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Abstract – The economics of electricity is shaped by its physics. A well know example is the 

non-storability of electricity that cause its price to fluctuate widely. More generally, physical 

constraints cause electricity to be a heterogeneous good along three dimensions - time, space, 

and lead-time. Consequently, different generation technologies, such as coal and wind power, 

produce different economic goods that have a different marginal economic value. Welfare max-

imization or competitiveness analyses that ignore heterogeneity deliver biased estimates. This 

paper provides an analytical welfare-economic framework that accounts for heterogeneity for 

unbiased assessments of power generators. The framework offers a rigorous interpretation of 

commonly used cost indicators such as ‘levelized electricity costs’ and ‘grid parity’. Heteroge-

neity is relevant for all generators, but especially for variable renewables such as wind and solar 

power. We propose a definition of ‘variability’, derive the opportunity costs of variability, and 

link that concept to the ‘integration cost’ literature. A literature review shows that variability 

can reduce the value of wind power by 20-50%. Thus it is crucial that economic analysis ac-

counts for the physics of electricity. 
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1. Introduction 

Already today, in some regions the generation costs of wind power is below that of conventional 

power sources like coal-fired plants, and many observers expect wind costs to continue to fall. It 

is widely believed that this cost advantage implies wind power is competitive or economically 

efficient. However, this is not the case. It would be only correct if wind power was a perfect 

substitute of coal power, in other words, if electricity was a homogenous economic good. But 

electricity is heterogeneous: because electricity can hardly be stored, its value fluctuates. There-

fore it matters when electricity is generated. Wind turbines and coal plants produce at different 

points in time, hence the marginal value of their output is different – in other words, they pro-

duce different economic goods.  

Temporal heterogeneity of electricity is acknowledged in academics for a long time (Boiteux 

1949, Bessembinder & Lemmon 2002, Joskow 2011). We generalize heterogeneity by pointing 

out that its fundamental reason is the lack of arbitrage possibilities. The physics of electricity 

prevent arbitrage not only over time, but along two additional dimensions: transmission is con-

strained, which causes electricity to be heterogeneous across space; and power plant flexibility 

is constrained, which causes electricity to be heterogeneous over lead-time between contract and 

delivery. Hence, electricity is heterogeneous in three dimensions. Electricity from wind turbines 

and coal-fired plants is not only economically different because it features a different temporal 

profile, but also because it is generated at different locations, and under different degrees of 

uncertainty and flexibility. 

Heterogeneity has important implications for economic analysis. Welfare and competitiveness 

analysis that ignores heterogeneity implicitly compares marginal values and benefits of different 

goods. The outcome is biased results. Several applications and tools that are in practice used for 

policy advice and decision support implicitly ignore heterogeneity. Take the example of two 

commonly applied economic indicators, ‘levelized costs of electricity’ (LCOE) and ‘grid pari-

ty’. Policy makers, analysis, and academics regularly compare different generation technologies, 

such as nuclear, coal, and wind power in terms of LCOE, which is the discounted live-time av-

erage generation cost (Karlynn & Schwabe 2009, Fischedick et al. 2011, IEA & NEA 2011, 

BSW 2011, EPIA 2011, Nitsch et al. 2011, IRENA 2012, Kost et al. 2012, EIA 2013). It is 

sometimes suggested or implicitly assumed that a technology is competitive or efficient once its 

LCOE drop below those of conventional plants. Such LCOE comparisons implicitly assume that 

the marginal value of these generators is identical - which is not the case. A second widely used 

indicator is ‘grid parity’, the point where generation costs drop below retail electricity prices. 

Some observers seem to believe that once a technology has reached grid parity, its deployment 

is economically efficient (Koch 2013, Fraunhofer ISE 2013). This interpretation is subject to the 

same misconception, as the marginals of different goods are compared. 

Not only these indicators, also calibrated multi-sector models often implicitly ignore electrici-

ty’s heterogeneity. Economists have for many years used calibrated macroeconomic multi-

sector models for research and policy advice, starting with Leontief (1941). Today, ‘integrated 

assessment models’ (IAMs) are an important tool for assessing climate policy and the role of 

renewables in mitigating greenhouse gas emissions (Fischedick et al. 2011, Edenhofer et al. 

2013). Such models often represent the electricity sector with one equilibrium price, implicitly 

assuming homogeneity. 

Heterogeneity is a feature of electricity as an economic good, and not a feature of a specific 

generation technology. However, accounting for heterogeneity specifically relevant for variable 

renewables (VRE) at high penetration, since their marginal value can become quite low (La-

mont 2008, Borenstein 2008, Fripp & Wiser 2008, Mills & Wiser 2012, and Hirth 2013a). 

Moreover, variable renewables, such as wind and solar power, have been growing rapidly dur-
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ing the last years, driven by technological progress, economies of scale, and deployment subsi-

dies. Global solar PV capacity has reached 100 GW, a ten-fold increase since 2007; wind power 

capacity surpassed 280 GW, a three-fold increase since 2007 (REN21 2013). Several power 

systems now accommodate high VRE shares, including Denmark (30%), Spain (23%), Ireland 

(17%), and Germany (15%), according to IHS (2013). At such high shares, differences in mar-

ginal value to conventional power plants become large. The IEA (2013) forecasts that within 

five years, global wind capacity will double and solar PV capacity triple. Given that much of 

this growth is financed with tax money, the valuation of VRE is of major public relevance. 

This theoretical paper provides an analytical welfare-economic framework for an assessment of 

power generators that explicitly accounts for heterogeneity. The framework offers a rigorous 

interpretation of commonly used cost indicators such as LCOE and grid parity, suggests a wel-

fare-economic definition of ‘integration costs’ of VRE, and provides insights for modeling the 

power sector in IAMs. 

Specifically, the paper contributes to the literature in the following ways. First, it offers a rigor-

ous and general discussion of heterogeneity. We define heterogeneity formally and introduce 

the concept of three-dimensional heterogeneity. For each dimension, the physical constraints 

that cause heterogeneity are discussed. Second, we interpret electricity from different generating 

technologies as different goods. These goods are only imperfectly substitutable and in general 

have different a marginal value. Third, the paper shows how heterogeneity can be accounted for 

in welfare maximization and derives first-order conditions. In turns out that there are (at least) 

two equivalent perspectives on optimality, each corresponding to a different electricity good. 

This duality helps understanding why some researchers frame their analysis of wind power vari-

ability in terms of ‘value’ and others in terms of (integration) ‘cost’. Fourth, the article offers a 

rigorous definition of variability and corresponding opportunity costs of variability. We argue 

that all generators are subject to variability - not only VRE - and that variability can only be 

interpreted within a framework that accounts for the heterogeneity of electricity. Specifically, if 

electricity was homogenous, variability of VRE and other technologies would not cause any 

costs. Finally, a number of methodologically remedies are proposed. We specify a new cost 

metric, System LCOE, that allows economically meaningful cost comparisons of different tech-

nology, discuss how electricity’s heterogeneity and VRE’s variability can be accounted for in 

integrated assessment modeling, and propose a pragmatic decomposition of variability cost that 

facilitates quantification. 

This paper relates to five different branches of literature. First, screening curves have been used 

for decades to find the least-cost thermal capacity mix (Phillips et al. 1969, Stoughton et al. 

1980, Green 2005). This paper generalizes the screening curve approach, which accounts for 

temporal heterogeneity only, by deriving optimality conditions for three-dimensional heteroge-

neity. Second, it provides theoretical foundations for the optimal share literature. This literature 

estimates the optimal generation mix from numerical power market models (Neuhoff et al. 

2008, Lamont 2008, Müsgens 2013). Third, the paper expands the marginal value literature that 

estimates the marginal value of wind and solar power (Grubb 1991, Borenstein 2008, Mills & 

Wiser 2012). A major finding of these studies is that their marginal value decreases with the 

penetration rate. This study links these results to electricity’s heterogeneity and shows that not 

only the marginal value of VRE is specific, but that all technologies have a specific marginal 

value – and it always decreases with penetration. Fourth, it contributes to the integration cost 

literature assesses the costs of integrating wind and solar generators into the power system 

(Holttinen et al. 2011, Milligan et al. 2011, NEA 2012). This study relates integration costs to 

heterogeneity and offers a new definition of integration cost with welfare-economic foundation 

such that integration cost can be interpreted as the opportunity cost of variability. Fifth, the arti-

cle challenges integrated assessment modeling. These models incorporate wind and solar power 

into numerical large-scale multi-sector long-term models, for example to assess long-term cli-
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mate policy (Fischedick et al. 2011, Luderer et al. 2013, Sullivan et al. 2013). We show that the 

low resolution of these models can bias results, and suggest remedies. This article extends and 

formalizes previous work (Hirth 2013a, 2014, Hirth et al. 2013, Ueckerdt et al. 2013a, 2013b). 

The remainder of this paper is organized as follows. Section 2 introduces the idea of electricity 

as a heterogeneous good. Section 3 derives the marginal value of different power generation 

technologies. Section 4 argues that these value differences can be expressed in terms of ‘varia-

bility cost’, and proposes the metric System LCOE. Section 5 derives the first order conditions 

for the optimal generation mix. Section 6 proposes a decomposition of variability cost. Section 7 

applies the framework developed in sections 2 to 6 to variable renewables. Section 8 concludes. 

 

 

2. Electricity is a heterogeneous good 

In many aspects, electricity is a homogenous commodity like many others. What sets electricity 

apart from other economic goods? More than that of other goods, the economics of electricity is 

shaped by its physics. Most of its economic peculiarities stem from the fact that it is not a tangi-

ble commodity that can be stored and shipped. As a consequence, electricity can be understood 

both as homogeneous and heterogeneous at the same time. This section sheds light on this ap-

parent paradox and argues that electricity is not only heterogeneous over time, as academics 

have acknowledged for long time, bot heterogeneous along three dimensions. 

Electricity can be seen as the archetype of a perfectly homogenous commodity: consumers can-

not even distinguish electricity from different power sources, such as wind turbines or coal-fired 

plants.
2
 In other words, electricity from different sources is perfectly substitutable, and the law 

of one price applies: electricity from wind is worth the same as electricity from coal. This is 

reflected in real-world market structure, where bilateral contracts are not fulfilled physically in 

the sense that electrons are delivered from one party to another, but via an ‘electricity pool’: 

generators inject energy to the grid and the consumer take out the same quantity. In liberalized 

markets, electricity is traded under standardized contracts on power exchanges. Hence, whole-

sale markets for electricity share many similarities with markets for other homogenous com-

modities such as crude oil, hard coal, natural gas, metals, or agricultural bulk products.  

However, homogeneity applies only at a certain point in time. Since storing electricity is (very) 

costly, the price of electricity varies over time. More precisely, the power price is subject to 

large predictable and random fluctuations on time scales as short as days, hours, and even 

minutes (Bessembinder & Lemmon 2002). As a consequence, a mix of production technologies 

might be optimal, rather than a single technology (Bessiere 1970, Stoughton et al. 1980, Grubb 

1991, Stoft 2002), and price peaks emerge (Boiteux 1949, Crew et al. 1995). Specifically, price 

fluctuations have implications for the valuation of wind and solar power (Lamont 2008, Boren-

stein 2008, Fripp & Wiser 2008, Joskow 2011, and Hirth 2013a).  

Before we proceed with discussing the other two dimensions, we define ‘homogeneity’ and 

‘heterogeneity’. We call a good to be heterogeneous if its marginal economic value varies. More 

specifically, we define it to be heterogeneous along a dimension if its marginal values varies 

between different points   within a certain range  . For example, one dimension is time and the 

corresponding range is one year. We define the ‘instantaneous’ marginal economic value   
  at a 

point   within range   as the derivative of welfare  (    ) with respect to an increase of con-

sumption of the good at a certain point  . 

                                                           
2 In some markets, certificates of origin exist, in order to allow consumers to discriminate between different power 

sources (Kalkuhl et al. 2012). However, such certificates are traded independently from electricity. 
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  (    )

   
      ( 1 ) 

Hence, a good is homogeneous along a dimension if 

   
    

         ( 2 ) 

Otherwise, the good is heterogeneous along that dimension.
3
 Taking the same example, a good 

is heterogeneous over time if its marginal value varies significantly between two points in time 

during one year. 

The most fundamental condition for heterogeneity is the absence of arbitrage possibilities. Het-

erogeneity along a dimension can only arise if arbitrage possibilities along that dimension are 

inhibited. For example, storable goods feature relatively little price fluctuations over time, be-

cause inventories allow for inter-temporal arbitrage.
4
 In the case of electricity, non-storability 

prevents such arbitrage: electricity is heterogeneous in time because it can (almost) not be 

stored.  

Now we come back to the three dimensions of electricity’s heterogeneity. The physics of elec-

tricity imposes three arbitrage constraints, along the dimensions time, space, and lead-time: 

 Electricity is electromagnetic energy. It can be stored directly on condensers, or indi-

rectly as chemical energy (battery, hydrogen), kinetic energy (flywheel), or potential 

energy (pumped hydro storage). In all these cases, energetic transformation losses and 

capital costs make storage very expensive, often prohibitively expensive.
5
 Hence, arbi-

trage over time is limited. Consequently, it is economically different to produce (or con-

sume) electricity now or later. In other words, the storage constraint makes electricity 

heterogeneous over time. 

 Electricity cannot be transported on ships or trucks, as tangible goods can be, but is 

transmitted on power lines. These lines have limited thermal capacity, and transmission 

is subject to losses. Moreover, Kirchhoff’s circuit laws, which govern load flows in 

meshed networks, further constrain transmission capacity, and reactance limits trans-

mission distances. Hence, arbitrage across space is limited. Consequently, it is econom-

ically different to produce electricity here or there. The transmission constraint makes 

electricity heterogeneous across space. 

 In AC power systems, the demand-supply balance has to hold at every instant in time. 

Imbalances cause frequency deviations, which can destroy machinery and can be very 

costly. However, thermal power generators are limited in their ability to quickly adjust 

output by limits on temperature gradients on boilers and turbines (ramping and cycling 

constraints). Hence, arbitrage is limited across different lead-times between contract and 

deliver. A generator that can adjust its output on short notice tends to increase its mar-

ginal value. The flexibility constraint makes electricity heterogeneous along lead-time. 

Summing up, storage ‘links stuff in time’, transmission ‘links stuff in space’, and flexibility 

‘links stuff in lead-time’. Since storage, transmission, and flexibility are constraint, electricity is 

a heterogeneous good in time, space, and lead-time. Hence, the marginal value of electricity 

carries three indices:       
 . 

 ‘Lead-time’, the third dimension, is less intuitive than the other dimensions and might merit 

further discussion. Think of three types of generators: stable generators that produce according 

                                                           
3 This definition excludes small price variations, such as changes driven by intra-year discounting. 
4 Inventories both prohibit predictable price fluctuations and limit random price fluctuations. 
5
 Hydro reservoirs allow storing kinetic energy, before it is transformed into electricity. This might be considered the 

only economic large-scale storage technology deployed today – but only allows shifting generation over time, not 

adding energy to the storage. 
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to a schedule that is specified one day in advance, like nuclear power; flexible generators that 

can quickly adjust, like gas-fired plants; and stochastic generators that are subject to day-ahead 

forecast errors, like wind power. If additional net demand emerges (because of higher demand 

or lower supply of stochastic generators), only flexible generators are able to fill the gap. The 

real-time price rises above the day-ahead price, hence flexible generators earn on average higher 

income, which reflects their higher marginal value. Contrast this with the stochastic generators: 

because there is oversupply whenever they generate more than expected, their average income is 

reduced. 

Constrained arbitrage is a necessary, but not a sufficient condition for heterogeneity. Heteroge-

neity requires two additional conditions to be fulfilled. On the one hand, demand and/or supply 

conditions need to differ between points along the dimension. Take the example of time: if sup-

ply and demand would be constant over time, non-storability would not lead to price fluctua-

tions. Only because the demand curve for electricity shifts during the course of a day, driven by 

diurnal pattern in human behavior, the price fluctuates. On the other hand, both demand and 

supply need to be less than perfectly price-elastic. For example, if the short-term supply curve 

(merit-order curve) was horizontal, despite demand fluctuations and non-storability, the price 

would remain unchanged. Taken together, these three conditions are jointly the necessary and 

sufficient condition for heterogeneity: 

1. arbitrage constraint 

2. differences in demand or supply conditions 

3. non-horizontal demand and supply curves 

For electricity, these three conditions are fulfilled in all three dimensions. While the time di-

mension has been much discussed in the literature, the other two dimensions have received 

much less attention. To the best of our knowledge, this is the first study to address heterogeneity 

along these dimensions. Table 3 summarizes the heterogeneity of electricity. 

Table 1: The heterogeneity of electricity along three dimensions. 

Dimension 
(differences between points in …) 

Time Space 
Lead-time 

between contract and 

delivery 

Arbitrage constraint 
(1st condition) 

Storage 
(storing electricity is 

costly*) 

Transmission 
(transmitting electricity is 

costly*) 

Flexibility 
(ramping & cycling is 

costly*) 

Drivers for demand / 

supply variations 
(2nd condition) 

Temporal variations 
e.g. day-night patter, 

weather, plant availability 

Spatial variations  
e.g. load centers, plants are 

bound to locations,  weather 

Uncertainty  
(deviation from expected 

conditions), e.g. due to 

weather 

* ‘Costly’ both in the sense of losses (operational costs) and the opportunity costs of quantity constraints. 

 

Many economic goods are subject to differences in demand and supply conditions (actually, 

consumption of almost all goods varies with day and night) and feature non-horizontal demand 

and supply curves. Arbitrage possibilities make those goods homogeneous. More than anything 

else, it is the existence of the three non-arbitrage conditions that makes electricity a peculiar 

economic good. 

Figure 1 visualizes the three-dimensional heterogeneity of electricity. Each axis represents one 

dimension, time, space, and lead-time. The length of each axis represents the ‘range’: one year, 

one power system, and the complete set of spot markets. At one point in this three-dimensional 

space, electricity is a perfectly homogenous good. However, as physical constraints limit arbi-

trage between points in that space, the marginal value differs between points. This is, according 

to our definition, heterogeneity. 
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More formally, Figure 1 can be thought of as a [     ]-Matrix where each element is the in-

stantaneous marginal value       
  at time step    , at node    , and at lead-time    . We 

call the [     ]-Matrix   of the elements       
  the ‘marginal value space’. 

 

 

 

 Figure 1: The marginal value space. Source: adopted from Hirth (2014).  

 

Three-dimensional heterogeneity is reflected in reality. It can be observed in price variation, is 

reflected in market design, and has shaped technology development. For example, at European 

power exchanges, a different clearing price is determined for each hour and for each geographic 

bidding area. U.S. markets typically feature an even finer resolution, clearing the market every 

five minutes for each of several thousand transmission nodes. In addition, there is a set of power 

markets with different lead-times: in most European markets, there is a day-ahead market (12-

36 hours before delivery), an intra-day market (few hours before delivery), and a balancing 

power market (close to real-time). As a consequence, there is not one electricity price per mar-

ket and year, but 26,000 prices (in Germany) or three billion prices (in Texas).
6
 Hence, Figure 1 

can readily be thought off as an array of market-clearing spot prices. But not all dimensions of 

heterogeneity are reflected in all markets: German prices, for example, are uniform across 

space. Grid constraints are managed via command and control interventions. 

Observed electricity prices vary along all three dimensions, as 2012 data from Germany and 

Texas show. The German day-ahead price varied between -222 €/MWh and 210 €/MWh, a 

range of ten times the average price. During a normal day, prices varied by a factor of two. 

Within Texas, price difference of several hundred $/MWh between different locations were not 

uncommon (Schumacher 2013). The spread between day-ahead and real-time price in Germany 

varied between -1600 €/MWh and 1400 €/MWh (Hirth & Ziegenhagen 2013). In contrast, the 

price of other energy carriers varies much less. The spot price for natural gas varied between 21 

€/MWh and 38 €/MWh in 2012, a range of 70% of the average price; the price of crude oil be-

tween 89 $/bbl und 130 €/bbl, a range of 36% of the average price. This is in line with expecta-

tions, as storage costs for natural gas are higher than for oil, but much lower than for electricity. 

Within Germany, there are no significant locational spreads in gas and oil prices, which reflects 

low transportation cost.
7
 

The heterogeneity of electricity is not only reflected in market design, but also in technology. 

For homogenous goods, in general one single production technology is efficient. In electricity 

                                                           
6 The German spot market EPEX clears for each hour of the year as a uniform price; the ERCOT real-time market of 

Texas clears every five minutes for all 10,000 bus bars of the system  
7 German spot prices from EPEX Spot, Texas spot prices from ERCOT, German imbalance prices from TSO TenneT, 

natural gas prices from German gas hub TTF, crude oil prices for Brent. 
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generation, this is not the case: there exists a set of generation technologies that are efficient. 

‘Base load’ plants have high investment costs and low variable costs, ‘peak load’ plants feature 

the opposite structure. Such peaking plants are specialized technology to supply electricity at 

times when it has high value, which occurs seldom. These differentiated technologies reflect 

temporal heterogeneity (Table 2). Some plants are quick to start up, others require much time 

and resources to cycle. This differentiation reflects heterogeneity in lead-time. Some plants are 

more compact and emit less local pollutants such that they can be constructed in load centers 

where the marginal value of electricity is higher; other plants are large and noisy and can only 

be built remotely, where their value is lower. This reflects spatial heterogeneity. 

Table 2: Electricity generation technologies have adapted to temporal heterogeneity. 

Technology 
Annualized fixed costs 

(€/kWa) 

Variable costs 

(€/MWh) 

Efficient capacity 

factor range 

Nuclear 400 10 >95% 

Lignite 240 30 75% - 95% 

Hard coal 170 40 50% - 75% 

CCGT (natural gas) 100 55 5% - 50% 

OCGT (natural gas, oil) 60 140 <5% 

Cost data for central Europe with 2012 market prices for fuel, assuming a CO2 price of 20 €/t. About 85-90% of fixed costs are 

capital costs. CCGTs are combined-cycle gas turbines, and OCGTs are open-cycle gas turbines. Source for technology cost 

parameters: Hirth (2014), based on the primary sources IEA & NEA (2011), VGB Powertech (2011), Black & Veatch (2012), 

and Schröder et al. (2013). 

  

 

3. The marginal economic value of an electricity generating technology 

We now characterize the marginal economic value of a power generating technology, such as 

nuclear, coal, or wind power. We specify the marginal value in energy terms, i.e. in €/MWh. We 

will argue that electricity from a different generation technology can be understood as imperfect 

substitutes, due to their different generation pattern in time, space, and lead-time. This section 

generalizes Joskow (2011) and formalizes Hirth et al. (2013). 

We start with the instantaneous marginal value of electricity       
 . This is given by intersection 

of short-term (dispatch) invers demand with the short-term marginal cost curve (merit-order 

curve). It is the consumers’ marginal utility and hence willingness to pay for consuming one 

additional unit of electricity (MWh) at time  , node  , and lead-time  . [Under perfect and com-

plete markets,       
  equals the locational spot price       .]

8
  

To evaluate a power-generating technology it is not very informative to only consider its value 

at one point. The mean value over a ‘range’ that is in some sense complete is more helpful for 

policy or investment decisions – for example the marginal value of a MWh from wind power in 

a country during one year, considering all spot markets. The marginal value of a generation 

technology is the marginal value of its output. This is the average of all       
 , weighted with the 

generator’s output, that is the marginal value of the electricity it generates. As a range we define 

  to be one year,    to be one power system, and    the complete set of spot markets. Formally, 

the marginal value of technology  ,  ̅ 
  , is given by 

                                                           
8 The theorems of this and the following sections hold in general; they do not depend on specific assumptions on 

market completeness, absence of market failures, or equilibrium assumptions. We add interpretation in terms of 

prices in brackets for the readers’ convenience. 
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      ( 3 ) 

where          is the share of generation of technology   at the respective time step, node, and 

lead-time, such that 

 

∑ ∑ ∑        

 

   

 

   

 

   

        ( 4 ) 

We label the [     ]-Matrix    of the elements           the ‘generation pattern’ of technology 

 . [Under perfect and complete markets,  ̅ 
  equals the market value of a technology.] 

In general, the generation patterns of two technologies do not coincide.  

                          ( 5 ) 

Hence, in general, their marginal values do not coincide, even if considering the same year and 

power system.  

  ̅ 
   ̅ 

         ( 6 ) 

They might coincide incidentally. As we will show later, in an equilibrium this is the case if the 

marginal costs of both generators are identical. Figure 2 illustrates that the marginal values in 

general do not coincide. 

 

 

 

 Figure 2: The marginal value of different technologies (illustrative).  

 

To differentiate the output from different generation technologies, we define a number of eco-

nomic ‘electricity goods’. Each good is one MWh of electricity, but has a different pattern. We 

define the good I as one MWh of electricity that features the pattern   . Hence, we define COAL 

and WIND
9
 power as one MWh of electricity that has the same pattern as coal power plants 

      and wind turbines      , respectively, hence  ̅    
  is the marginal value of the good 

COAL. As ( 6 ) shows, these goods have different economic values, despite representing identi-

cal energetic values. Hence, they are only imperfectly substitutable. While at a single point, 

electricity from wind and coal is perfectly substitutable, over one year (more precisely, the full 

range), they are not. The law of one price does not apply.  

We define the marginal value of load  ̅    
  as the demand-weighted average of all       

 . 

                                                           
9 We denote these ‘electricity goods‘ with SMALL CAPS to distinguish them from the technology itself. Hence, ‘wind’ 

refers to wind turbines while ‘WIND’ refers to one MWh of electricity that has the same pattern as wind turbines. 

WIND can be generated from wind turbines, but also from any other technology if dispatched proportionally to wind 

turbines. 
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  ( 7 ) 

where        is the share of consumption at the respective time-step, node, and lead time.  ̅    
  is 

the consumers’ willingness to pay for an additional MWh of yearly consumption that has the 

same pattern as infra-marginal consumption. [Under perfect and complete markets,  ̅    
  equals 

average electricity prices consumers pay,  ̅    
 .] We label the corresponding good LOAD. We 

will use this good as a reference in the following section.  

In general, the generation patterns of any generator are different from load pattern 

                      ( 8 ) 

and hence marginal values of a generator does not coincide with the marginal value of load 

  ̅ 
   ̅    

       ( 9 ) 

[In general, the market value of a technology does not coincide with the average electricity price 

 ̅    
 .] 

The marginal value if a generation technology is a function of many parameters. Specifically, it 

is typically a downward-sloping function of a technology’s total generation    

  ̅ 
   ̅ 

 (    )      ( 10 ) 

Typically, as a function of   ,  ̅ 
  falls steeper than  ̅    

   With increasing supply of a good, the 

marginal value of that good falls quicker than that of an imperfect substitute. This is illustrated 

in Figure 3. 

 

 

 

 Figure 3: The marginal value of a technology is in general not identical to the 

marginal value of LOAD. With an increasing market share of  , it declines steeper 

than   ̅    
  (illustrative).  Source: own work. 

 

 

Often, the relative value of a technology is of interest. We define the ‘value factor’    (Stephen-

son 1973, Hirth 2013a) of technology   as its marginal value over the marginal value of LOAD: 

 
   

 ̅ 
 

 ̅    
       ( 11 ) 

In terms of prices, this is the relative price of electricity from technology  . What Figure 3 dis-

plays is that the relative price of good I declines as its supply increases. 

We have derived three important results: First, in general different electricity sources have a 

different marginal value. Second, electricity from different sources is only imperfectly substitut-

able. Third, in general the marginal value of a generator does not coincide with the marginal 
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value of load. In the following section, we use differences in marginal values to derive a metric 

that allows comparing the costs of different generators. 

 

 

4. System levelized costs of electricity (System LCOE) 

Because the output of different technologies is only imperfectly substitutable, comparing the 

levelized costs (LCOE) of different technologies does not allow inferring about economic effi-

ciency. However, such comparisons are widespread in academic, policy, and industry docu-

ments. Apparently there is a demand to compare technologies in terms of costs. To allow such 

comparisons in an economic sensible way, we propose the augmented metric System LCOE. We 

have derived System LCOE previously (Ueckerdt et al. 2013a) in a different but equivalent way. 

To compare costs, we have to ‘transform’ different goods (e.g. WIND or COAL) such that they 

are substitutable – i.e. that their marginal values are the same. We use a ‘reference good’ that 

has a specific marginal value; here, we use LOAD. By ‘transforming’ different goods into the 

reference good they get the same marginal value. As a result, the costs of generating the refer-

ence good from different technologies can be compared to infer about efficiency or competi-

tiveness of each technology. 

We define System LCOE of technology   as the costs   
  (in €/MWh) of generating the reference 

good from a technology  . These costs are composed of the ordinary generation costs    
  of that 

technology and   
  which are the costs of transforming that generation into the reference good: 

 
  

      
    

       ( 12 ) 

More specifically,   
  are the long-term marginal generation cost of technology   to produce 

good I. These are the LCOE of  , the discounted average private life-cycle costs of a generator 

(fixed and variable, including the cost of capital): 

 

  
  ∑

 

(   ) 

    

 
   

 

   

      ( 13 ) 

where      are the costs that occur in year  ,      is the amount of electricity generated in that 

year,   is the real discount rate, and   is the life-time of the asset in years. LCOE is a standard 

concept and widely used. In contrast   
 , which will be examined in the following. 

  
  depends on the chosen reference good and can be positive or negative. We use LOAD as a 

reference good, i.e. one MWh of electricity generation that has the same pattern as consumption. 

This refers to the universal objective of all generating technologies, covering load. Moreover, 

there are several convenient features of choosing LOAD that we will show in section 5a. The 

simplest way to supply LOAD can be imagined as a (hypothetical) ideal technology that follows 

load over time as if it was perfectly dispatchable, has the same spatial distribution, and exhibits 

the same forecast errors. 

The costs   
  are determined by the deviations of a technology’s generation pattern from those of 

the ideal generator (along all three dimensions of heterogeneity). We interpret this mismatch of 

a technology’s generation pattern from load pattern as variability of that technology. This pro-

vides a definition of variability, a term that is widely used but rarely defined formally. A tech-

nology   features no variability if 

                              ( 14 ) 

Otherwise, it features variability. 
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As a result, producing LOAD from a generator that is subject to variability has technology-

specific opportunity cost of variability
10

 compared to using the ideal generator. This links varia-

bility to   
 : The variability cost is the cost   

  of transforming the good I into the good LOAD. 

Opportunity cost is the gap between the marginal value of a chosen technology and an alterna-

tive, which is in our case the ideal generator. We thus identify: 

   
    ̅    

   ̅ 
       ( 15 ) 

 

Recall the definition of System LCOE, equation ( 12 ). System LCOE is the sum of generation 

costs and the value difference between the good that the generator produces and the reference 

good. This allows interpreting the economic impact of variability in two equivalent ways: costs 

of variability decrease the marginal value or, alternatively, increase the System LCOE of a 

technology (Figure 4). The two concepts allow evaluating a technology from two corresponding 

perspectives, as we will show in the next section. 

 
 

 

 

 Figure 4: Costs of variability are defined as the difference of the 

marginal value of a technology compared to that of LOAD (left). 

System LCOE of a technology are defined as the sum of its LCOE 

and the costs of variability (right). Source: own illustration 

 

 

Note that the variability cost of a technology should be understood rather conceptually than 

technically. It is not the cost of locally adding a storage unit close to a wind turbine to smooth 

fluctuations to better follow load. Instead, variability cost comprises all costs that occur 

throughout the power system when the output of a technology (e.g. WIND or COAL) is trans-

formed to cover load in a cost-optimal way. 

Costs of variability are zero for a technology that perfectly follows load (along all three dimen-

sions). They are positive for technologies with low marginal value and negative for technologies 

with high marginal value. The generation-weighted sum of the variability cost of all technolo-

gies is zero. If electricity was a homogenous good, the marginal values of all technologies 

would be the same and consequently the cost of variability of all technologies would be zero. 

Hence, the heterogeneity of electricity is a necessary condition for variability to be costly! 

This section discussed that costs of variability decrease the marginal value or increase the Sys-

tem LCOE of a technology. In the last section we have argued that the relative value of a tech-

nology is declining with supply, i.e. the marginal value of a technology is steeper downward 

sloping than the marginal value of LOAD. Hence, in that sense, variability causes the marginal 

value curve to become steeper (Figure 5). The more variable a technology is (the worse of a 

substitute it is to load), the more the curve pivots. Analogously, the System LCOE curve of a 

                                                           
10 For brevity, we use ‘variability cost’. 
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technology emerges from pivoting the marginal costs curve of that technology. Hence, the vari-

ability can be understood as reducing value or increasing costs - relative to a technology that is 

not variable.  

  

Figure 5: Variability of a technology decreases its marginal value with increasing deployment (left) or analogously 

pivots its marginal costs curve such that System LCOE of that technology are constructed (right). (figures are illus-

trative). Source: Own illustration. 

 

This section has established two important results: heterogeneity is a precondition for variability 

to be costly; and there are (at least) two equivalent perspectives on variability costs. In the next 

section we use these two perspectives to evaluate technologies by deriving optimality conditions 

for their welfare-optimal deployment. 

 

 

5. The welfare economics of power generation in two perspectives 

This section characterizes the long-term welfare optimum under multi-dimensional heterogenei-

ty. We maximize welfare with respect to the generation mix and derive first-order conditions. 

We show that the optimum can be expressed equivalently in two ways, a ‘technology perspec-

tive’ that builds on marginal value and a ‘load perspective’ that builds on variability costs and 

System LCOE. Each perspective expresses optimality conditions in terms of a different electric-

ity good. We then show that some assessments, like LCOE comparisons, grid parity calcula-

tions, and simplistic multi-sector modeling, implicitly confuse these perspectives and equate 

marginal costs and marginal value of different goods. 

Economists and power system models have long ago developed models to derive the optimal 

capacity mix under heterogeneity. These methodologies explicitly specify the arbitrage con-

straints that cause heterogeneity (recall section 2), but are often restricted to one-dimensional 

heterogeneity. For example, a graphical method that uses ‘screening curves’ and ‘load duration 

curves’ has been used for decades to determine the optimal capacity mix (Phillips et al. 1969, 

Stoughton et al. 1980, Grubb 1991, Stoft 2002, Green 2005); Hirth & Ueckerdt (2013a) use this 

method but account for exogenous amounts of variable renewables. This optimization technique 

accounts for temporal heterogeneity of electricity, but requires strong assumptions (no trade, no 

intertemporal constraints, perfectly price-inelastic demand), optimizes only thermal capacity, 

and, most importantly in the context of this paper, ignores the other two dimensions of hetero-

geneity. 

To relax these strict assumptions, more complex models have been developed. Such numerically 

solved ‘power market models’ have been used at least since the 1960s (Bessiere 1970, Jenkins 

& Joy 1974, Covarrubias 1979, Martin & Diesendorf 1983) and are currently widespread in 
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academic and industry applications.
11

 These models explicitly represent heterogeneity (at least 

the time dimension) by applying a high resolution and solving the model for each time step in-

dividually. Some of these models also represent heterogeneity across space and over lead-time 

explicitly. 

If such explicit modeling of heterogeneity in high-resolution models is feasible, results are unbi-

ased. However, because of complexity or numerics, heterogeneity cannot or is not always be 

explicitly accounted for. For example, due to numerical constraints, multi-sector models often 

cannot represent heterogeneity. For (seemingly) intuitive communication, technologies are 

evaluated in terms of LCOE or ‘grid parity’, indicators that implicitly assume homogeneity. 

Also high-resolution models are often restricted to one dimension of heterogeneity and do not 

model the other two.  

In the following, we derive first-order conditions that fully account for heterogeneity. This help 

understanding why high-resolution methods are required, why low-resolution methodologies are 

biased, and suggests approaches how heterogeneity can be parameterized in low-resolution 

tools. The first-order conditions implicitly identify the optimum. For explicit solution and quan-

tifications, high-resolution methods are needed, and this framework is not meant to substitute 

those. 

 

a) Optimality conditions 

The optimal quantity    of any good is given by the intersection of the marginal economic value 

(benefit)   (  ) of consumption and marginal economic cost   ( ) of production. This is  the 

well-known and standard first-order condition for the welfare optimum: 

   (  )    (  )  ( 16 ) 

Condition ( 16 ) obviously only makes sense if marginal value and marginal cost of the same 

good are compared. While this sounds like a trivial statement, in the electricity sector it is not – 

as each technology produces a different good. Many analyses implicitly compare the benefit and 

cost of different goods, for example if LCOEs of different technologies are compared, if the 

LCOE of a technology is compared to the average electricity prices
12

, or if multi-sector models 

specify only one single electricity price. Such confounded analyses results in biased findings 

and flawed conclusions. As Figure 6 illustrates, equating the LCOE of a technology with the 

average electricity price results in the quantity   
 , which is not the optimal quantity   

 . To de-

rive that optimal quantity, one needs to frame the analysis either in terms of the good that the 

respective technology produces, I, or the good LOAD. We call the former the ‘technology per-

spective’ and the latter the ‘load perspective’. 

In the following we assume consumption to be given
13

 and cost and welfare functions to be 

well-behaved. We first derive the first-order conditions in the ‘technology perspective’, similar 

to Hirth (2013a). The quantity    of electricity generation technology   is optimal if the marginal 

value of the good that   produces coincides with marginal cost of production. This can be ex-

pressed in marginal value and marginal costs of the good I: 

  ̅ 
 (  

   )    
 (  

   )      ( 17 ) 

                                                           
11 A few examples that apply power market models for questions related to variable renewables and their variability 

include Swider & Weber 2006, Lamont 2008, 2012, Neuhoff et al. 2008, Lamont 2008, Fripp and Wiser 2008, Möst 

& Fichtner 2010, Nagl et al. 2011, 2012, Mills & Wiser 2012, 2013, Nicolosi 2012, Hirth 2013a, 2013b, and 

Müsgens 2013. 
12 Under perfect and complete markets, this equals the marginal value of load. 
13 The (yearly) consumption level is relatively straightforward to endogenize. 
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where  ̅ 
  is the marginal value of good I and   

  is the marginal cost of producing good I with 

technology  , that is the LCOE of  . Together, these   first-order conditions implicitly determine 

the optimal generation mix. Because of electricity’s heterogeneity, there are typically millions 

of constraints, hence an explicit solution can only be determined numerically; see Hirth (2014) 

for a numerical application with explicit solutions. In this perspective, the variability of genera-

tor   affects its marginal value, hence it might also be called the ‘value perspective’. 

Alternatively, the same optimality conditions can also be expressed marginal value and margin-

al costs of the good LOAD. This is the ‘load perspective’, as taken by Ueckerdt et al. (2013a): 

  ̅    
 (  

   )    
 (  

   )      ( 18 ) 

where  ̅    
  is the marginal value of good LOAD and   

  is the marginal cost of producing good 

LOAD with technology  , that is the System LCOE of  . In this perspective, the variability of 

generator   impacts its marginal cost, hence it might also be called the ‘cost perspective’. Be-

cause the marginal value of good LOAD is the same across technologies, this set of   first-order 

conditions can conveniently be expressed as equalities between System LCOEs: 

   
 (  

   )    
 (  

   )        ( 19 ) 

 

The optimality condition for quantity   
  can be written in terms of the good the respective tech-

nology produces, I, ( 17 ) or in terms of the good LOAD ( 18 ). This duality can be neatly illus-

trated graphically (Figure 6). The ‘technology perspective’ is depicted in bold lines. The inter-

section of marginal costs (LCOE) and marginal value of I gives the optimal quantity   
 . The 

‘load perspective’ is drawn in dotted lines. The intersection of marginal costs (System LCOE) 

and marginal value of LOAD results in the same optimal quantity   
 . However, the intersection 

of marginal value of LOAD with the marginal costs of technology I gives quantity   
 , which is 

not the optimal quantity. 

 

Figure 6 assess the optimal quantity of one technology. Now we turn to the global optimum 

where all technologies are deployed optimally. Figure 7 displays such an optimum in the ‘tech-

nology perspective’. The marginal cost of each technology coincides with the marginal value of 

the good it produces. In general, the marginal value of each technology is different. Figure 8 

expresses the same in the ‘load perspective’. Here, the System LCOEs of all technologies coin-

cide. In both cases, differences in LCOEs do not indicate suboptimality. 

 

 

 

 Figure 6: Optimal quantity   
  of technology   in terms of the goods I 

(technology perspective) and LOAD (load perspective). 
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Figure 7: The welfare optimum in the ‘technology per-

spective’. The marginal value of each technology coin-

cides with its marginal costs. 

Figure 8: The welfare optimum in the ‘load perspective’. 

All System LCOEs coincide. 

 

Some analysts find one perspective more intuitive and appealing, while others prefer the other. 

The discussion concerning variable renewables is an example: energy traders and economists 

often prefer to think of variability decreasing the value of wind and solar power. They often find 

the ‘technology perspective’ to be quite natural. System operators, policy makers, modelers, and 

power system engineers often strive to understand the ‘cost’ of variability and hence prefer the 

‘load perspective’. We see three broad applications of the ‘load perspective’ and the correspond-

ing concept of System LCOE: 

1. Some IAMs represent VRE variability as cost penalty. System LCOE can improve these 

approaches by providing a rigorous welfare economic motivation and parameterization 

(section 7a). 

2. Practitioners and academics frequently compare power-generating technologies in terms 

of LCOE, in particular to infer about their competitiveness. Apparently authors appreci-

ate the (apparently) straightforward communication that LCOE comparisons allow. Sys-

tem LCOE can replace the flawed metric of LCOE. 

3. The ‘integration cost’ literature assesses the cost of wind and solar variability. System 

LCOE connects this literature branch with the economic literature on marginal value 

and hereby provides a welfare-economic interpretation of integration cost estimates 

(section 7d). 

Our contribution to this debate is to point out that both perspective, if applied consistently, are 

equivalent.
14

 

We have expressed optimality conditions for the social planner solution. If markets are perfect 

and complete, welfare optimality corresponds to the long-term equilibrium, and marginal values 

and costs correspond to prices. The results do not require perfect and complete markets; howev-

er, some findings can be expressed more elegantly in terms of prices. The instantaneous margin-

al value ,       
  equals the locational spot price       . The marginal value space (Figure 1) corre-

sponds to a matrix of spot prices. The marginal value of LOAD,  ̅    
 , is the electricity price 

 ̅     that consumers pay on average. We call  ̅     the ‘average electricity price’. The marginal 

                                                           
14 In principle, the optimality condition can be formulated from other perspectives by using a different reference 

good. If specified consistently, this delivers the correct optimal quantity of all technologies. However, choosing LOAD 

as reference offers a number of more fundamental economic interpretations. First, the marginal value of LOAD is the 

marginal costs of (proportionally) increasing demand. Second, if markets are perfect and complete,  ̅    
  is the price 

that consumers on average pay for electricity. Third, if long-term marginal supply curves are constant,  ̅    
  equals 

the average system cost. Fourth, the specific costs of the residual system remain constant in long term when increas-

ing the supply of LOAD. 
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value of a generator,  ̅ 
 , is its specific average revenue or ‘market value’ (Joskow 2011, Hirth 

2013a).  

 

b) Implications for indicators and multi-sector models 

The two perspectives on optimality help to interpret commonly used indicators in an economi-

cally sound way, such as LCOEs, ‘grid parity’, ‘capacity credit’ and ‘curtailment’. These tools 

and assessment often ignore heterogeneity and, implicitly, confound different economic goods. 

As a consequence, they derive biased results and find suboptimal quantities that would, if im-

plemented, cause dead-weight loss. For example, in Figure 9 LCOE of a technology are mistak-

enly compared with the marginal value of LOAD to infer about some (biased) optimal quantity 

  
 . This neglects electricity’s heterogeneity and would lead to a welfare loss indicated by the 

shaded area since the unbiased optimal quantity is   
 , which can be derived from a ‘technology 

perspective’ (Figure 9, left) or a ‘load perspective’ (right). 

 

 

 

 Figure 9: Neglecting electricity’s heterogeneity imposes the same welfare loss (shaded area) in the two per-

spectives ‘technology’ (left) and ‘load’ (right). 

 

 

Often, academic, policy, and industry documents compare the LCOEs of different technologies, 

implicitly or explicitly suggesting that a lower LCOE indicates efficiency or competitiveness 

(Karlynn & Schwabe 2009, Fischedick et al. 2011, IEA/NEA 2011, EPIA 2011, DLR et al. 

2011, IRENA 2012, Clover 2013, EIA 2013).  As equation ( 17 ) and Figure 7 show, this is not 

the case. In fact, comparing LCOEs from different technologies has quite little economic mean-

ing at all, since marginal costs of producing different economic goods are compared. Our analy-

sis suggests a remedy: if technologies are to be compared in terms of per-unit costs, System 

LCOE should be used. This allows inference on competitiveness and efficiency. 

Similarly, it is quite common to compare a technology’s LCOE to the average wholesale elec-

tricity price, especially for renewables (Kost et al. 2012, Clover 2013). This implicitly compares 

the marginal cost of producing one good with the marginal benefit of another good, and in gen-

eral delivers biased results (Figure 3). Our analysis suggests to either compare the LCOE to the 

market value of the respective good ( 17 ), or to compare the System LCOE to the average elec-

tricity price ( 18 ). 

Some authors seem to suggest that once a technology has reached ‘grid parity’, its deployment 

is economically efficient (BSW 2011, EPIA 2011, Koch 2013, Fraunhofer ISE 2013, Breyer & 

Gerlach 2013). Grid parity is usually defined as the point where LCOE of wind or solar power 

fall below the retail electricity price, sometimes differentiated by type of consumers. Again, this 

indicators ignores heterogeneity, and implicitly compares value and cost of different goods. 

Furthermore, ‘grid parity’ conceals the fact that grid fees, levies, taxes comprise a large share of 

retail prices. Hence it takes a private perspective that has little implication for social efficiency 

(Hirth 2014b). 
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 ‘Capacity credit’ is often defined as the share of installed capacity that can be regarded as 

‘firm’, or permanently available (Perez et al. 2008, Ensslin et al 2008, Amelin 2009, Keane et 

al. 2011, Sims et al. 2011, Holttinen et al. 2011, Madaeni et al. 2012). While this metric might 

be relevant for system operators to estimate the demand for peak generation capacity, it is an 

incomplete indicator for welfare analysis. In our framework, a small capacity credit is reflected 

in the fact that such technologies receive low income during times of scarcity; hence have a 

lower marginal value. However, while our assessment accounts for all variability, capacity cred-

it only assesses extreme situations such as the hour of the year with highest demand, and ignores 

heterogeneity along space and lead-time altogether. For example, it is wrong to infer that a 

technology with zero capacity credit has zero (or low) economic value. 

‘Curtailment’ is the amount of VRE that a power system cannot accommodate. Some studies 

seek to minimize ‘curtailment’ when optimizing the deployment of variable renewables and 

integration measures like storage and transmission grids (Heide et al. 2010, Bode 2013). How-

ever, an economic evaluation needs to consider costs. Minimizing curtailment implicitly as-

sumes VRE generation to have infinite value.  

Economists have used calibrated multi-sector models for many years for research and policy 

advice (Leontief 1941, Johansen 1960, Taylor & Black 1974). Numerical constraints often re-

quire multi-sector models to model electricity as any other sector and calculate one marginal 

value (the marginal value of LOAD,  ̅    
 ). This implicitly assumes that electricity is homoge-

neous. We have shown that this is a wrong assumption that causes results to be biased (Figure 

9). We discuss how System LCOE can be used to correct this bias and to improve the represen-

tation of VRE in section 7b. 

Ignoring heterogeneity introduces a bias that can be large. The bias is largest for technologies 

that have a marginal value quite different from LOAD: peaking plants and storage devices that 

have a high marginal value; and variable renewables at high deployment rates, which have a low 

marginal value. We will present a meta-analysis of wind variability costs in section 7d that 

shows that at 30% penetration, wind power’s value is about 20-50% below that of LOAD. 

We have pointed out the potential flaws of commonly used tools and suggest a number of reme-

dies: cost-benefit assessments require comparing the marginal costs of a generator to its margin-

al value; technologies can be compared in terms of costs, if System LCOE is used as a metric; 

multi-sector models should parameterize heterogeneity and/or iterate with high-resolution mod-

els. Other indicators, including grid parity, capacity credit, and curtailment, are recommended 

not to be used for economic assessment. 

 

6. The components of variability 

Sections 2-5 (implicitly) assumed that the full marginal value space is known. To estimate the 

complete three-dimensional matrix of marginal values, one needs a ‘super model’ that fully 

captures the arbitrage constraints on all dimensions of heterogeneity. In reality, such a model 

does not exist. For quantitative estimations, one regularly has to rely on estimates from special-

ized models that represent one or two dimensions of heterogeneity. Acknowledging such imper-

fect knowledge, we propose to assess the cost of each heterogeneity dimension separately and 

add up these cost components. This is a pragmatic and operationable approach to estimate mar-

ginal value and variability cost. This section formalizes and expands Hirth et al. (2013). 

We believe it is intuitive to decompose variability along the dimensions of heterogeneity. More-

over, this facilitates empirical estimation, and allows comparing different aspects of VRE varia-

bility economically. 
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a) A decomposition along the dimensions of heterogeneity 

Many models represent only one or two dimensions of heterogeneity. A ‘super model’ that fully 

represents all heterogeneity dimensions would need to have a high temporal resolution, include 

the transmission grid, and account for uncertainty. Such a model does not exist, and it might be 

impossible to construct. In fact, many published studies focus on the impact of one dimension 

on one technology (like ‘the costs of wind forecast errors’). In the context of such incomplete 

knowledge, we propose a pragmatic approximation approach: estimating the impact of each 

dimension separately and adding them up. The impact of the temporal generation profile on the 

value of electricity is called ‘profile costs’, the impact of locational grid constraints ‘grid-related 

costs’, and the impact of lead-time ‘balancing costs’. We use the sum of the three components 

as an estimator  ̂ 
  for the cost of variability 

  ̂ 
      

       
   

            
   

         
      ( 20 ) 

 

and as an estimator  ̅̂ 
   of the marginal value 

  ̅̂ 
      ̅̂    

   ̂ 
       ( 21 ) 

 

 ̂ 
  is only an approximation of the variability costs   

 . The three cost components interact with 

each other and there is an (unknown) interaction term  ̂ .  

   
     ̂ 

   ̂       ( 22 ) 

 

However, lacking knowledge of the sign of the interaction, we believe setting  ̂  to zero it is a 

sensible first-order approximation. We define profile costs for the situation that only infor-

mation about the temporal structure of the marginal value of electricity is known, hence       
  

reduces to   
 . Profile costs   

       
 of technology   are defined as the difference between the 

load-weighted and the generation-weighted marginal value 

 

  
       

  ∑(       )    
 

 

   

      ( 23 ) 

We define grid-related costs and balancing costs accordingly: 

 

  
            

  ∑(       )    
 

 

   

      ( 24 ) 

 

  
         

  ∑(       )    
 

 

   

      ( 25 ) 

As variability costs, the three cost components are defined as a reduction of marginal value of 

the good I relative to LOAD. 

As an illustrative example, assume one needs to assess the marginal value of WIND in Germany 

at some point in the future. Say, there is a power market model available that delivers estimates 

for the marginal value of LOAD of 70 €/MWh and WIND of 60 €/MWh, but that model does not 

capture the grid, nor does it capture uncertainty - hence does not account for the second and the 

third dimension of heterogeneity. From a literature review, one estimates balancing costs (the 

cost of wind forecast errors) to be 3 €/MWh. Finally, a grid study reports the marginal value of 

electricity in Northern Germany to be 6 €/MWh higher in the South than in the North , and it is 
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known that two thirds of all turbines are located in the North while two thirds of consumption in 

the South. Hence, profile costs are 10 €/MWh, balancing costs 3 €/MWh, and grid-related costs 

2 €/MWh.
15

 In sum, the marginal value of WIND is  ̅̂    
           , and the variability 

cost of wind power  ̂    
          . 

In the following, we use waterfall diagrams to illustrate the impact of the three variability com-

ponents on the marginal value of electricity goods. Base load generators like nuclear power 

have a lower value than LOAD, hence they feature positive variability costs (Figure 10a). Mid-

term generators like coal-fired plants have a value that is close to that of LOAD (Figure 10b). 

Flexible peak load generators that are located close to load centers have a high value (Figure 

10c) They benefit from producing during times of high value, from providing flexibility after 

unexpected events, and from being located at high-value locations - hence all cost components 

increase their marginal value. The value of VRE is strongly affected by their penetration. At low 

shares, their value is typically higher than LOAD, especially the value of SOLAR (Figure 10d). 

Solar’s value is high, because solar radiation is positively correlated with the temporal structure 

of demand; this effect is larger than the cost of forecast errors that reduce the value. At high 

penetration, profile, balancing, and grid related costs reduce the value both of SOLAR and WIND 

(Figure 10e). 

   

Figure 10a: The marginal value of 

NUCLEAR (illustrative). 

Figure 10b: The marginal value of 

COAL at high penetration (illustra-

tive). As a mid-merit plant, the tem-

poral pattern increases its value 

somewhat. Forecast errors and loca-

tion have little impact. Variability 

costs are close to zero. 

Figure 10c: The marginal value of 

CCGT (illustrative). As a peaking 

plant, the temporal pattern increases 

its value significantly. Flexibility 

and location increase the value. 

Variability costs are negative (in-

crease the value). 

  

 

Figure 10d: The marginal value of 

SOLAR at low penetration (illus-

trative). 

Figure 10e: The marginal value of 

WIND at high penetration (illustra-

tive). Timing, forecast errors, and 

remote location decrease the marginal 

value. Variability costs are positive. 

 

 

The three cost components, profile, balancing, and grid-related costs, are not constant parame-

ters, but functions of many system parameters. Especially, they typically increase with penetra-

tion as illustrated in Figure 11 and shown in the quantifications of section 7d. 

                                                           
15 Grid-related costs are the spread between the load-weighted and the wind-weighted electricity price: 
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b) Quantifications from models and markets 

An important merit of our definition of variability costs and the three cost components is that 

they can be quantified from models and markets: estimates of each cost component can be de-

rived from modeled shadow prices or observed market-clearing prices. Both approaches have 

their limitations: markets are never perfect and free of market failures and can be, in the case of 

electricity, quite far away from the equilibrium for extended periods of time (section 7c). Mod-

els are necessarily simplifications of reality, many externalities are only incompletely captured, 

some models do not estimate the long-term equilibrium, and numerical models are often cali-

brated to historical market prices anyway. While both model- and market-based estimation has 

their limitations, such diversified quantification methodologies allow for more robust estimates.  

Models are often specialized in the sense that they represent one dimension of variability 

(much) better than others. For empirical market design a similar argument holds: a certain mar-

ket (say, Germany) might represent temporal heterogeneity well, lead-time heterogeneity less 

well, and locational heterogeneity not at all. Hence both model and market-based estimates will 

often deliver only estimates of the individual cost components profile, balancing, or grid-related 

costs. The decomposition of variability costs into three components also allows to combine 

model-based with market-based estimates. 

Profile costs can be readily estimated from power market models as the ones mentioned in sec-

tion 5. Balancing costs can be estimated from stochastic unit commitment models that explicitly 

model unexpected events and the constraints on ramping and start-up of thermal generators. 

Grid-related costs can be estimated from load flow models that explicitly represent the transmis-

sion network and Kirchhoff’s laws. 

Naturally, market prices can be observed only in liberalized markets. Different segments of the 

wholesale market provide price information regarding different dimensions of heterogeneity. 

Profile costs can be estimated from day-ahead spot markets. Spot market prices are readily 

available from power exchanges or ISOs in almost all liberalized markets. Grid-related costs can 

be estimated from locational market prices. Such prices include locational (zonal or nodal) mar-

ginal spot prices, as in many U.S. and Australian markets, and/or locational grid fees, as in 

Sweden. Some markets, such as many European markets, do not price grid constraints at all, 

hence no market data can be used to estimate grid-related costs. Balancing costs appear in dif-

ferent forms: intra-day spot market prices, the price that system operators pay for balancing 

services (balancing power prices), and the price that actors have to pay for forecast errors (im-

balance prices).  

 

 

 

 Figure 11:  Profile, balancing, and grid-related costs typically increase with penetration. For wind 

and solar power, profile costs are often negative at low penetration, increasing their value above 

the value of LOAD. 
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We define the market value  ̃ 
  of technology   as its specific income from spot markets. The 

tilde accent indicates its origin from estimated from observed market or modelled shadow prices 
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Analogously, one can estimate profile costs from empirical prices 

 

 ̃ 
       

  ∑(       )    

 

   

      ( 27 ) 

and balancing and grid-related costs can be estimated accordingly. 

 ̂̃ 
 , the cost of variability as derived from individual cost components if those components are 

derived from empirical prices can be used as an estimator for   
  

   
    ̂̃ 

   ̃   ̂       ( 28 ) 

 

However, two errors are introduced: an error  ̃  stemming from the fact that markets and mod-

els are imperfect, incomplete, and out-of equilibrium; and an error  ̂  stemming from the fact 

that we add components without considering interactions. 

 

c) Three characteristics of VRE 

Heterogeneity applies to electricity per se, all generators are subject to variability costs, and 

each technology’s variability cost can be decomposed into components. However, in the case of 

VRE there is another benefit of such a decomposition: each component corresponds to a specific 

characteristic of VRE. 

Previous studies have identified three inherent properties of wind and solar power: (temporal) 

variability, forecast errors, and the fact that they are bound to certain locations (Milligan et al. 

2011, Borenstein 2012). The economic impact of these properties has been assessed, but such 

assessments has lacked welfare-economic interpretation (Sims et al. 2011, IEA 2011, see also 

section 7b). VRE’s three properties correspond to the three dimensions of electricity’s heteroge-

neity (Table 3).  

Table 3: The heterogeneity of electricity and the properties of VRE. 

Dimension  Time Space Lead-time 

Property of VRE Temporal variability 
Bound to certain locations  

(land availability, resource quality) 
Forecast errors 

Cost component Profile costs Grid-related costs Balancing costs 

 

As a consequence, our decomposition allows evaluating the properties VRE economically. 

Temporal variability, network constraints, and forecast errors can be consistently compared and 

monetarized.  For example, the profile costs of wind, the opportunity costs of wind’s temporal 

variability, can be compared to the balancing costs of wind, the opportunity costs of wind’s 

limited predictability. This might lead to surprising insights: as we report in section 7d, in the 



Hirth et al. (2014): Economics of electricity                                                                                                                  23 

 

case of wind power, forecast errors have received much attention in the public and academic 

debate on ‘intermittency’. However, profile costs at high penetration can be several times large 

than balancing costs. 

Putting these characteristics in the context of the framework of this paper also clarifies that VRE 

variability, location, and forecast errors alone do not cause any costs. Only because electricity is 

heterogeneous, these properties of VRE have any economic impact. 

 

 

7. The economics of wind and solar variability 

Heterogeneity is a property of electricity itself, and all technologies are subject to variability. 

However, many authors, including ourselves, have labelled wind and solar power as ‘variable’ 

or ‘intermittent’ power sources and emphasized differences to ‘dispatchable’ generators. In fact, 

there exists a vast literature that discusses the economics of VRE variability – IEA (2014) pro-

vides an excellent overview. Indeed, there is a good reason to pay specific attention on wind and 

solar power variability: at high penetration rates (maybe >20% wind or >10% solar share in 

energy terms), those technologies might have the lowest marginal value of all generators - hence 

ignoring heterogeneity introduces the largest upward bias. This section focuses on VRE. 

We relate three branches of the literature on VRE variability to the framework developed in this 

paper. In section 7a), we discuss how VRE can be modeled in multi-sector models. Especially 

the IAM community has discussed intensively how to model wind and solar variability. We 

hope that the concept of System LCOE can help addressing this challenge. In section 7b), we 

discuss the literature on ‘integration costs’ and the relation between integration costs and the 

welfare economics of electricity under heterogeneity. Specifically, we propose a new definition 

of integration costs. In section 7c, we discuss how power systems adopt if large volumes of 

VRE are deployed. Such adaptations significantly impact quantitative estimates, as we report in 

section 7d), where we extract cost estimates from a large number of published studies. 

 

a) Representing variability in multi-sector models 

For many years, academics have used calibrated multi-sector models for policy advice. For 

long-term assessments of climate policy and global change, ‘integrated assessment models’ 

(IAMs) find widespread applications. Such IAMs represent the entire world economy and find 

intertemporal optima over decades or centuries. They can capture important aspects of optimal 

VRE deployment, such as technological learning, endogenous fuel and CO2 prices, and general 

equilibrium effects. Model intercomparison projects regularly find VRE to grow dramatically, 

especially, but not only, under strict climate policy (Fischedick et al. 2011, Edenhofer et al. 

2013, Knopf et al. 2013). The electricity sector generally and VRE specifically are often regard-

ed as a major greenhouse gas mitigation option. However, there is widespread agreement that 

appropriately accounting for VRE variability is a major challenge to IAM modeling (Luderer et 

al. 2013, Baker et al. 2013). While all generators are subject to variability, we focus here on 

VRE, because there is a rich academic debate around them. 

Due to numerical constraints, IAMs cannot provide the temporal and spatial resolution required 

to explicitly represent the heterogeneity of electricity. Their typical time resolution is in steps of 

5–10 years and model regions as large as Europe as a whole. Many models use stylized formu-

lations to account for variability, however, most of these approaches lack welfare-theoretical 

rigor. As a consequence, these approximations reduce the robustness of model results and in-

crease the uncertainty in estimating the optimal deployment of VRE. In particular, ignoring 
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variability underestimates the costs of VRE in the electricity sector, especially at high penetra-

tion rates. While some models – mostly older versions of IAMs – ignore variability altogether 

and thus generate results that are biased towards optimistic cost estimates, today most IAMs 

apply some sort of stylized formulation to represent the challenges of variability. Of the 17 

models reviewed by Luderer et al. (2013), two ignore variability; the others limit the maximum 

share of variable renewables (seven models), require dedicated storage or back-up capacity 

(eight models), or add a cost penalty (four models: MERGE, MESSAGE, ReMIND, and 

WITCH). The most basic approach is to set a hard limit to the generation share of wind and 

solar. However, this implicitly assumes zero marginal value at higher shares, which is an ex-

treme assumption. Such hard constraints are price-insensitive and ignore the possibility for sys-

tem adjustments even under strong economic pressure. A more economic approach is to intro-

duce an ‘integration cost penalty’ that might increase with its penetration. Other models require 

the provision of specific technology options to foster the integration of VRE, like gas-fired 

backup capacities or electricity storage. Six models models represent load variability with a load 

duration curve. Sullivan et al. (2013) propose a ‘flexibility constraint’ to account for variability. 

However, all these approaches have three limitations. First, the foundations and completeness of 

the approaches is unclear. Often motivated from a technical perspective, they lack a clear rela-

tion to the economic costs of variability. Second, each approach focuses on specific aspects of 

variability while omitting others. Finally, these stylized representations are difficult to parame-

terize.  

The discussion of heterogeneity and marginal value of different generators helps clarifying the 

challenges to IAM modelers: it is not only VRE variability that is problematic for low-

resolution models, but the entire electricity sector. In the following, we discuss possibilities to 

use the concepts of System LCOE in addressing these caveats. 

Using (12), the optimality condition (18) can be rearranged specify the optimal quantity of a 

VRE technology, for example wind power: 

  ̅    
 (     

   )       
 (     

   )       
 (     

   )  ( 29 ) 

This condition can be interpreted as the following: IAMs, which perform their analysis at a 

coarse resolution and in terms of the good LOAD, have to amend the marginal costs of WIND 

with a cost mark-up. This cost mark-up, which we have termed variability costs      
 , is the 

difference in marginal benefit of two economic electricity goods, the good that IAMs are speci-

fied in (LOAD) and the good that wind turbines supply (WIND). In the context of IAMs, LOAD is 

a sensible reference good, because it is the average price consumers pay and hence the turnover 

of the sector can be calculated as ‘price times quantity’. 

The framework developed in sections 2-6 can help to improve the representation of variability 

in IAMs. First and foremost, it is not VRE’s variability per se that provides the methodological 

challenge, but only in conjunction with the heterogeneity of electricity. Not only renewables, 

but all power generation technologies need to be modelled in a way that accounts for their dif-

ferent marginal value. Second, IAM development should prioritize those aspects that have the 

largest impact on model results, which are often profile costs (see Section 7d). Third, to estimate 

variability cost, tools other than IAMs are needed, such as high-resolution numerical or econo-

metrical models. From such models, System LCOE can be estimated and implemented to IAMs 

to represent variability. That would give the common method of using cost-penalties for VRE a 

rigorous welfare-economic foundation. However, System LCOE   
 (  

   ) is system-specific by 

definition and its ex-ante calculation with a partial model might not be the same across regions 

and scenarios. Consequently, it could be estimated on a regional basis and model results should 

be iterated. To reduce the need for such an iterative model coupling, where possible, some as-

pects of variability could be modeled explicitly in IAMs. For instance, endogenous residual load 
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duration curves could address a large part of profile costs (Ueckerdt et al. 2011). More detailed 

aspects like grid-related and balancing costs could be implemented by adding a reduced-form 

formulation of System LCOE. A sound representation of variability would likely be a model-

specific combination of different explicit and implicit elements. 

 

b) A new definition of integration costs  

Quite unrelated to the IAM literature, there exists an establish branch of literature that seeks to 

calculate ‘integration costs’ of VRE.
16

 Integration costs have been defined as ”the extra invest-

ment and operational cost of the nonwind part of the power system when wind power is inte-

grated” (Holttinen et al. 2011) or “the additional cost of accommodating wind and solar” (Milli-

gan et al. 2011). In particular integration studies have sought to operationalize and to quantify 

those costs with high-resolution production cost modeling techniques (Gross et al. 2006, Smith 

et al. 2009, GE Energy 2010). Those studies often decompose integration costs into ‘balancing’, 

‘grid’, and ‘adequacy’ costs. However, the economic interpretation of integration costs remains 

somewhat opaque. 

In line with NEA (2012), Milligan et al. (2013) reports that integration costs are interpreted and 

used in several ways. Readers “add the integration cost to the cost of energy from wind power to 

provide a comparison of wind energy to a more dispatchable technology”. We assume they do 

so to assess competitiveness and efficiency. This interpretation offers a link to the framework of 

this paper: inference about competitiveness and efficiency is only possible if integration cost is 

defined as variability cost. 

Hence, we follow Hirth et al. (2013) and Ueckerdt et al. (2013a) and propose to define integra-

tion costs of a technology as ‘the difference in marginal value between load and the electricity 

good that the respective technology produces’ - exactly as variability costs were defined in ( 15 

). With that definition, the sum of generation and integration cost is System LCOE, a metric that 

indeed allows inference about competitiveness and efficiency from technology comparisons. 

There are three fundamental differences between the ‘classical’ and this definition of integration 

costs: First, this definition is defined in marginal terms, while classical definitions are often 

calculated in average terms. Second, this definition is more comprehensive in the sense that it 

includes differences in the ‘energy value’, i.e. profile costs. Ueckerdt et al. (2013b) point out 

that classical definitions capture only the cost increase of other generators, while a marginal 

value-based definition also captures reduced cost savings. Ueckerdt et al. propose to call the 

former “integration costs in a narrow sense”. Finally, the integration cost literature often uses 

static models without much system adaptation. Assumptions on time horizon and system adap-

tation can greatly impact model estimates. 

 

c) Time horizon and system adaptation  

The marginal value of wind and solar power, and hence their variability cost, System LCOE, 

and optimal deployment, depends not only on the variability itself, but also on many parameters 

of the residual power system: the thermal capacity mix, the transmission grid, market design, 

and much more. When quantifying the economic impact of high shares of wind and solar power, 

studies take very different assumptions about the ability of the power system to adapt to the 

introduction of large quantities of VRE. In general, integration costs and System LCOE can be 

                                                           
16 The ‘IEA wind task 25‘ is the most important forum where integration cost methodology is discussed and devel-

oped. 
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expected to decrease if the power system is allowed to adapt in response to increasing VRE 

penetration. Similarly, the marginal value can be expected to increase due to system adaptation. 

Power systems can adapt in a multitude of ways to increasing VRE penetration. The following 

list of adaptations is roughly ordered by increasing time that is needed: Operational routines and 

procedures can be changed; market design can adopt; existing assets can be modified to operate 

more flexibly or under otherwise changed conditions; the capacity mix can shift; the transmis-

sion grid can adjust; technological innovations can take place like integration options (Hirth & 

Ueckerdt 2013b). The reason for changes to take time is inertia, for example the sunk invest-

ments in physical capital. Since life-time of physical assets is long, power systems can be out of 

equilibrium for extended periods of time after the swift introduction of significant amounts of 

VRE. 

How much the marginal value differs between a not adapted and an adapted system depends on 

three factors: the system’s adaptation potential; the speed of system adaptations; and the speed 

of VRE deployment. For example, if VRE is introduced very slowly relative to the natural rate 

of turnover of the power system, the system might remain constantly perfectly adapted during 

the transformation process. If VRE are rapidly introduced to a power system that features many 

long-living base load plants, integration cost can be quite high (Ueckerdt et al. 2013b). 

Any analysis should be explicit about the temporal perspective applied and be aware about its 

effect on the results. System adaptation can significantly ease the integration of VRE and con-

sequently short-term cost estimates should be treated with care. This can be seen in the next 

section where we quantify integration costs from a literature review.  

 

d) Quantification 

A key merit of this framework is that integration costs can be quantified, both from market 

(price) data or model (shadow price) estimates. In the following, we survey the quantitative 

literature and extract estimates for profile, balancing, and grid-related costs. Since the field lacks 

both a common terminology and consistent methodologies, results cannot be readily take from 

studies but had to be translated. 

Profile cost estimates can be extracted from a large number of studies. Grubb (1991) provides 

an early quantification of profile costs. Lamont (2008), Mills and Wiser (2012), Nicolosi 

(2012a), and Hirth (2013a) provide recent estimates based on calibrated numerical models. Pro-

file costs can be readily observed on wholesale power markets. For example, in 2001, when 

wind power had a market share of 2% in Germany, the average income of wind power on the 

day-ahead spot market was only 2% below the load-weighted price - in 2012, when the market 

share had risen to 8%, the gap had increased to 13%. Fripp and Wiser (2008) report comparable 

figures for California. 

Balancing costs are assessed by a similar number of studies. Holttinen et al. (2011) provides a 

recent survey of integration studies and Gowrisankaran et al. (2011) and Mills and Wiser (2012) 

provide high-quality model estimates. Holttinen (2005), Pinson et al. (2007), Obersteiner et al. 

(2010), and Holttinen & Koreneff (2012) provide estimates from market data. However, Hirth & 

Ziegenhagen (2013) identify externalities in balancing markets, indicating that the economic 

robustness of market price estimates is doubtful. 

Hirth et al. (2013) review these and more studies in detail. Figure 10 and Figure 11 summarize 

estimates of profile costs and balancing costs as reported by Hirth et al., respectively. The evi-

dence of grid-related costs is scattered and seems to depend crucially on geography. The most 

important finding of the literature review is that integration costs can become very high. When 

wind penetration reaches 30%–40%, integration costs can be in the range of 25–40 €/MWh at an 
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average electricity price of approximately 70 €/MWh. This contrasts starkly with studies that, 

reviewing a subset of the effects we include here, report that “the hidden costs” of wind genera-

tion are “trivial” (Simshauser 2011). 

Four additional findings can be identified in the literature: (i) integration costs increase with 

penetration; (ii) under most conditions, profile costs are higher than balancing costs even though 

the latter attracts more attention; (iii) integration costs increase significantly if the capital stock 

is not allowed to adapt. (The most important adaptation may be a shift in the thermal capacity 

mix from base-load to peak-load technologies); (iv) hydro reservoirs provide a large source of 

flexibility, making integration costs lower in hydro systems than in thermal systems. 

  

Figure 12: Wind profile cost estimates for thermal power 

systems from about 30 published studies. Studies are 

differentiated by how they determine electricity prices: 

from markets (squares), from short-term dispatch model-

ing (diamonds, dotted line), or from long-term dispatch 

and investment modeling (triangles, bold line). To im-

prove comparability, the system base price has been 

normalized to 70 €/MWh in all the studies. Source and 

list of references: Hirth et al. (2013). 

Figure 13: Wind balancing cost estimates for thermal 

power systems from about 20 published studies based on 

market prices (squares) or models (diamonds, dotted 

line). Three market-based studies report very high bal-

ancing costs, all other estimates are below 6 €/MWh. 

Studies of hydro-dominated systems show very low 

balancing costs (triangles). Source and list of references: 

Hirth et al. (2013). 

 

High integration costs do not imply that optimal shares are low. Even IAMs that attach signifi-

cant integration costs to wind often find high renewable shares under strict climate policy.  Oth-

er studies use power market models to estimate optimal wind shares. Neuhoff et al. (2008) re-

ports an optimal wind share for the UK of 40%. Hirth (2014) finds an optimal wind share of 

20% [1-45%], roughly in line with Lamont (2008). Müsgens (2013) and Eurelectric (2013) re-

ports an optimal wind share in Europe of more than one third by 2050, plus a positive optimal 

share for solar power. See Hirth (2014) for a more comprehensive review of optimal deploy-

ment model results for different model classes. 

 

 

8. Concluding remarks 

Physics shapes the economics of electricity. The laws of electromagnetism constrain storage, 

transmission, and flexibility. These constraints turn electricity into a good that is a heterogene-

ous along three dimensions - time, space, and lead-time. Consequently, different generation 

technologies, such as wind and coal power, produce different economic goods and hence have a 

different marginal value. Welfare maximization that ignores heterogeneity results in biased es-

timates. Economic analysis of power systems can (and should!) be done - but requires careful 
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analysis and appropriate tools that take multi-dimensional heterogeneity into account. This pa-

per provides an analytical welfare-economic framework for an assessment of power generators 

that explicitly accounts for heterogeneity. The framework offers a rigorous interpretation of 

commonly used cost indicators such as LCOE and grid parity – and points out flaws in the way 

they are often used. 

As these indicators, multi-sector models often do not account for heterogeneity, implicitly 

equating the marginal value of different goods, and deliver biased results. The framework of this 

paper suggests a number of remedies: cost-benefit assessments require comparing the marginal 

costs of a generator to its marginal value; technologies can be compared in terms of costs, if 

System LCOE is used as a metric; multi-sector models should parameterize heterogeneity 

and/or iterate with high-resolution models. Other indicators, including grid parity, capacity cred-

it, and curtailment, are recommended not to be used for economic assessment. 

The most important policy implication of this assessment might be that there is none. In princi-

ple, markets are well equipped to price heterogeneity, in which case it does not constitute an 

externality. Then the variability of wind and solar power does not cause any external effects, 

and there is no need for policy interventions.  

Looking closer, a few implications can be identified. First, as a general rule, wholesale markets 

should reflect all physical constraints and hence all dimensions of heterogeneity. Specifically, 

those (European) markets that do not price transmission congestion should do so. Moreover, the 

balancing system should be more market-oriented, with prices that reflect marginal costs and 

benefits and actors being allowed to respond to price signals. More than in other markets, gov-

ernments and regulators shape the design of electricity markets; hence they are the ones that 

need to act. Second, it is not only wholesale prices that should reflect heterogeneity, but also 

retail prices. Retail prices should mirror the price spreads between hours, between locations, and 

real-time deviations from day-ahead markets. Implementing such prices should taking into ac-

count associated transaction costs, of course. Third, policy instruments should consider hetero-

geneity. Specifically, renewable support schemes should not absorb price fluctuations and so-

cialize variability costs. While feed-in-tariffs do that, feed-in premiums and green certificate 

schemes allow price signals to reach investors. 

At a very fundamental level, this papers shows that wind and solar are not that different from 

other generators in the end. Electricity itself is (very) different from other economic goods, but 

it is indeed questionable if it is sensible to draw a line between ‘variable’ and ‘dispatchable’ 

generators. Each generation technology has specific characteristics, and all technologies are 

subject to variability costs. However, at high penetration, the marginal value of wind and solar 

is lower than the value of other generators. Hence, taking heterogeneity seriously is especially 

relevant when assessing VRE under high penetration rates. 

There are many directions for further research. Two seem to be particular relevant: on the one 

hand, considering electricity’s heterogeneity in IAMs. Explicit modeling of some aspects of 

heterogeneity, parameterizing other aspects, and/or soft-coupling with high-resolution models 

can be part of the solution. This paper has discussed the fundamental welfare-economic problem 

and developed a few ideas, but much conceptual and implementation work remains to be done. 

On the other hand, sectoral models could be extended towards a ‘super model’ that captures all 

three dimensions of heterogeneity, and is able to assess the interaction between different dimen-

sions. We hope this paper has contributed to spread awareness that such modeling is needed and 

helpful. 
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