complementary coalition means that
those divisions stick to their initial portfolio, which equals (N \ C') in the aggregate.

Definition 3.3. Given a risk environment with liquidity considerations (N, J, S, 7, 8, m, L, p)
and a coalition of divisions C' € 2V, the realization vector X (C') of coalition C' is defined
by

X*(C) =sup{u’(q)lqg € A*(0(C)) and ¢+ O(N \ C) € L°}, seS.

When calculating X*(C'), we take the portfolios of the divisions outside the coalition
as fixed, and liquidate the portfolios of the divisions in C' in such a way that the resulting
portfolio of the firm is attainable and satisfies the liquidity policy. Applying Definition 3.3

for the grand coalition N results in
X*(N) =sup{w’(q) | ¢ € A*(O(N)) N L},

which is in accordance with Equation (3).
The next result is useful in simplifying our expression for the realization vector of a

coalition.

Proposition 3.4. For every s € S, for every C' € 2V it holds that ¢ € A*(6(C)) if and
only if g+ 0(N \ C) € A*(6(N)).

Proof. The result follows from the observation that
q € A*(0(C))
if and only if
Qo = 1°(60(C),0,(C) — q) = 0(C) + £(0,6,(C) — q)
if and only if

G+ 0(N\C) = 0o(C)+£5(0,0,(C)—qy) + (N \ C)
= *(0o(N),05(N) —q; —0;(N\ C))

if and only if

g+ 0(N\ C) € A (O(N)).
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Proposition 3.4 shows that we can compute the realization vector of coalition C' as
X*(C) = sup{u(q)lq + B(N \ ©) € A"B(N))N L}, s €8, (4)

The next result provides bounds on the value of X*(C'), implying that this value is not

equal to —oo or +o0.

Proposition 3.5. For every s € S, for every q € A*(0(N)) N L*, it holds that
w(g—0(N\ 0)) < X*(0) <w’(8(C)), Ce2V.

Proof. Consider some g € A*(A(N)) N L*, where the latter set is non-empty by Assump-
tion 2.7. Using (4), it follows that u®(¢ — O(N \ C)) < X*(C).
Next, consider some g € A*(6(C)). It holds that

(C) q;
do = £(60(C),05(C) — q7) = 6o(C) + 3 / i (2)dz.
jeg /0
It follows that
s 9 C —qy S S S —
w(g) = 6o(C)+ 3,0, [P < >d.r+zm+ 0 MO00)g + e (o m3(07)g

0o(C) + Zjeﬁé fo (z)dz +m3(07)q;)
+ZJ€J (@) fo )dx—i—m (07)g;)-

Notice that irrespective of the sign of 6;(C') — g; it holds that

0;(C)—gj 0;(C)—q;
[ e <060 =g and [T mita)de < mi(07)(0(0)~ay)
Consider some j € J*(q). If 6;(C) > 0, then
0;(C)—q;
/0 mj(z)dz +m3(07)g; < mj(07)(6;(C) — g;) +mj(07)g; = mj(07)(6;(C)).
If 6,(C) <0, then
0;(C)—gq;
/0 mj(z)dx +m3(07)g; < mj(07)(6;(C) — g;) +m5(07)g; = mj(07)(6;(C)).
Consider some j € J~(q). If §;(C) > 0, then

(@) q;
/0 ms(z)dz +m3(07)g; < m3(07)(0;(C) — q;) +m3(07)g; = m3(07)(6;(C)).
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If 6,(C) <0, then

0;(C)—q;
/0 mj(:ﬁ)d:ﬁ + m?(()*)qj < mj(O*)(Gj(C') —qj) + mj(Of)qj = mj(O*)(Qj(C’)).
We therefore find that

w(q) < 66(C) + mO0)0,C) + 3 mi07)6,(C) = w(B(C)),

JeJH(6(C)) jeJ=(6(C))

which completes the proof. O

If the liquidity policy is trivial, then it holds that (N) € A*(A(N)) N L*, so Proposi-
tion 3.5 gives X*(C') = u®(0(C)). If, moreover, there are no bid-ask spreads, it holds that
X*(C) = Y ;cc X°({i}), the case which has been studied in the literature so far. In case the
liquidity policy is trivial, but assets are not perfectly liquid and there is a bid-ask spread,
it is still the case that the realization vector of division i € N is given by X*({i}) = u®("),
s € S, but it is no longer necessarily the case that the realization vector of a coalition of
divisions C' € 2V is given by X(C) = Y, X({i}) as now coalitions can save on costs
related to bid-ask spreads by combining their portfolios.

We show next that the supremum in Equation (4) can be replaced by a maximum under

the mild condition that going infinitely short or long in an asset involves liquidity costs.

Proposition 3.6. Assume that for every s € S, for every j € J, there is x~ such that
mi(x~) > mi(0%) and there is ™ such that m$(z) < m$(07). Then for every C' € 2V it

holds that
X3(C) = max{u’(q)|l¢g+0(N\C)e A*(O(N))NL°}, se8S.

Proof. Consider some s € S and let (¢"),en be a sequence such that (¢"),en+0(N\C) €
A*(O(N)) N L* and u®(¢") converges to X*(C).

Suppose there is an asset j' € J such that for some appropriately chosen subsequence,
lim,ﬂ_)oo(qgf/)reN = —o00. We will derive a contradiction. By repeating the steps in the proof
of Proposition 3.5, we derive that

w(q") < 60(C) + 2 e s oicy M5 (07)0;(C) + 32 c - oo iy M5 (07)0;(C)
Hj/(C)—q;, s s (N—=)\A"
+ o m3 (x)dx +m5 (07)qj

< 90(0) + Zje]+(9(0)) m;(OJr)@j(C) + ZjeJ*(O(C’))\{j’} mj(O*)Qj(C’)
+m3, (z1)0;(C) + (m3(07) —ms, (x*))q},

where the right-hand side tends to —oco if r — oo since m3,(07) > m? (2™). This contradicts

the conclusion of Proposition 3.5, which establishes that X*(C') is bounded from below.
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We have shown that for every j € J there is no subsequence of (¢"),eny such that
lim, (¢} )ren = —00. By the straightforward analogous argument, we can show that for
every j € J there is no subsequence of (¢"),en such that lim, (¢} )ren = 00. It follows that
the sequence (¢7)en is bounded. By continuity of ¢* on P as asserted in Proposition 2.4,
it follows that the sequence (qj).en is bounded. Without loss of generality, the sequence
(¢")ren can be assumed to converge to some ¢ € P. The set A*(A(N)) N L* is closed as the
intersection of two sets which are closed by Proposition 2.5 and Assumption 2.7. It follows
that ¢+ 0(N \ C) € A*(6(N)) N L*. By Proposition 2.9 it holds that u® is continuous, so
X5(C) = u®(q). O

Since the existing literature on risk allocation assumes perfect liquidity, and we would
like to incorporate perfect liquidity as a special case, we refrain from assumptions addi-
tional to Assumption 2.7, and continue with the formulation of Equation (4) involving a

supremmuin.

Definition 3.7. Given a risk environment with liquidity considerations (N, J, S, 7,0, m, L, p),
the risk allocation game with liquidity constraints is the game (N, v), where the value func-
tion v : 2V — R is defined by

v(0) = —p(X(C)), Ce2". (5)

Let T';; denote the family of risk allocation games with liquidity constraints with set of
players N. In such a game, according to Equation (5), the larger the risk of any subset of

portfolios, the lower its worth.

Example 3.8. Consider a firm with n = 2 divisions, where each division has invested into
one asset and cash, J = {1}. The portfolios of the divisions are ' = (20, —6) and 6? =
(26, —7), so both divisions have short positions in the risky asset. We assume S = {1,2}
with both states having equal probability of occurrence.

In state 1 the MDC of the risky asset is given by

5 ifz <0,
4 ifz>0.

my(z) =

In state 2 the MDC of the risky asset is given by
(10 if z < —2,

9 if-2<z<-—1,

8§ if—-1<z<0,

7T if0<z< 1,
6

if 1 < x.
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We consider the deterministic liquidity policy specified by L' = L?* = {p € P | p; >
—10}. In both states the liquidity policy of the firm does not allow to short the risky asset
by more than 10 units. According to the initial porfolios, the two divisions together are
6+7=13 units short in the risky asset. We set 6 = 1 and take the maximum loss as the
coherent measure of risk, so p(X) = max,cs —X°.

First, let us consider state 1. This element of the realization vector of division 1 is
calculated as follows. Looking at the MDC of the risky asset in state 1, we see that the
firm can buy the risky asset for a price of 5, and it can sell more risky assets for a price of 4.
Since currently the two divisions together are shorting 13 units from the risky asset and the
liquidity policy allows to short at most 10 units, at least 3 units should be bought. If 3 units
are bought for a price of 5 x 3 = 15, division 1 ends up with the portfolio ¢*({1}) = (5, —3)
in state 1 by trading ¢*({1}) = (—15, 3). The uppermost mark-to-market value of ¢*({1})
is u'(¢"({1})) = 5—3 x5 = —10. It is easy to check that we get the same value if division
1 buys anywhere between 3 to 6 units from the risky asset. Due to the bid-ask spread,
buying back more than 6 units would result in a loss of 1 for each additional unit, since long
positions would be valued at 4 per unit. It follows that the realization vector of division
1 in state 1 is X1({1}) = —10. Similarly, the realization vector of division 2 in state 1 is
X1'({2}) = —9. For the firm itself, we have 6! + 6? = (46, —13), and an optimal portfolio
q'({1,2}) satisfying the liquidity constraint is anywhere between (31, —10) and (—19,0),
resulting in X*({1,2}) = —19.

Next, let us analyze state 2. Again, division 1 should buy at least 3 units of the risky
asset to satisfy the liquidity policy. Buying 3 units and trading t*({1}) = (—27,3) will
result in ¢?({1}) = (—7,-3) and v*(¢*({1})) = —7 — 3 x 8 = —31. Buying more than 3
units would be costly. For instance, buying 4 units by trading #*({1}) = (—37,4) would
result in ¢?({1}) = (=17, —2) and w*(7*({1})) = —17 — 2 x 8 = —33, hence division 1 will
only buy 3 units. The remaining short position will be valued at the best ask price, and
X?({2}) = —31. Similarly, the realization vector of division 2 in state 2 is X*({2}) = —33.
For the firm itself, since 0! + #* = (46, —13), the optimal trade is t?({1,2}) = (27, 3),
leading to ¢*({1,2}) = (19, —10) and X2({1,2}) = u2(¢*({1,2})) = 19 — 10 x 8 = —61.
The calculations and the resulting cooperative game are summarized in Table 1.

Note that in state 1 the realization vector of coalition {1, 2} is additive over its members’
realization vectors, which is due to the flat MDCs and the concordant portfolios. In state
2 coalition {1,2} gains since it only has to buy back once 3 units of the risky asset at
a higher price. Also note that if the original portfolio of the grand coalition satisfies the
liquidity policy and the portfolios of the divisions are concordant, then we get additivity
for the realization vector. On the other hand, if for the same asset with a positive bid-ask

spread some divisions have had long positions and some other divisions have had short
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state/ X (C) | X({1}) X({2}) X({1,2})
s=1 —10 —9 —19
s=2 —31 33 —61

p(X(C)) 31 33 61
v(C) —31 33 —61

Table 1: A risk allocation game with liquidity constraints.

positions, then we would get superadditivity.

For two-player games, most single-valued solution concepts, and in particular the Shap-
ley value and the nucleolus, would share the surplus of the grand coalition over the indi-
vidual worths equally over the players. In this example, this would result in the allocation
(—29.5, —31.5). The firms should add 61 units of cash to its portfolio to make it acceptable
to the regulator, and the risk allocation over the divisions corresponds to 29.5 units of cash

for division 1 and 31.5 units of cash for division 2.

Rather than assuming the worst-case for the behavior of the opponents, we have utilized
the fact that in a risk environment with liquidity considerations, divisions have initial
portfolios, which means that it is meaningful to speak about inaction of a division. We have
calculated the realization vector of a coalition by assuming inactivity of the complementary
coalition.

Another alternative which comes to mind when defining the realization vector of a
coalition, is to assume that the complementary coalition is going to hold the 0 portfolio.
Alternatively, one could think of this assumption as ignoring the complementary coalition.
It is not hard to see that this is not an attractive alternative. Consider for instance the
risk environment with liquidity considerations of Example 3.8. When the complementary
coalition holds the 0 portfolio, it is easy to calculate that v({1}) = —28, v({2}) = —30,
and v({1,2}) = —61. The resulting risk allocation game with liquidity constraints is not
superadditive. The reason is that in this example, it is easier for a single division to satisfy
the short-sales constraint of 10 units than it is for the entire firm. Failure of superadditivity
is not natural for the problem under consideration, as the entire firm has more actions at

its disposal to satisfy the liquidity policy than a single division.

4 Total Balancedness

For each C € 2V, let a(C) € R™ be the membership vector, a;(C) = 1 for i € C and
a;(C) = 0 otherwise.
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Definition 4.1. A balanced vector of weights is a vector (A\)ceoy € RiN such that
> ceon A%a(C) = a(N). A game (N,v) is balanced if Y ov A%0(C') < v(N) for all bal-
anced vectors of weights.

A well-known interpretation of balancedness is that the players can distribute one unit
of working time to any coalition and if each coalition is active during a fraction A of a unit
of time, then the players cannot generate more value than v(N), the value of the grand
coalition. Balancedness is a necessary and sufficient condition for non-emptiness of the
core in a transferable utility game (Bondareva, 1963; Shapley, 1967). See Predtetchinski
and Herings (2004) for an extension of the concept of balancedness to be necessary and
sufficient for non-emptiness of the core in non-transferable utility games.

For a game (N, v) and a coalition C' € 2V, a subgame (C,v%) is obtained by restricting
v to subsets of C.

Definition 4.2. A game (N, v) is totally balanced if for every D € 2V its subgame (D, v?)
is balanced, that is, if for all D € 2V and for all vectors (A\“)geon € Rf satisfying
> cean A%a(C) = a(D), we have Y yp A0(C) < v(D).

In a totally balanced game, every subgame has a non-empty core. Let I'y, denote the
family of totally balanced games with n players.
The next proposition claims that any risk allocation game with liquidity constraints is

totally balanced.
Proposition 4.3. All games (N,v) € 'y are totally balanced, I'y; C Ty,.

Proof. Consider a risk environment with liquidity considerations (N, J, S, 7,0, m, L, p)
inducing the risk allocation game (N, v). We show that for any non-empty D € 2V, the
subgame (D, v”) is balanced. We define D = 2P\ {0}. Take any (A\“)cep € R such that

>_cep Aa(0) = a(D).
Take € > 0. For s € S and C € D, let ¢°(C') € P be such that ¢°(C) + (N \ C) €
A*((N)) N L* and
W (g*(C)) = X*(C) —e. (6)
The vector of actual trades is given by

t°(C) = ¢*(C) = 0(C), (7)

First, we present eight lines containing equalities and inequalities proving the proposi-

tion, then we explain why each step is true.
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It holds that

CZ;A%%) =- ;;DAC/)(X(O)) (8)
6 =— Cipp(ACX(O)) (9)
< —p(ECX;)(ACX(O))) (10)
< —pé(AC((uS(qS(O)) +€)ses))) (11)
?uD(Z A (C))ses) + ) A%e19) (12)
<uS<C§ AG(C))ses)) +C§: X (13)
DC) i 5 3 AC - (14)
= vP(D) + d¢ ZC;) (15)
Gep

Since > ep AY < n, we have that de > ., A” tends to zero as ¢ tends to zero. Therefore,
when taking the limit as € | 0, the chain of equalities and inequalities (8)—(15) imply that
> ACP(C) <uP(D),
ceD
so the game (D, v?) is balanced.

Equation (8) follows from Equation (5) and Equation (9) follows from the positive ho-
mogeneity of p. Inequality (10) is due to the subadditivity of p. Equation (11) plugs in
Equation (6). Inequality (12) is true because of the positive homogeneity and superad-
ditivity of u (following from Proposition 2.9), and the monotonicity of p. Equation (13)
makes use of the fact that p satisfies translation invariance. Due to the monotonicity of p,
Inequality (14) is true if we can prove that for each s € S it holds that

() Xq°(C)) < X*(D). (16)
ceD

Consider any s € S. Take any i € D, define C* = {C € 2P | i € C} and D' = D\ C".
We have that

Ycep A (°(C))

Ycee MU (@ () + P pepi AU (¢°(C))
>_ceci Xu (¢°(C)) + >_cepi A%u(6(C))
(P ceei AC(O) + Y e A0(C))
W (X cees At (C) +0(C)) + X pep: A°0(C))
w(O(D) + Peees A°(C))
W (X cees A (O(D) +1°(0))),
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where the first inequality follows from Proposition 3.5 and the second inequality from
Corollary 2.10.

We define p*(D) = Yo A9(0(D) +t°(C)) and show that p*(D) + (N \ D) € L*. For
every C € C' it holds that ¢*(C) + (N \ C) € L*. Therefore, it holds that

O(D)+t°(C)+0(N\D)=¢(C)+0(D\C)+06(N\D)=¢*(C)+6(N\C) € L°

Since Y ocei AY =1 and L* is convex, we have that p*(D) + 6(N \ D) € L*.
Finally, we define ¢*(D) € P by ¢5(D) = p5(D) and

G (D) = £(6(D), Y At5(C)).

CecCt

Since ¢¢ is concave, we have

a3(D) = D X (00(D),t5(C)) = 6o(D) = 3 A(C) = pi(D).
cect Cceci
sou®(¢*(D)) > u®(p*(D)). By definition, it holds that ¢°(D) € A*(6(D)). Assumption 2.7.(ii)
implies that ¢*(D) + 6(N \ D) € L*. Tt follows that

> 2% (¢°(0) < w(p*(D)) < u(g*(D)) < X*(D).
CceD

O

Note that all the axioms of coherent measures of risk were used in the proof of Propo-
sition 4.3.

Not only is it true that all risk allocation games with liquidity constraints are totally
balanced, but also any totally balanced game can be generated by a risk allocation game
with liquidity constraints, by simply taking one perfectly liquid asset with a trivial liquidity
policy and applying the construction of Cséka, Herings, and Kéczy (2009)[Proposition 3.2].

Thus we have the following theorem.

Theorem 4.4. The class of risk allocation games with liquidity constraints coincides with
the class of totally balanced games, Iy = I'y,.
5 Conclusion

Liquidity is of crucial importance when assessing the risk involved in an asset portfolio.
Nevertheless, the literature on risk allocation games has so far ignored this important

aspect. When we add a liquidity policy to a risk environment, we obtain an environment
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that is characterized by pervasive externalities. Indeed, when attributing the risk of a firm
to its divisions, the question whether a single division satisfies the liquidity policy cannot be
answered without making assumptions about the behavior of the complementary divisions.

We argue that the standard ways to deal with externalities, a-effectiveness and (-
effectiveness are not appropriate here, and that it is also not possible to simply ignore
the complementary divisions. Since in our framework the property rights of divisions are
well-defined, it is meaningful to speak about inactivity of a coalition. We then say that
a coalition of divisions satisfies the liquidity policy if it does so when the complementary
coalition is inactive.

Our main result demonstrates that this approach leads to risk allocation games that
are totally balanced. It is therefore possible to attribute the risk of a firm to its divisions
in a stable way, since the core of a totally balanced game is evidently non-empty. In fact,
the core of any subgame of a totally balanced game is non-empty as well, so the risk of

any division can also be attributed in a stable way to its subdivisions too.
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