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Abstract

We compare auctioning and grandfathering as allocation mechanisms of emission permits when

there is a secondary market with market power and the firms have private information. Based on

real-life cases such as the EU ETS, we consider a multi-unit, multi-bid uniform auction, modelled as a

Bayesian game of incomplete information. At the auction each firm anticipates his role in the secondary

market, which affects the firms’ valuation of the permits (that are not common across firms) as well

as their bidding strategies and it precludes the auction from generating a cost-effective allocation of

permits, as it would occur in simpler auction models. Auctioning tends to be more cost-effective

than grandfathering when the firms’ costs are asymmetric enough, especially if the follower has lower

abatement costs than the leader and uncertainty about the marginal costs is large enough. If market

power spills over the auction, the latter is always less cost-effective than grandfathering. One central

policy implication is that the specific design of the auction turns out to be crucial for cost-effectiveness.

The chances of the auction to outperform grandfathering require that the former is capable of diluting

the market power that is present in the secondary market.
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1 Introduction

Most economists tend to favour auctioning of emission permits while business tend to prefer a grandfa-

thering scheme, as noted for example by Hepburn et al. (2006). Until very recently, auctioning has been

the exception rather than the rule, while grandfathering has been, by far, the most widespread method

used to distribute emission permits. Nevertheless, the situation is changing and it could change even more

dramatically in the coming future.

For the European Union Emission Trading System (EU ETS), considered to be the largest environ-

mental market in the world, the role of auctioning is becoming increasingly relevant. The 2008 revision of

the European Emission Trading Directive established as a fundamental change for the third trading pe-

riod, starting in 2013, the mandate that auctioning of allowances will be the default method for allocating

allowances. From 2013 onwards all allowances not allocated for free must be auctioned and auctioning

will progressively replace grandfathering as the main method in all EU-ETS sectors except aviation. It is

expected that roughly half of the allowances will be auctioned. This is in sharp contrast to the first trad-

ing period (2005-2007) in which a 5% limit was set to the amount of allowances that could be auctioned.

Moreover, only four countries used auctions at all and only Denmark used up the 5% limit. The situation

in the second trading period (2008-2012) was not very different, with no more than 4% of all the allowances

auctioned. The arguments posed by the European Commission (EC) to support the introduction of auc-

tions in the third period are that auctioning "best ensures the efficiency, transparency and simplicity of

the system, creates the greatest incentives for investment in a low-carbon economy and eliminates windfall

profits".1

The world first CO2 cap-and-trade system to require the widespread use of auctions was the Regional

Greenhouse Gas Initiative (RGGI). This programme began in 2009, it includes the 10 northeastern US

states as well as Eastern Canada and it covers CO2 emissions from electricity generators. As noted by

Burtraw et al. (2009), the RGGI proposal represents a substantial break with the past since, instead of

giving the permits away for free, the RGGI states decided to auction close to 90 percent of their permit

budgets. The increasing role of auctioning supported by these examples is an important motivation to

analyze the role of auctions as an allocation mechanism for emission permits.

In this paper, we try to get some insight into the properties of auctioning versus grandfathering.

Specifically, we start from the EC’s argument to support the introduction of auctioning on the grounds

of efficiency. The efficiency of an environmental policy requires a) enforcing the "right" (efficient) amount

of emissions (considering both the abatement costs and the externalities caused by pollution) and b)

distributing those emissions among emitters in a cost-effective way. In this paper, we disregard the former

issue by assuming that the amount of permits is exogenously decided and we focus on the second dimension,

1See http://ec.europa.eu/clima/policies/ets/cap/auctioning/faq_en.htm, section "Why are allowances being auctioned?".
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i.e., the right way of distributing permits among polluting firms. Summing up, our central research question

is: can auctioning distribute permits in a more cost-effective way than grandfathering? So, we focus on

cost-effectiveness, which is a necessary (although not sufficient) condition for efficiency.

It is well known that, under perfect competition and full information, the initial allocation of permits

only matters for the distribution of the gains from trade, but it is irrelevant for the final allocation and,

hence, for cost-effectiveness (see, for example, Tietenberg 2006). Nevertheless, as first noted by Hahn

(1984), if there is market power, the initial distribution of permits does matter for the sake of cost-

effectiveness. Indeed, the cost-effective allocation will be reached only when, in the initial allocation, the

leader receives exactly the amount of permits that he would receive under perfectly competitive pricing.

So, on the grounds of cost-effectiveness, the EC’s argument for auctioning only makes sense under the

implicit recognition that there is not a perfect market for permits since, otherwise, no efficiency gains

could be made by changing the allocation method.

Sturn (2008) notes that whether market power actually constitutes a problem in an emission trading

system has to be analyzed for each market separately. Market power is probably not one of the main issues

in the EU ETS since the number of involved facilities is very large, but it may constitute a serious problem

for future international emissions trading system within the framework of the Kyoto Protocol and for

some regional emissions markets. Montero (2009) and Muller et al. (2002) stress that market power issues

are more likely to show up in markets where countries -rather than individual entities- are the relevant

players, as is the case of the Kyoto Protocol. On the other hand, it can be argued that, even in a cap-and-

trade system with a large number of participants (as the EU ETS), it is not unrealistic to assume that

the market is not perfectly competitive since there might be information asymmetries, collusive behavior,

interaction with other markets and other imperfections. For example, Karl-Martin et al. (2008) claim that

"loopholes in EU emissions trading law foster tacit collusion that impacts oligopolistic product markets"

(p. 347). Specifically, they state that "permits might be diverted from their intended use as a vehicle

for tacit collusion in two basically different manners: by increasing permit prices or by coordinating the

firms’ emissions" (p. 357-358). Hinterman (2011) focuses on the power sector and considers a case in

which there is market power in both the power and the permit market. In an application to the EU ETS,

he concludes that the largest electricity producers in Germany, the UK and the Nordpool market could

have found it profitable to manipulate the permit price upwards and he claims that this could explain the

elevated allowance price level during the first 18 months of the EU ETS. For each individual market, the

higher or lower severity of those failures will determine how imperfect the market is and, therefore, the

room for efficiency improvements.

Apart from market power, we consider an additional element to make the comparison between grand-

fathering and auctioning non-trivial, which is incomplete information. If information were complete, and
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more specifically, if the environmental planner could observe or make a perfect forecast of firms’ behav-

iour, then, he could compute the cost-effective solution and implement it.2 Under those conditions there

would be no room for further improvements since grandfathering would readily provide the minimum-cost

allocation. That is clearly not the case in real life. For example, Ellerman et al. (2010) claim that,

during the first period of the EU ETS, "the task of setting a cap that was at or close to business-as-usual

(BAU) emissions was made enormously more difficult by poor data. The problem was that no member

state government had a good idea of the exact emissions within the ETS sectors ... and the data problem

was even worse in the new member states of the eastern Europe". Moreover, "the problems created by

poor data were not limited to cap-setting; they extended into the allocation of allowances to installations,

which required installation-level emissions data ... Not surprisingly, since allocations to these installations

depended on the data submitted, industrial firms were forthcoming, although there has always been a sus-

picion that the intended use of the data imparted an upward bias to these data" (p. 37-38). We capture

this reality by means of a Bayesian model in which firms have private information about their technology

and the effects of external events on their BAU emissions.

To the best of our knowledge, the question of how cost-effective an auction is as compared to grand-

fathering (under market power) has not been addressed in formal terms, although some related informal

discussions and experimental studies have been conducted (see Ledyard and Szakaly-Moore (1994), Godby

(1999, 2000), Muller et al. (2002)). In a theoretical paper, Antelo and Bru (2009) compare auctioning

and grandfathering in a permit market with a dominant firm, when the government is concerned both

about cost-effectiveness and public revenue, but one of our main building blocks, incomplete information,

is absent in their work. Montero (2009) also uses a deterministic approach and, as a consequence, both

Antelo and Bru (2009) and Montero (2009) conclude that, in a setting in which the auction is followed

by a secondary market, it is optimal for the leader not to take part in the auction and acquire all the

permits in the secondary market. The rationale under this somewhat counterintuitive result is that, for

the leader, it is optimal not to bid in order to keep the price low and then buy the permits in the market

at a lower price than the competitive one by acting as a monopsonist. Although we get some related

result, we conclude below that, under incomplete information, it is not necessarily optimal for the leader

to refrain from participating in the auction.

Our paper builds on two strands of literature. The first, pioneered by Hahn (1984), focuses on cap-and-

trade systems under market power. An overview of this literature can be found in Montero (2009). The

second strand refers to auction theory. This literature typically focuses on the optimal bidding strategies,

on how auctioned goods are allocated to bidders and what revenue the auctioneer can expect to get from

the auction. Specifically, we are concerned about multi-unit multi-bid auctions, in which more than one

2That is, for example, what Antelo and Bru (2009) conclude in a complete-information model.
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unit is being auctioned (multi-unit) and bidders can bid for more than one unit3 (multi-bid). In most

of the literature on multi-unit multi-bid auctions, common-value is assumed, that is, the value of each

auctioned unit is constant both across units and across bidders. Under such assumption efficiency is not

a relevant question since any allocation of units across bidders is efficient. In much simpler settings, such

as single-unit auctions, the resulting allocation is also efficient. For a large range of auction formats it is

always the case that the bidder with the highest valuation is the one who gets the unit on sale.

In our model, the common-value assumption fails to hold for two reasons. First, bidders -polluting firms-

at the time of bidding anticipate that there will be some firm exerting market power in the secondary

market. Moreover, each firm anticipates his role, either as a price setter or taker. This heterogeneity

across firms implies that the value attached to permits is not common to them. Moreover, we realistically

assume that marginal abatement cost is not constant, what implies that, for each bidder, the value of one

additional permit is not constant across units either. Thus, efficiency of the auction allocation turns out

to be a relevant question in our setting since efficiency results that holds true for simpler auctions do not

trivially extend to this setting.4

We present a simple model in which two firms receive an initial allocation of emission permits (either

by means of grandfathering or auctioning) and then interact in a secondary market5 in which one of the

firms acts as a leader and the other one as a follower. As is usual in auction theory, we model incomplete

information by assuming that the agents have random and privately observed types. In our framework,

these types determine the relative position of the abatement-cost functions. For technical simplicity some

of the results are derived under uniform distribution and three alternative scenarios. In the first one,

the types are mutually independently distributed, whereas in the other two scenarios they are positively

correlated. In the second case the leader is assumed to have ex-ante lower marginal abatement costs than

the follower and the opposite assumption is imposed in the third scenario.

In this setting, we compare auctioning and grandfathering in terms of cost-effectiveness. A rather

natural argument to support the hypothesis that an auction could improve cost-effectiveness with respect

to grandfathering is that the auction could work in such a way as to reduce the chances of the leader to

exert its market power. To check the validity of this argument, we start analyzing a case in which both

the leader and the follower act non-strategically in the auction although they are capable of anticipating

that, in the secondary market, the leader will act strategically and the follower will be a price taker. So,

3More precisely, bidders can submit multiple quantity-price pairs, in short, a demand function.
4As another example, a classical result in single-unit auctions that does not extend to the multi-unit multi-bid case is the

revenue equivalence theorem. See Krishna (2002) for a detailed discussion on this regard. Examples of multi-unit multi-bid
non-common value auctions are presented in de Castro and Riascos (2009) and Engelbrecht-Wiggans and Kahn (1998). These
papers do not address efficiency and they do not justify the value of the units on sale on the basis of a post-auction market
as we do. Nyborg and Strebulaev (2001) present a model to analyze ECB money markets, considering both an auction and
some secondary market. Though, their model is fundamentally different to ours, apart from the application, because the
auctioneer participates in the secondary market with selling and buying prices which are ex-ante announced.

5For the sake of clarity, we will commonly refer to the secondary market (where firms can trade permits among themselves)
to differentiate it from the initial allocation, which can be seen as a primary market. This is a slight abuse of terminology
since only auctioning (not grandfathering) can be considered as a market.
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in this case, the auction has the effect of making the firms more symmetric in some sense. The rationale

behind this assumption is that the leader’s ability to set the price in the secondary market could be absent

(or, at least, weaker) in the auction, first, because the auctioneer has the duty to guarantee that all the

participants in the auction are treated evenly while it is not so in the secondary market, and second,

because the anonymity of the bidders make it more difficult to emit effective price signals.

This ability of the auction to neutralize market power is just a working hypothesis, not an essential

feature of the auction, at least from a theoretical perspective. Thus, for the sake of completeness, we also

analyze a case in which the auction preserves the roles (leader and follower) assumed in the secondary

market. In standard auction theory,6 the role-preserving auction is a relatively unexplored problem within

a multi-unit multi-bid framework. With respect to the standard approach in the literature, the main

complexities we deal with are non-common value and the existence of a post-auction market. Theoretical

papers on multi-unit multi-bid auctions typically assume common value and no secondary market (see

Wang and Zender (2002) or Alvarez and Mazón (2012)). More general settings, as the one by de Castro

and Riascos (2009) do not fully characterize the equilibrium as we do, but just optimal responses. Since we

are faced with a rather complex and novel model, to tackle it we restrict ourselves to continuous strategies

and a subset of the parameter space that guarantees interior solutions.

Our main results fall into two categories. First, some of the results refer to the existence, uniqueness and

characterization of the equilibrium under the auction. Second, we compare auctioning and grandfathering

in terms of cost-effectiveness. Under the technical requirements we impose, existence and uniqueness is

always guaranteed. As another general result, in all the cases that we study, the auction equilibrium is never

cost-effective, because the leader will either over-bid or under-bid to place him in the most advantageous

position for the secondary market.

In the auction with non-strategic bidders, we conclude that, it the firms are asymmetric enough in terms

of marginal abatement costs, the firm with the higher cost is prone to bid more aggressively and get all the

permits in the auction, what tends to generate more cost-effective results than grandfathering. If the firms

are similar enough to each other, permits are shared among both firms in the auction, but the follower is

generally under-assigned and the leader is over-assigned with respect to the cost-effective allocation. The

comparison of expected cost is partially carried out with a numerical exploration. The results reveal that,

in the auction, the leader tends to be over-assigned as compared to the cost-effective allocation and, as a

consequence, the auction generally does worse than grandfathering in terms of expected cost when the types

are independently distributed or the leader’s marginal cost is ex-ante lower than the follower’s. Contrarily,

if the follower has access to a more efficient abatement technology, and additionally, the variability of the

types is large in terms of the cap, then it is the auction that outperforms grandfathering, since the allocation

6By this, we refer to the game-theoretic approach that characterizes auctions as Bayesian games of incomplete information.
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generated by the auction is closer to the cost-effective one than that resulting from grandfathering.

The role-preserving auction delivers bad news for auctioning. If the auction preserves the leader and

follower roles, it is always dominated by grandfathering. Moreover, the dominance is not only in terms

of expected cost, as it was under the non-strategic auction, but in a stronger manner: for each possible

realization of the types, the auction leads to larger realized cost than grandfathering, what implies first-

order stochastic dominance of grandfathering with respect to auctioning. There is even more, we prove

the strong result that the auction is optimal ex-post for the leader, in the sense that the leader can play

in such a way that he enjoys the same profit that he would get if he could observe not only his own type,

but also his rival’s type at the time of bidding. We also conclude that the leader always gets less permits

than what would be cost-effective, which is in the same line as the result in Antelo and Bru (2009) and

Montero (2009) regarding the absence of the leader in the auction, but our result is more general in the

sense that the leader’s allocation is lower than the optimal amount, but not necessarily zero.

As a general policy implication, we conclude that the mere fact of auctioning the permits instead of

allocating them by means of grandfathering is not a panacea, at least in terms of cost-effectiveness. The

specific design of the auction turns out to be crucial and, specifically, if the auction inherits the leader and

follower roles from the secondary market, the results are prone to be worse rather than better. If, on the

other hand, the auction is capable of diluting market power, then there are chances that it could render

better results than grandfathering.

We organize our work as follows. In Section 2 we present the main elements of the model, including

the structure of the secondary market and how we model grandfathering. In section 3 we analyze the case

in which the firms act non-strategically in the auction. Section 4 deals with a role-preserving auction.

Section 5 presents some conclusions and discussion.

2 The model

2.1 Basic setting

There are two polluting firms, labelled as i ∈ {F,L}, that are subject to a cap-and-trade system. Q̄ emission

permits are issued and distributed between the firms by some allocation procedure (either auctioning or

grandfathering). The number of permits is assumed to be given and we only care about the distribution

of those permits among firms. Therefore, for our purposes, Q̄ can be treated as a parameter since it is

not an endogenous variable. Each firm i receives an initial allocation of permits, denoted as qi0, with

qL0 + qF0 = Q̄, and then the permits are traded in a secondary market in which L acts as a leader and F

as a follower.7 Since in real-world examples the number of permits to be assigned is typically very large,

7For easiness of exposition, we consider only two firms. While including more than one leader would imply a qualitative
complication, the model would be qualitatively similar with a competitive fringe instead of a single follower, since the leader
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as a reasonable approximation we take it to be continuous variable.8

To meet the environmental legal requirements, each firm has two options: first, to use permits and,

second, to do some abatement effort to reduce its emissions. For the sake of analytical tractability, we

assume that the cost of the latter option is given by a quadratic total abatement cost function (TC), that

gives rise to a linear marginal abatement cost (MC):

TCi (ei) = Ki − αiei +
β

2
e2i , (1)

MCi (ei) = −TC ′
i = αi − βei,

where ei represents the effective emissions of firm i. In this standard specification, apart from a fixed-cost

term K, total and marginal costs depend on two parameters, α and β, that represent the intercept and

the slope of MC respectively. We allow for heterogeneity across firms by making the fixed cost and the

intercept firm-specific. An alternative way to do the same would be to make the slope firm-specific instead

(or, of course, make all three parameters firm-specific). The insight we get is similar but the calculus

become much more cumbersome when β is not constant across firms.

Moreover, to account for incomplete information, we assume that αi is a random variable that, as is

usual in auction theory, we refer to as the type of firm i.9 We assume that the distribution of both types

is common knowledge. At the beginning of the game each firm observes its own type but only knows the

distribution of the rival’s type. In our framework, the interpretation of this assumption is that a firm itself

is the one that has more accurate information about its own technology and the effect of random shocks

(due to climatic, environmental or technological reasons) on the firm’s results. We assume that both αL

and αF are a priori distributed in the closed interval [θ, θ + σ], where θ, σ > 0. Thus, the distribution

is characterized by two parameters, θ and σ; the former captures the size whereas the later accounts for

variability in the types.

We assume that, without the cap-and-trade system, the firms would emit the laissez-faire or BAU emis-

sions, eBAUi , i.e., the amount of emissions that would minimize TCi. By making the marginal abatement

cost equal to zero, we get eBAUi = αi
β
.

After the initial allocation is made, the types are publicly revealed. Then the firms engage in the

secondary market and trade allowances with full information. To assume that the types are known in the

secondary market but not in the auction amounts to the fact that transactions in the secondary market

are far more frequent than auctions, and thus, it is realistic to assume that in the secondary market the

is only concerned about the aggregate behaviour of the followers.
8See Wilson (1979) or, more recently, Alvarez and Mazon (2012) and Wang and Zender (2002).
9Following standard auction theory, the auction will be modelled as a Bayesian game of incomplete information. The pair

of types, (αF , αL), are the fundamental random variables of the model ("types"). With a slight abuse of notation, we denote
indistinctly a random variable and an arbitrary realization of it.
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agents handle more information. So, the timing of the game is the following:

1. Each player i observes his own type (realization of αi)

2. The planner initially allocates the permits. We consider two cases:

Option A: Grandfathering (for free based on BAU emissions)

Option B : Auctioning





2.B.1. Each player submits a bid

2.B.2. Planner collects bids and sets opt-out price

2.B.3. Bidders pay the price and get the permits

3. The types are revealed to everyone

4. Secondary market





4.1. The leader sets the price

4.2. The follower decides its demand

4.3. The market clears

For the sake of comparison, we compute the cost-effective allocation
�
eCEL , eCEF

�
, which follows from

equating marginal abatement costs across firms and imposing the market-clearing condition eL+ eF = Q̄:

eCEL = αL−αF +βQ̄
2β , eCEF = αF−αL+βQ̄

2β , (2)

where CE stands for "cost-effective". Note that, when both firms are identical (αF = αL), it is optimal

that each firm gets Q̄
2 permits, and if αi > αj it is optimal that firm i receives more permits than j.

2.2 The secondary market

Denote as qi1 the amount of permits that firm i holds after trading in the secondary market, that has

to coincide with his realized emissions.10 Therefore, the amount of permits sold (if qi0 > qi1) or bought

(if qi1 > qi0) in the secondary market by firm i is |qi0 − qi1|. The aim of both firms is to maximize their

profits, considering both the revenue or the expenses due to permits trading and abatement costs, i.e.,

Πi = p1 (qi0 − qi1)− TCi, (3)

where p1 is the price of permits in the secondary market. The difference between both firms’ behavior is that

the follower chooses its net demand while taking p1 as given, whereas the leader takes into account the effect

of his behavior on the market price. We restrict ourselves to interior solutions in the secondary market,

i.e., we require both qL1 and qF1 to be positive and lower than Q̄ in equilibrium. Besides its tractability,

assuming that the post-market holdings of permits are positive for every firm is fairly realistic. Moreover,

to avoid meaningless solutions, we require qi1 ≤ eBAUi for all i, i.e., no firm will hold more permits than

their BAU emissions and, hence, some abatement effort is required in equilibrium. Proposition 1 identifies

10We do not consider the possibility that some firm buys more permits than needed just to withdraw them from the market
and pushing the price upwards. This is guaranteed under the technical condition (4), that we impose below.
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sufficient conditions for these requirements to hold and states the solution to the secondary market under

those conditions.

Proposition 1 If the following condition holds

3

2
θ ≥ βQ̄ ≥ σ, (4)

the number of permits hold by each firm in the secondary-market equilibrium is given by

q∗L1 =
αL − αF
3β

+
Q̄+ qL0
3

, (5)

q∗F1 =
αF − αL + β

�
2Q̄− qL0

�

3β
, (6)

and it is guaranteed that, for any initial allocation, qi1 ∈ [0,min{Q̄, eBAUi }] holds w.p.1 for i ∈ {F,L}.

The resulting profits are given by

πL (qL0,α) = ΘL +
αL + 2αF − 2βQ̄

3
qL0 +

β

6
q2L0, (7)

πF (qF0,α) = ΘF +
2αL + 7αF − 2βQ̄

9
qF0 −

5β

18
q2F0, (8)

where α := (αF , αL) and ΘL and ΘF are two terms that depend on the parameters of the model as well

as the types but are independent of the initial allocation.

In the rest of the paper we restrict ourselves to the parameter space defined by (4). From the results in

Proposition 1, it is important to underline the fact that the equilibrium reached in the secondary market

depends on the initial allocation. Moreover, as first noted by Hahn (1984), the only case in which the

secondary market renders the cost-effective solution is that in which the leader initially receives exactly

the amount of permits that corresponds to the cost-effective allocation. If this is the case, the secondary

market is superfluous in the sense that no transaction will be made. In any other event, the role of

the secondary market will be relevant. Indeed, using (2) in (5), it is easy to check that, if qL0 < eCEL ,

then eCEL > qL1 > qL0. Symmetrically, if qL0 > eCEL then eCEL < qL1 < qL0. In words, if the leader

receives initially less permits than in the cost-effective allocation, in the secondary market he will act as a

monopsonist and will buy less permits than what would be cost-effective. If, on the contrary, he receives

more permits than eCEL , he will act as a monopolist and will sell less permits than required to reach

cost-effectiveness.

Summing up, the initial allocation of permits is crucial to determine the equilibrium of the secondary

market and its cost-effectiveness. The secondary market turns out to be relevant as far as the initial alloca-

tion is different from the cost-effective one. We claim that this is generally the case. Under grandfathering,
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if the planner had perfect information (in our framework, if the values of αF and αL were perfectly known),

then it would be possible to compute the cost-minimizing solution and, by allocating the right amount of

permits to each firm, cost-effectiveness would be achieved with certainty and the secondary market would

be redundant. Nevertheless, it is reasonable to think that the planner does not have perfect information

about the firms’ technology and the way in which random shocks affect the firms’ result. Consistent with

this fact, we assume that the planner allocates the permits under incomplete information, what prevents

him from allocating the cost-effective amount to each firm. Under auctioning, as it is discussed in the

introduction, in a multi-unit, multi-bid, non-common-value auction as the one we deal with, the resulting

allocation is not necessarily efficient, what in our framework means that it is not cost-effective. This is

consistent with our findings below.

For the analysis of the auction it is also important to notice that, according to Proposition 1, πL is

strictly convex in qL0 while πF is strictly concave in qF0.

In Corollary 1 we show that total cost can be expressed as a function of the amount of permits initially

assigned to the follower.

Corollary 1 The aggregated abatement cost can be written as the following quadratic function of qF0 :

TC (qF0,α) := TCL + TCF = Θ+
αL − αF − βQ̄

9
qF0 +

β

9
q2F0, (9)

where Θ is a term that depends on the parameters and the types but not on the initial allocation.

We include α as an argument of TC in (9) in order to emphasize its dependence on the types. Since we

focus on cost-effectiveness, TC will be our comparison criterion to assess grandfathering and auctioning as

alternative allocation mechanisms. From (9) it can be noticed that calculating expected total cost under

grandfathering is rather simple since qF0 is exogenously given (decided by the planner) and, therefore, αL

and αF are the only stochastic variables, while the computation is much more complex under auctioning,

since qF0 comes out as an equilibrium result determined by the firms’ strategies, which, in turn, are driven

by the realized types.

An implication of Corollary 1 is that the total cost entailed by an allocation system can be assessed

just by checking how close the initial allocation is to the cost-effective one. In the special case αL = αF it

is immediate to conclude, once again, that the cost-minimizing distribution involves qL0 = qF0 =
Q̄
2 . Using

(9) allows us to skip computing the secondary-market effect to evaluate an allocation system, since such

effect is already incorporated in (9). We only need to care about the initial allocation. In other words,

all the information we need about the secondary market is contained in (7), (8) and (9).11 For notational

11As a matter of fact, to evaluate grandfathering we only need (9) since the initial allocation is exogenously given. For the
auction, we also need the profit functions, (7) and (8) to derive the optimal bidding functions.
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simplicity we define the following monotone linear transformation of TC:

h(δ,α) :=
9

Q̄
[TC (qF0,α)−Θ] = δ2βQ̄+ (αL − αF − βQ̄)δ, (10)

which is a function of δ := qF0/Q̄, that is, the proportion of permits initially assigned to F . For simplicity,

and with a slight abuse of terminology, we will refer to h as "cost", though it actually is a monotone linear

transformation of it. This is innocuous since we are using costs only to determine the relative position

of auctioning and grandfathering, i.e., to ascertain which method is more cost-effective, and the relative

position is not altered by a monotone transformation.12

2.3 Grandfathering

We assume that, under grandfathering, permits are allocated based on BAU emissions, eBAUi = αi
β
, and it is

important to note that, since αi is a random variable, so are the BAU emissions. In practice, grandfathering

is usually applied by allocating permits based on observed past emissions. Our claim is that the observed

emissions in a given period are the result of firms’ decisions in that specific period while using all the

private information they had, including their abatement technologies and the effects of random shocks. In

terms of our model, under grandfathering the planner would use a specific past observed realization of αi
β
.

But, in general, this past value will not coincide with the present BAU emissions since those emissions

depend on random events and privately observed information. In other words, the planner cannot perfectly

determine the BAU emissions and will use some proxy for it. We assume that the allocation is based on

average historical emissions or, equivalently, on the best prediction of eBAUi , which is its expected value,

E
�
eBAUi

�
= E{αi}

β
.13 Therefore, each firm i receives an initial endowment of permits given by a fraction

of Q̄ proportional to E
�
eBAUi

�
. Specifically, the follower receives qGF0 = δGQ̄ and the leader receives

qGL0 =
	
1− δG



Q̄, where G stands for grandfathering and

δG :=
E {αF}

E {αL}+E {αF }
. (11)

As a particularly simple case, consider that E {αL} = E {αF}, which implies δG = 1
2 . Using (10) and

12Note that h (δ,α) is proportional to the difference between TC and Θ. From (9) we can interpret Θ as the total cost
associated to a situation in which the follower receives no permits (qF0 = 0), which we can take as a comparison benchmark.
So, a positive (negative) value of h means that the realized cost is higher (lower) than that in the benchmark situation.

13The notion of "expected BAU emission" might seem weird since BAU is commonly used to denote an observed value. To
put it in simple terms, assume that the planer introduces a cap-and-trade system in period t and allocates permits based on
past emissions, say ei (t− 1). Since the cap-and-trade system was not in place in period t, this observed value can be seen as
the BAU emissions in t− 1. But the BAU emissions in t need not be equal to ei (t− 1) due to uncertainty, and such value is
unknown at the time of allocating the permits for period t. Our approach is that taking past values can be seen as a prediction
for eBAUi (t) and the most natural value for that prediction is the expected value. An additional empirical argument to take
BAU emission as random is that data about past emissions are not always readily available. See the Ellerman et al. (2010)
quotation in the introduction.
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taking expected values, we get total cost under grandfathering and its (unconditional) expected value:

h(δG,α) = 2(αL−αF )−βQ̄
4 , E{h(δG,α)} = −βQ̄

4 . (12)

3 Auction with non-strategic bidders

Assume now that the permits are auctioned. In the secondary market we have assumed the existence of

one leader and one follower. Auction theory in itself does not impose any behavioural assumption in this

regard. In other words, there is nothing in the mere concept of auction that prevents us to keep or to

change those roles in the auction.14 Our analysis tries to account for this generality. In this section we

assume that both L and F act non-strategically in the auction (i.e., both act as price-takers). We start

with this case since it seems the more favourable scenario for the auction. In Section 4 we consider the case

in which the auction is role-preserving, i.e., it keeps the roles assumed in the secondary market. The aim

of this paper is not to discuss which of these assumptions is more realistic, but to illustrate the theoretical

predictions generated by each of them.

Since there are multiple units to be auctioned and every bidder can request more than one unit, we

are faced with a multi-unit multi-bid auction. Moreover, due to the asymmetry between firms, and to the

fact that MCi is not constant, it is a non-common value auction. As usual in auction theory, a strategy

for firm i is a mapping from the support of firm i’s type into the set of feasible bids. Specifically, in our

model, a strategy for firm i is a demand function of the form qbi (αi, p0), where the required amount, qbi ,

depends on the price, p0, and firm i’s type, but not on the rival’s type, and b stands for "bid". Since the

total amount of auctioned permits is Q̄, we further assume that the demanded quantity submitted by the

bidders must lie in [0, Q̄], that is, firms are not individually allowed to submit a demanded quantity either

negative or larger than Q̄ at any price. Denote as vi (qi0, αi) := E{πi (qi0,α) | αi, qi0} the value function

of firm i at the auction, i.e., the expected value that i assigns to get qi0 permits in the auction conditional

on his own type, where πi is given by (7) or (8).15 Then, i’s best strategy is defined as

qb∗i (αi, p0) = argmax
qio∈[0,Q̄]

{vi (qi0, αi)− p0qi0}, (13)

i.e., for each firm, the optimal bid is the demand function that maximizes his value function net of the cost

incurred to get qi0 permits in the auction. An equilibrium in the auction is a pair of best strategies, qb∗F ,

14 In fact, many -and very important- real life auctions, such as Treasury auctions, do have both price-taker and price-setter
players acting simultaneously.

15From the value function it is particularly easy to notice that the auction we are faced with is non-common-value. A
common-value auction would require vi (qio, p0) = f (α) qi0, where f (α) is an arbitrary function of the types that is common
for both bidders, i.e., the marginal valuation of permits should be constant across units and across players. Using the
definition of vi (qio, p0) and inspecting (7) and (8), it is obvious that this is not the case in our model.
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qb∗L , and a stop-out price p∗0 that satisfies p∗0 = max{p0 | qb∗F (αF , p0) + qb∗L (αL, p0) ≥ Q} for all (αF , αL).

In words, this latter condition says that there is no a higher price than p∗0 such that all the permits are

awarded while both firms follow their best strategies. The latter inequality allows for excess demand at the

stop-out price, (which, as we show below, occurs at some equilibria). If so, a standard pro-rata formula is

used, i.e., each player i receives a proportion qbi
qb
i
+qb

j

of the permits. Based on the observed features of real

auctions of permits we assume a uniform auction format, what means that all the awarded units pay the

stop-out price, p∗0.
16 Proposition 2 characterizes the optimal bidding functions and the types of equilibria.

Proposition 2 There exist three threshold values pFu, pFd and pL, where pFu > pFd, such that the

optimal bidding functions of F and L are given, respectively, by17

qb∗F (αF , p0) =





0 if p0 ≥ pFu,

2E{αL|αF }+7αF−2βQ̄−9p0
5β if pFd < p0 < pFu,

Q̄ otherwise,

(14)

qb∗L (αL, p0) =




0 if p0 ≥ pL

Q̄ otherwise.
(15)

Additionally, the auction has a unique equilibrium that belongs to one of the following three types:

type 1: qb∗L (αL, p
∗
0) = 0 and qb∗F (αF , p

∗
0) = Q̄, with p∗0 = pFd;

type 2: qb∗L (αL, p
∗
0) = Q̄ and qb∗F (αF , p

∗
0) = 0, with p∗0 = pL;

type 3: qb∗L (αL, p
∗
0) = Q̄ and qb∗F (αF , p

∗
0) ∈

�
0, Q̄

�
, with p∗0 = pL.

Moreover, type-1 equilibrium occurs iff ξ < −1, type-2 equilibrium occurs iff ξ > 1 and type-3 equilibrium

occurs iff −1 ≤ ξ ≤ 1, where

ξ :=
6αL − 14αF + 12E{αF | αL} − 4E{αL | αF}

5βQ̄
.

Regarding the follower’s bidding function, in the interior-solution range qb∗F is decreasing in the price,

as expected. Moreover, it is increasing both in αF and the expected value of αL. Since αF shifts the

follower’s abatement cost, it is reasonable that the higher αF the more F is willing to pay for the permits.

Regarding αL, although this parameter affects L’s, and not F ’s cost, the follower forecasts that a higher

value of αL will make the permits more valuable in the secondary market, what would make him also more

willing to pay in the auction. Finally, qb∗F depends negatively on the total amount of issued permits, Q̄,

since the more permits are issued the easier it will be to get cheaper permits in the secondary market.

16An alternative common format is the discriminatory auction, in which every awarded unit pays its bid. See, e.g., chapter
12 of Krishna (2002) for a detailed explanation.

17We omit the arguments of the bidding functions when there is no ambiguity.
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As for the leader’s strategy, since vL is strictly convex in qL0, its problem only has corner solutions: L

will demand all the permits if the price is high enough and none in the opposite case. The interpretation

of this result is that it is optimal for the leader to position himself in the best possible situation to exert its

market power in the secondary market (by acting either as a monopolist of a monopsonist). As discussed

above, such market power cannot be exerted when the initial allocation is the cost-effective one. Therefore,

the leader is interested in placing himself as far as possible from the cost-effective allocation. This can be

done either by demanding too few or too many permits. It is optimal to do the former if the price is high

enough and to do the latter if the price is low enough.

These bidding functions give rise to three types of equilibria. In a type-1 equilibrium, F demands Q̄

and L demands nothing, so F receives all Q̄ permits, i.e., δA = 1, where A stands for "auction". Type-2

equilibrium is just the opposite case; F demands zero, L demands Q̄ and, therefore, δG = 0. Finally,

in type-3 equilibria the leader demands Q̄ and the follower demands a positive quantity. The third case

implies that there is an excess demand and rationing is required, with δA ∈
�
0, 12

�
.

Note that type-1 equilibrium resembles Antelo and Bru’s (2009) Proposition 1, which states that, in a

complete-information model, for the leader it is always optimal to bid zero in the auction. We show that,

under incomplete information, this is a possible result, but there are more possibilities depending on the

parameter configuration. In fact, it could even be just the opposite if a type-2 equilibrium holds. Note,

however, that our results in Proposition 2 are not fully comparable to Antelo and Bru’s since they consider

that the leader acts strategically in the auction, as we do in Section 4.

To get some additional insight into the properties of the equilibrium, from now on, we assume that the

conditional expectation of the rival’s type conditional on the own type is a linear function, denoting its

coefficients as follows:

E{αi | αj} = µj + λjαj , (16)

where {i, j} is an arbitrary enumeration of {L,F}. Moreover, we assume that αL and αF are jointly

uniformly distributed on a support that satisfies (16), as stated in Assumption 1.

Assumption 1 Consider the αFαL plane. The support of the pair (αF , αL) is a square whose lower-left

and upper-right corners are (θ, θ) and (θ+ σ, θ + σ) respectively. Within that square, we consider three

different probability distributions for (αF , αL):

• Case 1 ("Independent types"): uniform on the whole square. In this case we have

µL = µF = θ +
σ

2
, λF = λL = 0. (17)

• Case 2 ("L-ex ante efficient"): uniform on the lower diagonal triangle, that is, uniform on all points
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satisfying αL ≤ αF . Therefore,

µF =
θ

2
, µL =

θ + σ

2
, λF = λL =

1

2
. (18)

• Case 3 ("F -ex ante efficient"): uniform on the upper diagonal triangle, that is, uniform on all points

satisfying αF ≤ αL. Thus,

µF =
θ + σ

2
, µL =

θ

2
, λF =

1

2
. (19)

In case 1 we assume that the types are independently distributed whereas, in cases 2 and 3 the types

are positively correlated. In case 2 we say that L is ex-ante (more) efficient (than F ) in the sense that the

abatement cost function of L is below that of F with probability one (w.p.1). In case 3 αF ≤ αL holds

w.p.1 and we say that F is ex-ante efficient.18 Below we analyze each of these cases separately.

3.1 Independent types (case 1)

We analyze now the likelihood of the three types of equilibria and the comparison of those equilibria with

grandfathering when the types are independently distributed as stated in the first case of Assumption

1. We still restrict ourselves to the case in which the secondary market equilibrium is interior and both

firms exert a positive abatement effort, that is, we assume that (4) holds. The following notation is used

below. Consider the support of the pair (αF , αL). Let us define the diagonal of the support as the set

D := {(αF , αL) / αF = αL = θ + aσ, a ∈ [0, 1]}. In words, the diagonal is the set of realizations of the

types such that both firms’ costs functions are identical. Additionally, let κ := βQ̄
σ
. Notice that κ is a

ratio that depends positively on a measure of the market size given by the total amount of permits (Q̄)

weighted by the impact of each permit in the marginal abatement cost (β) and it depends negatively on

the variability of the types (σ). Note also that (4) implies κ ≥ 1. Denote as Ωl the range of the types

under which a type-l equilibrium takes place, being l ∈ {1, 2, 3}.

Proposition 3 Assume that both firms act non-strategically in the auction, the firms types are mutually

independent and (4) holds. Then in D there are only type-3 equilibria. Moreover, the probabilities of type-1

18The implication of αi ≥ αj is that the marginal abatement cost function of firm i is higher than that of firm j, i.e.,
MCi (e) ≥ MCj (e) for any given value of e. To fix ideas, we mostly stick to one possible interpretation of this condition,
namely, that firm i has access to a more efficient abatement technology than j does. This is not the only interpretation,
though. For example, firm i’s MC function could be higher simply for a matter of size: it produces more output and, hence,
it is harder for him to cut down emissions. Since we are not dealing with the output market, but only with emissions, the
former interpretation fits more naturally in our setting, but the latter is also possible.
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and type-2 equilibria are the same and given by

Pr(Ω1) = Pr(Ω2) =





25
42

�
1− κ

2

�2
if κ < 2

0 otherwise.
(20)

Moreover, conditional on Ω1 and Ω2, the auction entails lower expected costs than grandfathering, i.e.,

E{h(δA,α) | Ω1} < E{h(δG,α) | Ω1}, E{h(δA,α) | Ω2} < E{h(δG,α) | Ω1}�

According to Proposition 3 there is always a positive probability of a type-3 equilibrium to arise, which

can be computed as Pr(Ω3) = 1 − 2Pr(Ω1). Moreover, if κ ≥ 2 holds, Pr(Ω3) = 1. If, on the contrary,

κ < 2, all three types of equilibrium can arise with positive probability, although that type-3 equilibrium

is always the most likely one. Indeed, by taking in (20) κ = 1, which is the lowest value consistent with

(4), we get Pr(Ω3) > 0.7. Figure 1 shows which equilibrium arises for every pair in the support of types

whenever κ < 2, i.e., when all three types of equilibria are possible.

Proposition 3 also states that the auction outperforms grandfathering, on average, in the range where

type-1 and type-2 equilibria arise. To understand this result, it is important to notice that, although δG

does no depend on the realization of the types (specifically, in case 1, δG = 1
2), to make a meaningful

comparison between grandfathering and auctioning under type-1 or type-2 equilibria, we need to evaluate

the expected value of h
	
δG,α



conditional on the set of realizations of α such that each equilibrium

takes place. As illustrated in Figure 1, a type-1 (resp. type-2) equilibrium tends to arise when αF is

well above αL (αL is well above αF ). In this case, F ’s (L’s) marginal cost of abatement is higher enough

than L’s (F ’s) and, therefore, a situation in which F (L) holds all the permits is prone to be closer to the

cost-effective allocation than a situation in which both firms receives Q̄
2 .

By direct comparison between the possible allocations resulting from the auction and the cost-effective

one given in (2), it is obvious that, under a type-1 equilibrium, the leader will receive less permits in the

auction than it is cost-effective (and, therefore, will act as a monopsonist in the secondary market) w.p.1

and, under a type-2 equilibrium, he will receive more permits than what is cost-effective (and, hence, he

will be a monopolist in the secondary market) w.p.1. Corollary 2 shows that, in the case in which a type-3

equilibrium holds w.p.1 (i.e., κ ≥ 2) the leader becomes over-assigned with respect to the cost-effective

allocation w.p.1 (and, hence, we will act, again, as a monopolist).

Corollary 2 If κ ≥ 2, L gets over-assigned in the auction with respect to his cost-effective allocation of

permits w.p.1.

As discussed above, under type-1 and type-2 equilibria, auctioning is more cost-effective than grand-

fathering on average. To make a general assessment of auctioning relative to grandfathering, we need
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to evaluate costs under all three possible types of equilibria, weighted by their respective probabilities.

Unfortunately, under type-3 equilibrium no general analytical statements can be made due to the complex

analytical form of expected cost.19 So, we now proceed with some numerical analysis.

We evaluate total abatement costs under auctioning and grandfathering for each combination of para-

meter values, (θ, βQ̄, σ).20 For each parameter combination we generate 1,000 random realizations of the

pair of types21 . For each realization we compute the corresponding equilibrium at the auction and the

associated realized costs under auctioning and grandfathering. We check, first, how different realizations

of the types determine the relative cost of both allocation methods. Then, we average across realization

to have an estimation of the expected cost of each system.

We explore exhaustively the parameter space defined by (4). A first result is that variations in θ are

irrelevant for the cost comparison as far as it is large enough to ensure that the set defined by (4) is non-

empty. The reason is that modifying the value of θ is a change of origin that affects equally both firms’

marginal costs but not the difference between them. Once the value of θ is fixed, the set of parameter

values consistent with (4) is bounded, which easies the exploration. So, we just present the results for a

specific value, θ = 10, and we explore a grid of values of the pair (βQ̄, σ) such that (4) is respected.

Figure 2 shows an illustration of the relative performance of auctioning and grandfathering in terms

of cost for different realizations of the pair of types, given a specific combination of the parameters. The

upper (resp. lower) panel displays the combinations such that auctioning renders lower (higher) cost than

grandfathering. The main conclusion is that those cases in which the difference between the marginal

cost of both firms is large enough tend to favour auctioning while, if the firms’ marginal costs are similar

enough, grandfathering is less costly than the auction. Moreover, when it is the leader’s marginal cost

which is above the follower’s (αL > αF ) the range under which auctioning beats grandfathering is larger

than in the opposite case (αF > αL).

From these results we can get two insights. First, auctioning is preferable when the firms are asymmetric

enough in terms of costs. To understand this result, it is useful to identify two effects that we can label

as "information effect" and "market power effect". Regarding the former, note that by means of the bids,

the auction incorporates more information on the realized types (that are privately observed), whereas

grandfathering only uses average values. This effect is prone to favour the auction. As for the latter effect,

bidding gives the leader the opportunity to distort the market equilibrium to some extent, to its own

benefit, what is prone to put the auction at a disadvantage. When the types are very close to each other,

19The main technical difficulty arises from the fact, under a type-3 equilibrium, there is rationing and therefore, the permits
are distributed according to the relative demand of both players, which is a ratio involving stochastic variables (αL, αF ) in
the denominator.

20Recall that, although Q̄ is not properly a parameter, we treat it as such since it is exogenously fixed. Nevertheless, in
terms of cost, only the product βQ̄ turns out to be relevant, rather than β and Q̄ separately.

21The number of realizations is chosen to have a sample that is relatively dense in the support of types. We have tried
with different sample sizes and the results remain basically unchanged.
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the cost-effective allocation involves allocating similar amounts of permits to both firms (in the limit, if

αL = αF , the optimal allocation requires δ = 1
2) and, so, grandfathering is prone to generate an allocation

that is very close to the first best (recall that grandfathering renders a constant value δG = 1
2). In this

case, the lack of information on the realized types is not a big problem because the average is a good

enough proxy and then the market power effect dominates. The opposite happens when the marginal costs

are very different from each other. In this case, the average is a poor proxy for the realized values and it

is likely that the auction performs better than grandfathering, because the potential gain of using more

precise information can be higher than the loss due to the market power distortion.

The second insight is that the chances for the auction to render a good result in terms of costs are better

when the firm with the lower marginal abatement costs is not the same that acts as a leader. The intuition

of this result is that, if L enjoys a cost advantage, this would reinforce his leadership, what be would use

to bias the market result for his own profit and this distortion would weaken the beneficial information

effect. The situation is more balanced when the follower can counterbalance its disadvantageous position

by having lower costs than the leader.

Then we move on to compare expected costs, computed as the average across realizations. Our nu-

merical analysis reveals that, for all the parameter values satisfying (4), grandfathering outperforms the

auction in expected terms. Since Proposition 3 states that, in type-1 and type-2 equilibria auctioning out-

performs grandfathering, it has to be case, first, that grandfathering outperforms auctioning on average

in type-3 equilibria, what is confirmed by our numerical results. Moreover, recall that the probability of

type-1 and type-2 equilibria is always smaller than that of a type-3 equilibrium. As we have discussed in

subsection 2.2, the fact that auctioning entails higher cost than grandfathering means that on average,

the former renders allocations that are further away from the cost-effective distribution than the latter.

This fact is illustrated in Figure 3, which depicts those distances for each realization of the pair of types,

under the same combination of parameter values considered in Figure 2. In this example, the vast majority

of the equilibria are type-3, and the basic message of that figure is to confirm the theoretical result (see

Corollary 2) that, in the auction, L gets over-assigned (or, equivalently, F under-assigned) with respect to

the cost-effective allocation whenever a type-3 equilibria occurs.

In terms of sensitivity analysis, the difference between auction and grandfathering increases with κ.

In short, a small variability of the types (as measured by σ in terms of the market size) with respect

to the amount of permits tends to favour grandfathering over the auction. The reason is that a small

variability implies that the average will be a good proxy for the actual value of the types and, therefore,

the grandfathering allocation will be very close to the cost-effective one.
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3.2 Non-independent types (cases 2 and 3)

We consider now cases 2 and 3 in Assumption 1. In both of these cases, the types are positively correlated.

This is a reasonable event to consider since it might well be the case that different firms are affected

similarly by external shocks. For example, it is commonly believed that, in the first years of the EU

ETS, the cap was too mild in the sense that too many permits where distributed. The evolution of the

energy markets and the weather caused an excess of permits or, in other words, meeting the environmental

requirements turned out to be easier than expected for most facilities. This is not to say that the effect of

these conditioning factors were exactly the same for all the firms, since there were clear asymmetries among

them, but it seems safe to state that, on average, those effects worked in the same direction. Propositions

4 and 5 contain our main analytical findings for these cases.

Proposition 4 If both firms act non-strategically in the auction, (4) holds and αL ≤ αF holds w.p.1 a

type-1 equilibrium occurs with positive probability if and only if κ < 2 and it never happens in the diagonal.

A type-2 equilibrium occurs with positive probability if κ < 6
5 and, moreover, if a type-2 equilibrium does

not occur for some pair (αF , αL), it does not hold either for any pair (αF , α
′
L) with α′L < αL. A type-3

equilibrium always occurs with positive probability.

Proposition 5 If both firms act non-strategically in the auction, (4) holds and αF ≤ αL holds w.p.1 a type-

1 equilibrium occurs with positive probability if and only if κ < 6
5 and, moreover, if this type of equilibrium

does not hold for some pair (αF , αL), it does not hold either for any pair (αF , α
′
L) with α′L > αL. A type-2

equilibrium occurs with positive probability if and only if κ < 2, and always outside the diagonal. A type-3

equilibrium always occurs with positive probability.

Consider first case 2 (L efficient). The relative position of the realizations of types that leads to the

different equilibria are depicted in Figure 4 panel a. The numerical analysis for the case of L efficient

(omitted for the sake of brevity) shows qualitatively identical results to the case with independent types.

Regarding case 3 (F efficient), Figure 4 panel b shows the relative position of the realizations of the

types leading to each possible equilibrium. Next, we perform some numerical analysis for this case. Figure

5 shows that, unlike the two previous cases, there are parameter values for which the expected cost under

auctioning is smaller than under grandfathering. Those points are displayed in green in the graph. The

implication of this result is that, as discussed above, it is favourable for the auction that the agent endowed

with market power is not the one with the lowest, but the highest cost, since any cost advantage would

make him more capable to exploit his market power. Another message we can get from this analysis is that

auctioning tends to do better, as compared to grandfathering, when the variability of types, as measured

by σ, is large enough in terms of βQ̄, which is in line with the analysis done for the independent-types

case.
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Figure 6 illustrates a case in which the auction leads to lower expected cost. To ease the comparison

with the case of independent types, we take as an example (σ, βQ̄) = (6, 8) and θ = 10. As in the case with

independent types, L is still over-assigned in the auction with respect to the cost-minimizing allocation

(the red line), but now the allocations resulting from the auction (represented by green dots) are, on

average, closer to being cost-effective than those resulting from grandfathering (the blue line).

4 Role-preserving auction

In this section we analyze another setting for the auction in which the leader acts strategically while the

follower still acts as a price taker. This case is based on the belief that, if one firm has market power in

the secondary market, due to its size or dominant position, it is likely that this power has a reflection in

the auction. To capture this notion, we assume a Stackelberg-like setting in which the follower acts as a

price-taker, whereas the leader is capable of predicting the follower’s strategy and reacting optimally to it.

This section brings up some additional technical complexity. It conveys a strategic bidder in a multi-unit

multi-bid non-common-value auction. To the best of our knowledge, this is in the frontier of multi-unit

auction theory. For the sake of tractability, we restrict ourselves to continuous strategies and interior

solutions, which implies that, in equilibrium, both the leader and the follower requires an amount of

permits between 0 and Q̄, in such a way that qbF + qbL = Q̄ and rationing is ruled out. We also keep the

distributional assumptions made above: the conditional expectations are linear and, when needed, we will

also assume a uniform distribution.

Given that F is still non-strategic in the auction, his behavior is the same as in Section 3. So, the

follower’s problem is (13) and his best strategy as defined in (14).22 On the other hand, the leader’s

best strategy is a bid function qb∗L (αL, p0) that represents a best response to F ’s strategy. To model the

leader’s problem, define total demand in the auction as Φ(α, p0) := qbL(αL, p0) + qbF (αF , p0), from which

the opt-out price can be obtained by imposing the market-clearing condition Φ(α, p∗0) = Q̄ and solving

for p∗0 we get p∗0 = Φ
−1
�
α, Q̄

�
.23 Therefore, the leader’s problem is

argmax
qb
L
(αL,p0)

vL (qL0, αL)−E
�
Φ−1

�
α, Q̄

�
× qL0 | αL

�
. (21)

Notice that, unlike the non-strategic case, L’s best strategy depends on F ’s (through Φ(α, p0)). More-

over, L does not take the price as given, but he plays by predicting the equilibrium price that will result

from his and F ’s demand. The stop-out price, p∗0, is again the highest market-clearing price when both

firms play their corresponding best strategies.

22Specifically, since we disregard corner solutions in this section, the relevant part of (14) is that involving interior solution.
23For Φ−1 to be a well-defined function we require that Φ is invertible in p0. This turns out to be case because both qbF

and qbL are decreasing in p0. (14) reveals that the former is decreasing and Proposition 6 shows that qbL also is.
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An important feature of this case is that the leader is capable of making an ex-post optimal bid, i.e., a

bid that gives him the maximum possible profit for any realization of the types, as stated in the following

proposition:

Proposition 6 Under any of the three cases considered in Assumption 1 there exists a non-empty set of

the parameters
�
θ, σ, βQ̄

�
such that there is a unique equilibrium in which the leader’s best strategy is

qb∗L (αL, p0) = m0 +m1Q̄+m2αL +m3p0, (22)

where m0 ≤ 0, m1 ≤ 0, m2 ≥ 0 and m3 ≤ 0 depend only on β and λL. Moreover, the equilibrium price

of the auction for any α = (αL, αF ) is the solution to

max
{p0}

πL
�
Q̄− qbF (αF , p0) ,α

�
− p0 ×

�
Q̄− qbF (αF , p0)

�
(23)

and the equilibrium of both the auction and the secondary market are interior w.p.1.

To understand this proposition, it is important to notice that (23) is an artificial auxiliary problem

that selects the best price in the auction for the leader for any given pair (αL, αF ). We say that it is

artificial because it is written as if L could know the realization of αF . This would be an ideal situation

for the leader since he would not be affected by incomplete information. Proposition 6 states that there

exists a bidding function for the leader such that the equilibrium price of the auction will replicate the

solution to problem (23). It is important to underline that the bidding function depends only on known

information for the leader (αF is absent). This is what Wang and Zender (2002) refer to by saying that

the auction allocation is ex-post optimal for the leader in the sense that the leader can play in such a way

that the ultimate equilibrium will be the one that the leader would choose if he had full information. In

other words, if the leader happened to know the value of αF , he would not change his strategy. Note also

that, although this is a remarkably strong result for the leader, the bidding function used to get that result

is rather standard in the sense that it is a linear function and, as expected, it is linearly decreasing in the

price and the total amount of issued permits and increasing in L’s type.

Proposition 7 shows that, in the conditions described above, the auctioning solution is less cost-effective

than the grandfathering solution w.p.1 what, as stated in Corollary 3, implies first-order stochastic domi-

nance (FOSD) of grandfathering over auctioning.

Proposition 7 In cases 1, 2 and 3 described in Assumption 1, under the relevant conditions for interior

solutions, the amount of permits that the leader receives in equilibrium is lower than his cost-effective

allocation and lower than the amount that he would receive under grandfathering; and the clearing price of
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the auction is lower than the price of the secondary market, i.e.,

qAL0 < eCEL , qAL0 < qGL0, pA0 < pA1 .

Moreover, the total cost of abatement when the permits are auctioned is higher than under grandfathering,

i.e.,

h(δA,α) > h(δG,α) ∀α.

Corollary 3 Under the conditions described in Proposition 7, the cumulative probability distribution

(CPD) of TC under the grandfathering allocation first-order-stochastically dominates the corresponding

CPD under the auction.

The second part of Proposition 7 is remarkably strong since it states that, in any event, auctioning

will always be beaten by grandfathering from the point of view of cost. It deserves to be stressed that

this is not only true in expected terms, but it is also true for every feasible realization of the types (as far

as interior solution is guaranteed). The main message of this result is that introducing an auction such

that the leader in the secondary market is also so in the auction can only worsen the results in terms of

costs as compared to grandfathering. Moreover, under interior solution, this result holds with certainty.

The reason is that the leader will have strong incentives to use its leadership to distort the market to own

advantage and such distortion will result in a cost increase.

A clear-cut policy implication is that, with imperfect competition in the secondary market, switching

from grandfathering to auctioning is likely to worsen the situation (in terms of cost-effectiveness) if it

cannot be avoided that the market power spills over to the auction. Corollary 3 translate this result in the

standard concept of FOSD.24

The first part of Proposition 7 clarifies how the auction behaves with respect to the cost-effective

allocation. The leader will always receive less permits from the auction than the cost-effective amount,

eCEL , and, therefore, will act as a monopsonist in the secondary market. Under grandfathering, the leader

might receive more or less permits than what would be cost-effective, depending on the realizations of

the types (and, if by chance both types were equal to its average, then grandfathering would render the

cost-effective solution) but in the event that it receives less than eCEL , it would always be closer to the

cost-effective solution than the auctioning solution. The leader understates his demand in the primary

market to keep the price low. When he demands permits in the secondary market, the price increases

to some extent, but it will we always lower than the price that would prevail under perfect competition.

This result can be seen as a generalization of the result that Antelo and Bru (2009) get in a framework of

24As a matter of fact, the result in Proposition 7 is even stronger than FOSD since the latter does not preclude the
possibility that the cost under auctioning is lower than under grandfathering for some (small enough) range of the parameter
values, what is discarded in Proposition 7.
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perfect information in the sense that, with a dominant firm and a secondary market, "it is optimal for the

dominant firm to abstain from the initial auction" (Prop 1, p. 325). Under incomplete information, we get

a softer result in the sense that the leader tends to demand less than socially optimal, but the demanded

amount is no necessarily zero.

5 Conclusions and discussion

This paper compares the two most common allocation mechanisms of emission permits, auctioning and

grandfathering, under two central assumptions: the existence of a secondary market with market power

and the presence of incomplete information. On the one hand, we claim that these two elements together

make the comparison between both methods non-trivial. On the other hand, it is rather realistic to assume

that both elements are present to some extent in important real-life examples such as the Kyoto Protocol

or the EU ETS.

One reason to be interested in this comparison is that there seems to be a current tendency (notably in

the EU ETS) to shift from grandfathering to auctioning. This paper offers some insights into what we can

really expect the auction do in a relatively adverse scenario: market power and incomplete information.

Within a simple model, we study the optimal bidding strategies as well as the equilibria and we characterize

the conditions under which auctioning does better or worse than grandfathering in terms of aggregate

abatement cost.

The chances of auctioning to outperform grandfathering come essentially from the fact that, by means

of the bids, the auction incorporates information that are only privately observable and, hence, could not

be used by the planner to implement a centralized allocation. On the other hand, the risk of the auction

is that a firm with market power can use such power to distort the equilibrium in its own benefit. The

final balance depends on the relative strength of these two forces.

One central conclusion of our analysis is that we cannot expect that an auction "per se" has the

property of providing more cost-effective allocations of permits. Indeed, the design of the auction and,

specifically, its ability to preserve or dilute market power is a crucial element for the comparison. If the

auction is capable of removing market power, then there is a chance that the results under the auction

will be more cost-effective than under grandfathering. This is more likely to happen when the firms turn

out to be very asymmetric in terms of cost, especially if the firm with cost advantage is not the same that

enjoys market power. In this case, the additional information used by the auction tips the scales in its

favour. In expected terms, the chances for the auction to outperform grandfathering increase when the

follower’s costs are well below the leader’s and the variability of the types is large enough in terms of the

number of permits to be distributed. If, on the contrary, the auction reproduces the leader and follower
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roles, one can only expect that this would result in more costly outcomes than grandfathering.

The aim of this paper is to offer some general insights about cap-and trade systems and not about

one specific market such as the EU ETS (in which, moreover, it is not clear enough that market power

is one of the main issues). Nevertheless, for the sake of motivation, it has been useful for us to take as

a starting point the EC’s argument to support auctioning on the grounds of efficiency (although we have

focused on the milder criteria of cost-effectiveness by taking the cap as given). Although our analysis is

strongly focused on cost-effectiveness, it can also provide some clues about the plausibility of the other EC’s

arguments to support auctioning: transparency, simplicity, more incentives for abatement investments and

eliminate windfall profits.

The transparency argument makes sense as far as auctioning automatically incorporates more informa-

tion than grandfathering since the bids contain privately observed data that typically will not be accessible

to the environmental authorities. Moreover, auctioning has the advantage of treating facilities more evenly

whereas, in the two first phases of the EU ETS, grandfathering has been applied through the National

Allocation Plans, which inevitably have introduced some across-countries and across-facilities asymmetries

in the permit allocation.

Regarding simplicity, it is by no means obvious that auctioning is simpler than grandfathering. From

the planner’s point of view, auctioning incorporates a clearer market-based dimension to the allocation

procedure, what frees to some extent the environmental authorities from the responsibility of making direct

allocations. But, on the other hand, it entails some additional complexities in the setup of the system,

such as choosing the design of the auction (e.g., uniform or discriminatory), creating the auction platforms

or deciding about the destiny of the revenues. From the facilities’ point of view, it requires more frequent

interaction between the participants and the authorities and probably some additional training to be able

to bid properly.

Concerning the introduction of incentives for abatement investments, according to our results, this will

be probably more true for firms without market power, which will typically bear higher costs and, hence,

will have stronger incentives to improve their abatement technologies. Finally, the elimination of windfall

profits is supported, to some extent, by the mere fact that firms will have to pay for the permits and,

therefore, it is no longer the case that operators charge their customers the cost of allowances they have

received for free. Nevertheless, the fact that allowances are not free of charge does not fully eliminate the

possibility of windfall profits in the form of speculative operations. We conclude that, in most cases, the

allocation resulting from an auction will be further away from the cost-effective one than that resulting

from grandfathering. This implies that the marginal abatement costs will be more different across facilities,

hence creating a room for windfall profits. What can probably be argued is that windfall profits will be

smaller on average and concentrated on fewer hands, specifically in the hands of those firms that enjoy
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some market power. Summing up, our analysis seems to support the EC’s arguments of transparency and

more incentives for abatement investments, but not those of simplicity and the elimination of windfall

profits. Obviously, these thoughts must be taken as a preliminary and incomplete informal discussion, not

as a fully-fledged analysis, which is left for future work.
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6 Appendix 1: proofs

6.1 Proof of Proposition 1

Assume initially that the solution is interior (what we check below). The optimal behaviour of the follower

is derived by solving problem (3) for i = F while taking p1 as given. From the first-order condition (FOC)

we get the follower’s net demand for permits:

qdF1 (p1) =
1

β
(αF − p1) , (24)

where d stands for "demand". To get the leader’s demand we solve problem (3) for i = L including

as constraints the market clearance condition, qL1 + qF1 = Q̄ and the follower’s demand, (24). The

(interior) solution to this problem is given by (5). Using the market clearing condition and (24), we get

the equilibrium price in the secondary market,

p∗1 =
αL + 2αF − β

�
2Q̄− qL0

�

3
, (25)

and using (25) in (24) we get the equilibrium number of permits for the follower, given by (6). Using (5),

(6) and (25) in the expressions for F ’s and G’s profits and rearranging we get (7) and (8) where ΘL and

ΘF include the terms that do not depend on the initial allocation.

To show that the solution satisfies qi1 ∈ [0,min{Q̄, eBAUi }] w.p.1, note first that 0 ≤ qF1 ≤ Q̄ ensures

0 ≤ qL1 ≤ Q̄ and using (24) we get 0 ≤ qF1 ≤ Q̄ ⇐⇒ αF ≥ p1 ≥ αF − βQ̄, which using (25) can be

written as − 1
β
(αL − αF ) + 2Q̄ ≥ qL0 ≥ −

1
β
(αL − αF ) − Q̄. Since qL0 ∈ [0, Q̄], the previous inequalities

are ensured for any initial allocation iff − 1
β
(αL − αF ) + 2Q̄ ≥ Q̄ and 0 ≥ − 1

β
(αL − αF )− Q̄ hold at the

same time. The intersection of these inequalities is: Q̄ ≥ 1
β
|αL−αF | and, since the maximum value of the

right-hand side is σ/β, we have

βQ̄ ≥ σ. (26)

Firm i makes a strictly positive abatement effort iff qi1 ≤ eBAUi = αi
β
, i.e., αi − βqi1 ≥ 0. If we

particularize this inequality for i = F , using (24), we have p1 ≥ 0 what, using (25), can be written as

αL +2αF ≥ β(2Q̄− qL0). Since qL0 ∈ [0, Q̄] and the minimum value for each type is θ, the latter equality

is guaranteed under (4). For i = L, using (5), condition αL − βqL1 ≥ 0 can be written as

2αL + αF ≥ β(Q̄+ qL0). (27)

The most adverse values for the fulfilment of (27) are αL = αF = θ, qL0 = Q̄. To ensure that (27)

holds w.p.1 we plug those values to get θ ≥ 2
3βQ̄, which combined with (26) gives (4).
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6.2 Proof of Corollary 1

Total cost can be computed by plugging (5) and (6) in (1).25 Substituting qL0 by Q̄−qF0 and rearranging,

we get (9), where Θ includes the terms that do not depend on the initial allocation.

6.3 Proof of Proposition 2

Using (8), vF (qF0, αF ) can be written as

vF (qF0, αF ) = E {ΘF | αF}+
1

9

�
2E{αL | αF}+ 7αF − 2βQ̄

�
qF0 −

5

18
βq2F0.

Since vF is strictly concave in qF0 for every αF , an interior solution to F ’s problem (if it exists) follows

easily from the first-order condition, which can be solved to get

qbF = τF (qF0, αF ) :=
2E{αL | αF}+ 7αF − 2βQ̄− 9p0

5β
, (28)

where, for simplicity of exposition, we have denoted as τF (qF0, αF ) the right-hand side of the previous

equality. Since the submitted demand must lie in [0, Q̄] and given the concavity of vF on qF0, it is

qbF = 0 and qbF = Q̄ whenever τF (p0, αF ) ≤ 0 and τF (p0, αF ) ≥ Q̄, respectively. Notice also that

τF (p0, αF ) is strictly decreasing in p0 for every αF , thus pFu and pFd are defined by τF (pFu, αF ) = 0 and

τF (pFd, αF ) = Q̄ respectively. Thus, we have

pFu =
2E{αL | αF}+ 7αF − 2βQ̄

9
, pFd =

2E{αL | αF}+ 7αF − 7βQ̄

9
.

Now, consider L’s problem, which is maxqL0{vL (qL0, αL)− p0qL0} where

vL (qL0, αL) = E{πL (qL0,α) | αL, qL0} = E (ΘL | αL) +
αL + 2E{αF | αL} − 2βQ̄

3
qL0 +

β

6
q2L0.

Clearly vL (qL0, αL) is strictly convex in qL0 for every αL, and therefore the leader’s problem only has

corner solutions, i.e., qbL ∈ {0, Q̄} with qbL = Q̄ ⇐⇒ vL
�
Q̄, αL

�
≥ vL (0, αL). Given that vL (0, αL) =

E {ΘL | αL}, L chooses qL0 = Q̄ whenever vL
�
Q̄, αL

�
≥ E {ΘL | αL} + p0Q̄ holds. Denote as pL the

maximum value of p0 such that this inequality holds, i.e., pL =
vL(Q̄,αL)−E{ΘL|αL}

Q̄
. Using the expression

for vL we get

pL :=
αL + 2E{αF | αL}

3
−
1

2
βQ̄. (29)

Since the support of αL and αF is [θ, θ + σ], we know pL > θ − 1
2βQ̄ > 0, where the latter inequality

follows from (4). Thus, demanded quantity is not smaller than supply at some positive price (pL), which

25Alternatively, using (3) it can be obtained as TC = − (πL + πF ), by noting that qF0 + qL0 = qF1 + qL1 = Q̄.
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guarantees the existence of an equilibrium in the auction. Uniqueness follows from the fact that each firm’s

demand is non-increasing in p0 for every possible pair (αF , αL). Since pFu > pFd and pL > 0 hold w.p.1,

there are just three possible cases.

• The first case is pL < pFd. The stop-out price cannot be p0 > pFd because there would be excess

supply (i.e., some units would not be awarded). Since all the permits would be awarded for any

p0 ≤ pFd, the opt-out price must be pFd, F gets all the permits and L gets nothing. This corresponds

to type-1 equilibrium.

• The second case is pFu < pL. For any p0 > pL there would be excess supply and all the permits

would be awarded for any p0 ≤ pL. Therefore, the opt-out price must be pL and L gets all the

permits, which corresponds to type-2 equilibrium.

• The third case is pFd ≤ pL ≤ pFu, which corresponds to type-3 equilibrium, in which permits are

shared between F and L. The equilibrium price is pL, at which F and L demand τF (pL, αF ) ∈
�
0, Q̄

�

and Q̄, respectively and rationing is required.

Straightforward algebra leads to pL < pFd ⇐⇒ ξ < −1, pFu < pL ⇐⇒ ξ > 1 and pFd ≤ pL ≤

pFu ⇐⇒ −1 ≤ ξ ≤ 1.

6.4 Proof of Proposition 3

Under independent types, the conditions given in Proposition 2 for type-1 and 2 equilibria collapse to

type 1: ξ < 1⇔ 3αL − 7αF + 4θ + 2σ +
5

2
βQ̄ < 0, (30)

type 2: ξ > 1⇔ 7αF − 3αL − 4θ − 2σ +
5

2
βQ̄ < 0. (31)

respectively. For any pair in D, (30) and (31) become

(2− 4a)σ + 5
2βQ̄ < 0, (4a− 2)σ + 5

2βQ̄ < 0,

none of which, under (4), holds for any admissible a. Thus, we only have type-3 equilibria in D. Notice

that the pair (αF , αL) = (θ + σ, θ) satisfies (30) if κ ≤ 2, which is allowed under (4). In addition, the

equality of (30) is a straight line with positive slope in the plane αFαL, let us denote it by L1. Thus, in

the support of (αF , αL), under κ ≤ 2, the subset satisfying (30) is the triangle below L1, which does not

contain the diagonal (see Figure 1 for illustration). If κ > 2, that subset is empty. An analogous analysis

shows that, under κ ≤ 2, the support region for type-2 equilibrium is the triangle above the line defined

by the equality of (31), this region does not contain the diagonal and is empty if k > 2 (see Figure 1).
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Since the types are assumed uniformly distributed, the probabilities of Ω1 and Ω2 are proportional to

the corresponding areas, which can be easily computed based on Figure 1. For type-1 equilibrium we have

E{h(δA,α) | Ω1} = E{h(1,α) | Ω1} = E{αL − αF | Ω1} =
1

3



−
1

3
−
31

21
κ

�
σ (32)

where the last equality follows directly from the computation of the expected values of αL and αF con-

ditional on Ω1. In addition, using (12) and κσ = βQ̄, we know that, under grandfathering, the expected

cost is given by E{h(δG,α) | Ω1} = E{h(1/2,α) | Ω1} =
1
2E{αL − αF | Ω1} −

1
4κσ.

Therefore, direct comparison of expected costs under A and G leads to

E{h(δA,α) | Ω1} < E{h(δG,α) | Ω1} ⇐⇒ E{αL − αF | Ω1} <
1

2
κσ

and using the value of E {αL − αF | Ω1} computed in (32) we get E{h(δA,α) | Ω1} ≤ E{h(δG,α) | Ω1}

iff κ > 49
62 , which holds for the relevant range of κ, i.e., [1, 2].

For type-2 equilibria the expected cost under auctioning is E{h(δA,α) | Ω2} = E{h(0,α) | Ω2} = 0.

Under grandfathering we have E{h(δG,α) | Ω2} = E{h(1/2,α) | Ω2} =
1
2E{αL − αF | Ω2} −

1
4κσ. Now,

the corresponding conditional expectation is E{αL − αF | Ω2} =
1
3

�
1
3 +

31
21κ
�
σ and, using this value,

E{h(δG,α) | Ω2} =
σ
252 (14− κ). Therefore, for any value of κ compatible with (4) we conclude

E{h(δG,α) | Ω2} > 0 = E{h(δA,α) | Ω2}.

6.5 Proof of Corollary 2

Our strategy to prove the corollary is to show that, provided that κ ≥ 2 holds, for any arbitrary realization

α := (αF , αL), we get δA < δCE = αF−αL+βQ̄
2βQ̄

, where the last equality comes directly from (2).

Under a type-3 equilibrium, the auction allocation is given by δA := τF (qF0,αF )

τF (qF0,αF )+Q
, where τF (qF0, αF )

is defined in (28). Using this expression for δA we get

δA < δCE ⇐⇒ βτF (qF0, αF ) ≤
δCE

1− δCE
βQ̄. (33)

Now, we evaluate τF (qF0, αF ) in the equilibrium price, p∗0, that, under a type-3 equilibrium is equal

to pL, where pL is given by (29). Using the expression for δCE together with (16) and, using (17), (33)

can be written as

δA < δCE ⇐⇒
7αF − 3αL − 4θ − 2σ

5
<
3(αF − αL) + βQ

2(βQ+ αL − αF )
βQ.
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Notice that we can write αi = θ+ riσ for i ∈ {F,L}, where ri is uniformly distributed in [0, 1], so that

there is a one-to-one mapping between αi and ri. Additionally, use the definition of κ to write βQ = κσ.

By doing these substitutions in the latter inequality we get rid of θ and σ to obtain

δA < δCE ⇐⇒ 7rF − 3rL − 2 <
3(rF − rL) + κ

κ− (rF − rL)
×
5

2
κ. (34)

To check that this inequality holds for any pair (αF , αL) or, equivalently, for any pair (rF , rL), we

distinguish two cases. Consider first rF ≥ rL. Notice that 7rF − 3rL − 2 ≤ 3(rF − rL) + 2 and that

3(rF − rL) + κ

κ− (rF − rL)
≥
3(rF − rL) + 2

κ− (rF − rL)

where we have used κ ≥ 2. Thus, a sufficient condition for (34) to hold is

3(rF − rL) + 2 <
3(rF − rL) + 2

κ− (rF − rL)
×
5

2
κ. (35)

If rF ≥ rL, the left-hand side of (35) is positive and we can divide both sides by 3(rF − rL) + 2 and

rearrange to get 3
2κ > rL − rF , which trivially holds when κ ≥ 2 and rF ≥ rL.

Consider now rF < rL. Notice that the right-hand side in (34) increases with κ, so it suffices to prove

the inequality for κ = 2. Plugging this value of κ and rearranging we get

−7r2F − 3r
2
L + rF + 7rL + 10rF rL − 14 < 0. (36)

A sufficient condition for (36) to hold is that both of the following inequalities hold:

rF + 7rL − 8 ≤ 0 (37)

−7r2F − 3r
2
L + 10rF rL − 6 < 0 (38)

since, if both (37) and (38) hold, (36) follows from the sum of both of them. Clearly, (37) holds since rF ,

rL ∈ [0, 1]. To prove (38) define s := rF
rL

, where s ∈ [0, 1] and rewrite (38) as (−7s2 − 3 + 10s)r2L − 6 < 0.

For any rL, the expression inside the parenthesis attains its maximum at s = 5/7. For that value of s, the

latter inequality becomes 4
7r
2
L − 6 < 0, which clearly holds true for any rL ∈ [0, 1].

6.6 Proof of Proposition 4

As shown in Proposition 2, the condition for a type-1 equilibrium to arise is ξ < −1. Using (16) and (18),

in the diagonal this condition can be written as 5κ ≤ 4a−6, which clearly does not hold for any admissible

value of a. In addition, the most favourable pair of realizations for a type-1 equilibrium is αF = θ+σ and
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αL = θ, under which the condition ξ < 1 becomes κ < 2. Thus, there is a positive probability to get a

type-1 equilibria if and only if this latter inequality holds, and the realizations under which it takes place

are in the lower-right corner of the support of firms types.

Now consider the condition for type-2 equilibria, ξ > 1. Under realizations in D, and after some

algebra, this condition becomes 5κ ≤ 2(3− 2a), which is in contradiction with (4) if and only if a > 1
4 . On

the other hand, for a = 0, which is the most favourable case, the inequality becomes κ < 6
5 , which is the

required condition for this type of equilibrium to arise with positive probability.

To prove that a type-3 equilibrium always arises with positive probability, we evaluate ξ in (αF , αL) =

(θ + σ, θ + σ) and using (18) we get ξ = −2σ
5βQ̄

which clearly belongs to (−1, 1) under (4) and, by continuity,

this is true for some non-empty interval around (θ+ σ, θ+ σ).

6.7 Proof of Proposition 5

Using (16) and (19) we conclude that the condition for a type-1 equilibrium to occur, ξ < −1, in the

diagonal takes the form κ ≤ 2(1+2a)
5 , which does not contradict (4) iff a ≥ 3

4 . So, the most favourable

situation is a = 1, under which the previous inequality becomes κ ≤ 6
5 . In addition, if ξ < −1 does not

hold for some pair (αF , αL), it does not hold neither for any pair (αF , α
′
L) with α′L > αL. Thus, there

is a positive probability of type 1 equilibria if and only if κ ≤ 6
5 holds. Under the latter inequality, the

realizations of the firms types under which there is a type 1 equilibrium are in the upper-right corner of

the triangle.

The condition for a type-2 equilibrium to arise in the diagonal is 5κ ≤ −2(1 + 2a), which does not

hold for any admissible value of a. In addition, the most favourable realization for a type-2 equilibrium to

occur are αF = θ and αL = θ + σ, under which the inequality becomes κ ≤ 2.

To prove that a type-3 equilibrium always arises with positive probability, we evaluate ξ in (αF , αL) =

(θ, θ) and using (19) we get ξ = 2σ
5βQ̄

which clearly belongs to (−1, 1) under (4) and, by continuity, this is

true for some non-empty interval around (θ, θ).

6.8 Proof of Proposition 6

Assume initially that the solution is interior (what we check below). The first step is to derive the solution

of problem (23). The first-order condition (FOC) of this problem is

−
dπL
dqL0

·
∂qb∗F
∂p0

−
�
Q̄− qb∗F (p0, αF )

�
+ p0

∂qb∗F
∂p0

= 0,
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where, under interior solution, we know qb∗F = τF (qF0, αF ) -see (28)-. Using the expressions for πL and

τF (qF0, αF ) and rearranging, FOC can be written as

2

5
τF (qF0, αF )−

8Q̄

5
+
3 (αL + 2αF )

5β
−
9

5β
p0 = 0.

Using again the expression for τF (qF0, αF ) and (16) we get

2µF
5β

+
(2λF + 7)αF

5β
−
2Q̄

5
−
9

5β
p0 − 4Q̄+

3 (αL + 2αF )

2β
−
9

2β
p0 = 0

which, solving for p0 and simplifying, provides the solution of (23):

p∗0 =
4µF
63

+
2 (2λF + 22)αF

63
+
15αL
63

−
44

63
βQ̄. (39)

Assume now the leader’s strategy is linear (we argue below that this is necessarily the case) and takes

the form qb∗L (p0, αL) = m0 +m1Q̄+m2αL +m3p0. The second step is to show that there exist values of

the coefficients m0, m1, m2, m3 such that the market clearing condition qb∗F (p0, αF )+qb∗L (p0, αL) = Q̄ has

p∗0 as a solution. This means that, when L and F bid qb∗F (p0, αF ) and qb∗L (p0, αL) respectively, p
∗
0 arises

as a clearing price for the auction. Using the expressions for qb∗F (p0, αF ) and qb∗L (p0, αL) in the market

clearing condition, substituting (39) for p0 and collecting terms, we get the following equation:

µL (4βm3 + 18)

63β
+m0+

18λL + βm3 (5λL + 44) + 9

63β
αF+

β (7m2 +m3)− 3

7β
αL+

63m1 − 44βm3 + 54

63
Q̄ = Q̄.

For this equation to hold for any arbitrary pair (αL, αF ), we need that the, in the left-hand side, the

constant term and the coefficients associated to αF and αF are equal to zero and the coefficient associated

to Q̄ is equal to one. From those conditions we get a system of four equations which has, as a unique

solution, m0 =
−3λL

β(λL+11)
≤ 0, m1 =

−3λL
λL+11

≤ 0, m2 =
6λL+21

4β(λL+11)
≥ 0, m3 =

−(18λL+9)
4β(λL+11)

≤ 0, where the signs

follow from the fact that, under Assumption 1, λL only can be equal to 0 (in case 1) or 1/2 (in cases 2

and 3). The fact that qb∗L (p0, αL) is necessarily linear comes from the fact that both qb∗F (p0, αF ) and p∗0

are linear and hence, in the systems of equations set above, any non-linear term must be zero to ensure

that the market-clearing condition holds for any pair (αL, αF ).

Plugging (39) in the bidding function, we find the equilibrium allocation in the auction:

qA∗L0 =
βQ̄+3αL−2µL−(2λL+1)αF

7β , qA∗F0 =
2µL+(2λL+1)αF+6βQ̄−3αL

7β . (40)

The third step is to show that qb∗F (p0, αF ) and qb∗L (p0, αL) constitute an equilibrium of the game. By

construction, p∗0 is an equilibrium price and qb∗F is the best strategy for F for the same arguments used
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in Section 3. So, we only have to show that qb∗L (p0, αL) is the best strategy for L, what amounts to

proving that the value of qA∗L0 given in (40) solves (21). To prove this, note that, for a specific value of

αF , solving (23) in terms of p0 is totally equivalent to solving it in terms of qL0. Therefore, we conclude

that (22) provides an allocation for L that maximizes πL for any possible value of αF , what implies that

it also maximizes it on average and, therefore, he have solved (21). The equilibrium is unique since both

qb∗F (p0, αF ) and qb∗L (p0, αL) are unique.

If is only left to prove that there exists a set of parameters such that the solution is interior.

Using (5), (6), (25), (39) and (40), and rearranging, we conclude that the occurrence of an interior

solution w.p.1 requires that the following conditions hold:

Pr
�
−13βQ̄ ≤ 2µF + (2λF + 8)αF − 10αL ≤ 8βQ̄

�
= 1, (41)

Pr
�
−6βQ̄ ≤ 2µF + (2λF + 1)αF − 3αL ≤ βQ̄

�
= 1, (42)

Pr
�
13βQ̄ ≤ 10αL + (13− 2λF )αF − 2µF

�
= 1, (43)

Pr
�
44βQ̄ ≤ 4(µF + (λF + 11)αF ) + 15αL

�
= 1. (44)

The first condition guarantees interior solution for quantities in the secondary market26 (0 ≤ qi1 ≤ Q̄)

and the second does the same for the auction (0 ≤ qi0 ≤ Q̄). The third and fourth conditions ensure that

the price is non-negative in the secondary market and the auction respectively (p1 ≥ 0, p0 ≥ 0).

If we include the assumption of uniform distribution and we restrict ourselves to the three cases con-

sidered in Assumption 1, using the relevant expressions for µL and λL conditions (41) to (44), collapse to

the following equations:

Case 1 (independent types): 2σ ≤ βQ̄ ≤ 63θ
44 +

σ
22 ;

Case 2 (L efficient): 2σ ≤ βQ̄ ≤ 63θ
44 ;

Case 3 (F efficient): σ ≤ βQ̄ ≤ 63θ
44 +

σ
22 .

If θ is large enough with respect to σ, the sets defined by these conditions are clearly non-empty.

6.9 Proof of Proposition 7

The first part is readily proved by comparing the relevant expressions for prices and quantities and doing

some straight-forward algebra. The strategy to prove the second part is to show that h(δA,α) > h(δG,α)

for all the relevant values of the parameters. In turn, this is done by minimizing h(δA,α) − h(δG,α) in

terms of αL and αF and showing that the minimum value is positive, what implies that it is positive for

any combination of αL and αF . First, note that in all three cases h(δA,α)−h(δG,α) is a continuous and

26Notice that condition (4) guarantees interior solution in the secondary market for any initial allocation of permits, whereas
(41) guarantees it only for the auction allocation considered in this section. Furthermore, we write the conditions in terms of
probabilities and not in terms of parameters, as in (4). In order to present these conditions in terms of parameters, it suffices
to consider the most adverse realizations for each inequality.
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bounded function defined on a compact set and, therefore, we can use the Weierstrass theorem to state

that there exists a minimum in the relevant interval. Although the strategy of the proof is the same for all

three cases in Assumption 1, the development is slightly different for each case and so we consider them

separately.

CASE 1: αL and αF are not correlated. Using (10), (12), (17) and (40), the difference between total

cost under auctioning and grandfathering can be written as

h(δA,α)− h(δG,α) = 1
196βQ̄

�
−24α2F − 48α

2
L + 88αLαF − 2αF

�
20θ+ 10σ + 25βQ̄

�

+2αL
�
4θ + 2σ + 5βQ̄

�
+ 4 (2θ + σ)2 + 25β2Q̄2 + 20βQ̄ (2θ + σ)

�
,

the sign of which is determined by the term in square brackets, which we denote as ∆1 (αL, αF ). For the

relevant values of the parameters we have ∂∆
∂αL

> 0 and ∂∆
∂αF

< 0, what implies that ∆(αL, αF ) reaches a

minimum at (αL, αF ) = (θ, θ + σ) . Using these values, we get ∆1 (θ, θ + σ) = −40σ2− 30σβQ̄+25β2Q̄2,

which is always positive under the interior solution condition 2σ < βQ̄.

CASE 2: αL ≤ αF . In this case we have E {αL} = θ+ σ
3 , E {αF} = θ+ 2σ

3 , what implies δG = 3θ+2σ
6θ+3σ

and, using (10), (12), (18) and (40), the difference of total cost between both systems can be written as

h(δA,α)− h(δG,α) = 1
49βQ̄X2

�
X2
�
−10α2F − 12α

2
L + 23αLαF

�
+ αF

�
−X2

�
3θ+ 32βQ̄

�
+ 49βQ̄XY

�

+αL
�
X2
�
θ + 27βQ̄

�
− 49βQ̄XY

�
+ β2Q̄2

�
225θ (θ + σ) + 44σ2

�
+X2

�
θ2 + 5θβQ̄

��

where X := (6θ + 3σ), Y = (3θ + 2σ). Denote as ∆2 (αL, αF ) the term in curly brackets, what determines

the sign of the whole expression. Now we solve the problem of minimizing ∆2 (αL, αF ) subject to αL ≥ θ,

αF ≤ θ + σ and αL ≤ αF . We conclude that there are two candidates that satisfy the first-order Kuhn-

Tucker conditions. The first candidate is αL = θ, αF = θ + σ and the second one is αL = αF = θ + σ.27

For the first candidate we have

∆2 (θ, θ + σ) = σX
�
βQ̄ (−45θ+ 2σ)− 10σX

�
+ β2Q̄2

�
225θ (θ + σ) + 44σ2

�
> 0,

where the inequality comes from the fact that ∆2 (θ, θ + σ) is increasing in βQ̄ for any βQ̄ > 2σ (which

is a required condition to guarantee interior solution) and replacing βQ̄ by 2σ we get ∆2 (θ, θ + σ) >

σ2
�
334θσ + 98σ2

�
> 0. Analogously, for the second candidate we have

∆2 (θ + σ, θ + σ) = σX2
�
σ − 5βQ̄

�
+ β2Q̄2

�
225θ (θ + σ) + 44σ2

�
> 0

where, again, the inequality comes from the fact that ∆2 (θ + σ, θ + σ) is increasing in βQ̄ for any βQ̄ > 2σ

27The second is a candidate only if σ and βQ̄ are high enough as compared to θ.
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and replacing βQ̄ by 2σ we get ∆2 (θ + σ, θ + σ) > σ2
�
576θ2 + 95σ2 + 414θσ

�
> 0.

CASE 3: αF ≤ αL. In this case we have E {αL} = θ+ 2σ
3 , E {αF } = θ+ σ

3 and, therefore, δG = 3θ+σ
6θ+3σ .

Using (10), (12), (19) and (40), the difference of total cost between auctioning and grandfathering can be

written as

h(δA,α)− h(δG,α) = 1
49βQ̄X2

�
X2
�
−10α2F − 12α

2
L + 23αLαF

�

+αF
�
49βQ̄XZ −X2

�
3θ + 3σ + 32βQ̄

��
+ αL

�
X2

�
θ+ σ + 27βQ̄

�
− 49βQ̄XZ

�

+(θ + σ)
�
5βQ̄+ (θ+ σ)

�
+ β2Q̄2 [49Z (X − Z)− 6]

�

where X := (6θ + 3σ), Z = (3θ + σ). Denote as ∆3 (αL, αF ) the term in curly brackets, what determines

the sign of the whole expression. We conclude that the only candidate that satisfies the Kuhn-Tucker

first-order conditions to minimize ∆3 (αL, αF ) subject to αF ≥ θ, αL ≤ θ+σ and αF ≤ αL is αL = θ+σ,

αF = θ. Evaluating ∆3 (αL, αF ) for this candidate we get

∆3 (θ+ σ, θ) = −10σ2X2 + βQ̄σX (45θ + 47σ) + β2Q̄2
�
225θ (θ + σ) + 44σ2

�

> σ2 [X (45θ + 47σ − 10X) + (225θ (θ + σ) + 44)] > 0,

where the first inequality comes from the fact that ∆3 (θ, θ + σ) is increasing in βQ̄ and then we can use

βQ̄ = σ to obtain a lower bound.

6.10 Proof of Corollary 3

Consider an arbitrary value of the (monotone transformation of) total cost h, say �h. For grandfathering,

denote as ΦG
	
h̃


:=
�
α / h(δG,α) ≤ h̃

�
the set of values of the types, (αL, αF ), such that the cost under

grandfathering is not larger than h̃. Similarly, define ΦA
	
h̃


:=
�
α / h(δA,α) ≤ h̃

�
for the auction. From

Proposition 7 we know that, for any realization of the types, we have h(δG,α) ≤ h(δA,α). In particular,

this will be the case for those types contained in ΦA
	
h̃


. Then, we conclude that ΦA

	
h̃


is included in

ΦG
	
h̃


or, in other words, FA

	
h̃


≤ FG

	
h̃


for any value of h̃, where FA and FG are the distribution

functions of h under auctioning and grandfathering respectively, what implies FOSD of G over A.
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7 Appendix 2: Figures

Figure 1: Equilibria for independent types when κ < 2 . Type-1, 2 and 3 equilibria arise in green,

yellow and blue regions respectively.
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Figure 2: Realized Costs with (σ, βQ̄) = (6, 8) and θ = 10. Each dot corresponds to a realization of α

and it is displayed in the upper (resp. lower) panel if, for that realization, total cost under auctioning is

smaller (higher) than that under grandfathering. In the upper panel the colours ranges from yellow to

red, where yellow means both costs are roughly similar to each other and red means a larger difference

from one to another. In the lower panel the colours range from yellow to blue, where yellow means again

similar costs.
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Figure 3: Allocations in terms of δ := qF0
Q̄

, with independent types and (σ, βQ̄) = (6, 8) and θ = 10.

The green points represent auction vs. cost minimizing allocations for each realization of α, thus the

closer those points are to the diagonal (red line), the more cost-effective the auction allocation is. The

blue line represents the grandfathering allocation (which is constant and equal to 1/2). Grandfathering is

cost-effective if δCE = 1
2 (which corresponds to αL = αF ) and L gets over-assigned (resp.

under-assigned) if δCE > 1
2 (δCE < 1

2). In the vast majority of the realizations, δA < δCE , i.e., auctioning

allocates more permits to the leader than what is cost-effective.
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Figure 4: Equilibrium configuration for cases 2 and 3 when κ takes a value to enable all three types of

equilibria. Type-1, 2 and 3 equilibria arise in green, yellow and blue regions respectively.
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Figure 5: Expected costs under auctioning (A) and grandfathering (G) in case 3. For each realization,

we compute expected cost under A and G and we average across 1,000 random realizations. A red

(green) dot indicates that G (A) entails lower expected cost. In cases 2 and 3 all the dots would be red.
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Figure 6: Allocations for type-3 equilibria in case 3 with (σ, βQ̄) = (6, 8) and θ = 10. The interpretation

is the same as Figure 3.
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