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ABSTRACT

In this paper we characterize the preferences of a pessimistic social planner concerned

with the potential costs of extreme, low-probability climate events. This pessimistic atti-

tude is represented by a recursive optimization criterion à la Hansen and Sargent (1995)

that introduces supplementary curvature in the social preferences of standard linear-quadratic

optimization analysis and, under certain conditions, it can be shown to correspond to the

Epstein-Zin recursive utility. The introduction of extra convexity and the separation be-

tween risk-aversion and time-preference implies that, independently of the choice of the

discount rate, a sharp, early and steady mitigation effort arises as the optimal climate pol-

icy, supporting the main recommendation of the Stern Review (Stern, 2007). Nonetheless,

we accommodate for its main criticism of using a too low and questionable discount rate

(Nordhaus, 2007), while preserving the assumption of a normal (thin-tailed) probability

distribution (Weitzman, 2009). Finally, we argue that our theoretical framework is suffi-

ciently general and robust to possible mis-specifications of the model.
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1 Introduction

This paper aims at providing a constructive contribution to the current debate on the economics

of climate change. Climate change represents the most important real-life example of global

externality and there is a wide consensus among economists on the need for mitigation efforts to

deal with it. However, economists disagree on how sharp and how urgent climate policy should

be and current economic models are often blamed to be useless tools for climate change analyses

(Pindyck, 2013a). Indeed, the use of classic cost-benefit analysis in integrated assessment

climate change models has so far brought about very different results that hinge dramatically

on the choice of parameters’ values. Among these parameters, the discount rate is the most

controversial one and it is at the core of the so called Stern-Nordhaus controversy (Espagne et

al. (2012)). Moreover, classic cost-benefit analysis is not suitable to shed light on catastrophic

climate outcomes (Weitzman, 2009), since the economic assessment of climate change based on

both quadratic damages functions and thin-tailed probability distributions may lead to very

misleading conclusions (Weitzman, 2012).

We contribute to the debate by proposing an alternative characterization of the optimization

problem typically used in this literature, introducing a social planner concerned with the con-

sequences of extreme climate events.1 This is achieved by formulating a Markovian discounted

linear exponential quadratic Gaussian (DLEQG) problem, as it is proposed and analyzed by

Vitale (2013), which allows to maintain the assumption of quadratic damage functions and

(thin-tailed) normal probability distributions.

DLEQG problems represent a quite general class of optimal control problems, as they are

fairly common in economics and finance (Hansen and Sargent, 2013; Hansen, Sargent, and

Tallarini, 1999; Luo, 2004; Luo and Young, 2010; Tallarini, 2000) and characterize the social

planner’s preferences in a way that can be shown to correspond to the Epstein-Zin recursive

utility (Epstein and Zin, 1989, 1991) under certain conditions. Furthermore, Epstein-Zin’s

preferences have been recently used in the economics of climate change (Ackerman, Stanton,

and Bueno, 2013) and catastrophic events (Pindyck and Wang, 2013). The DLEQG characteri-

zation of the social planner’s preferences involves the presence of a risk-enhancement coefficient

that injects extra-convexity in her objective function. This characterization is better suited

than the discounted linear-quadratic (DLQG) formulation of a standard optimization problem

to capture the impact of risk-aversion on the social planner’s decisions. In particular, differ-

1Other recent contributions to the current debate comprise Ackerman, Stanton, and Bueno (2013), Athanas-
soglou and Xepapadeas (2012), Botzen and van den Bergh (forthcoming), Buchholz and Schymura (2012),
de Zeeuw and Zemel (2012), Hector (2013), Hwang, Reyns, and Toll (2013), Jensen and Traeger (forthcoming),
Lemoine and Traeger (2014) and Millner (2013).
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ently from what happens in DLQG problems, the optimal policy is no longer independent of

the degree of uncertainty of the social planner and it is identified via a worst-case (pessimistic)

choice mechanism according to which a welfare loss is minimized against the most unfavorable

event. Such a social planner acts as if she were pessimistic and considered these worst-case

realizations very likely. According to her pessimistic choice mechanism she hedges the welfare

loss against the worst case scenario. It is worth noting that this is indeed the required behavior

to conform the environmental policy to the so called precautionary principle (Athanassoglou

and Xepapadeas, 2012).

We find that in the steady state the optimal climate policy implies that the larger the

degree of risk aversion and/or the discount factor, the more aggressive the mitigation effort.

Importantly, we see that the risk-enhancement coefficient exerts a more pronounced impact

on the climate policy than the discount factor, so that for a sufficiently high level of risk-

aversion a very aggressive mitigation policy will be chosen even when the discount factor is

low. Notably, such a result contrasts with the conclusion of Ackerman et al. (2013) according

to which the degree of risk-aversion does not play a predominant role in determining the

optimal mitigating effort. Importantly, while our result is based on closed-form solutions, the

conclusion of Ackerman et al. (2013) relies on numerical procedures. Moreover, in our model

the dynamics of the optimal climate policy shows a sharp and immediate mitigation effort that

is steady through time and, apart from the very terminal date when the authorities choose to

stop curbing the level of emission, independent of the time-horizon.

Importantly, our analysis can be extended to consider two crucial dimensions of uncertainty.

On the one hand, we introduce extra uncertainty into our model by assuming that the social

planner observes the emission level and the concentration of greenhouse gases (GHG) either

with a time lag or through a noisy signal, showing that she will undertake a more aggressive

mitigating policy in order to reduce the greater degree of uncertainty she faces. On the other

hand, we consider the case in which the social planner is concerned with the possibility that

her assumptions on the dynamics of the emission level and the concentration of GHG may

actually be incorrect. Interestingly, given an uncertain law of motion, and assuming a null risk-

enhancement coefficient, the optimal mitigating policy chosen by the social planner according

to Hansen and Sargent (Hansen and Sargent, 2008) robustness criterion coincides with that

which applies in our base DLEQG formulation.

This suggests that our analysis is complementary to Athanassoglou and Xepapadeas (2012),

who employ the Hansen and Sargent’s robustness framework to a similar problem of optimal

pollution control. However, in their formulation the social planner is not allowed to learn over
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time about the mis-specification of her assumptions on the dynamics of the state variables,

a weakness of Hansen and Sargent’s framework which is absent in the DLEQG formulation

we consider. Differently from Athanassoglou and Xepapadeas (2012), we also allow for the

possibility that the social planner observes imperfectly the emission and concentration level

of GHGs. Moreover, while they only concentrate on the steady state solution of an infinite

horizon formulation, we also consider the case in which the social planner faces a terminal

horizon of intervention.

A crucial conclusion of our analysis is that, for sufficiently high values of the risk-enhancement

coefficient, the DLEQG recursive problem does not admit solutions. In other words, we show

that there is no available mitigating policy which solves the social planner optimization exer-

cise if she is extremely risk-averse, in that she becomes so pessimistic as to consider her efforts

ineffective and hence useless.

All together this paper contributes to the existing literature in several ways. First of all,

the DLEQG characterization of optimal climate policy allows to take catastrophic climate

outcomes into account, tackling some unpleasant consequence of Weitzman’s Dismal Theo-

rem (Weitzman, 2009). The general idea of this theorem is that, under the expected-utility

framework, if we deal with a) a probability distribution whose tails are fatter than the normal

distribution and b) a very convex cost function displaying a high degree of risk-aversion, the

expected cost can be infinity. Therefore, the classic cost-benefit analysis does not work under

these conditions (Buchholz and Schymura, 2012) and new researches putting extreme climate

events in proper theoretical context are urgently required (Dietz and Maddison, 2009; Pindyck,

2013b).

Nordhaus raises two criticisms against Weitzman’s Dismal Theorem. Firstly, he argues that

the “distribution of economic catastrophes over the last six decades indicates that there are in-

deed severe and frequent output declines, but the tail of the declines is not sufficiently fat” to

satisfy the necessary conditions set out by Weitzman (Nordhaus, 2012). Secondly, he claims

that an unattractive and unrealistic implication of the Dismal Theorem is that societies would

pay unlimited amounts to prevent extreme events even if their probability were infinitesimal

(Nordhaus, 2011). Our paper addresses both Weitzman’s and Nordhaus’s concerns. Indeed,

we characterize explicitly the potential societal costs of extreme, low-probability climate events

considering a more realistic (i.e. limited) willingness to pay for avoiding extreme events. More-

over, we do not need to assume that the tails of the probability distribution of the extreme

events are fatter than those of the normal distribution to justify an aggressive mitigation effort.

This paper contributes also to the so called Stern-Nordhaus controversy. At the core of
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this controversy is intergenerational equity, namely the “correct” discount rate to compare

the current costs and future benefits of climate change policy. On this point, Stern (2007,

2008) suggests that society should take a longer-term view and assign greater importance to

the welfare of next generations. However, this recommendation implies the use of a very low

discount rate that, according to Nordhaus (2007), does not find any justification in what is

observed in the real economy and what is usually employed in dynamic environmental problems.

The optimal climate policy derived in this paper supports the Stern’s recommendations of a

sharp and early reduction of GHGs under both the discount rates proposed by Stern (2007)

and Nordhaus (2007). More specifically, the role of the discount rate is dominated by the effect

of the risk enhancement coefficient and, therefore, does not play a crucial role in determining

the optimal mitigation effort. This implies that we also address an important criticism put

forward by Pindyck (2013a), namely that economic analysis can tell us very little about climate

change in that its main results hinge on the controversial size of specific parameters such as

the discount rate.

The paper is organized as follows. In the next section we describe the analytical formulation

of our model. In section 3 we analyzes the properties of the optimal mitigation policy. Section

4 and section 5 are dedicated to extensions of our basic framework. In the former we investigate

the impact of the imperfect observation on the emission level and the concentration of GHGs

on the part of the social planner. In the latter we discuss the link between our risk-sensitive

formulation and the robustness approach à la Hansen and Sargent. A final section provides

concluding remarks. Several analytical results and a supplementary numerical analysis are

relegated in a separate Appendix.

2 The Model

We define a discrete-time dynamic model where pt and et denote, respectively, the stock of

GHGs in the atmosphere at time t and the emission flow of GHGs in the interval (t − 1, t].

Without any intervention to curb emission, the dynamics of GHGs concentration is

pt+1 = γ pt + et+1 + εpt+1 , (2.1)

where γ ∈ [0, 1] is a constant term capturing the persistence of the stock of GHGs, and εpt is a

white noise process with εpt ∼ N(0, σ2p). The higher γ, the lower the environment’s absorptive

capacity with respect to a specific pollutant. Indeed, if γ = 0 the pollutant will produce its

effects only in the period it has been emitted (flow pollutant). On the contrary, if γ = 1
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the pollutant is maximally persistent since the environment has no absorptive capacity (stock

pollutant). GHGs are generally defined fund pollutants for which the environment has some

absorptive capacity (i.e. 0 < γ < 1).2 The introduction of the idiosyncratic term εpt implies

that the dynamics of pollution is not deterministic. As a matter of fact stochastic fluctuations

can be due to the impossibility of the precise specification of the GHGs’ atmospheric lifetime.

For example, CO2 has a variable atmospheric lifetime which is estimated in a range between

30 and 95 years (see Archer et al., 2009) and other greenhouse gases show similar features.

Let ∆et+1 = et+1 − et denote the variation in the emission level across periods. If this

value is negative, we observe abatement in GHGs emissions between period t and t+ 1. ∆et+1

depends on the control variable ut representing the effort exerted at time t by society to reduce

the impact of human activity on the environment. We assume that the effort ut is selected

once the concentration level, pt, and the emission level, et have been observed. Then,

et+1 = et + ut + εet+1 (2.2)

where εet is a white noise process, with εet ∼ N(0, σ2e), independent of εpt . In the absence of

the shock εet+1, a reduction in pollution is possible only for ut < 0, so that a mitigation effort

corresponds to a negative control. However, because society does not possess perfect control

over the emission level, we introduce the idiosyncratic shock εet into equation (2.2) to add a

stochastic element to the dynamics of et. Hence, substituting (2.2) in (2.1), we conclude that

pt+1 = γ pt + et + ut + εet+1 + εpt+1 . (2.3)

We can regroup equations (2.2) and (2.3) in a Markovian vectorial formulation represented by

the following law of motion for the state vector zt

zt+1 = A zt + But + εt+1 , (2.4)

where

zt ≡

(
pt

et

)
, εt ≡

(
εet + εpt

εet

)
, A ≡

(
γ 1

0 1

)
, B ≡

(
1

1

)

and εt ∼ N(0,N), with N ≡

(
σ2p + σ2e σ2e

σ2e σ2e

)
.

2We abstract from the possibility that also et can be partly absorbed by the atmosphere. Dealing with this
possibility would imply the introduction of an additional parameters that, however, would not qualitatively
affect our findings.
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We assume that the costs associated with pollution and effort are both quadratic so that

the per period cost function is

ct = β p2t + αu2t + ηt , (2.5)

where α and β are two positive constants and ηt is a white noise process, with ηt ∼ N(0, σ2η) in-

dependent of both εet and εpt , capturing the indeterminacy of pollution costs. In our formulation

the environmental damages are minimized when pt = 0. This implies that we are normalizing

to zero the “pre-industrial” or “natural” level of GHGs’ stock. For analytical convenience we

re-write this cost function in matrix form, by introducing the matrices3

Q ≡ α , R ≡

(
β 0

0 0

)
, so that

ct = co,t + ηt , where co,t = Qu2t + z′t R zt . (2.6)

To represent the social planner’s preferences capturing pessimism against the realizations of

extreme events, we employ a discounted linear-exponential-quadratic Gaussian (DLEQG) re-

cursive model à la Hansen and Sargent (1995), as formulated in Vitale (2013). The DLEQG

characterization of the social planner’s preferences involves the presence of a risk-enhancement

coefficient that injects extra convexity in her objective function vis-a-vis that of a standard

discounted linear-quadratic Gaussian (DLQG) formulation. This extra convexity is crucial in

our analysis since it captures the importance of extreme, possibly catastrophic outcomes in

the decisions of the policy makers. More specifically, we assume that the social planner solves

the following recursive optimization

exp
(ρ

2
V t

)
= min

ut
Et

[
exp

(ρ
2

(ct + δV t+1)
)]

, (2.7)

where ρ (with ρ > 0) is the risk-enhancement coefficient, δ (with 0 < δ < 1) is the time-

discounting coefficient and V t is the value function over the periods t = 1, 2, . . . ,∞ with respect

to the free-valued control ut. To appreciate the role of the risk-enhancement coefficient, ρ, we

observe that when ρ ↓ 0, solving the recursive optimization in (2.7) is equivalent to solving the

3For simplicity this formulation abstracts from the presence of abatement costs. This is somewhat unsatis-
fying because in this way we do not make explicit the trade-off between the cost of polluting and its relative
benefits. However, our model can accommodate the inclusion of abatement costs. For instance, these could be
introduced by adding the term -θe2t , where θ is a positive constant, in the cost function described in equation
(2.5). It can be verified that under this alternative specification our analytical and numerical results, reported
in Sections 3 and 4 and Appendix B, do not change qualitatively.
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Bellman equation for a discounted linear quadratic Gaussian (DLQG) problem,

V t = min
ut
{co,t + δ Et [V t+1] } .

By introducing ρ into the social planner’s preferences we increase her degree of risk-aversion.

Importantly, exploiting results from Tallarini (2000) and Hansen and Sargent (2008) one can

prove that the recursive criterion in (2.7) corresponds to the Epstein and Zin (1989, 1991)

recursive utility where the log of the consumption level is a quadratic function of the state

vector, zt, and the control value, ut, and the inter-temporal rate of substitution is 1 (see the

Appendix A.3).

In the steady state, if i) the risk-enhancement coefficient is not too high, i.e. the social

planner is not too pessimistic, ii) the law of motion for the state vector is defined as in equation

(2.3) and iii) the cost function is as in equation (2.6), the solution of the recursive optimization

in (2.7) implies an optimal effort which is a linear function of the pollution, pt, and emission, et,

levels. To identify the optimal effort which prevails in the steady state we rely on the following

Proposition, whose proof based on results in Vitale (2013) is discussed in the Appendix (see

Appendix A.4).

Proposition 1 If Π is a (2 by 2) semi-positive definite symmetric matrix such that: i) it

represents a fixed point in the following modified Riccati equation

Π = R + A′Π̃A − A′Π̃B(Q + B′Π̃B)−1B′Π̃A (2.8)

with Π̃ = ((δΠ)−1 − ρN)−1; and ii) (δΠ)−1 − ρN is positive definite, then at time t the

optimal mitigation effort is ut = K zt, where

K = − (Q + B′Π̃B)−1B′Π̃A and the value function is

V t = F (zt) + λ with

F (zt) = z′tΠzt and λ =
1

1− δ

(
1

4
ρσ2η −

1

ρ
ln(det[I− δρNΠ])

)
.

If Proposition 1 holds, straightforward calculations shows that K = (κp κe), where

κp = − γ
(

1 − α + π̃1,2 + π̃2
α + π̃1 + 2 π̃1,2 + π̃2

)
, (2.9)

κe = −
(

1 − α

α + π̃1 + 2 π̃1,2 + π̃2

)
, (2.10)
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and π̃1, π̃2 and π̃1,2 are the elements of the positive definite (2 by 2) matrix Π̃ ≡

(
π̃1 π̃1,2

π̃1,2 π̃2

)
.

The matrix Π̃ depends on the 2 by 2 semi-positive definite matrix Π through the risk-

adjustment equation Π̃ = ((δΠ)−1−ρN)−1. Then, equations (2.9) and (2.10) indicate that the

optimal policy is no longer independent of the degree of uncertainty of the social planner (i.e.

differently from what happens in the DLQG formulation), as now ut depends on the covariance

matrix of the vector of shocks, N. Moreover, because of the nature of the cost function ct,

−γ < κp < 0 and −1 < κe < 0. Therefore, the optimal policy requires some mitigation effort

but it does not entail a level of pollution equal to the “pre-industrial” one.

Two important points deserve explaining. Firstly, the condition that the matrix (δΠ)−1 −
ρN is positive definite is required for the recursive optimization in (2.7) to have a meaningful

solution. To appreciate where this regularity condition stems from consider that, extending

a result originally derived by Whittle (1990), Vitale (2013) shows that solving the recursive

optimization in t is equivalent to solving the double optimization minut maxεt+1 St, where

St ≡
[
Qu2t + z′t R zt + δV t+1 −

1

ρ
ε′t+1N

−1εt+1

]
.

This result means that an optimum is reached when the St satisfies a saddle point condition,

according to which first St is maximized with respect to εt+1 and then the resulting function

is minimized with respect to ut.

An economic interpretation of this condition is that a risk-averse social planner whose

preferences are represented by the optimization criterion (2.7) attempts to hedge against the

worst possible values for the vector εt+1, by following a min-max strategy according to which

it selects ut to minimize the welfare loss (represented by St) against the most unfavorable

innovation vector εt+1. Such a social planner acts as if she were pessimistic, considering

these worst-case realizations very likely. Consequently the social planner tunes her actions on

their impact on the social welfare, applying what we term, borrowing Whittle’s terminology,

a pessimistic (or worst-case) choice mechanism.

The requirement that the discounted total stress satisfies a saddle point condition may

actually not hold. For a sufficiently large degree of risk-aversion (i.e. for a large enough ρ)

St will not be negative definite in εt+1 indicating that the saddle point condition cannot be

met and that the recursive optimization does not admit an optimizing solution, in that the

value of V t becomes infinite. In other words, for a sufficiently large degree of pessimism, the

optimization exercise we investigate is not well-behaved and its optimization is meaningless.
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For the discounted total stress St to admit a saddle point and the recursive optimization (2.7)

to have a solution Vitale shows that matrix (δΠ)−1−ρN must be positive definite. For ρ large

enough this condition is violated. An economic interpretation of the failure of the optimization

to have a proper solution is that in these extreme circumstances the social planner becomes so

pessimistic as to consider its attempt to reduce the emission level ineffective and hence useless.

Secondly, the coefficients κp and κe depend on the matrix Π which corresponds to a fixed

point in a highly non-linear system of equations. This does not have an apparently simple

closed form solution and numerical methods are called for. A possible straightforward strategy

is to guess the initial solution Π = 0 and then apply the modified Riccati equation sequentially

(which corresponds to a backward recursion) through the concatenation of Π̃ = ((δΠ)−1 −
ρN)−1 and equation (2.8) until convergence. This may fail. In addition, there is no certainty

that a unique fixed point exists. However, using results from Whittle (Whittle, 1990) we can

establish that a sufficient condition for a unique steady state is that: i) Q is positive definite,

and ii) for some r,
∑r−1

m=0(A
′)mR(A)m and

∑r−1
m=0(

√
δA′)mJ(

√
δA)m are positive definite,

where J = (
√
δB)′Q−1(

√
δB) − δρN. In Appendix A.6 we show that condition i) holds and

that condition ii) holds for ρ small enough, so that we can confidently conjecture that the

steady state, when it exists, is actually unique.

In performing the numerical procedure to seek out the steady state one must be careful

in checking that Π is invertible. If this is not the case, Proposition 1 must be amended. In

particular, the second order condition is now that δΠ − 1
ρN
−1 is negative definite, while the

risk-adjustment equation Π̃ = ((δΠ)−1 − ρN)−1 becomes

Π̃ = δΠ (I − δ ρNΠ )−1 . (2.11)

From this we immediately see that for Π = 0 , Π̃ = 0 while the second order condition, that

δΠ− 1
ρN
−1 being negative definite, is trivially satisfied.

3 Optimal Mitigation Policy

In this section we discuss the properties of the optimal mitigation policy. We analyze the

dependence of the optimal mitigation policy on the key parameters of the model in steady

state and its dynamics within a with a finite-horizon formulation. We have experimented with

several alternative parametric configurations. We have consistently found that convergence of

the numerical procedure presented in the previous section is reached, within a short number
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Figure 1: The dependence of κp and κe on ρ for δ = 0.99, δ = 0.95 and δ = 0.9, when γ = 0.9, α = 1, β = 1,
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e = 0.1 and σ2
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of iterations, as long as ρ, the risk-enhancement coefficient, is not too large. In addition, while

the results presented in this section concern our basic parametric choice, qualitatively similar

findings arise in all alternative specifications we have investigated.4

In Figure 1 we plot the dependence of the optimal policy coefficients κp and κe on the

risk-enhancement coefficient ρ for three alternative values of the discount factor δ (δ = 0.99,

δ = 0.95 and δ = 0.9). Exploiting results from Tallarini (Tallarini, 2000) we show in Appendix

A.10 that the coefficient of relative risk-aversion of Epstein and Zin’s recursive preferences

will vary from 1 to 20, for ρ ranging between 0 and 2. Therefore, the selected range of ρ is

consistent with values usually employed in the economic literature and respects the second

order condition imposed by Proposition 1 that the matrix δΠ− 1
ρN
−1 is negative definite.

Figure 1 clearly indicates that the risk-enhancement coefficient ρ heavily influences the

anti-pollution policy, as a larger ρ induces the social planner to act more aggressively (the

coefficients κp and κe are larger in absolute value for ρ larger) and choose to reduce by a larger

quantity (−ut is larger for ρ larger) the emission of GHG, confirming that the extra convexity

4The numerical results presented in this section only supports a qualitative interpretation of our theoretical
findings and they should not lead to any quantitative implication. In Appendix B we consider an alternative
parametric choice which presents numerical results consistent with a feasible climate policy.
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this risk-enhancement coefficient imposes on social preferences brings about a more aggressive

policy. We also see that, for any value of ρ, κp and κe are larger in absolute value for δ = 0.99

than for δ = 0.95 and for δ = 0.95 than for δ = 0.9. In other words, the anti-pollution policy is

more aggressive when the discount factor is larger. This confirms the intuition that the larger

the weight attached to future costs, the more aggressively the social planner will reduce the

emission level.

Importantly, this plot also suggests that the risk-enhancement coefficient ρ exerts a more

pronounced impact on the anti-pollution policy than the discount factor δ, so that for a suffi-

ciently high level of risk-aversion an aggressive policy will be chosen even when the discount

factor is low. This implies the policy recommendation of a sharp and early reduction of GHGs

would arise under both the value for the discount rate employed by Stern (2007) and that used

by Nordhaus (2007) and many others.

In Figure 2 we plot the dependence of the unconditional variances Var[pt] and Var[et] on

ρ for the same alternative values of the discount factor δ (δ = 0.99, δ = 0.95 and δ = 0.9)

and the same specific choice of the parameters γ, α, β, σ2e , σ
2
p and σ2η as in Figure 1. Var[pt]

and Var[et] are components of the unconditional covariance matrix of the state vector zt. To

obtain such unconditional covariance matrix consider that zt+1 = Azt + But + εt+1, where in

equilibrium ut = Kzt. This implies that zt+1 = Γzt + εt+1, with Γ = A + BK, or equivalently

zt = Λεt, where Λ = (I2 − ΓL)−1 and L is the lag operator.

In Appendix A.7 we show that in steady state unconditionally V ≡ Var[zt] = ΛNΛ′ and,

considering that ut = Kzt, σ
2
u ≡ Var[ut] = K V K′. Importantly, given the expressions for κp

and κe, in Appendix A.7 we also show that KΛ = (0 −1), so that σ2u = σ2e . This indicates that

in steady state the unconditional variance of the reduction in emission, Var[ut], is independent

of the degree of risk-aversion of the social planner, ρ. This means that empirically to discern

among different levels of risk-aversion one needs to look at the volatility of the pollution level.

Figure 2 shows that Var[et] is also unaffected, de facto, by the discount factor, while Var[pt]

is smaller for δ = 0.99 than for δ = 0.95 and for δ = 0.95 than for 0.9. The risk-enhancement

coefficient ρ exerts a more pronounced impact than the discount factor δ on the unconditional

variance Var[pt]. This indicates that a sufficiently high level of risk-aversion will result in a

smaller variance of the GHG concentration level even when the discount factor is low, because

a very aggressive anti-pollution policy will be chosen as we have seen in Figure 1. Such a

relation is not surprising in that, given the extra convexity in the objective function of the

recursive optimization in (2.7) brought about by a positive ρ, the social planner prefers early
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Figure 2: The dependence of the unconditional variances of the state variables (Var[pt], Var[et]) on ρ for

δ = 0.99, δ = 0.95 and δ = 0.9, when γ = 0.9, α = 1, β = 1, σ2
p = 0.1, σ2

e = 0.1 and σ2
η = 1.

resolution of uncertainty and hence a smaller variance of the state vector.5 Once again, while

the results illustrated in Figure 2 are specific to the parametric choice we made, qualitatively

similar conclusions are drawn for alternative values of the model parameters.

In Figure 3 we describe the dynamics of the optimal anti-pollution policy when the social

planner has a finite horizon. We consider two scenarios: in the former the terminal date

is T = 40, in the latter is T = 80. The graph clearly shows that the optimal policy is

steady through time and only approaching the terminal date the social planner chooses to

stop curbing the level of emission. This result holds for both T = 40 and T = 80 and

supports a convergence path to the steady state which is sharper even than the aggressive one

recommended by Stern (2007). Indeed, the social planner’s pessimism is not compatible with

any climate-policy ramp discussed by Nordhaus (2007) because high levels of effort in GHGs’

reduction are not approached in a gradual way, but are early and steady through time.

5More precisely, as shown by Tallarini (Tallarini, 2000), in the recursive optimization in (2.7) the elasticity
of inter-temporal substitution is one. For ρ > 0 the objective function of the recursive optimization in (2.7)
presents a coefficient of relative risk-aversion that is larger than one and hence it is greater than the inverse of
the inter-temporal elasticity of substitution, the condition under which, according to Kreps and Porteus (Kreps
and Porteus, 1978), the social planner prefers early resolution of uncertainty. See also Epstein and Zin (1991)
and Appendix A.11.
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4 Lagged State Observation

Another issue which is worth analyzing is what happens when the social planner needs choosing

its optimal policy before observing the current emission and concentration levels. Indeed, the

last official release by the United Nation Framework Convention on Climate Change in October

2013 contains data on GHGs up to 2011. Therefore, we assume that it takes time to collect

data and that the social planner observes the state vector with a period lag, so that when

choosing the effort level in t it knows the value of zt−1 but not that of zt.

Analytically this is problematic, in that we cannot apply the standard certainty equivalence

principle (CEP), which holds within the LQG framework. In fact, in the recursive optimization

(2.7) we have abandoned the quadratic cost function of the LQG framework adding extra

convexity via the exponential function. In effect, for ρ = 0, our formulation would correspond

to a LQG problem. In this case, we could simply replace in the optimal rule ut = Kzt, the

unknown state vector zt with its maximum likelihood estimate (MLE), ẑt. The optimal anti-

pollution policy would then be ut = Kẑt. Given that in t the social planner observes zt−1, this

MLE would simply be ẑt = Azt−1 + But−1.
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For ρ > 0 this is not possible, as the standard CEP does not hold. However, exploiting

Theorem 4 and Lemma 7 in Vitale (Vitale, 2013) one can show that with the recursive opti-

mization (2.7) a modified certainty equivalence principle applies, in that rather then using the

MLE in the optimal control rule, one needs inserting a vector z̆t which is given by the following

formulation

z̆t = (I − ρN Π)−1ẑt .

Given this vector z̆t the optimal rule in the lagged observation case is ut = Kz̆t, where the

vector K is the same derived from Proposition 1. Notice, that given the expression for z̆t we

can define the adjusted vector KI = K(I − ρN Π)−1, so that the optimal policy can be written

in terms of the MLE, ut = KI ẑt.
6

In Figure 4 we compare the steady state of the full observation case discussed in section

3 with that of the lagged observation case. In the top panel we compare the coefficients κp

and κe in the vector K with the adjusted coefficients κIp and κIe in the vector KI . We see that

the anti-pollution policy is more aggressive when the social planner observes the emission and

concentration level with a period lag (in absolute value κIp and κIe are larger than κp and κe for

any positive value of ρ). As the state of the world becomes more uncertain the social planner

chooses to curb more the emission level.

In the bottom panel we compare the unconditional variance of the pollution level, Var(pt),

under full and lagged state observation. Despite a more aggressive policy the unconditional

variance of the concentration level is larger in the latter scenario, because the social planner

faces a more uncertain environment.7 However, as ρ increases and the social planner becomes

more risk-averse, she turns extremely aggressive in the lagged observation case, so that the

difference between the two scenarios greatly reduces. Thus, moving from ρ = 0 to ρ = 1, the

unconditional variance of pt falls by roughly 20 percent in the full observation case and by

nearly 60 percent in the lagged observation one.

5 A Robust Anti-Pollution Policy

The optimal control rule we have obtained is closely related to a robust decision rule which

applies to a specific LQG formulation. In particular, let us assume the state vector zt respects

6Similar results would hold for a generalization of this formulation to imperfect state observation. In this
case, the social planner observes in t a noisy signal of the state vector, yt = Hzt−1 + ζt, with ζt a white noise
process independent of εt (ζt ∼ N(0,M)).

7For the derivation under lagged state observation of the unconditional variance in steady state of the
pollution level, Var(pt), and the emission level, Var[et], see Appendix A.9.
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the linear plant equation (2.4) and that the cost function is still given by (2.5). However, the

social planner possesses quadratic preferences, so that in any period t she chooses the optimal

control solving the following program

min
{ut}∞t=0

Et

[ ∞∑
i=0

δict+i

]
, (5.1)

s.t. zt+1 = A zt + But + εt+1 .

This is a standard LQG problem. Borrowing the notation from Hansen and Sargent (Hansen

and Sargent, 2008), we can rewrite the plant equation as follows

zt+1 = A zt + But + C ξt+1 , where ξt+1 ∼ N(0, I) (5.2)

and C is the Cholesky decomposition of the matrix N (so that N = CC′).

The social planner may suspect that the plant equation (5.2) is not correct, and it is

just an approximation of the actual law of motion for the state vector (i.e. it represents an

approximating model). In particular, the social planner may suspect that the correct plant

equation corresponds to a distorted version of the plant equation (5.2),

zt+1 = A zt + But + C (ξ̌t+1 + wt+1) , (5.3)

where ξ̌t+1 ∼ N(0, I) and wt+1 is some unspecified process given by some measurable (non-

necessarily linear) function of the state vector history (i.e. there exists gt such that wt+1 =

gt(zt, zt−1, . . . )).

The social planner aims at choosing an anti-pollution policy which works for any alternative

distorted model (5.3), as long as the discrepancy (i.e. the statistical or probabilistic distance)

between the approximating and distorted models is not too large. To measure such discrepancy

one relies on the concept of conditional relative entropy. In particular, let f(zt+1 | zt) denote

the conditional transition density for the state vector according to the distorted model (5.3)

and let f0(zt+1 | zt) be the conditional transition density for the state vector according to the

approximating model (5.2). One defines the conditional relative entropy as follows

I(f0, f)(zt) ≡
∫

log

(
f(zt+1 | zt)
f0(zt+1 | zt)

)
f(zt+1 | zt) dzt .

As this is the expected log-likelihood ratio, this conditional relative entropy measures the

probabilistic distance between the distorted and the approximating model. Under normality
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Hansen and Sargent shows that

I(f0, f)(zt) =
1

2
w′t+1 wt+1 .

As an intertemporal measure of distortion Hansen and Sargent employs the aggregate value

Rt ≡ 2E0

[ ∞∑
i=0

δi I(f0, f)(zt+1)

]
= E0

[ ∞∑
i=0

δi w′t+i wt+i

]
.

Then, they consider all distorted models (5.3) alternative to the approximating model (5.2)

for which Rt ≤ ω, where ω is a maximum discrepancy value, representing an upper bound on

the misspecification of the approximating model.

In other words, following Hansen and Sargent, one can envision a situation in which the

social planner assumes that data are generated by model (5.2) and suspects that they are

actually generated by a distorted model (5.3) which is not too far from the approximating

one. In measuring their distance she refers to the intertemporal conditional entropy Rt. A

robust control rule is then one which works for all distorted models for which Rt ≤ ω. More

precisely, the selection criterion proposed by Hansen and Sargent to define a robust control

rule is particularly demanding, in that it requires that the social planner chooses the control

rule which minimizes the expected aggregate cost of the worst distorted model (among all

admissible ones). Formally, a robust control rule solves the following problem

min
{ut}∞t=0

max
{wt+1}∞t=0

Et

[ ∞∑
i=0

δict+i

]
, (5.4)

s.t. zt+1 = A zt + But + C (ξ̌t+1 + wt+1) ,

Rt ≤ ω.

This means that first among all alternative models the social planner chooses the worst-one,

i.e. the one which maximizes her expected aggregate cost, and second she selects the optimal

control rule which minimizes her aggregate cost within this worst-case scenario.

Importantly, it can be shown that the solution to problem (5.4) coincides to that of the

recursive optimization (2.7) for a specific parametric choice (i.e. for a specific choice of ρ given

ω). In other words, our risk-sensitive optimal control rule obtained from Proposition 1 is also

a robust optimal control rule à la Hansen and Sargent. The correspondence between the two

formulations extends further. In fact, Hansen and Sargent indicate that their robust optimal

control problem admits a solution insofar ω ≤ ω̄, where ω̄ is a maximum possible level for the
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degree of uncertainty of the social planner on the model mis-specification. This condition is

analogous to the requirement that the risk-enhancement coefficient ρ in the recursive optimiza-

tion (2.7) is not too large, so that the second order condition that ((δΠ−1 − ρN)−1 is positive

definite is satisfied.

This suggests that our analysis can have a double interpretation. It can be considered an

investigation of the impact on the optimal anti-pollution policy of either the risk-aversion of

the social planner or her uncertainty on the model governing the dynamics of GHG concen-

tration and emission. In this respect, our analysis could be considered complementary to the

contribution of Athanassoglou and Xepapadeas (2012), who exploit Hansen and Sargent’s ro-

bust optimal control methodology to recommend the precautionary principle in the conduct of

climate change policy. According to this principle amid an uncertain environment the climate

change policy should be tilted to deal with the worst possible environmental outcome. In

addition, the greater the degree of uncertainty the social planner faces the stricter should be

the application of the precautionary principle.

However, it should be noted that a limitation of Hansen and Sargent’s methodology is

that it does not allow for learning on the mis-specification of the approximating model (5.2).

In fact, by observing the history of the state vector, {zt, zt−1, . . . , z0}, it should be possible

to back out the sequence of error terms in the approximating model, {ξt, ξt−1, . . . , ξ0}, and

consequently make some inference on their probabilistic properties. This should in principle

permit the social planner to learn about the mis-specification of the approximating model

(5.2) and reduce over time the degree of uncertainty she faces. Such a limitation is absent in

our DLEQG formulation, which also allows for the possibility that the social planner observes

imperfectly the state vector.

6 Concluding Remarks

Our paper contains a normative analysis that contributes to the current debate on climate

change policy. We recommend an aggressive mitigation policy for a social planner who assigns

greater importance to extreme but rare catastrophic events. We show that the precautionary

principle, advocated by others via either a small discount rate (Stern, 2007) or fat-tailed prob-

ability distributions (Weitzman, 2009) or uncertainty over the dynamics of the environmental

conditions (Athanassoglou and Xepapadeas, 2012), is imposed by a pessimistic optimal choice

mechanism which applies when supplementary curvature is introduced in the preferences of

the social planner of the standard linear-quadratic optimization analysis. Indeed, we see that:
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i) the social planner chooses the mitigation policy which represents the best reaction to the

worst possible shocks to the environment; and ii) as the recursive preferences we envision favor

early resolution of uncertainty, her optimal policy is more aggressive the greater her degree of

risk-aversion.

With respect to the Stern-Nordhaus controversy our analysis recommends an aggressive

mitigation policy. This needn’t be justified with unrealistic discount rates, but rather through

the risk-attitude of policy-makers. Moreover, while complementary to that of Athanassoglu

and Xepapadeas, our analysis is more general, in that it allows to consider both learning on

climate change and the presence of a terminal intervention horizon. Then, we show that when

the social planner observes imperfectly the climate conditions her mitigation policy becomes

even more aggressive in an attempt to reduce the uncertainty she faces. While, analyzing the

optimal policy within a finite horizon formulation, we see that it prescribes an immediate and

sharp increase in the social planner’s mitigation effort.

References

Ackerman, F., E. A. Stanton, and R. Bueno (2013): “Epstein-Zin Utility in DICE: Is

Risk Avversion Irrelevant to Climate Policy?,” Environmental and Resource Economics, 77,

234–239.

Archer, D., M. Eby, V. Brovkin, A. Ridgwell, L. Cao, U. Mikolajewicz,

K. Caldeira, K. Matsumoto, G. Munhoven, A. Montenegro, and K. Tokos

(2009): “Atmospheric Lifetime of Fossil Fuel Carbon Dioxide,” Annual Review of Earth

and Planetary Sciences, 37, 117–134.

Athanassoglou, S., and A. Xepapadeas (2012): “Pollution Control with Uncertain Stock

Dynamics: When, and How, To Be Precautious,” Journal of Environmental Economics and

Management, 63(3), 304–320.

Botzen, W. J. W., and J. C. J. M. van den Bergh (forthcoming): “Specifications of

Social Welfare in Economic Studies of Climate Change: Overview of Criteria and related

Policy Insights,” Environmental and Resource Economics.

Buchholz, W., and M. Schymura (2012): “Expected Utility Theory and the Tyranny of

Catastrophic Risks,” Ecological Economics, 77, 234–239.

de Zeeuw, A., and A. Zemel (2012): “Regime Shifts and Uncertainty in Pollution Control,”

Journal of Economic Dynamics and Control, 36(7), 939–950.

19



Dietz, S., and D. J. Maddison (2009): “New Frontiers in the Economics of Climate

Change,” Environmental and Resource Economics, 43, 295–306.

Epstein, L. G., and S. E. Zin (1989): “Substitution, Risk Aversion, and the Temporal

Behavior of Consumption and Asset Returns: A Theoretical Framework,” Econometrica,

57, 937–969.

(1991): “Substitution, Risk Aversion, and the Temporal Behavior of Consumption

and Asset Returns: An Empirical Analysis,” Journal of Political Economy, 99, 263–286.

Espagne, E., B. P. Fabert, A. Pottier, F. Nadaud, and P. Dumas (2012): “Disetan-

gling the Stern/Nordhaus Controversy: Beyond the Discounting Clash,” Discussion paper,

FEEM Working Paper 61.

Hansen, L., and T. J. Sargent (1995): “Discounted Linear Exponential Quadratic Gaussian

Control,” IEEE Transactions on Automatic Control, 40, 968–971.

(2008): Robustness. Princeton University Press, Princeton.

(2013): Recursive Models of Dynamic Linear Economies. Princeton University Press,

Princeton.

Hansen, L. P., T. J. Sargent, and T. D. Tallarini (1999): “Robust Permanent Income

and Pricing,” Review of Financial Studies, 66, 873–907.

Hector, S. (2013): “Accounting for Different Uncertainties: Implications for Climate Invest-

ments,” Discussion paper, FEEM Working Paper 107.

Hwang, I. C., F. Reyns, and R. S. J. Toll (2013): “Climate Policy Under Fat-Tailed

Risk: An Application of Dice,” Environmental and Resource Economics, 56, 415–453.

Jensen, S., and C. Traeger (forthcoming): “Optimal Climate Change Mitigation under

Long-Term Growth Uncertainty: Stochastic Integrated Assessment and Analytic Findings,”

European Economic Review.

Kreps, D. M., and E. L. Porteus (1978): “Temporal Resolution of Uncertainty and Dy-

namic Choice Theory,” Econometrica, 46, 185–200.

Lemoine, D., and C. Traeger (2014): “Watch Your Step: Optimal Policy in a Tipping

Climate,” American Economic Journal: Economic Policy, 6(1), 137–166.

Luo, Y. (2004): “Consumption Dynamics, Asset Pricing, and Welfare Effects under Informa-

tion Processing Constraints,” Discussion paper, Princeton University.

20



Luo, Y., and E. R. Young (2010): “Risk-sensitive Consumption and Investment under

Rational Inattention,” American Economic Journal: Macroeconomics, 2, 281–325.

Millner, A. (2013): “On Welfare Frameworks and Catastrophic Climate Risks,” Journal of

Environmental Economics and Management, 65(2), 310–325.

Nordhaus, W. D. (2007): “A Review of the Stern Review on the Economics of Climate

Change,” Journal of Economic Literature, 51(3), 860–872.

(2011): “The Economics of Tail Events with an Application to Climate Change,”

Review of Environmental Economics and Policy, 5 (2), 240–257.

(2012): “Economic Policy in the Face of Severe Tail Events,” Journal of Public

Economic Theory, 14(2), 197–219.

Pindyck, R. S. (2013a): “Climate Change Policy: What Do the Models Tell Us?,,” Journal

of Economic Literature, 45(3), 686–702.

(2013b): “The Climate Policy Dilemma,” Review of Environmental Economics and

Policy, 7(2), 219–237.

Pindyck, R. S., and N. Wang (2013): “The Economics and Policy Consequences of Catas-

trophes,” American Economic Journal: Economic Policy, 5(4), 306–339.

Stern, N. (2007): The Economics of Climate Change: The Stern Review. Cambridge Univer-

sity Press, Cambridge.

(2008): “The Economics of Climate Change,” American Economic Review, 98(2),

1–37.

Tallarini, T. D. (2000): “Risk-Sensitive Real Business Cycles,” Journal of Monetary Eco-

nomics, 45, 507–532.

Vitale, P. (2013): “Pessimistic Optimal Choice for Risk-averse Agents,” Discussion pa-

per, CASMEF Discussion Paper 2013-06, http://www.unich.it/˜vitale/Pessimistic-Optimal-

Choice-for-Risk-Averse-Agents-Quater.pdf.

Weitzman, M. (2009): “On Modelling and Interpreting the Economics of Catastrophic Cli-

mate Change,” The Review of Economics and Statistics, 91(1), 1–19.

(2012): “GHG Targets as Insurance Against Catastrophic Climate Damages,” Journal

of Public Economic Theory, 14(2), 221–244.

Whittle, P. (1990): Risk-sensitive Optimal Control. John Wiley & Sons, New York.

21



A. Detailed Appendix

A.1. The Solution of the Recursive Optimization. Consider that we solve the recursion

exp
(ρ

2
Vt

)
= min

ut
Et

[
exp

(ρ
2

(ct + δVt+1)
)]

, (A.1)

where ct = β p2t + αu2t + ηt. Given that ηt is independent of εt, we find that

exp
(ρ

2
Vt

)
= Et

[
exp

(ρ
2
ηt

)]
× min

ut
Et

[
exp

(ρ
2

(co,t + δVt+1)
)]

,

where co,t = β p2t + αu2t . Because ηt is normally distributed, we can write

exp
(ρ

2
Vt

)
= exp

(
ρ

2

1

4
ρσ2

η

)
× min

ut
Et

[
exp

(ρ
2

(co,t + δVt+1)
)]

. (A.2)

This means that the idiosyncratic shock, ηt, does not hinge on the optimal control rule. This is found

by minimizing with respect to ut the expected value of the exponential of ρ
2 (co,t + δVt+1). Because

co,t is a quadratic form in ut and zt, we can rely on results by Vitale (Vitale, 2013) pertaining to

the analysis of discounted linear exponential quadratic Gaussian (DLEQG) problems à la Hansen and

Sargent (Hansen and Sargent, 2008).

A.2. Limit Properties of the Optimization Criterion. Consider that

exp
(ρ

2
Vt

)
= exp

(
ρ

2

1

4
ρσ2

η

)
× min

ut
Et

[
exp

(ρ
2

(co,t + δVt+1)
)]

⇐⇒

ρ

2
Vt =

ρ

2

1

4
ρσ2

η + ln

(
min
ut

Et

[
exp

(ρ
2

(co,t + δVt+1)
)])

⇐⇒

ρ

2
Vt =

ρ

2

1

4
ρσ2

η + min
ut

ln
(
Et

[
exp

(ρ
2

(co,t + δVt+1)
)])

⇐⇒

ρ

2
Vt =

ρ

2

1

4
ρσ2

η + min
ut

ln
(

exp
(ρ

2
co,t

)
Et

[
exp

(
δ
ρ

2
Vt+1

)])
⇐⇒

ρ

2
Vt =

ρ

2

1

4
ρσ2

η + min
ut

(ρ
2
co,t + ln Et

[
exp

(
δ
ρ

2
Vt+1

)])
⇐⇒

For ρ > 0 we have that

ρ

2
Vt = ρ min

ut

{
1

2

1

4
ρσ2

η +
1

2
co,t +

1

ρ
ln
(
Et

[
exp

(
δ
ρ

2
Vt+1

)])}
and hence that

Vt = min
ut

{
1

4
ρσ2

η + co,t + 2
1

ρ
ln
(
Et

[
exp

(
δ
ρ

2
Vt+1

)])}
.

Consider that if Vt+1 is independent of ρ,
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lim
ρ↓0

1

ρ
ln
(
Et

[
exp

(
δ
ρ

2
Vt+1

)])
= lim

ρ↓0
δ

1

2

Et
[
exp

(
δ ρ2 Vt+1

)
· Vt+1

]
Et
[
exp

(
δ ρ2 Vt+1

)] =
1

2
δ Et [Vt+1] ,

where we have used the Hôpital’s rule and moved the derivative operator inside the expectation operator.

Noting that limρ↓0
1
4 ρσ

2
η = 0, this implies that

lim
ρ↓0

Vt = min
ut
{ co,t + δ Et [Vt+1]} ,

with Vt independent of ρ. If we have a terminal date in T , by definition VT+1 = 0 (i.e. independent of

ρ). Then, by backward induction for ρ ↓ 0 our recursive optimization converges to the Bellman equation

of the corresponding DLQG problem.

A.3. The Recursive Optimization and Epstein-Zin Preferences. Suppose U t solves Epstein

and Zin’s recursion

U t = max

{
(1− δ)C1− 1

θ
t + δ Et

[
U1−χ
t+1

] 1− 1
θ

1−χ

} 1

1− 1
θ

,

where θ is the elasticity of inter-temporal substitution. Let θ = 1. Tallarini (2000) shows that

U t = max

{
C1−δ
t

(
Et

[
U1−χ
t+1

] )( δ
1−χ )

}
.

Taking logs,

logU t = max

{
(1− δ) logCt +

δ

1− χ
logEt

[
U1−χ
t+1

]}
,

or equivalently
logU t

1− δ
= max

{
logCt +

δ

(1− δ)(1− χ)
logEt

[
U1−χ
t+1

]}
.

We can re-write this as

− logU t

1− δ
= min

{
− logCt −

δ

(1− δ)(1− χ)
logEt

[
U1−χ
t+1

]}
.

For Vt = − logUt
1−δ , we have that −(1− δ)Vt = logU t, so that U t+1 = exp(−(1− δ)Vt+1) and

U1−χ
t+1 = (exp(−(1− δ)Vt+1))

1−χ
= exp(−(1− δ)(1− χ)Vt+1) .

Setting ρ′ = −2(1− δ)(1− χ), we can write

Vt = min

{
− logCt + δ

2

ρ′
logEt

[
exp

(
ρ′

2
Vt+1

)]}
,
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Define ρ = ρ′/δ = 2
(
1
δ − 1

)
(χ− 1) and notice that

Vt = min

{
− logCt +

2

ρ
logEt

[
exp

(
δ
ρ

2
Vt+1

)]}
⇐⇒

ρ

2
Vt = min

{
−ρ

2
logCt + logEt

[
exp

(
δ
ρ

2
Vt+1

)]}
.

Suppose that − logCt equal to a quadratic form in the control and state vectors, ut and zt, ct, then

exp
(ρ

2
Vt

)
= exp

(
min

{ ρ
2
ct + logEt

[
exp

(
δ
ρ

2
Vt+1

)]})
= min

{
exp

(ρ
2
ct + logEt

[
exp

(
δ
ρ

2
Vt+1

)])}
= min

{
exp

(ρ
2
ct

)
exp

(
logEt

[
exp

(
δ
ρ

2
Vt+1

)])}
= min

{
exp

(ρ
2
ct

)
Et

[
exp

(
δ
ρ

2
Vt+1

)]}
= min

{
Et

[
exp

(ρ
2

(ct + δVt+1)
)]}

,

which corresponds to the recursive optimization we employ if σ2
η = 0.

A.4. The Derivation of Proposition 1. From Lemma 2 in Vitale (2013) we know that if Vt+1 is a

quadratic form in zt+1,

min
ut

Et

[
exp

(ρ
2

(co,t + δVt+1)
)]

= exp

(
ρ

2

[
νt + min

ut
max
εt+1

St
])

,

for νt a constant independent of zt. In fact,

Et

[
exp

(ρ
2

(co,t + δVt+1)
)]

= (2π)−1det(N)−1/2
∫

exp

(
ρ

2
(co,t + δVt+1) − 1

2
ε′t+1N

−1εt+1

)
dεt+1

= (2π)−1det(N)−1/2
∫

exp

(
ρ
St
2

)
dεt+1 ,

where St = co,t − 1
ρε
′
t+1N

−1εt+1 + δVt+1. Then,

min
ut

Et

[
exp

(ρ
2

(co,t + δVt+1)
)]

= (2π)−1det(N)−1/2 min
ut

∫
exp

(
ρ
St
2

)
dεt+1 .

If Vt+1 = λt+1 +Ft+1(zt+1), where Ft+1(zt+1) = z′t+1Πt+1zt+1, the function −ρSt is a quadratic form

in ut and εt+1, which we can write as Suuu
2
t + 2utSuεεt+1 + ε′t+1Sεεεt+1, with Sεε = N−1 − δρΠt+1.

We can apply Lemma 3 in Vitale (2013). From its proof we know that

min
ut

∫
exp

(
ρ
St
2

)
dεt+1 = 2π det(N−1 − δρΠt+1)−1/2 × exp

(
ρ

2
min
ut

max
εt+1

St
)
.

Notice that N−1−δρΠt+1 = N−1(I−δρNΠt+1), so that det(N−1−δρΠt+1) = det(I−δρNΠt+1)/det(N).
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Therefore,

Et

[
exp

(ρ
2

(co,t + δVt+1)
)]

= det(I − δ ρN Πt+1)−1/2 min
ut

∫
exp

(
ρ
St
2

)
dεt+1

= exp

(
ρ

2

[
νt + min

ut
max
εt+1

St
])

,

where νt = 2
ρ log(det(I − δ ρN Πt+1)−1/2) = − 1

ρ log(det(I − δ ρN Πt+1)).

In brief, from equation (A.2) we conclude that Vt = 1
4ρσ

2
η + νt + minut maxεt+1

St.

Now, consider that for Vt+1 = λt+1 + z′t+1Πt+1zt+1 it follows that

min
ut

max
εt+1

St = min
ut

{
max
εt+1

[
co,t −

1

ρ
dt+1 + δλt+1 + δ z′t+1Πt+1zt+1

]}
= δλt+1 + min

ut

{
max
εt+1

[
co,t −

1

ρ
dt+1 + δ z′t+1Πt+1zt+1

]}
= δλt+1 + z′tΠtzt = δλt+1 + Ft(zt) .

Hence, Vt = λt+Ft(zt), with λt = 1
4ρσ

2
η+νt+δλt+1 and Ft(zt) = z′tΠtzt. Given that co,t = ztRzt+Qu2t

and that zt+1 = Azt + But + εt+1, using Lemma 4 and Theorem 2 in Vitale (2013), one finds that

Πt = R + A′Π̃t+1A − A′Π̃t+1B(Q + B′Π̃t+1B)−1B′Π̃t+1A , (A.3)

with Π̃t+1 = ((δΠt+1)−1 − ρ N)−1 . (A.4)

In addition, from the same results one immediately see that the saddle point for the discounted total

stress is found for ut = Ktzt with

Kt = (Q + B′Π̃t+1B)−1B′Π̃t+1A . (A.5)

In steady state, Π̃t+1 = Π̃ and Πt+1 = Πt = Π, so that equations (A.3),(A.4) and (A.5) corresponds

to the expressions in Proposition 1. In addition, because λt = νt + δλt+1, Vt = F (zt) + λ, where

F (zt) = z′tΠzt, while

λ =
1

1− δ

(
1

4
ρσ2

η −
1

ρ
log(det(I − δ ρN Π))

)
.

A.5. Optimal Control in Steady State. Suppose Π̃ =

(
π̃1 π̃1,2

π̃1,2 π̃2

)
. Given A and B,

A′ Π̃B =

(
γ(π̃1 + π̃1,2)

π̃1 + 2π̃1,2 + π̃2

)
,

B′ Π̃B = π̃1 + 2π̃1,2 + π̃2 .
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Then, given Q, exploiting Theorem 2 in Vitale (2013), we find that

K′ = −A′ Π̃B (Q + B′Π̃B)−1

= − 1

α + π̃1 + 2 π̃1,2 + π̃2

(
γ(π̃1 + π̃1,2)

π̃1 + 2π̃1,2 + π̃2

)
.

This corresponds to K = (κp κe), with

κp = − γ
(

1 − α + π̃1,2 + π̃2
α + π̃1 + 2 π̃1,2 + π̃2

)
,

κe = −
(

1 − α

α + π̃1 + 2 π̃1,2 + π̃2

)
.

A.6. Conditions for Unicity of Steady State. For ρ = 0 the recursive optimization in (A.1)

collapses to the standard Bellman equation of the linear quadratic Gaussian (LQG) problem with time-

discounting. Theorem 3.4.1 (page 39) in Whittle (1990) spells out the conditions for the existence and

unicity of the steady state. For δ = 1, if: i) the matrix Q is positive definite; ii) the matrix R is

positive definite in {Am}, in that for some r
∑r−1
m=0(A′)mR(A)m is positive definite; and iii) the matrix

J = BQ−1B′ is positive definite in {Am}, in that for some r
∑r−1
m=0(A′)mJ(A)m is positive definite,

then the Riccati equation

Π = R + A′ΠA − A′ΠB(Q + B′ΠB)−1B′ΠA ,

possesses a unique semi-positive definite solution, Π. Whittle discusses how to modify these conditions

for the class of linear exponential quadratic Gaussian (LEQG) problems. In Theorem 9.2.1 (page 118)

he states that if conditions i), ii) and iii), with J now equal to BQ−1B′ − ρN, alongside condition iv)

that J being positive definite, hold, then the modified Riccati equation,

Π = R + A′Π̃A − A′Π̃B(Q + B′Π̃B)−1B′Π̃A , with (A.6)

Π̃ = (Π−1 − ρN)−1 ,

possesses a unique semi-positive definite solution Π. To adapt this result to the class of discounted

LEQG (DLEQG) problems analyzed by Hansen and Sargent (2008) and Vitale (2013), we employ a

useful identity formerly exploited by Whittle (1990) in the proof of Theorem 3.5.1 (pages 40-41). In

particular, it is immediate to see that

z′Πz = max
µ

(−2µ′z − µ′Π−1µ) .

In the LQG problem the matrix Πt solves the Bellman equation (where one can appeal to the certainty
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equivalence principle and disregard the idiosyncratic shocks)

z′Πtz = min
ut

[ c(zt, ut) + (Azt + But)
′Πt+1(Azt + But) ] ,

with c(zt, ut) = z′tRzt + Qu2t . Considering the former identity we can write this as

z′Πtz = max
µ

min
ut

[ c(zt, ut) − 2µ′(Azt + But) − µ′Π−1t+1µ ] .

Because the argument in the brackets is convex in ut and concave in µ it admits a unique saddle point.

This implies that one can invert the order of optimization. Via this transformation Whittle proves that

the matrix Πt also respects the following recursion

Πt = R + A′(BQ−1B′ + Π−1t+1)−1A .

This is an alternative formulation of the Riccati equation for the LQG problem. It roots out the salient

elements which pin down the existence and unicity conditions of a steady state solution.

In the analysis of the LEQG problem Whittle shows that the matrix Πt solves the following recursion

z′Πtz = min
ut

max
εt+1

[
c(zt, ut) − (Azt + But + εt+1)′Πt+1(Azt + But + εt+1) − 1

ρ
ε′t+1N

−1εt+1

]
.

Maximizing the argument in the brackets with respect to εt+1 one finds that Πt solves the modified

Bellman equation

z′Πtz = min
ut

[ c(zt, ut) + (Azt + But)
′Π̃t+1(Azt + But) ] ,

where Π̃t+1 = (Π−1t+1 − ρN)−1. Then, applying Whittle’s identity, one can verify that

Πt = R + A′(BQ−1B′ + Π̃
−1
t+1)−1A

= R + A′
(
BQ−1B′ + Π−1t+1 − ρN

)−1
A .

This shows that in the LEQG problem the matrix BQ−1B′ − ρN replaces the matrix BQ−1B′ in

defining the conditions for the existence and the unicity of a steady state solution. Vitale (Vitale, 2013)

proves that in the DLEQG problem the matrix Πt solves a recursion very similar to that which applies

to the LEQG formulation. In fact,

z′Πtz = min
ut

max
εt+1

[
c(zt, ut) − δ(Azt + But + εt+1)′Πt+1(Azt + But + εt+1) − 1

ρ
ε′t+1N

−1εt+1

]
.

As shown in the proof of Theorem 2 in Vitale (2013), maximizing the argument in the brackets with
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respect to εt+1 one finds that Πt solves the modified Bellman equation

z′Πtz = min
ut

[ c(zt, ut) + (Azt + But)
′Π̃t+1(Azt + But) ] ,

where Π̃t+1 = ((δΠt+1)−1 − ρN)−1. Then, applying Whittle’s identity, one can show that

Πt = R + A′(BQ−1B′ + Π̃
−1
t+1)−1A

= R + A′
(

BQ−1B′ +
1

δ
Π−1t+1 − ρN

)−1
A

= R +
√
δA′

(
(
√
δB)Q−1(

√
δB)′ + Π−1t+1 − δρN

)−1√
δA.

We conclude that in the DLEQG problem if: i) the matrix Q is positive definite; ii) the matrix R is

positive definite in {(
√
δA)t}, in that for some r

∑r−1
m=0(

√
δA′)mR(

√
δA)m is positive definite; and iii)

the matrix J = (
√
δB)Q−1(

√
δB)′ − δρN is semi-positive definite and positive definite in {(

√
δA)m},

in that for some r
∑r−1
m=0(

√
δA′)mJ(

√
δA)m is positive definite, then the modified Riccati equation

(A.6), with

Π̃ = ((δΠ)−1 − ρN)−1 ,

possesses a unique semi-positive definite solution Π. Given that in our formulation of the DLEQG

problem Q = α > 0, condition i) is obviously satisfied. Then, consider (
√
δA′)mR(

√
δA)m. We

suppose that

(
√
δA′)mR(

√
δA)m = δm β

(
γ2m Dm−1γ

m

Dm−1γ
m D2

m−1

)
where Dm = Dm−1 + γm and D1 = 1 .

This conjecture is obviously true for m = 1. To check that this is correct for any other m consider that

it implies that

(
√
δA′)m+1R(

√
δA)m+1 = δm+1 β

(
γ 0

1 1

)(
γ2m Dm−1γ

m

Dm−1γ
m D2

m−1

) (
γ 1

0 1

)

= δm+1 β

(
γ2(m+1) γm+1(Dm−1 + γm)

γm+1(Dm−1 + γm) (Dm−1 + γm)2

)

= δm+1 β

(
γ2(m+1) Dmγ

m+1

Dmγ
m+1 D2

m

)
,

which is consistent with our initial conjecture. On the basis of this result we see that

z′0

r−1∑
m=0

(
√
δA′)mR(

√
δA)mz0 = β

r−1∑
m=0

δm (γmp0 + Dm−1e0)2 .
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Since for any choice of p0 and e0 there is at least a natural number m such that (γmp0 + Dm−1e0) 6= 0,

we conclude that this value is strictly positive and hence that condition ii) is satisfied.

Now, consider (
√
δA′)m(

√
δB)Q−1(

√
δB)′(

√
δA)m. Suppose that

(
√
δA′)m(

√
δB)Q−1(

√
δB)′(

√
δA)m = δm+1 1

α

(
γ2m Sm−1γ

m

Sm−1γ
m S2

m−1

)
where Sm = 1 +Dm .

Once again, it is immediate to verify that this conjecture is true for m = 1. To check it is valid for any

other m consider that it consistently entails that

(
√
δA′)m+1(

√
δB)Q−1(

√
δB)′(

√
δA)m+1 = δm+2 1

α

(
γ 0

1 1

)(
γ2m Sm−1γ

m

Sm−1γ
m S2

m−1

) (
γ 1

0 1

)

= δm+2 1

α

(
γ2(m+1) γm+1(Sm−1 + γm)

γm+1(Sm−1 + γm) (S2
m−1 + γm)2

)

= δm+2 1

α

(
γ2(m+1) Smγ

m+1

Smγ
m+1 S2

m

)
.

Exploiting this result we see that

z′0

r−1∑
m=0

(
√
δA′)m(

√
δB)Q−1(

√
δB)′(

√
δA)mz0 =

1

α

r−1∑
m=0

δm+1 (γmp0 + Sm−1e0)2 .

Since for any p0 and e0 there is at least a natural number m such that (γmp0 + Sm−1e0) 6= 0, we

conclude that this value is strictly positive. Because N is finite, for ρ small enough we conjecture that

J ≈ (
√
δB′)mQ−1(

√
δB) is positive definite in {(

√
δA)m}. A similar argument shows that for ρ small

enough J is semi-positive definite and hence that condition iii) is also satisfied. In brief, we have checked

that for ρ small, the steady state is unique.

A.7. Unconditional Variance of Control Variable. Let Γ = A + BK. Given A, B and K =

(κp κe),

I2 − Γ =

(
(1− γ)− κp −(1 + κe)

−κp −κe

)
.

Let d = det(I2 − Γ). This is d = −(κp + (1− γ)κe). Then,

Λ = (I2 − Γ)−1 =
1

d

(
−κe 1 + κe

κp (1− γ)− κp

)
.
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Therefore, K Λ = 1
d (0 (κp + (1− γ)κe) = (0 − 1) and hence, given N,

Var [ut] = K Λ N Λ′K′

= (0 − 1)

(
σ2
p + σ2

e σ2
e

σ2
e σ2

e

) (
0

−1

)
= σ2

e .

A.8. Optimal Control in the Lagged Observation Scenario. From Theorem 4 and Lemma 7 in

Vitale (2013) we know that to find the optimal control when the social planner only observes a noisy

signal on the state vector zt−1 in t, one needs to maximize with respect to zt the sum

− (1/ρ)(zt − ẑt)
′Ω−1t (zt − ẑt) + z′tΠtz

′
t ,

where ẑt is the maximum likelihood estimate of zt at time t and Ωt is the corresponding conditional

covariance matrix. When in t the social planner observes zt−1, zt − ẑt = εt and Ωt = N. Then, one

needs to solve

max
zt

{
−1

ρ
(zt − ẑt)

′N−1(zt − ẑt) + z′tΠzt

}
.

For N−1 − ρΠ positive definite, this maximum is given for zt = žt, where

z̆t = (I − ρN Π)−1ẑt .

Exploiting Theorem 4 in Vitale (2013), it follows that the optimal control is then

ut = K z̆t ,

where K is given in Proposition 1.

A.9. Unconditional Variance of Control Variable in the Lagged Observation Scenario. In

steady state, zt = Azt−1 + Ψẑt−1 + εt, where Ψ = BKI . As the state vector is observed with a lag,

ẑt = Azt−1 +Ψẑt−1. Then, ẑt = Φzt−1, where Φ = (I2−Ψ)−1A. Replacing this expression in that for

zt we find that zt = Azt−1 + ΨΦ zt−2 + εt, which we can also write as zt = (I2−AL−ΨΦL2)−1εt, so

that Var[zt] = ΛINΛ′I , where ΛI = (I2 −A−ΨΦ)−1, Ψ = BKI and Φ = (I2 −Ψ)−1A. In addition,

as ẑt = Φzt−1 and ut = KI ẑt, Var[ẑt] = ΦΛINΛ′IΦ
′ and Var[ut] = KIΦΛINΛ′IΦ

′K′I . Consider that

A − Ψ Φ = [I2 + Ψ(I2 − Ψ)−1]A .

For any square matrix M,

I − M (I + M)−1 = I + M .

Taking M = −Ψ,

I2 + Ψ(I2 − Ψ)−1 = (I2 − Ψ)−1 .
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This implies that

I2 − A−Ψ Φ = I2 − (I2 −Ψ)−1A = I2 − Φ .

Hence, ΛI = (I2 − Φ)−1 = −Φ−1(I2−Φ−1)−1, where we have used the property that for M invertible,

(I + M)−1 = M−1(I + M−1)−1. Then ΦΛI = −(I2 − Φ−1)−1, where Φ−1 = A−1(I2 − Ψ). Let

KI = (κIp κIe). Given B,

I2 − Ψ =

(
1− κIp −κIe
−κIp 1− κIe

)
.

For

A−1 =
1

γ

(
1 −1

0 γ

)
,

I2 − A−1(I2 − Ψ) =

(
1 1

γ

κIp κIe

)
and (I2 − A−1(I2 − Ψ))−1 =

1

κIe − 1
γκ

I
p

(
κIe − 1

γ

−κIp 1

)
.

Finally,

KI Φ ΛI = − (κIp κIe)
1

κIe − 1
γκ

I
p

(
κIe − 1

γ

−κIp 1

)
= (0 − 1) .

This implies that

Var [ut] = KI Φ ΛI N Λ′Φ K′I

= (0 − 1)

(
σ2
p + σ2

e σ2
e

σ2
e σ2

e

) (
0

−1

)
= σ2

e .

A.10. The Coefficient ρ and the Relative Risk-aversion. Using results from Tallarini (Tallarini,

2000), we have see that the risk-enhancement coefficient is

ρ = 2

(
1

δ
− 1

)
(χ− 1) .

This value is larger than zero if χ > 1 = 1/θ, i.e. if the coefficient of relative risk-aversion is larger than

the inverse of the inter-temporal elasticity of substitution in Epstein and Zin’s recursive preferences.

In other words, a positive risk-enhancement coefficient is equivalent to the condition that the coeffi-

cient of relative risk-aversion is larger than the inverse of the inter-temporal elasticity of substitution.

Interestingly, we can also write that

χ = 1 +
1

2

(
δ

1− δ

)
ρ .
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This implies that in our base parametrization, given that δ = 0.95, for ρ that ranges between 0 and

2, the coefficient of relative risk-aversion, χ, varies from 1 to 20. For δ = 0.9 (δ = 0.99), for ρ in the

interval between 0 and 2, the coefficient of relative risk-aversion, χ, varies from 1 to 10 (1 to 100).

A.11. The Coefficient ρ and Early Resolution of Uncertainty. Kreps and Porteus (Kreps

and Porteus, 1978) notes that when the relative-risk aversion is greater than the inverse of the inter-

temporal elasticity of substitution, i.e. for χ > 1/θ, the social planner’s preferences favor early resolution

of uncertainty vis-a-vis the standard case of expected utility. In fact, for χ = 1/θ (or equivalently ρ = 0)

Epstein and Zin’s recursive preferences become linear, so that the utility function assumes the familiar

time-separable form, while the value function solves the standard Bellman’s equation from dynamic

programming, Vt = minut {ct + δEt [Vt+1]}. In our specification for ρ > 0 we see that χ > 1, where

1 = 1/θ. This means that, applying Kreps and Porteus’s argument, we can affirm that the objective

function in our recursive optimization induces earlier resolution of uncertainty vis-a-vis the case of

expected utility.
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B. Supplementary Numerical Results

The results of the numerical simulation proposed in this Appendix are based on the following parametric

configuration. We set the persistence coefficient of the stock of GHGs, γ, equal to 0.9917, i.e. the

complement value of the decay rate used in Athanassoglou and Xepapadeas (2012). Coherently with

Athanassoglou and Xepapadeas (2012) we use a benchmark discount factor, δ, equal to 0.97. We

set the variances of the shocks to the emission and concentration levels of the GHGs, σ2
e and σ2

p,

equal respectively to 0.00449 and 0.01. In this way their sum, σ2
p + σ2

e , is equal to the value assigned

by Athanassoglou and Xepapadeas (2012) to the variance of the shock to the unique state variable

considered in their paper. The remaining parameters, namely α = 25, β = 0.005 and σ2
η = 1, have

been calibrated in order to obtain a feasible climate policy, where a large value for α and a small value

for β can be justified considering the onerous costs of altering the emission level vis-a-vis the small

immediate benefits of pollution reduction.

Figure 5 confirms the dependence of the optimal policy coefficients κp and κe on the risk-enhancement

coefficient ρ, indicating that a larger ρ induces the social planner to act more aggressively (see the

discussion about Figure 1 in Section 3). It must be noted that in all the figures presented in this

Appendix, the coefficient of risk-aversion ρ ranges from 0 to 0.5, which is smaller than the range

considered in the main text (see Figures 1, 2, 3 and 4). Indeed, under this alternative parametrization

the second order condition imposed by Proposition 1 (i.e. that the matrix δΠ − 1
ρN−1 is negative

definite) requires a value of ρ roughly smaller than 0.8. Moreover, by comparing our benchmark discount

rate δ = 0.97 to higher (δ = 0.99) and lower (δ = 0.95) values, we confirm that, for any ρ, the higher δ

the lower κp and κe.

Importantly, the ranges of values taken by these two coefficients lead to values of ut which prescribe a

feasible mitigation policy. In fact, in 2012 the level of CO2 was equal to 9.7GtC, while the corresponding

concentration level was 836GtC (see, for instance, CO2Now.org). Considering that the pre-industrial

concentration level was 590GtC, we conclude that in year 2012 et and pt were equal respectively to 9.7

and 246. This implies that, given the values of κp and κe in Figure 5, the mitigation effort in 2012, ut,

would range between −3.2GtC and −6.7GtC.

Our comments to Figures 2 and 3 also apply to Figures 6 and 7. Figures 8 and 9 represent the

analogous, respectively, of the top and the bottom panels of Figure 4. Even in this case, the same

considerations developed in the main text apply. In the bottom panel of Figure 9 we can appreciate

the dependence of the unconditional variance of the emissions level on ρ, as we separate the represen-

tation of Var[pt] and Var[et]. This suggests that, as for the case of the unconditional variance of pt,

the unconditional variance of et is larger under the lagged state observation scenario than in the full

observation one. Finally, it is worth noticing that, given the estimated values for et and pt in 2012, the

ranges of values taken by Var[pt] and Var[et] in Figure 9 are realistic.
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Figure 5: The dependence of κp and κe on ρ for δ = 0.99, δ = 0.97 and δ = 0.95, when γ = 0.9917, α = 25,

β = 0.005, σ2
p = 0.01, σ2

e = 0.00449 and σ2
η = 1.
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Figure 6: The dependence of the unconditional variances of the state variables (Var[pt], Var[et]) on ρ for

δ = 0.99, δ = 0.97 and δ = 0.95, when γ = 0.9917, α = 25, β = 0.005, σ2
p = 0.01, σ2

e = 0.00449 and σ2
η = 1.
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Figure 7: The dynamics of κp and κe for T = 40 and T = 80, ρ = 1, δ = 0.97, γ = 0.9917, α = 25, β = 0.005,

σ2
p = 0.01, σ2

e = 0.0449 and σ2
η = 1.
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Figure 8: The dependence of κp and κe on ρ in the full observation and lag observation cases, in the bottom

panel we plot the dependence of the unconditional variance of the CO2 concentration level, Var[pt], on ρ in the

full observation and lag observation cases, for δ = 0.97 , γ = 0.9917, α = 25, β = 0.005, σ2
p = 0.01, σ2

e = 0.0449

and σ2
η = 1.
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Figure 9: The dependence of the unconditional variance of the GHG concentration and emission level, Var[pt]

and Var[et], on ρ in the full observation and lag observation cases, for δ = 0.97 , γ = 0.9917, α = 25, β = 0.005,

σ2
p = 0.01, σ2

e = 0.0449 and σ2
η = 1.
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