
 

 



http://www.feem.it/
mailto:working.papers@feem.it


1 

 

The impact of climate change on agriculture:  

nonlinear effects and aggregation bias in Ricardian models of farm land 

values 

 

Carlo Fezzi
1,2

 , Ian Bateman
2,3

 

 

 

 

Abstract 

 

Ricardian (hedonic) analyses of the impact of climate change on farmland values typically assume 

additively separable effects of temperature and precipitation. Model estimation is implemented on 

data aggregated across counties or large regions. We investigate the potential bias induced by such 

approaches by using a large panel of farm-level data. Consistent with the literature on plant 

physiology, we observe significant non-linear interaction effects, with more abundant precipitation 

acting as a mitigating factor for increased heat stress. This interaction disappears when the same data 

is aggregated in the conventional manner, leading to predictions of climate change impacts which are 

significantly distorted. 
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1. Introduction 
 

There is a growing policy concern regarding the potential impact of climate change on agriculture as 

variation in temperature and precipitation significantly affect crop and livestock production (e.g. 

Intergovernmental Panel on Climate Change, IPCC, 2007). Different approaches have been used to 

try to quantify this effect (see Mendelsohn and Dinar, 2009, chap. 3, for a review). Early works focus 

on biophysical crop models simulating the impact of changes in weather on plants growth and input 

requirements (e.g. Adams et al., 1990; Kaufmann and Snell, 1997). These techniques include only 

limited behavioral responses in farmers’ adaptation to climate change and, therefore, may risk over-

estimating negative impacts. More recent studies derive the effect of climate on crop yield (Schlenker 

and Roberts, 2009; Welch et al., 2010; Lobell, Schlenker and Costa-Roberts, 2011) or farm profits 

(e.g. Deschênes and Greenstone, 2007, 2012) by fitting statistical or econometric models to time 

series, cross-sectional, or panel data. There are strengths and weaknesses in each of these approaches: 

for example, while time series or panel models can include location-specific fixed effects to absorb 

possible time-invariant omitted variables, identification rests on random year-to-year weather shocks, 

which are different from permanent shifts in climate (Fisher et al., 2012). 

 

Among the economic analyses, the Ricardian (or hedonic) method, introduced by Mendelsohn et al. 

(1994), has gained considerable prominence. In recent years, this approach has been applied to 

various countries across the globe, including the United States (US, e.g. Schlenker et al, 2005; 2006), 

Brazil (Timmins, 2006), Germany (Lang, 2007), Latin America (Seo and Mendelsohn, 2008) and 

Africa (Seo et al., 2009). The Ricardian method is based on the notion that, in a competitive market, 

the value of farmland reflects the discounted value of all the expected future profits that can be 

derived from it (Ricardo, 1817). Estimation is typically implemented using data aggregated over 

counties or large regions. By regressing land prices on climatic determinants and a set of exogenous 

control variables, this technique estimates the impact of climate on farmers’ expected incomes by 

relying on the cross-sectional variation observed in the current climate. This model is most commonly 

estimated using cross-sectional data as climate has not changed enough over time to allow the 

identification of its effect in any given location. 

 

The major advantage of the Ricardian approach is that it automatically captures adaptation, since 

farmers adjust inputs and outputs to match local conditions. Three major drawbacks are (a) the 

implicit assumption of fixed prices, (b) possible omitted variables (an issue that typically affects all 

cross-sectional analyses) and (c) potential aggregation bias. Of these issues, fixed prices, set at the 

global level, are a common assumption in most studies that use a partial-equilibrium setting. 

Similarly, omitted variables, while not amenable to direct testing, tend to be of a lesser concern given 

the robustness of the observed relationship across years and settings (e.g. Schlenker et al., 2006). In 
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contrast, data aggregation may conceal non-linear effects and farm-level heterogeneity resulting in 

biased parameters and subsequent predictions (e.g. Theil, 1954). Maybe surprisingly, almost all prior 

studies have employed county- or regional-level data (e.g. Mendelsohn et al., 1994; Schlenker et al., 

2005; 2006; Lang 2008; Seo and Mendelsohn, 2008; Mendelsohn and Reinsborough, 2009; Seo et al., 

2009) but none has yet tested the effect of the aggregation process on the parameter estimates and on 

the resulting projections of climate change impacts.
4
 

 

In light of these issues, this study makes three main contributions to the literature. First, we test for 

aggregation bias by comparing the estimates resulting from a unique panel of farm-level data with 

those obtained after aggregating the same data to the conventional county-level in order to replicate 

previous findings. This test reveals a strong aggregation bias in both the coefficient estimates and in 

the resulting projections of climate change impacts. Second, in line with the literature on plant 

physiology (e.g. Monteith, 1977; Morison, 1996), our farm-level analysis estimates a significant 

interaction effect between precipitation and temperature in determining land values. This effect, 

typically ignored in previous Ricardian studies, disappears when the same data is aggregated at the 

county level. Third, we test for functional form miss-specification by estimating the first semi-

parametric Ricardian model on farm-level data. 

 

Aggregation bias is a long-standing issue in econometrics, recognized since the seminal works by 

Theil (1954), Grunfeld and Griliches (1960), and Feige and Watts (1972). This bias is particularly 

severe for the estimation of non-linear relations, which are normally not robust to the aggregation 

process (Stocker, 1984, 1986; Lewbel 1991; Garderen, Lee and Pesaran, 2000; Imbs et al., 2005). 

Nevertheless, previous Ricardian analyses use aggregated information to report strong non-linear 

climatic effects. We compare farm-level and county-level approaches to assess the suitability of 

aggregate data by (a) evaluating the parameter estimates of the climatic variables and by (b) 

measuring the predicted impact of climate change on agriculture. Such comparison exposes a strong 

aggregation bias with severe implications for predictions: on average, climate change impacts 

estimated on aggregated data differ by a factor of three compared with those derived on farm-level 

information. Our results also indicate that this bias is most probably caused by the fact that aggregated 

data do not adequately represent the fine variation in local climate experienced by each farm within a 

county. 

 

                                                           
4
 To our knowledge, the only Ricardian model estimated on farm-level data so far is the one presented by 

Schlenker et al. (2007). Other papers used farm-level information on yield (e.g. Welch et al., 2010) or farm 

revenues (e.g. Mendelsohn and Dinar, 2009; Wang et al., 2009), but the standard Ricardian approach requires 

farmland value data (analyses of farm net-revenues are sometimes referred to as semi-Ricardian approaches, 

McKinsey and Evenson, 1998). 
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Since farmland values are the discounted sums of future profits, any factor that impacts crop 

productivity and yield should also affect farmland values. Crop research has shown that plant yield 

response to weather and climate is highly non-linear and includes significant interaction effects 

between temperature and precipitation (e.g. Hillel and Rosenzweig, 2010; Welch et al., 2010). 

Surprisingly, most Ricardian studies (e.g. Mendelsohn et al., 1994; Schlenker et al., 2005; 2006) do 

not document such an interaction but rather assume the impact of temperature and precipitation to be 

additively separable.
5
 Additive effects are at odds with plant physiology, since increased heat 

generates higher demand for water in crop development (e.g. Monteith, 1977; Morison, 1996). Our 

farm-level analysis reconciles the Ricardian approach with the literature on plants and crops growth 

by confirming a significant interaction effect: precipitation is more valuable when temperatures are 

high. Similarly, temperature has a positive effect on land value only if there is enough precipitation to 

prevent possible droughts. We only observe the interaction effect in our farm-level data set, again 

highlighting the importance of using micro-level data. This result is robust in a variety of settings, 

including different datasets, climate definitions and estimation methods. 

 

A related issue is that Ricardian analyses typically assume climatic effects to have simple quadratic 

forms (e.g. Mendelsohn et al., 1994; Schlenker et al., 2005; 2006). However, previous research has 

shown that in hedonic models restrictive parametric specification can be rarely justified a priori (e.g. 

Cropper et al., 1987; Ekeland et al., 2002, 2004), and that semi- and non-parametric alternatives can 

provide several advantages (Anglin and Gencay, 1996; Parmeter et al., 2007; Bontemps et al., 2008). 

In addition, findings reported by Deschênes and Greenstone’s (2012) seems to indicate that the 

predicted impacts of climate change on farm profits are heavily dependent on the functional form 

assumed for the climatic and control variables. Therefore, we test for functional form miss-

specification arising from omitted non-linear effects by estimating a semi-parametric farm-level 

Ricardian model. Compared with the parametric regression, this approach provides a superior fit and 

reveals an even stronger interaction between rainfall and temperature. However, climate change 

impact predictions are not significantly different from those obtained using the simpler specification. 

 

Our empirical application covers farms located in Great Britain (GB). While GB is smaller than the 

spatial extent of other Ricardian analyses, its geographic position (surrounded to the south by the Gulf 

Stream and to the north by sub-Arctic waters) generates a diversity of micro-climates yielding a wide 

                                                           
5
 Mendelsohn and Reinsborough (2007) and Seo et al. (2009) do include interaction effects but represent climate 

using temperature and precipitation during the months of January, April, July and October, rather than degree 

days and precipitation in the growing season as recommended by Schlenker et al. (2006) and extensively applied 

thereafter (e.g. Lang, 2007; Schlenker et al., 2007; Deschênes and Greenstone 2007; 2012, Fisher et al. 2012). 

An issue with using monthly averages is that the high cross-sectional correlation which characterizes these 

variables significantly limits the interpretability of the resulting interaction terms (in our sample, for instance, 

the correlations between the average temperature in October with the one in January, April and July are, 

respectively, 0.93, 0.97 and 0.91). 
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range of variation in temperature and precipitation. Obviously, variation in climate is necessary to 

obtain precise estimates. Focusing on a narrow spatial scale that has significant variation in climate is 

even preferable as other, potentially confounding, variables are more homogenous. In the extreme, 

having two identical farms that only differ in climate would be the best-case scenario for identifying 

the effect of climate on land values. The limited spatial scale can therefore be considered as an 

advantage rather than a constraint on the analysis. However, the major benefit arising from focusing 

on GB is the availability of accurate local climate measurements derived by one of the most dense 

weather station networks in the world, comprising 540 temperature and 4400 rainfall stations (Perry 

and Hollis, 2005). Comparison with the PRISM data (Di Luzio et al., 2008) used in the most recent 

Ricardian analyses (Deschênes and Greenstone 2012, Fisher et al. 2012) reveals that the number of 

temperature stations per square mile is roughly twice that of the US and the number of precipitation-

stations is more than 20 times higher. Given that precipitation and (to a lesser extent) temperature are 

notoriously highly variable over space (e.g. Baigorria et al., 2006; Mendelsohn et al. 2007), this 

substantial increase in accuracy is crucial to obtain precise estimates of the farm-level climatic 

conditions and to effectively test for aggregation bias. Conversely, a sparse network of weather 

stations would introduce significant measurement error in local climatic values, undermining the 

superiority of farm-level estimates over their county-level counterparts. 

 

 

2. The data 

 

This analysis employs a database covering the whole of Great Britain by integrating multiple sources 

of information expressed at different spatial resolutions. These are detailed throughout the remainder 

of this section. 

 

Land value data. Data on land value are derived from the Farm Business Survey and the Scottish 

Farm Accounts Survey panels which, sampled annually, include information on the physical 

characteristics and economic performance of farm businesses throughout Great Britain. Farms are 

retained in the sample for several years, with only 10% of them being replaced in each survey. The 

two Farm Surveys (FS) include a specific figure for land value, which excludes buildings and other 

improvements used for agriculture (it includes, however, the value of buildings and dwellings older 

than 30 years) and reflects the expected sale value assessed by professional farmland sales agents. 

Since these estimates are not revised each year, we discard from the analysis all the records in which 

the farmland value stays constant from one year to the next, as this indicates that the value has not 
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been updated in that year.
6
 The database also contains the location of the farm on a 10x10 km grid 

square basis, which we use to link farm value to environmental and climatic characteristics. In this 

analysis we consider 10 years of FS data, from 1999 to 2008, consisting of approximately 2500 farm 

records each year. Farms included in the panel comprise a variety of land uses including arable crops, 

livestock pasture and forestry. Eliminating farms with less than 30ha of owned land and farms for 

which the land value or the location are missing, leaves about 9500 observations for the analysis.
7
 

 

Climatic variables. Temperature and precipitation are represented by the 5x5 km grid cell data 

available from the UK Meteorological Office archive (Met Office, http://www.metoffice.gov.uk/). As 

previously mentioned, this data is derived from one of the most dense network of weather stations in 

the world which include, on average, one temperature station every 20x20 km (540 stations) and one 

rainfall station every 7x7 km (4400 stations). The process used to derive the 5x5 km grid climate data 

published by UK Met Office is based on multiple regressions with inverse distance-weighted 

interpolation and take into account geographic and topographic factors, validated by randomly 

excluding 10% of the stations and predicting for their values (Perry and Hollis, 2005). This approach 

yields an out-of-sample Root Mean Square Error (RMSE) of 0.36
o
C for the monthly mean 

temperature (3.5% of the mean value) and of 16mm (3.6%) for the total monthly precipitation. This 

strong predictive performance reassures us of the ability of the 5x5 km climatic data to accurately 

represent the local conditions faced by the individual farmers within our sample. This feature is 

essential to effectively test for aggregation bias. Data collected on a sparser network of weather 

stations, in fact, would introduce significant measurement error in local temperature and precipitation 

values, undermining the superiority of farm-level estimates over their county-level counterparts.  

 

As Deschênes and Greenstone (2012) and Fisher et al. (2012), for each observation we calculate 

climatic variables as averages over the 30 years period 1971-2000. Temperature has been included in 

Ricardian models as monthly or seasonal averages (Mendelsohn et al., 1994; Seo et al., 2009 consider 

average temperature in the month of January, April, July and October) or as the number of degree 

days in the growing season (Schlenker et al., 2005; Deschênes and Greenstone 2009; 2012; Fisher et 

al. 2012). Degree days are defined as the sum of degrees between two temperature thresholds. This 

concept is derived from the agronomic literature and reflects the fact that plant growth is linear in 

                                                           
6
 As an example, consider a farm which is surveyed in the years 2000-2005. The farmland value is estimated to 

be £1000 per hectare in year 2000, £1500 in 2001, 2002 and 2003 and £1800 in 2004 and 2005. In this case we 

include in the analysis only the records relative to years 2000, 2001 and 2004. However, as a robustness test we 

also estimate the model including the years in which the farmland value remains constant showing that the 

results remain essentially unchanged. 
7
 In farms with only a small amount of owned land, farmland price per hectare can be significantly inflated when 

the property contains buildings or houses older than 30 years, since their value is included in the farmland price. 

To reduce this source of noise in the data we eliminate all farms in which the owned land is smaller than 30 

hectares. In the robustness tests Appendix III, however, we also report the estimates obtained by including all 

farms and show that our findings remain consistent. 
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temperature only within a certain range, with temperatures below this interval being irrelevant for 

crops development, while temperatures above that threshold being potentially harmful.
8
 Schlenker et 

al. (2006) show how this strategy is superior to including monthly averages, mainly because 

temperatures in different months can be highly correlated with each other (for example, in our 

climatic data the correlation of the average temperature in October with the one in January, April and 

July are, respectively, 0.93, 0.97 and 0.91). As in previous contributions, we consider only the degree 

days during the main growing season, defined for GB as the months from April to September. To 

derive degree days, we use the common assumption that, during the day, temperature (temp) follows a 

sinusoidal function (Schlenker and Roberts, 2006): 

 

][5.0)sin(][5.0 minmaxminminmax temptemptemptemptemptemp −++−= χ , 

 

where χ is defined between -1/2π and 3/2π and tempmin (tempmax) is the minimum (maximum) 

temperature within the day. Since data on the minimum and maximum temperature in each day of the 

year are not available, we use average monthly minimum and maximum temperature to compute the 

number of degree days.
9
 Taking into account the characteristics of GB agriculture, we define the 

lower and upper threshold as 5.5
o
C and 32

o
C respectively. In our sample, the average monthly 

maximum temperature never surpasses 30
o
C (the highest average maximum temperature recorded in 

the sample is 28.24
o
C) and, therefore, this latter threshold is not relevant for our study. Considering 

rainfall, as in previous studies we include the total precipitation in the growing season. Finally, as the 

5x5 km grid of climatic data and the 10x10 km grid of farm location data share the same origin, we 

aggregate degree days and precipitation from 5x5km to 10x10km grid squares to match the resolution 

of the farm location data by using arithmetic averages. 

 

Environmental and other control variables. Besides climate, several other determinants can 

significantly influence farmland values. Considering soil characteristics, we include soil texture as the 

share of fine (clay share between 35% and 60%), medium fine (clay < 35% and sand < 15%), medium 

(clay between 18% and 35% and sand >15% or clay between 18% and 35% and sand < 65%), coarse 

(clay < 18% and sand > 65%) and peaty soils, and the depth to rock. These are derived from the 1km 

grid square data in the European Soil Database (ESDB) maintained by the European soil data centre 

(http://eusoils.jrc.ec.europa.eu/). We also include average slope (derived from the Ordnance Survey, 

                                                           
8
 This is, not surprisingly, just an approximation. Recent literature (e.g. Schlenker and Roberts, 2006) shows 

how the effect of temperature on yield can present non-linearities even within the two thresholds. However, 

since the objective of a Ricardian analysis is not to analyze crop growth but to understand the effect of climate 

on land value, the linearity assumption to compute degree days still constitutes a reasonable approximation. 
9
 We do not use approach developed by Thom (1966), commonly implemented on US data, because his formula 

is based on the average monthly temperature and its standard deviation, while we have information on the 

average monthly minimum temperature and the average monthly maximum temperature. This information 

provide a better representation of the GB climate (Hitchin, 1983). 
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Digital Terrain Model, available at: http://www.ordnancesurvey.co.uk/oswebsite/), representing the 

suitability of land for machinery operations, and population density (computed from 1990 and 2000 

census data, http://casweb.mimas.ac.uk/), to capture the opportunity value of converting land to 

residential use, distance to markets and the availability of amenities or off-farm work for the members 

of the farmer’s family. Finally, to capture the impact of location-specific policies we include the share 

of each 10km grid square classified as National Park, Nitrate Vulnerable Zone (NVZ) or 

Environmentally Sensitive Areas (ESA) in each year. NVZs, established in 1996 and extended in 

2003 and 2008 to cover more than 70% of English farmland, are designed to reduce surface and 

groundwater nitrate contamination, and impose some restrictions on the agricultural activities of the 

farms within their boundaries (e.g. limiting the amount of fertilizer to be used on fields, regulating the 

storage of organic manure, etc.). ESAs, introduced in 1987 and extended in subsequent years, are 

intended to safeguard and enhance areas of high landscape, wildlife or historic value. Unlike NVZs, 

participation in ESA schemes is voluntary and farmers receive monetary compensation for engaging 

in environmentally friendly farming practices, such as converting arable land to permanent grassland, 

establishing hedgerows, etc.  

 

 [TABLE 1 about here] 

Farm-level data descriptive statistics 

 

Descriptive statistics for these variables are reported in Table 1. The distribution of farmland values 

appears to be highly skewed with a long right tail, which could support a log-normal distribution as, 

for example, implemented by Schlenker et al. (2006). Considering rainfall levels, although GB covers 

a relatively modest area compared to those analyzed in other Ricardian studies (e.g. US, Brazil), its 

location between the warm waters of the Gulf Stream to the West and the cold climates of 

Scandinavia to the East means that it exhibits a wide range of precipitations across the growing season 

(from 244 to 1434 mm), this range actually exceeding that reported for the rainfed US counties (from 

332 to 982mm) analyzed by Schlenker et al. (2006). Indeed, accounting for irrigation (Schlenker et 

al., 2005) is not necessary in the UK, since most farmland is rainfed (less than 1% of the farms in our 

sample use irrigation at all). Furthermore, temperatures rarely reach particularly high values (total 

degree days ranges between 654
o
C and 1639

o
C), with the maximum number of degree days in the 

growing season being well below 2400, which coincidentally is the optimal value for crop growth 

identified by Schlenker et al. (2006). Therefore, accounting for high temperatures which are 

potentially damaging crop development is also not an issue in our study. 

 

Aggregation. In order to obtain units of aggregation comparable with those examined in previous 

Ricardian studies, we aggregate our farm-level values using the official ‘third level’ Nomenclature of 

Territorial Units for Statistics (NUTS), as defined by the European Union, which roughly correspond 
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to GB counties. Their size varies considerably, ranging from about 40 km
2
 to more than 10000 km

2
, 

with an average of 1814 km
2
 (for comparison, the average area of US counties is about 3000 km

2
). 

We assign each farm to a county based on its spatial location and compute the aggregated land values 

as farmland-area weighted averages. Similarly, we aggregate climatic and control variables using as 

weights the amount of agricultural land within each 10 km grid square included in a county. This 

leads to over 30 farms records for each county (with an average of 11 farms in each year) and a total 

of 848 aggregated observations. 

 

[TABLE 2 about here] 

Descriptive statistics of the climatic variables aggregation 

 

The statistics reported in Table 2 measure the impact of the aggregation process on the accuracy of the 

climatic variables. The between-county statistics, reported in the top half of the table, represent the 

variation in climate retained in the aggregated data. Considering degree days, the range of values is 

between 756
o
C and 1611

o
C (with a mean of 1290

 o
C), which is very similar to that observed for farm-

level data. However, precipitation during the growing season presents a minimum value of 275 mm 

and a maximum of 811 mm, which is considerably lower than the highest value observed on the farm-

level data (1420 mm). This can be explained by the high spatial variability of rainfall, which causes 

some of the extreme values observed in farm-level data to be lost in county-level statistics. The 

bottom-half of Table 2 reports within-county statistics, representing the heterogeneity in climate 

which is concealed by the aggregation. Within the average county, degree days and precipitation vary 

by about 230
o
C and 150mm respectively. This loss of climatic information is not negligible, since it 

corresponds, in turn, to about 22% and 15% of the range of values observed across the entirety of GB. 

In addition, there is also considerable variation around this mean, with some counties presenting a 

relatively homogenous climate while others exhibiting strong heterogeneity. The county of 

Hertfordshire (1700km
2
), for instance, located in the South-East of the country, is characterized by 

both low variation of temperature (dd between 1380
 o

C and 1520 
o
C) and precipitation (prec around 

300-320 mm). On the other hand, South-West Derbyshire, a county of similar size (2000 km
2
) located 

towards the middle of the country, has degree days varying from 950
 o

C to 1410
 o

C and precipitation 

ranging from 310mm to 650mm. This large variation, lost with the aggregation, corresponds to 

respectively 45% and 35% of the range of degree days and rainfall observed in the entire GB sample. 

Therefore, farms located within the same county can face significantly different climatic conditions. 

In the next Sections we test whether using aggregated data and assuming climatic-homogenous 

counties has any implication for Ricardian regression estimates. 
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3. Methodology 

 

3.1 The Ricardian model 

 

The Ricardian approach assumes that each farmer allocates land among different activities in order to 

maximize net revenues. Consequently, in a competitive market, farmland price equals to the expected 

present value of the future stream of income derived from land. We assume that farms are atomistic, 

and input demand is small enough to not influence input prices. By the same token, idiosyncratic 

weather shocks do not influence the exogenous output prices since the quantity produced in the UK is 

not large enough to affect the global market. The Ricardian approach does not model farmers’ land 

allocations, input and output choices explicitly, but rather estimates the overall value of each land 

characteristic by specifying the hedonic, reduced form model: 

 

(1) ),,,( gzrpfVt = , 

 

where f(.) is a functional form unknown a priori. As in most hedonic models, economic theory 

provides little guidance on the shape of this relation, which, while arguably non-linear, remains an 

open empirical question. 

 

 

3.2 Testing for aggregation bias and omitted non-linearities 

 

Virtually all Ricardian analyses have translated equation (1) into an empirically tractable model by 

assuming a linear or semi-log specification with a quadratic formulation for the climatic variables 

(here degree days, dd, and precipitation, prec) and a linear function for all other determinants. 

Findings reported by Schlenker et al. (2006) suggest that a log-transformation of the dependent 

variable outperforms a linear specification, since the distribution of land values is non-negative and 

typically highly skewed. Estimation is normally implemented on data aggregated over counties or 

larger regions. As a starting point, we open our analysis by replicating such a model, which has 

implemented in the majority of Ricardian studies so far. This hedonic equation (Model A) is specified 

as: 

 

 (2) 
tctccccctc uprecβddβddβprecββV ,,

2

4

2

3210, 'ln ++++++= gγ , 

 

where c indicates the county, t indicates the time at which expectations are taken,    β0, ... , β4 and γ γ γ γ are 

the county-level parameters to be estimated and uc,t is a residual component which we define as being 

the sum of a county-specific random effect and a residual, both normally distributed and uncorrelated 
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(uc,t = αc + εc,t). The vector gc,t includes population density (dpop and dpop
2
, see SFH), depth to rock 

(dtr), slope, soil texture shares, National Park (spark), ESA (sesa) and NVZ (snvz) shares, regional fixed 

effects (for England, Wales and Scotland) and yearly fixed effects. 

 

This quadratic approximation with additively separable climatic effect (on the logarithmic scale) has 

been implemented in most applications (see Mendelsohn and Dinar, 2009, for a review) because it 

allows the identification of “optimal” crop growing conditions while maintaining simplicity in 

estimation. In this specification, climatic effects are multiplicative. For example, the marginal effect 

of precipitation is: 

 

(3) )2( 42 cc

c

c precV
prec

V
ββ +=

∂

∂
. 

 

This effect, therefore, depends on all the variables which determine the land value Vc. However, this 

formulation does not encompass all interactions among climatic variables. In fact, the sign of the 

marginal effect (3) depends solely on the term β2 + 2β4 precc, which contains only the parameters of 

precipitation itself, and none of those relating to other variables. This means that the optimal amount 

of rainfall will not depend on the level of temperature, and vice versa. This constraint might not 

necessarily be valid. For instance, agronomic experiments have shown that warmer conditions 

typically lead to an increase in crop requirements for water (e.g. Morison, 1996).  

 

The simplest approach to relax the assumption of additively separable climatic effects is to include an 

interaction term to equation (2) to allow the effect of precipitation and temperature to be mutually 

dependent. Therefore, we estimate our second specification (Model B) as:  

 

(4) 
tctccccccctc uddprecβddβprecβddβprecββV ,,5

2

4

2

3210, 'ln +++++++= gγ , 

 

There are good theoretical reasons to believe that even simple non-linear relations, such as those 

represented by equations (2) and (4), are not robust to the aggregation process. Stocker (1984, 1986), 

for instance, shows that even the parameters of the simple quadratic or logarithmic models, when 

estimated on aggregated data, will be a non-linear combination of the micro-level coefficients and of 

the parameters of the distributions of the exogenous variables. Therefore, even under very stringent 

conditions, recovering the farm-level parameters using a county-level regression would require the 

inclusion of squares and cross-products of the explanatory variables and very complex functional 

forms (Van Garderen, Lee and Pesaran, 2000, provide a few examples). Given that most Ricardian 
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analysis have been implemented on aggregated data, it is important to investigate the size of any bias 

inherent in such approaches and its implications climate change impacts predictions. 

 

The simplest strategy to test for aggregation bias it to re-estimate model (4) using the same data, but 

disaggregated at the farm-level, testing whether parameters and climate change impacts predictions 

are significantly different from those obtained with county-level data. The resulting specification 

(Model C) can be written as: 

 

(5) 
tjitjijijijijijijitji uddprecddprecddprecV ,,,,,,5

2

,4

2

,3,2,10,, 'ln +++++++= gξαααααα , 

 

where i indicates the farm, j the 10km grid square, α0, ... , α5 and ξ ξ ξ ξ are the farm-level parameters to be 

estimated and all other symbols are defined as previously. We specify the residual component to 

include both a farm- and a 10x10km cell-specific random effect (ui,j,t = wj + αi,j + εi,j,t), to take into 

account that farms located within the same area may share common un-modelled factors which may 

significantly affect their land value. This is also a simple approach to account for spatial auto-

correlation by allowing the residuals of the farms located within the same cell to be correlated with 

each other.
10

 

 

A drawback of this last approach (and of any other strict parameterization) is that it constrains the 

effects to assume very specific functional forms. In such model, climatic impacts are forced to be 

quadratic and their interaction is assumed to be linear. While these could be reasonable 

approximations, there is no theoretical justification underpinning such a rigid structure, which is 

mainly adopted for ease of estimation. Therefore, it is worth investigating possible functional form 

miss-specification by using a more flexible model. Here we represent the relationships of interest via 

smooth functions, deriving an Additive Mixed Model (AMM) which is our most general and last 

specification (Model D): 

 

(6) 
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10

 This is similar to using cluster robust standard errors, as implemented, among others by Fisher at al. (2012) 

and Deschênes and Greenstone (2012). Including a more general form of residual spatial autocorrelation (e.g. εi,t  

= ρWε  + εi,t , with ρ = spatial correlation parameter, Wε  = spatial weight matrix, εi,t = i.i.d. error term, see 

Schlenker et al., 2006, and Maddison, 2009) does not change significantly the parameter estimates of Model C. 

However, the size of our dataset makes this approach computationally too demanding for the estimation of the 

semi-parametric specification (Model D). Therefore, for ease of comparison we present the simplest 

specification with farm- and cell-specific random effects for both models. In the robustness test Appendix III we 

also test the impact of allowing a stronger spatial autocorrelation by adding an additional random effect term 

grouping together clusters of 9 cells, showing that the results do not change significantly. 
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In this model the joint effects of temperature and precipitation are encompassed by a 

multidimensional smooth function f(.), which allows the estimation of flexible non-linear relationships 

and interaction effects. The control variables are also included via smooth functions, s1(.),..., sh(.), to 

capture possible non-linear relations. However, to maintain simplicity in the interpretation and avoid 

the well-known curse of dimensionality, their effects are assumed to be additively separable. The 

marginal effects of rainfall can be derived as: 
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Note that the sign of this marginal effect is a function of both precipitation and temperature. As a 

result, the model encompasses, in a flexible form, the interaction effects amongst all climatic factors. 

This is a very general specification and encompasses Model C as a special case. Comparing the 

estimates from the two models allow us to test for omitted non-linear relations.  

 

 

4. Empirical application 

 

4.1 Estimation results 

 

We estimate models (2), (4), (5) and (6) via Restricted Maximum Likelihood (REML) using the R 

software (R development core team, 2008).  Model A, B and C are standard linear regression with 

random effects, and are estimated via the package nlme (Pinheiro and Bates, 2000). Model D is 

implemented by representing the smooth functions as natural cubic splines, which fit third degree 

polynomial functions between a set of knots located between the range of values of each explanatory 

variable. The number and the location of the knots effectively determine the flexibility of each smooth 

function. We estimate the optimal number of knots (i.e. the optimal amount of smoothing) directly 

from the data by following the approach illustrated by Ruppert, Wand and Carroll (2003), who 

suggest representing the smoothing splines as random effects (details are in the Appendix). This 

model is estimated via REML by using the package mgcv (Wood, 2006b). This approach 

automatically reduces the smooth functions of the variables for which the optimal fit does not include 

any non-linearity to standard linear forms. In the extreme, a model in which none of the non-linear 

relationships are supported by the data will be reduced directly to a standard linear regression during 

estimation. The optimal level of non-linearity of each smooth function is indicated by the ‘Effective 

Degrees of Freedom’ (EDF). The higher the EDF, the more non-linear is the estimated function. An 

EDF equal to 1 suggests that the best smooth function representation is linear. 
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The parameter estimates and diagnostics of the four models are presented in Table 3. The first column 

reports the coefficients of Model A: the standard Ricardian regression based on county-averaged data. 

The estimated effect of degree days is always positive (with the quadratic effect being non-

significant) and the effect of precipitation is negative with a quadratic shape. This is not entirely 

surprising, given the relatively wet and cold conditions which characterize GB. The coefficients of the 

control variables have intuitive signs. Better physical environments (lower slope and deeper soils) 

translate into higher land values. Finally, while not reported in the table to preserve space, the yearly 

fixed effects are also significant, highlighting the presence of important differences among the 

(deflated) land values among different years, probably reflecting evolutions in market conditions, 

policy and technology. Also the regional fixed effects are significant. 

 

Model B, presented in the second column, also employs aggregated county-level data to test whether 

the interaction effect between degree days and precipitation is significant. The approximate t-test is -

1.73, with approximate p-value of 0.08, which does not reject the null hypothesis of no interaction at 

the standard 5% level. In addition, the negative sign of the corresponding coefficient is counter-

intuitive. Previous crop studies (e.g. Monteith, 1977; Morison, 1996) demonstrated that the amount of 

water required for plant development increases with temperature, implying a positive rather than a 

negative interaction. Altogether, we conclude that county-level estimates indicate predominantly 

additive climatic effect without a strong interaction between precipitation and temperature. Overall, 

taking into account the wet and cold British climate, these conclusions are in line with those reported 

by previous Ricardian analyses (see Mendelsohn and Dinar, 2009, chap. 7, for a useful review). 

 

[ TABLE 3 about here ] 

Parameter estimates and diagnostics 

  

These results obtained on aggregated data are, however, overturned when individual farm records are 

analyzed. As the estimates of Model C (third column) shown, rainfall and degree days present strong 

non-linear effects, with both the quadratic terms and the interaction being highly statistically 

significant. This interaction is positive: consistent with the agronomic literature, the optimal amount 

of rainfall increases with temperature. The estimates of the semi-parametric Model D, reported in last 

column of Table 3, confirm these results. The ‘Effective Degrees of Freedom’ of the bivariate smooth 

function of temperature and precipitation is equal to 8.61, indicating strong non-linear effects and 

interactions. For comparison, the bivariate smooth function corresponding to the climatic effects 
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estimated in Model C (i.e. two quadratic effects with a linear interaction term) would have an EDF 

equal to 5.
11

 

 

Figure 1 provides a graphical representation of the estimates produced by the semi-parametric model. 

The right-hand panel represents with iso-value lines the joint effects of the climatic variables on land 

price. We only draw such contours for values of degree days and temperature observed within the 

estimation sample, as represented in the scatter plot in the left-hand panel. For example, in GB there 

are no areas with both relatively high temperature and high precipitations and, therefore, the top-right 

corner of the right-hand plot is blank. Furthermore, the distribution of the climatic variables appear to 

be highly skewed, with most farms located in areas characterized by relatively high temperatures (dd 

> 1300) and low precipitations (prec < 500). Therefore, the upper-left parts of the contour graphs are 

the most relevant for climate change predictions in GB.
12

 The contour-plot shows a clear interaction 

effect. In the colder areas (dd < 1200), abundant precipitation reduces agricultural values, since the 

excess of moisture within the soil can considerably delay machinery operations until late in the 

growing season. On the other hand, in warmer areas (dd > 1400) the crop requirement for water 

increases and the effect of rainfall becomes positive. Therefore, beyond a certain level, higher 

temperatures increase land values only if there is enough precipitation to prevent the risk of drought. 

This means that there is not a generalized, ideal level of temperature which defines the best crop 

growing conditions (as assumed in previous Ricardian studies) but, rather, that the optimal level of 

temperature depends on the amount of precipitation. Vice versa, the profit maximizing level of 

precipitation depends on the level of temperature. 

 

[Figure 1 about here] 

 

This interaction effect is analyzed in greater detail through the next two figures. Figure 2 represents 

the estimated impact of precipitation on land value for two levels of temperature. When temperature is 

low (dd = 1100 
o
C, right hand panel), we observe a strong negative effect which can be attributed to 

soil waterlogging, delayed ploughing and sowing, and to the negative effect that excess soil moisture 

can have on plant growth (e.g. IPCC, 2007). However, as temperature increases, the relationship 

becomes more moderate and in the warmest areas (dd = 1650, left-hand panel) rainfall has a positive 

effect within the entire range of observed data. Moving to consider the effect of temperature, Figure 3 

                                                           
11

 We cannot compare Model C and D via a likelihood ratio test, since the two models are not nested. However, 

the log-likelihoods, the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC), 

reported at the end of Table 3, all support the semi-parametric specification. Ignoring this non-linearity also 

comes at the cost of increasing the un-modelled spatial autocorrelation, which is reflected in the higher value of 

the cell-specific random component of Model C compared to that of Model D. This is consistent with Kostov’s 

(2009) findings, which shows that flexible functional forms can significantly reduce residual spatial auto-

correlation in farmland price modelling. 
12

 The next section shows how our sample of farm is representative of the overall conditions in the country. 
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represents the impact of degree days for two different levels of precipitation. In areas where rainfall is 

relatively low (300mm, left hand panel) the positive effect of warmer temperatures on plant growth 

are offset by the increase in drought risk such that the resulting net effect on land value is not 

significant. However, in areas of higher precipitation (500mm, right hand panel) increased water 

availability protects plants from heat stress allowing temperature to have a strong and positive effect 

on land value. 

 

[Figure 2 about here] 

 

[Figure 3 about here] 

 

Overall, the interaction effect between temperature and rainfall, which is positive and significant in 

the farm-level analyses, completely disappears (or even becomes negative) in county-level estimates. 

The main reason for this attenuation bias is that county-level data ignore the heterogeneity in climate 

faced by the individual farms within a county. Since both temperature and rainfall patterns are 

expected to alter as a result of climate change, this bias may have significant implications for climate 

change predictions. Such a hypothesis is tested in next section which compares the projected climate 

change impacts according to our four Ricardian regressions. However, we first report a series of 

checks to test whether our farm-level results are stable and robust to possible omitted-variable bias 

and to examine whether our aggregation bias evidence is consistent across specifications, data and 

climate definitions. 

 

4.2 Robustness tests 

 

We open this sub-section by undertaking some robustness analyses on our farm-level estimates, 

testing for omitted variable bias and parameter stability. We then move to consider alternative 

Ricardian models to show that our aggregation bias findings are robust in to diversity of specifications 

and data definitions. 

 

Concerns about potential omitted cross-sectional variables in Ricardian analyses have been pointed 

out by Deschênes and Greenstone (2007, 2012), among others. A panel fixed-effect estimator 

provides little help in addressing this issue, since it would eliminate not only the potential bias but 

also all the cross-sectional variation on which the parameters of the Ricardian model hinge upon. In 

Ricardian models, in fact, in order to represent climate (as opposed to weather), temperature and 

rainfall are constructed as long-term averages and, even in long panels, present a time-variability 

which is almost negligible compared to the cross-sectional (spatial) variability. This means that fixed-

effect estimators, intended to eliminate potential time-invariant omitted variables, cannot be 
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implemented in this context, because they would also remove the crucial spatial variation of climate. 

A second, related, issue, concerns the distortions in the land market which various agricultural 

policies tend to create (e.g. Barnard et al., 1997). For instance, crop and environmental payments 

could be capitalized in the land price and, if correlated with climatic variables, introduce a bias in 

their coefficient estimates. 

  

We address both issues by testing whether the parameters of degree days and precipitation are stable 

over time. If omitted variable bias is a concern, in fact, these coefficients should exhibit significant 

temporal variation, reflecting changes in agricultural prices and policies. Our sample provides a 

particularly hard benchmark for this test, since during the 10 years covered by our data, agricultural 

policies in GB have changed markedly, following various reforms of the EU Common Agricultural 

Policy. These policy developments culminated with the introduction of decoupled single farm 

payments in 2005, replacing the system of area-based crop-specific subsidies in place since 1992. 

Input and output prices have also changed dramatically during this period, with, for instance, cereal 

prices more than doubling during the period from 2007 to 2008. This variation is reflected in the 

yearly fixed-effects, which are strongly significant in all specifications. If there are omitted variables 

correlated with climate, therefore, one would expect the smooth functions of temperature and 

precipitation to present significant variation over time in such unstable market conditions. To 

investigate this hypothesis, we choose the first year in our sample (1999) as the baseline and test for 

parameter stability comparing one year at a time via pairwise F-tests (Pinheiro and Bates, 2000). We 

test our final and more flexible specification, Model D, and in order to use the standard inference for 

random-effect models, we define the spline bases of the model a priori and implement un-penalized 

estimation via ML. To attain a level of flexibility comparable to the optimal one selected by the 

penalized likelihood, we choose natural cubic splines with 4 knots for population density and 16 knots 

for the joint function of precipitation and rainfall, while all other variables are modelled as linear 

terms. Table 4 reports the results: none of the pairwise instability tests is significant at the 5% level, 

and only one is significant at the 10%. This is consistent with the null hypothesis of parameter 

invariance which, therefore, we find no evidence to reject. Overall, these results reassure us about the 

robustness of our climate impact estimates to omitted variable bias such as changes in prices and 

agro-environmental policies. 

 

[ TABLE 4 about here ] 

Pairwise stability tests 

 

We now test whether the evidence of aggregation bias is consistent across different data, models and 

aggregation methods. For each alternative specification, Table 5 reports the climate coefficients of the 

parametric models with interactions estimated on county-level (Model B) and farm-level data (Model 
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C). Since the two models have the same structure and variables, any difference in the parameter 

estimates can be attributed to the aggregation process. For comparison, the first row reports the 

coefficients of the original specification. In the second row we test the effect of using a different 

aggregation method. Rather than taking area-weighted averages of the land value of all farms located 

in each county, we use simple, un-weighted averages. As can be seen, the aggregation bias becomes 

even larger, with the interaction effect remaining negative but now growing stronger and significant. 

This is not unexpected, given that not taking into account the relative size of the properties can 

produce aggregated data which are less representative of the original population. 

 

[ TABLE 5 about here ] 

Parameter estimates according to alternative specifications 

 

The third row of Table 5 reports the results obtained using a different climate specification. Rather 

than calculating climate as the average weather between the years 1971-2000, we follow Schlenker et 

al. (2006) and define climate as the average weather in the 30 years preceding each observations (e.g. 

for 2005 data the climate is defined as the average between the years 1975-2004). This means that we 

introduce some temporal variation which allows climate to change somewhat from year to year in 

each cell or county. The resulting coefficients are very similar to those in the baseline approach, 

suggesting that our conclusions are robust to different definitions of climate. 

 

In the fourth row we re-estimate the models including also all observations in which the farmland 

value is not updated in that year. In fact, replicated entries might reflect periods over which owners do 

not perceive significant changes in their property value. While the magnitude of some of the climate 

coefficients appears to slightly increase, the results are consistent with the baseline specification in 

that we observe a strong, positive and significant interaction effect on farm-level observations and no 

interaction on county-level data. 

 

Rows five and six report the results obtained by broadening the farm sample to include very small 

farms. Recalling section 2, the rationale behind limiting our analysis to properties larger than 30ha is 

that our definition of farmland value includes the value of buildings and houses older than 30 years. 

While this is not a problem for large farms, very small properties with old household buildings can 

present a significantly inflated farmland values per hectare. However, as shown in the fifth row, 

including all farms larger than 5ha (3801 farms) does not significantly impact the estimated climatic 

coefficients. The sixth row shows that even encompassing all properties in the FS sample (4044 

farms), including those smaller than 1ha, does not change the sign and the magnitude of the 

coefficients, although the interaction effect becomes not significant because the additional noise 

introduced the data. 
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Row seven we allow for a stronger spatial autocorrelation in the farm-level model, including an 

additional random effect term grouping together clusters of nine 10x10 cells, for a total of 900km
2
. 

While the magnitude of some of the coefficients slightly decreases, the interaction effect is still 

positive and significant at the 5% level. 

 

All these robustness tests confirm the presence of strong aggregation bias. Is this bias caused by 

grouping together properties with different land values, or by the cruder representation of climate in 

county-level information? In order to answer this question, in the eighth row we report the estimates 

of a farm-level model which represents climate using the values of rainfall and precipitations 

calculated for the aggregated data, i.e. county-level weighted averages. The resulting coefficients are 

indeed biased and similar to those estimated on aggregated data, with the interaction effect, in 

particular, being non-significant. This shows that not taking into account the important within-county 

variation in climate (previously illustrated in Table 2) may well be the main cause of the bias we 

detect on the models estimated on aggregated data. 

 

 

5. Climate change impact predictions 

 

We combine the estimates presented in the previous section with the recently released UK Climatic 

Projections 2009 (UKCIP09, source: ukclimateprojections.defra.gov.uk) to project the impact of 

climate change on agriculture in Great Britain and to test whether aggregation bias has any 

implication for predictions. Specifically, we use the UKCIP09 projected changes in monthly average 

minimum temperature, maximum temperature and precipitation in the medium level emission 

scenario for years 2020-2049 (corresponding to the SRES A1B in the IPCC Special Report on 

Emissions Scenarios, Nakicenovic et al., 2000). This data is available on 25x25 km grid squares 

covering the entire UK. We derive the corresponding values of degree days and precipitation in the 

growing season by applying these changes to the 10x10 km Met Office historical averages for the 

years 1960-1990, which are the baseline climatic conditions indentified by the UKCIP09. We also 

take this climate as our baseline. 

 

To derive the impact of climate change, we predict log-agricultural land price under both the baseline 

and the climate change scenario. The only difference between the two scenarios is climate: all other 

determinants (soil, population density, etc.) are kept constant at their 2008 values, the last year of our 

farm data. Consequently, we do not consider other factors that are likely to change in the future, such 

as technology, prices, land use and population. Therefore, our results are intended to estimate how 

climate will affect agriculture ceteris paribus, and should not be interpreted as predictions of the 
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future. Table 6 reports descriptive statistics for the climatic and environmental determinants in the 

baseline and climate change scenarios. The ranges of the exogenous variables are similar to those of 

the data used for estimation (see Table 1), indicating that our FS sample is representative of the 

overall environmental conditions in Great Britain. 

 

[ TABLE 6 about here ] 

Descriptive statistics of the climatic and environmental variables 

 

Compared to the baseline, the UKCIP 2020-2049 medium emission climate change scenario is 

characterized by both higher temperatures and lower precipitation during the growing season. The 

highest value of degree days is 1948, still considerably below 2400: the threshold identified by SHF 

as the level at which temperature begins to have a negative effect on land values. Therefore, we can 

extrapolate our model estimates with sufficient confidence. However, to test the robustness to these 

out-of-sample projections, we also compute climate change impacts using a “limited” scenario, in 

which all combinations of rainfall and temperature are restricted to be within the range used for 

estimation. For example, in this “limited” scenario we set to 1700 the maximum value for degree days 

and to 240 mm the minimum quantity of precipitation. While we calculate predictions from the 

parametric specifications (Models A, B and C) using both the “original” and “limited” climate change 

scenarios, we only use the latter for the semi-parametric regression (Model D) since the bi-

dimensional smooth function of degree days and precipitation tends to be very erratic outside the 

range of values used for estimation, generating unreliable results when used out-of-sample. 

 

The predicted impacts of climate change on farmland values derived from our four models are 

reported in Table 7. To provide a meaningful summary of grid squares or counties with different 

agricultural areas and land values, the percentage changes are weighted by the baseline total 

agricultural land value in each cell or county.
13

 The county-level regression with no interaction terms 

(Model A) predicts strong and positive impacts on the rural sector, with an overall increase of 30% in 

GB farm values compared to baseline levels. By applying a 5% discount rate (as per Mendelsohn et 

al., 1994), this translates into an increase in total GB farm net revenues of £1.5 billion per annum. 

Furthermore, according to Model A, the 1
st
 decile of the predicted changes corresponds to an increase 

                                                           
13

 We compute the total agricultural area within each square or county using 1 km grid data from the Land 

Cover Map 2000 (LCM2000, http://www.ceh.ac.uk/LandCoverMap2000.html), produced by the Centre for 

Ecology and Hydrology. LCM2000 is a parcel-based classification of satellite image data showing land cover 

for the entire United Kingdom. We include in agriculture the land classified as: (a) arable and horticultural, (b) 

improved grassland, (c) semi-natural, rough grass and bracken and (d) mountain, heat and bog. This definition 

slightly overestimates the amount of agriculture in GB, resulting in a total of about 19 million hectares rather 

than the 17 million presented in the official statistics (e.g. http://www.defra.gov.uk/statistics/). Therefore, we 

rescaled the agricultural area in each cell or county by multiplying it by a factor of 0.9 to match with the official 

GB total. 
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of around 25%, indicating that almost all counties will be significantly better-off as a result of 

projected climate change. Model B presents a slightly different and more heterogeneous picture, with 

the first decile being a loss of 15% and gains rising to about 70% for the last decile. Overall, this 

translates in an overall 20% increase in average farm values (£1 billion per annum). 

 

[ TABLE 7 about here ] 

Climate change impact on agriculture in the 2020-2049 UKCIP medium emission scenario 

 

However, the estimates provided by our farm-level models (Model C and D) are considerably less 

optimistic. Model C predicts a mean increase in farm value ranging between 6% and 8% (which is 

lower than the first decile predicted by Model A) with large areas experiencing losses and the a first 

decile now indicating a loss of some 20%. These results are not significantly different to those 

obtained using our most flexible regression, Model D, which suggest that climate change will induce a 

diverse set of impacts on agricultural land values ranging from (again) a lower decile loss of 20% to 

an upper decile increase of more than 40% with a mean value around +7%, comparable to an annual 

rise in net revenues of about £400 million. 

 

Not surprisingly, the motivation for this difference in predictions between farm-level and county-level 

models can be found in the interaction effect between temperature and rainfall. Recalling Figure 2 and 

3, precipitation in farm-level models can either have a negative or positive effect on land values 

depending on the level of temperature. While the warmer growing season projected in this climate 

change scenario can boost yields, it can also increase crop water demand and reduce drought-

tolerance. Climate change is also expected to decrease precipitations which, in the driest areas of GB, 

can lead to water deficiency and less favourable farming conditions, ultimately lowering land values. 

In contrast, county-level models do not capture the interaction effect between temperature and 

precipitation and erroneously project lower rainfall and higher temperatures to have positive impacts 

on land values. This bias is particularly severe for Model A, which does not account for interaction 

effects and in fact predicts an increase in land values throughout the country. However, it is also 

present in Model B, which significantly over-estimates the average impact of climate change. 

 

Finally, in Figure 4 we present box-plots of the distribution of the change in total GB farm net 

revenues according to different models, computed via 5000 bootstrap repetitions. Results compare 

county level against farm level estimates using eight among the specifications reported in Table 5, 

including four county-level and four farm-level models. Specifically, we plot the results using the 

baseline model (row 1 in Table 5), using a different aggregation method (row 2), using a different 

climate definition (row 3), including the observations for which the value of the farm value has not 

been updated (row 4) and including a larger spatial-autocorrelation (row 5). For each specification we 
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plot results using both the original UKCIP temperature and precipitation values (“original” climate 

scenario) and by restricting the climate change conditions within the boundaries of the estimation 

sample (“limited” climate scenario). The bias introduced by aggregation is evident, with the county-

level model projections, represented in the first eight plots, being significantly different from the 

farm-level results, shown in the last eight plots. None of the mean impacts predicted by the county-

level models fall within the 95% confidence intervals of the impacts predicted by the farm-level 

models. In comparison, restricting the climate change conditions within the boundaries of the 

estimation sample (“limited” climate scenario) as opposed to using the original UKCIP temperature 

and precipitation values (“original” climate scenario) has a small effect on the results. These results 

show that the aggregation has not only affected the parameter estimates, as shown in the previous 

section, but has also led to climate change impact projections which are significantly distorted . 

 

 

6. Concluding remarks 

 

Both Fisher, Hanemann, Roberts and Schlenker (2012) and Deschênes and Greenstone (2012) 

conclude their analyses by pointing out that, despite the growing literature, a consensus on the 

potential economic impact of climate change on agriculture remains still far from being achieved. 

This paper contributes the debate by highlighting two significant issues which has been previously 

overlooked: aggregation bias and interactions between temperature and precipitation. We present a 

Ricardian land value regression using a unique, 10 year panel of more than 3000 farms located in GB, 

which is characterized by one of the most dense weather station network in the world. This allows us 

to accurately represent the local climatic conditions affecting each farm in our sample. We compare 

this analysis with the standard models estimated on data averaged across counties, demonstrating that 

a significant bias afflicts climatic coefficients based on aggregated data. While county-level 

regressions confirm the assumption of additive climatic effects implemented in previous Ricardian 

studies, our farm-level analysis reveals important interactions between precipitation and temperature 

in determining land values. Consistent with the literature on plant physiology, which shows that the 

crop requirement for water increases with temperature, we find that higher precipitation is more 

valuable when temperatures are high. Accordingly, higher temperatures increase land values only if 

there is enough precipitation to prevent the risk of drought. This interaction effect becomes 

statistically insignificant when we analyze the same data aggregated over counties. These findings are 

consistent across different data, models and aggregation methods. Ignoring this interaction has 

significant implication for climate change impact projections which result in being severely distorted. 

 

We also test for functional form miss-specification by estimating a semi-parametric model based on 

penalized splines. The results do not appear to be significantly different from those obtained using the 

simpler, quadratic regression. Although farmland values have changed considerably in the 10 years 
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included in the analysis, our estimates remain remarkably robust. As Schlenker, Hanemann and Fisher 

(2006) and Fisher, Hanemann, Roberts and Schlenker (2012), we find that the fundamental 

dependence of agricultural incomes on climatic conditions is independent of government policies and 

crop prices. 

 

One possible explanation for the aggregation bias is measurement error. As shown in this paper, 

aggregate data fail to account for the fine-scale variations in the local climate affecting single farms 

and erroneously assumes counties to be climatic-homogenous units. On this point, using county-level 

climate averages with farm-level land value data still produces biases coefficients. Unfortunately, in 

most countries weather stations are not dense enough to provide the accurate local climate measures 

(in particular regarding precipitation) required for extensive farm-level analyses. Our findings are 

consistent with previous research (e.g. Sinclair, 2011) in showing that local patterns of precipitation 

play a fundamental role in understanding the impact of climate change on agriculture. They also 

highlight the importance of collecting weather data accurate enough to truthfully represent local 

climatic conditions. 

 

While aggregation bias could be less significant in countries where climate presents less local 

variation, the fact that previous county-level analyses ignored the interaction effect between 

precipitation and temperature casts some doubt on the validity of their conclusions. This is an 

empirical question which could be worth investigating in the future by, for example, analyzing farm-

level statistics for enterprises located close to weather stations, in order to have precise information on 

the their climate. Obviously, the usual caveats of Ricardian analyses apply also here. Prices, 

population and other drivers are assumed to remain constant between the scenarios. Possible 

beneficial effects of increased CO2 fertilization on crop growth are also not taken into account, though 

some recent research suggests that those may be much smaller than previously believed (Long et al., 

2006). 
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 Appendix: the semi-parametric AMM estimation 

  

This Appendix provides the details regarding the estimation of the semi-parametric model. We 

represent the smooth functions in equation (6) as splines, i.e. linear combination of basis functions of 

the regressors (e.g. Ruppert, Wand and Carroll, 2003; Wood, 2006b; Keele, 2009). For example, 

considering one of the non-climatic factors gx and indicating the basis functions with bx,j(gx) (j=1,..,lx), 

the corresponding smooth function can be written as: 
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where δx,j (j = 1,...,Jx) are the parameters to be estimated and Jx is the number of basis functions which 

determines the maximum possible flexibility of the relation between gx and V (the higher the value, 

the more non-linear or ‘wiggly’ is the estimated effect). Among the simplest basis functions are those 

corresponding to linear regression splines, which fit a piecewise linear function between a set of knots 

located between the range of values of the regressor. The number of knots determines the flexibility of 

the splines and the number of parameters to be estimated. In the linear case with r knots (κ1x,..., κrx) 

and suppressing the subscript x for simplicity, equation (A1) becomes: 
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where (g – κj)+ = max(0, g – κj) (note that, if there are multiple smooth functions, the constant is only 

identifiable by imposing a sum-to-zero constraint). Whiles this type of spline is conceptually very 

intuitive, it can present sharp corners at the knots and, therefore, is too restrictive for many 

applications. In this paper we use natural cubic splines, which offer computational advantages when 

applied to large datasets (see Wood, 2006b). These splines fit third degree polynomial functions 

between each set of knot, with first and second derivatives constrained to be continuous in the entire 

range of g(.). Furthermore, in order to avoid erratic behavior at the extremes, the fit before the first 

knot and after the last one is constrained to be linear (i.e. first and second derivatives are set to zero). 

This results in the number of basis functions Jx being equal to the number of knots r.
14

 

 

                                                           
14

 Several other types of bases have been proposed in the literature. Ruppert et al. (2003) and Wood (2006b) 

provide a comprehensive illustration. Welham et al. (2007) demonstrate the links existing among the most 

commonly used bases and undertake a simulation study from which no clear winner emerges. 
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The number of knots effectively determines the flexibility of the smooth function. Given a fixed 

number of knots, the model can be estimated as a standard regression, i.e. by Ordinary Least Squares 

(OLS) or Maximum Likelihood (ML). However, there is a trade-off between sufficient knots to 

accurately represent any unknown, non-linear relation and, at the same time, avoid the risk of 

overfitting. This is a common problem in semi-parametric approaches. A practical solution to this 

long-standing issue is penalized estimation (Ruppert, Wand and Carroll, 2003; Wood, 2006b). The 

idea here is to augment the likelihood by including a penalty for the excessive roughness (typically 

indicated with the term ‘wiggliness’) of the smooth functions, which can be expressed as a function of 

the integral of the square of its second derivative. The penalized likelihood corresponding to the 

smooth function in equation (A1) can then be written as: 

 

(A3)
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where l(.) is the model likelihood, lp(.) is the model penalized likelihood, δδδδ is the vector of parameter 

to be estimated and λ is the smoothing parameter, which controls the weight given to the ‘wiggliness’ 

penalty. As λ increases so the function becomes smoother, with λ → ∞ corresponding to a straight 

line fit. In this framework, therefore, the flexibility of the smooth function is regulated by the value of 

the smoothing parameter λ rather than by the number and placement of the knots, which actually 

make little difference (see Keele, 2009, for some examples). Ruppert, Wand and Carroll (2003), for 

example, show that the degrees of freedom of a smoothing spline are just a mathematical 

transformation of λ. 

 

Various techniques have been proposed to estimate the optimal amount of smoothing (i.e. the 

parameter λ) directly from the data (see Wood, 2006b, and Keele, 2009). In this paper we use ML 

estimation techniques representing the smoothing splines as random effects (Ruppert, Wand and 

Carroll, 2003). The random effect representation of the natural cubic spline corresponding to equation 

(A1) can be written as: 

 

 (A4)
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where the bj(g) are non-linear basis functions (whose definition is somewhat lengthy and given, for 

example, in Welham et al., 2007), δ0 and δ1 are the fixed effect (un-penalized) parameters and the φj 

are elements of a vector of random effects drawn from a N(0, σφ
2
H), where H depends on the 

penalties (A3). This approach models non-linearity as a form of heterogeneity across groups. The data 

within each set of knots form each group. The intuition behind this representation is that a linear fit 
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(φ1 = φ2 = ... = φr-2 = 0) would ignore these differences and capture the relationship with only two 

parameters, whereas an un-penalized likelihood (φ1, φ2, ..., φr-2 estimated as fixed effect) would 

provide highly variable and "wiggly" estimates (in the extreme case, with a knot at each data point, it 

would perfectly interpolate the data). Between these two extremes, the random effect representation 

provides the optimal (i.e. best linear un-biased predictor, Speed, 1991) trade-off between excessive 

smoothing and overfitting of the non-linear function. 

 

This specification can be estimated as a standard random effect model, i.e. by ML or Restricted 

Maximum Likelihood, (REML). By estimating each smoothing parameter λ as σu
2
/σφ

2
, these 

techniques resolve the subtle task of determining the model flexibility a priori, by incorporating this 

choice into the actual estimation process. Another important feature of this method is that, if a non-

linear relationship is not supported by the data, the corresponding smoothing parameter will 

automatically be estimated to have a high value, the resulting random effect will be close to zero and 

the smooth function will reduce to a standard linear form. Moreover, this approach can also be 

extended to bivariate functions, in order to flexibly capture any joint non-linear effects of two 

explanatory variables. In this paper we model the impact of rainfall and temperature on land value by 

using tensor products (Wood, 2006a), which have the important properties of being invariant to 

changes in the scale of the regressors and can, therefore, be used to smooth variables expressed in 

different units. Finally, since this estimation technique expresses smoothing splines as random effect 

terms, inference can be implemented within the standard framework for this class of models (Pinheiro 

and Bates, 2000; Ruppert, Wand and Carroll, 2003). For instance, model reduction can be 

implemented with likelihood ratio tests for hypotheses on the random effects and with F-tests for 

hypotheses on the fixed effects. However, as in standard random effect models, testing for the random 

effects will be only approximate since it involves setting the variance of certain components of the 

random effects to zero, which is on the boundary of the parameter region (Stram and Lee, 1994). 
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Tables and Figures 

 

TABLE 1 

Farm level data descriptive statistics 

 Symbol Units x  )(ˆ xs  Min max 

land value V 1000£/ha 7.16 5.21 0.02 192.00 

degree days Dd 
o
C 1314.00 185.21 654.70 1639.00 

precipitation Prec Mm 384.70    101.60 245.20 1434.00 

soil class       

   -fine sf % 14.96 28.03 0.00 100.00 

   -medium fine smf % 8.58 21.49 0.00 100.00 

   -medium sm % 58.59 38.81 0.00 100.00 

   -coarse sc % 12.13 21.42 0.00 100.00 

   -peat sp % 5.74 16.72 0.00 100.00 

depth to rock Dtr Dm 7.42 3.26 0.00 14.00 

slope Slo 
o 

3.23 2.21 0.00 17.06 

pop. density Popd pop/km
2
 203.20 258.30 6.80 2896.0 

park share spark % 7.13 22.45 0.00 100.00 

ESA share sesa % 11.79 26.18 0.00 100.00 

NVZ share snvz % 35.01 43.12 0.00 100.00 

Notes: x indicates the sample mean, )(ˆ xs the sample standard deviation. Statistics refers to the observations in our 

FS sample, not to Great Britain as a whole. Land value and income deflated using the GDP deflator with 2008 as 

the baseline year (source: HM Treasury, http://www.hmtreasury.gov.uk/Economic_Data_and_Tools/ 

GDP_Deflators/data_gdp_index.cfm, accessed on the 16
th

 June 2010). The total number of observations is 9506 

(3283 farms in located in 1361 different 10 km grid cells). 

 

 

 

 

TABLE 2 

Descriptive statistics of the climatic variables aggregation 

 x  )(ˆ xs  min max 

Between-county statistics     

    Precipitation (mm) 400.80 107.83 275.70 811.00 

    Degree days (
o
C) 1290.00 197.37 756.90 1605.00 

Within-county statistics     

    Range of Precipitation (mm) 157.50 214.95 2.09 1075.00 

    Range of Degree days  (
o
C) 230.40 205.57 1.00 801.70 

Notes: x indicates the sample mean, )(ˆ xs the sample standard deviation. Statistics refer to climatic 

conditions calculated as the weather average from year 1970 to year 2000. Between-county statistics 

denote the climatic conditions observed on aggregated county-level data, while the within-county 

statistics represent the loss of climatic variability due to the aggregation process.  
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TABLE 3 

Parameter estimates and diagnostics 

  Model A 

county-level,  

no climatic interaction 

Model B 

county-level,  

climatic interaction 

Model C 

farm-level, 

climatic interaction 

Model D 

farm-level, 

semi-parametric 

Climate variables      

   precipitation (prec)  -3.165 

(2.152) 

-4.291 

(2.219) 

-5.284 * 

(2.252) 

-- 

   prec
2
  -3.848 *** 

(1.057) 

-5.109 *** 

(1.271) 

 0.677 

(1.493) 

-- 

   degree days (dd)    9.117 *** 

(2.298) 

 8.148 *** 

(2.332) 

 16.554 *** 

(2.031) 

   -- 

   dd
2
  -1.479 

(1.458) 

-1.615 

(1.441) 

-5.729 *** 

(1.483) 

-- 

   dd * prec 

 

  -- -98.962 

(57.050) 

 495.636 ** 

(184.786) 

8.606 *** 

 

Control variables 

     

  slope  -0.045 

(0.031) 

-0.057 

(0.031) 

-0.026 ** 

(0.008) 

1.000 *** 

  depth to rock  -0.001 

(0.002) 

-0.001 

(0.002) 

-0.000 

(0.000) 

1.895 

  pop. density (dpop)  -0.167 

(0.945) 

-0.101 

(0.933) 

 0.398 *** 

(0.100) 

3.751 *** 

  dpop
2
  -0.528 

(1.066) 

-0.755 

(1.061) 

-0.201 *** 

(0.059) 
-- 

  share park   0.747 ** 

(0.256) 

 0.710 ** 

(0.254) 

 0.175 ** 

(0.059) 

 0.191** 

(0.060) 

  share NVZ   0.011 

(0.049) 

 0.011 

(0.049) 

-0.033 * 

(0.013) 

-0.031 * 

(0.013) 

  share ESA  -0.409 * 

(0.174) 

-0.403 * 

(0.171) 

 0.027 

(0.045) 

 0.011 

(0.045) 

Fixed effects    Yes ***   Yes ***   Yes ***   Yes *** 

Soils shares    Yes    Yes   Yes ***   Yes *** 

Random effects      

   County   0.234  0.230  --  -- 

   Cell  --  --  0.279  0.271 

   Farm  --  --  0.403  0.402 

   Residuals   0.273  0.273  0.184  0.184 

Model fit      

   LogLik  -224.31 -219.00 -2032.97 -1966.49 

   AIC   506.6  498.01  4127.95  3998.97 

   BIC   643.2  639.28  4349.81  4235.24 
Notes: Models A and B estimated on county averages, 848 observations for a total of 102 counties. Models C and D estimated on farm 

data, 9506 observations for a total of 3283 farms in 1361 cells of 10km. All models estimated with Restricted Maximum Likelihood. 

Yearly fixed effect and Scotland and Wales dummy variables strongly significant but not reported in the table to preserve space. In 

Models A, B and C the table reports the coefficient estimate (with standard error in parenthesis) and the significance calculated with an 

approximate t-value conditional on the random effects (details in Pinheiro and Bates, 2000). The asterisks are defined as: * = significant 

at the 0.05 level, ** = significant at the 0.01 level, *** = significant at the 0.001 level. In model D the table reports the “effective degree 

of freedom” and the significance calculated with an approximate F-test (details in Wood, 2006b). Asterisks are defined as for Models A, 

B and C. In models A, B and C precipitation, degree days and population density transformed into orthogonal polynomials to reduce 

multicollinearity. LogLik = (restricted) log-likelihood, AIC = Akaike Information Criterion, BIC = Bayesian Information Criterion. 
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TABLE 4 

Pairwise stability tests 

years F-test p-value 

1999 and 2000 0.58 0.932 

1999 and 2001 1.76 0.156 

1999 and 2002 1.19 0.366 

1999 and 2003 1.75 0.116 

1999 and 2004 1.12 0.294 

1999 and 2005 1.64 0.084 

1999 and 2006 1.96 0.138 

1999 and 2007 1.23 0.212 

1999 and 2008 1.14 0.344 
 

Notes: test on Model D estimated only on the farms which are present in both years, 

with 4 knots for population density and 16 knots for the joint effect of rainfall and 

temperature. The F-statistics test the stability of the climate parameters from one 

year to the other and are conditional on the random-effect estimates, as suggested in 

Pinheiro and Bates (2000). Approximated p-values are calculated with 500 

bootstrap repetitions. 
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TABLE 5 

Parameter estimates according to alternative specifications 

 

Specification County level estimates (Model B)  Farm-level estimates (Model C) 

 prec prec
2
 dd dd

2
 dd * prec  prec prec

2
 dd dd

2
 dd * prec 

Base specification (1) 

(only farms bigger than 30ha, climate 

1971-2000, area-weighted aggregation) 

 -4.291 

(2.219) 

-5.109 *** 

(1.271) 

 8.148 *** 

(2.332) 

-1.615 

(1.441) 

-98.962 

(57.050) 

 -5.284 * 

(2.252) 

 0.677 

(1.493) 

16.554 *** 

(2.031) 

-5.729 *** 

(1.483) 

495.636 ** 

(184.786) 

Different aggregation method (2) 

(aggregating data by using un-weighted 

arithmetic averages) 

-3.985 

(2.311) 

-5.503 *** 

(1.326) 

7.889 ** 

(2.427) 

-1.947 

(1.499) 

-175.412 ** 

 (59.614) 

 -- -- -- -- -- 

Different climate specification (3) 

(climate calculated as the average 

weather of the 30 previous years) 

-3.128 

(2.213) 

-3.290 ** 

(1.216) 

 7.613 ** 

(2.363) 

 0.644 

(1.300) 

-5.129 

(55.019) 

 -4.697 * 

(2.141) 

 0.967 

(1.367) 

 15.577 *** 

(2.066) 

-2.574 * 

(1.136) 

 721.851 *** 

(160.988) 

Including not updated values (4) 

(including observations in which the 

land value is not updated in that year) 

-2.957 

(2.386) 

-4.103 ** 

(1.370) 

 9.305 *** 

(2.493) 

-1.173 

(1.551) 

-20.091 

(62.066) 

 -8.731 ** 

(3.046) 

 0.596 

(2.338) 

24.189 *** 

(2.621) 

-7.263 *** 

(1.952) 

1047.749 ** 

(367.436) 

Including also small farms (5) 

(including all farms bigger than 5ha) 

 

-1.365 

(2.281) 

-5.694 *** 

(1.340) 

 6.815 ** 

(2.539) 

-1.185 

(1.474) 

-100.050 

 (60.943) 

 -3.384 

(2.558) 

-0.249 

(1.646) 

18.268 *** 

(2.267) 

-3.212 * 

(1.667) 

531.273 * 

(221.200) 

Including all farms (6) 

(including all farms, even farms smaller 

than 1ha) 

-2.882 

(2.870) 

-6.320 *** 

(1.706) 

 11.130 *** 

(3.159) 

-4.614 * 

(2.447) 

-38.067 

(77.959) 

 -4.173 

(3.368) 

-0.957 

(2.170) 

23.059 *** 

(2.952) 

-0.722 

(2.207) 

 155.827 

(296.560) 

Larger spatial autocorrelation (7) 

(including an additional random effect 

term grouping nine 10km cells) 

-- -- -- -- --  -5.289 

(3.099) 

 3.008 * 

(1.611) 

 9.528 ** 

(3.058) 

-3.055 

(1.911) 

 464.509 * 

(229.254) 

Using county-level climate (8) 

(using county-level climate data on 

farm land value data) 

-- -- -- -- --   0.979 

(2.157) 

-14.022 *** 

 (1.774) 

23.683 *** 

(2.165) 

-5.298 *** 

(1.585) 

 60.986 

(214.444) 

Notes: Coefficients estimated via Restricted Maximum Likelihood (REML) and defined as in Table 3. Standard errors conditional to the random-effects in parenthesis. 

Asterisks indicate significance, * = significant at the 0.05 level, ** = significant at the 0.01 level, *** = significant at the 0.001 level. 
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TABLE 6 
Descriptive statistics of the climatic and environmental variables 

 

 units x  )(ˆ xs  min max 

Baseline  

(1960-1990) 

     

degree days 
o
C 1164.0 251.8 367.4 1645.0 

precipitation mm 450.7 169.0 250.8 1504.0 

      

Climate change projections 

(UKCIP 2020-2049) 

     

degree days 
o
C 1424.0 276.1 571.6 1948.0 

precipitation mm 395.8 188.3 158.6 1444.0 

      

Control variables      

depth to rock dm 6.4 3.5 0.0 14.0 

Slope 
o 

4.4 3.6 0.0 24.7 

pop. density pop/Km
2
 226.4 434.6 8.0 4924.0 

Notes: x indicates the sample mean, )(ˆ xs the sample standard deviation. Data refer to Great Britain 10 km grid 

square cells, only including only cells in which there is some agricultural land. Control variables are assumed to 

remain constant between the two scenarios. 

 

 

 

 

TABLE 7: 

Climate change impact on agriculture in the 2020-2049 UKCIP medium emission scenario 

 

Model sample mean (%) Q 10 (%) Q 90 (%) Total (M£) std.err (M£) 

Model A 
(county, no climatic 

interactions) 

original 33.31 27.40 39.45 1717 571 

limited 30.99 24.39 39.45 1597 517 

Model B 
(county, climatic 

interactions) 

original 18.53 -12.46 69.66 955 391 

limited 19.51 -18.99 69.93 1005 336 

Model C 
(farm, climatic 

interactions) 

original 5.82 -19.86 41.05 300 219 

limited 7.66 -12.58 40.33 394 243 

Model D 
(farm, semi-parametric) 

limited 7.75 -4.78 37.01 400 409 

Notes: Weighted statistics (weights = agricultural land area * land value in the baseline). “Q10” indicates 

the 10% quantile, “Q90” the 90% quantile, “Total” refers to the sum of annual GB farm net revenues 

assuming a discount rate of 5%, and “std.err” is the standard deviation of the total, calculated via 5000 

bootstrap repetitions. 
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Figure 1: The effect of temperature and precipitation on the logarithm of land price: contour plots with 

iso-value lines (left) and observed climate data (right). 
 

 
Notes: On the left the estimated effect of precipitation and degree days on the logarithm of land value according to the semi-

parametric Model D, on the right the scatter plot of the values of precipitation and degree days within the farm-level sample. 
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Figure 2: The effect of precipitation on the logarithm of land value for different levels of temperature 
 

Note: on the left the estimated effect of precipitation when temperature is low (1100 oC degree days in the growing season), on 

the right the estimated effect of precipitation when temperature is high (1650 oC degree days in the growing season). Solid line 

= mean estimate according to the semi-parametric Model D, dotted line = ± 1 standard error. 
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Figure 3: The effect of temperature on the logarithm of land value for different levels of precipitation 

 
Note: on the left the estimated effect of temperature when precipitation is low (300 mm in the growing season), on the right the 

estimated effect of precipitation when temperature is high (500 mm in the growing season). Solid line = mean estimate 

according to the semi-parametric Model D, dotted line = ± 1 standard error. 
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Figure 4: Estimated total impact of climate change on GB agriculture in the 2020-2049 UKCIP 

medium emission scenario in different model specifications 

 

 
 

Notes: The boxplots represent the confidence intervals for the change in total GB annual farm net revenues, 

calculated with 5000 bootstrap repetitions. The gray box indicates the 1st and 3rd quartile, the whiskers the 95% 

confidence interval. The models estimated on county level data (Model B) and farm level data (Model C) are 

based on five different specifications reported in Table 5 (rows 1,2, 3, 4 and 7, in parenthesis). “original” 

indicates the original climate change scenario, “limited” indicates the “limited” climate change scenario. 

 

 








