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Abstract     

 

Characterizing the anticipated performance of energy technologies to inform policy decisions 

increasingly relies on expert elicitation. Knowledge about how elicitation design factors impact 

the probabilistic estimates emerging from these studies is however scarce. We focus on nuclear 

power, a large-scale low-carbon power option, for which future cost estimates are important to 

designing energy policies and climate change mitigation efforts. We use data from three 

elicitations in the USA and in Europe and assess the role of government Research, Development, 

and Demonstration (RD&D) investments on expected nuclear costs in 2030. We show that 

controlling for expert, technology, and design characteristics increases experts’ implied public 

RD&D elasticity of expected costs by 25%. Public sector and industry experts’ costs expectations 

are 14% and 32% higher, respectively than academics. US experts are more optimistic than their 

EU counterparts, with median expected costs 22% lower. On average, a doubling of public 

RD&D is expected to result in an 8% cost reduction, but uncertainty is large. The difference 

between the 90
th
 and 10

th
 percentile estimates is on average 58% of the experts’ median estimates.  

Public RD&D investments do not affect uncertainty ranges, but US experts’ are less confident 

about costs than Europeans. 

 

 

PACS: 

01.78.+p Science and government 

89.30.Gg Nuclear fission power (for fission reactors, see 28.41.-i and 28.50.-k in nuclear physics) 

89.65.Gh Economics; econophysics, financial markets, business and management (for economic 

issues regarding production and use of renewable energy, see 88.05.Lg) 
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1. Introduction 

Developing energy policies that are robust to a broad set of possible future conditions typically 

requires explicit (Nakicenovic and Riahi, 2002) or implicit (Nordhaus, 2008) characterization of 

the anticipated performance of individual energy technologies. Representing future technological 

change introduces considerable uncertainty into decision-making because, as we know from past 

data, energy technologies have been dynamic (Grubler et al., 1999). And even though future 

change is uncertain, we are not completely ignorant. Dispersed researchers have produced data 

and developed tools that, in combination, provide the basis for probabilistic estimates of future 

improvements in technology. A well-established methodology used to this end is expert 

elicitation. 

 

Expert elicitations gather the informed opinions of experts on technical questions that fall within 

their area of knowledge and expertise. Data collection is carried out using elicitation protocols 

carefully designed to reduce heuristics and biases (Hogarth, 1987; Morgan and Henrion, 1990; 

Cooke, 1991). These data-gathering efforts are particularly useful in decisions that require an 

assessment of the future evolution of energy technologies because historic data may not inform 

on future performance and costs or the relevant data might not be available.  

 

Energy policy making relies on experts’ estimates of the future performance, costs, and safety of 

energy technologies (Apostolakis, 1990). A prominent one is the study undertaken by the 

European Commission and the United States Nuclear Regulatory Commission during the 1990s 

on the uncertainty surrounding accident consequence codes for nuclear power plants (Cooke and 

Goossens, 2004). Six years ago, the National Research Council released a report with a strong 

recommendation that the U.S. Department of Energy begin to use expert elicitation for their 

RD&D allocation decisions, to explicitly characterize probabilistic estimates of the outcomes of 

RD&D investments (NRC, 2007). Over the past few years, research groups on both sides of the 

Atlantic have gathered data from expert elicitations on the future of several energy technologies 

to inform energy RD&D policy (Anadon et al., 2011; Anadon et al., 2012; Baker and Keisler, 

2011; Baker et al., 2009a, b; Chan et al., 2011; Curtright et al., 2008; Bosetti et al., 2012). The 

ability to use probabilistic data from various elicitations to characterize future energy technology 

uncertainty and improve the reliability of estimates is valuable for impact assessment evaluations 

such as the Energy Modeling Forum (EMF) and the International Panel on Climate Change 

(IPCC), especially in light of the magnitude of investments being considered to support energy 

technologies and the costs and time involved in collecting elicitation data.  

 

This paper takes a first step in this direction and focuses on three recent expert elicitations on the 

future costs of nuclear fission technologies carried out by groups at Carnegie Mellon, FEEM 

(Fondazione Eni Enrico Mattei) and Harvard. This collection of experts’ estimates provides a rich 

resource with which to inform RD&D, energy, and nuclear policy decisions on future nuclear 

costs and on the uncertainty surrounding them. However, substantial differences in expert 

composition, elicitation design and technology considered make it difficult to draw more than 

very general conclusions when looking at the multiple elicitations. Such differences are very 

likely to affect experts’ estimates. Previous studies, for example, pointed at the importance of 

protocol design and expert selection as key for elicitation results (Raiffa, 1968; Keeney and 

Winterfeldt, 1991; Meyer and Booker, 1991; Phillips, 1999; Clemen and Reilly, 2001; Walls and 

Quigley, 2001). However, no empirical assessments of the impact and size of differences in 

expert selection and elicitation design have been carried out to date. Similarly, no empirical 

analysis exists on the size and shape of the relationship between public RD&D investments and 

the future cost of nuclear power (or any other technology) emerging from elicitations data.    
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Our contribution fills this gap in the literature. First, provide important insights on the bias 

introduced by specific elicitation design decisions by assessing how experts’ characteristics affect 

estimates of cost and uncertainty. The FEEM and Harvard studies are similar in elicitation design 

and method (both were conducted online), but include a heterogeneous group of experts in terms 

of affiliation and nationalities, allowing investigation of how characteristics of the expert 

influence their beliefs about the returns to public RD&D. Conversely, the CMU elicitation was 

administered in person, but only includes data for Gen. III/III+ consistent with a business as usual 

U.S. public RD&D funding scenario. Hence we provide some preliminary results on whether or 

not in person elicitations are associated with statistically significant differences on costs under a 

BAU public RD&D scenario.  Second, we derive an average estimate of the elasticity of (future) 

nuclear costs to (future) nuclear public RD&D investments that accounts for expert, design, and 

technology differences. This is a valuable parameter for both policy makers and modelers 

interested in uncertainty analysis, which can be compared with historical estimates of returns to 

RD&D (NRC, 2001). 

   

2. Data  

We use responses from 67 experts about the future costs of nuclear power conditional on 

specified levels of RD&D investment obtained via expert elicitation included in the Harvard/ 

FEEM (Anadon et al., 2012) and CMU (Abdulla et al., In press) studies (25 experts in the 

Harvard elicitation, 30 in the FEEM elicitation, and 12 in the CMU elicitation). Table S1 in the 

supplementary material summarizes the key characteristics from these elicitation studies.  

Harvard and FEEM used online tools to elicit US and EU experts, respectively. In the CMU study 

experts completed a paper-based instrument during an in person meeting.  

 

For each expert, the three elicitations collected estimates of the 50
th
, 10

th
 and 90

th
 percentile of 

expected overnight capital costs in 2030 for different types of reactors, conditional on levels of 

public annual RD&D funding.  All elicited estimates are in 2010$.  All experts provided 

estimates consistent with the business as usual (BAU) funding scenarios, where yearly public 

RD&D investment to 2030 would not significantly change from the present investment in the 

United States or in the European Union, depending on the study. Moreover, the FEEM and 

Harvard experts were asked about 3 additional RD&D scenarios: (1) a Recommended budget 

scenario, with a yearly public RD&D investment level chosen by the experts (ranging between 

1.5 and 20 times BAU investments); (2) a Half Recommended budget scenario, with a public 

RD&D investment equal to half the yearly amount in the Recommended budget scenario; and (3) 

a 10X Recommended scenario, with a public RD&D investment equal to ten times the yearly 

amount in the Recommended budget scenario. Not all experts provided all estimates for all 

technologies, RD&D funding scenarios, and percentile values.  

 

Figure 1 shows a wide range of estimates of future costs under different public nuclear RD&D 

investment scenarios for large-scale Gen. III/III+ reactor systems (Harvard in the upper panel, 

FEEM in the middle and CMU in the lower)  Similar figures for the large-scale Gen. IV reactor 

systems and SMRs are reported in the SI.  17 of the FEEM and Harvard experts also participated 

in a group meeting in which they discussed the rationale behind their answers and could 

potentially converge towards a consensus answer (Dalkey, 1969). However, as documented in 

Anadon et al. (2012), only a few experts made marginal changes to their estimates.  
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Figure 1. Elicitation results for large-scale Gen. III/III+ reactor systems for the FEEM, Harvard and CMU 

studies (Abdulla et al., In press; Anadon et al., 2012).  The data points represent the 50th percentile estimates.  

The top and bottom error bars denote the 10th and 90th percentiles, respectively. The “2010 ref.” data point 

includes the experts’ estimates of costs in 2010, of interest given the fact that there are few reactors being built in 

both the US and the EU.  CMU experts 6 and 8 did not provide a 50th percentile estimate.  

 

 

3. Approach 

Our first objective is to understand how scenarios with different levels of potential public RD&D 

investment affect experts’ central estimates (50
th
 percentile) of the costs of nuclear technologies 

in 2030. Second, we assess whether the RD&D investment level also impacts the range of 

uncertainty surrounding these cost estimates. We define uncertainty here as the difference 

between the 90
th
 and the 10

th
 percentile of expected costs, normalized by the median (50

th
 

percentile). We thus use information on experts’ responses for each technology in each RD&D 

scenario. Given that, as explained above, not all experts provided all cost estimates, we end up 
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with 393 observations in the analysis of the central estimate and 389 observations in the analysis 

of the uncertainty range.  

 

We draw on two strands of literature to choose a functional form for our specifications. First, the 

literature on learning-by-doing (LbD) finds that the accumulation of experience in manufacturing 

and/or project development, proxied by capacity, often leads to productivity improvements 

(Arrow, 1962). In this “learning-curve” model, the rate of cost reductions in different 

technologies is a function of the number of units installed or produced. LbD is investigated using 

a ln-ln specification linking technology costs and experience and has been applied to a wide range 

of technologies (Bodde, 1977; Junginger et al., 2005; Grubler et al., 1999; Goldemberg et al., 

2004).  The “two factor learning curve” model augments the basic specification with a learning-

by-searching factor accounting for the impact of RD&D investments on costs (Kouvaritakis et al., 

2000; Klaassen et al., 2005; Soderholm and Klaassen, 2007).  We choose the ln-ln specification 

as our main model of the relationship between future costs and public RD&D investments. We 

however do not include a learning-by-doing variable because experts provided their cost 

estimates conditional on just RD&D investments (note that the CMU study only provides 

estimates consistent with a BAU public RD&D funding scenario in the US).   

 

The second strand of literature focuses on returns to RD&D (Evenson and Kislev, 1976; Evenson, 

1984; Segerstrom, 1998; Popp, 2002; Tassey, 2003; Bosch et al., 2005; Hall et al., 2009). These 

contributions generally suggest that if too many resources are devoted to RD&D in a short time 

frame, technology cost improvements could exhibit diminishing returns (Kortum, 1997; Popp et 

al., 2012). Diminishing marginal returns are usually tested with the inclusion of a quadratic 

RD&D term or a negative exponential function (Blanford, 2009). We thus also test a linear 

specification relating technology costs with RD&D and its squared term. 

 

3.1. Dependent variable: experts’ estimates of overnight capital cost 

As explained above, we consider two different dependent variables to explore the impact of 

RD&D investment on expected nuclear costs: the 50
th
 percentile estimate of overnight capital cost 

in 2030 and normalized uncertainty, defined as (p90-p10)/p50. Descriptive on both variables are 

presented in Table 1. The average expected cost of nuclear technologies in 2030 is around 4,800 

in $/kW, with estimates as low as 506 $/kW but also experts expecting costs as high as 14,156 

$/kW. Uncertainty ranges between 0.10 and 1.83, with an average value of 0.58. Table S2 in the 

SI contains a breakdown of the central estimate observations by RD&D scenario and technology 

type. 

 

3.2. Independent variables: research design and experts’ characteristics 

The estimates of costs provided by the experts are conditional on RD&D investment but also on 

the type of technology included in the elicitations. Specifically, the assumed yearly public RD&D 

investment levels range from $2,000 million to 80 billion dollars across the four different 

scenarios (BAU, Recommended, Half recommended and 10X recommended) (Table 1). With 

respect to technology characteristics, our observations are almost equally divided between Gen. 

III/III+ technologies, Gen. IV technologies and small and medium sized reactors (SMRs). We 

define these technology categories in detail in the SI. 

 

Among the observables that could potentially affect elicitation results we consider both variables 

capturing differences across studies (indicating differences in study design) and variables 
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capturing differences across experts within studies (indicating individual characteristics). For 

example, studies suggest that selecting a diverse pool of experts can help avoiding anchoring to a 

usually conservative reference point (Meyer and Booker, 1991).  Table S3 in the supplementary 

material discusses and justifies the selection of the control variables.  

 

Around 45% of our experts belong to public institutions (including supra-national European 

organizations), while 27% work in industry and the remaining 28% are academics (Table 1). 

Moreover, around 55% of our expert pool work in the United States (“USA” variable), with the 

remaining 45% working in the European Union. Only 3% of the data in our sample (the CMU 

elicitations) was obtained through a face-to-face interview rather than on-line (“In-person” 

variable).   

 

  
Table 1 Descriptive statistics 

 
Notes: the R&D rec. and the R&D high variables are dummy variables equal to 1 if the associated expert’s 

cost estimate refers to the recommended and high R&D scenarios, respectively. The average values of the 

variables therefore represent the share of cost estimate referring to that specific R&D scenario within our 

sample.  

 

Omitting expert and technology subscripts, our main specification reads as follows:  

 

                     
 

Where y is either the central estimate of future technology costs (50
th
 percentile) or the 

uncertainty range (p90-p10/p50), RD&D is the yearly public research and development budget in 

nuclear technologies associated with each cost estimate, z is the column vector of control 

variables as listed in table S2, and   is an i.i.d. error component with mean zero and variance   . 



The future costs of nuclear power   Anadon, Nemet, and Verdolini 

8 

 

The main shortcoming of the above specification is that there might be some unobservable 

individual characteristics that are likely to bias the estimates above and beyond what we can 

control for using our independent variables. We therefore check the robustness of our results also 

including experts’ fixed effects.  

 

4. Results 

We present here the main results of the specifications for costs and the uncertainty range.  

Additional results are presented in the SI.  

4.1. Predictors of median overnight capital costs 

Table 2 presents the results of 7 specifications focusing on the 50
th
 percentile of expected 

overnight capital. Model 1 is a simple correlation in which we estimate the effect of (future) 

annual public RD&D investment on (future) cost without controlling for any other observable 

characteristics. The estimated coefficient is significant and indicates that a doubling of yearly 

public energy RD&D investment in nuclear technologies (equivalent to a 100% increase) is 

associated on average with 7% decrease in overnight capital costs by 2030. In model 2, we drop 

the continuous RD&D variable and use dummy variables associated with different RD&D levels. 

Specifically, the reference categories include BAU and half recommended RD&D budget level, 

while the dummy variables “RD&D rec.” and “RD&D high” indicate each expert’s 

recommendation of RD&D investment and 10 times the expert’s recommended level, 

respectively.  The notion here is that using the actual RD&D levels provided in the elicitation 

may exaggerate the precision with which experts can be expected to understand the returns to 

RD&D.  The hypothesis is that experts are better equipped to distinguish between low, medium, 

and high levels of RD&D.  Both variables are significant and in the expected direction. The 

effects of high RD&D is twice that of recommended RD&D: high public RD&D investments are 

associated with costs that are on average approximately 21% lower than “low” public RD&D 

investment scenario (which refers to the BAU and half recommended public RD&D scenarios). 

Note that approximate refers to the fact that this is a close approximation given that the dependent 

variables is in log form—we use this terminology throughout when interpreting the effect dummy 

coefficients. The elicitation questions on RD&D thrusts included in the FEEM and Harvard 

elicitations and the group workshop conducted by the FEEM and Harvard teams shed some light 

onto what technical issues experts thought public RD&D investments could address.  Some of the 

key issues were additional work on modeling and demonstration projects to test the economics of 

Gen. IV designs, with a particular focus on sodium-cooled fast reactors, high-temperature 

reactors, and gas-cooled fast reactors, and also research to improve the safety and proliferation 

resistance of Gen. IV designs.  Regarding SMRs, experts expressed the need for RD&D to safety 

test and demonstrate the viability and operability of light-water reactor designs, and to develop 

more advanced fuels and materials. Given that the full list of RD&D thrusts is too long to include 

here, the reader is referred to Anadon et al. (2011) for a more comprehensive list. 

 

The fit of models 1 and 2 is low but improves dramatically when the controls for experts’ 

affiliation, the type of technology and the area of origin of the expert are added to the model 

(model 3 and model 4, respectively). In model 3, as a result of the inclusion of the additional 

controls, the coefficient on the RD&D variable is associated with a significant increase of roughly 

25%, going from 0.0676 to 0.0843. Hence, a doubling of public RD&D yearly budget for nuclear 

technologies is associated with an 8% decrease of nuclear costs in 2030, on average and ceteris 

paribus. This indicates that any policy insight based on the correlation emerging from model 1 

substantially underestimates the impact of public funding on nuclear cost reductions. Similar 

conclusions can be reached with respect to the RD&D levels as measured by dummy variables in 
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models 2 and 4. Specifically, as a result of the inclusion of the additional controls, the central 

estimate of costs under the recommended RD&D scenario is approximately 14.7%, a significant 

increase from the approximate value of 10.8% in model 2 without the controls.  Similarly, the 

effect of high R&D also increases with the controls. 

 

Model 5 further explores the role of data acquisition method by including a dummy variable to 

control for face-to face interview, but the estimated coefficient is not statistically significant. 

Finally, models 6 and 7 include experts’ dummies in models 3 and 5, respectively, to account for 

unobservable expert characteristics that might be correlated with the elicited median costs. 

Adding expert fixed effects only slightly reduces the coefficient associated with the RD&D 

variable, but the estimate is still roughly 15% higher than in model 1.  

 

The results for the other control variables (using model 3) show that experts from public 

institutions have estimates of overnight capital costs that are about 14% higher on average than 

those of academics. Estimates for experts from industry are even higher, on average 

approximately 31% higher than academics. This difference could be explained by the fact that 

industry experts are generally more likely to think about potential escalations on labor, materials, 

licensing, and permitting costs than their academic counterparts, since academic experts may tend 

to be more detached from these less technical costs.  Overnight capital costs are expected to be 

higher for both Gen. IV and SMR technologies with respect to Gen. III/III+ technologies by 

approximately 23% and 24%, respectively. Expected overnight capital costs are about 22% lower 

for experts in the USA when compared to experts in the European Union. All of the above 

controls are significant across all 5 models in Table 2 in which they are included.  The inclusion 

of the fixed effects in models 6 and 7 leads to increases in the magnitude of the coefficients for 

expert characteristics controls, although the sign and statistical significance remain the same.  The 

in-person variable becomes negative and significant when expert fixed effects are included 

(model 7), although it is difficult to draw conclusions about this effect since it requires inclusion 

of unobserved expert characteristics for it to become significant.  In-person effects will be a focus 

of future work assembling additional elicitation data so that more than the 3% of observations are 

in-person.   We focus our interpretation on models 1-5, without fixed effects.  But the role of 

expert fixed effects does suggest that additional expert characteristics might be important to 

gather in future work. 
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Table 2 Estimates of expert’s elicited 50th percentile of overnight capital cost. Y = ln(P50) 

 

 

Figure 2 shows how the estimated returns to public RD&D vary when accounting for observable 

expert, study and technology characteristics (models 1 and 3 compared). The x-axis shows public 

RD&D investment plotted in a log-scale, while the y-axis shows the associated overnight capital 

costs in 2030, also plotted in a log-scale. The lines in the graph represent the returns to RD&D 

estimated without controlling for other observable characteristics (discontinuous line – model 1) 

and including additional controls (continuous line, model 3). As already mentioned, not 

controlling for observable characteristics leads to a 25% underestimation of the effect of public 

RD&D investment on nuclear technology costs (meaning, the discontinuous line is 25% less 

steep than the continuous line). In addition, observable characteristics account for the distance 

between the two lines.   

 

 

(1) (2) (3) (4) (5) (6) (7)

ln(R&D) -0.0676*** -0.0843*** -0.0852*** -0.0778*** -0.0778***

[5.11e-06] [1.73e-09] [1.42e-09] [0] [0]

R&D 

recommended
-0.108** -0.147***

[0.0383] [0.00317]

R&D high -0.213*** -0.249***

[1.40e-05] [6.69e-08]

public 0.141*** 0.125*** 0.142*** 0.857*** 1.398***

[0.000150] [0.00102] [0.000140] [2.58e-08] [0]

industry 0.312*** 0.322*** 0.317*** 0.906*** 1.570***

[0] [0] [0] [4.38e-09] [0]

USA -0.220*** -0.200*** -0.218*** -0.329*** -1.129***

[0] [5.72e-09] [8.81e-11] [0] [0]

GEN IV 0.228*** 0.232*** 0.222*** 0.227*** 0.227***

[8.30e-07] [1.45e-06] [5.30e-06] [4.47e-08] [4.47e-08]

SMR 0.240*** 0.244*** 0.233*** 0.259*** 0.259***

[9.67e-07] [1.64e-06] [6.03e-06] [2.62e-08] [2.62e-08]

in-person -0.0723 -0.541***

[0.476] [7.68e-06]

Expert FE 

dummies
NO NO NO NO NO YES YES

Constant 8.926*** 8.488*** 8.849*** 8.294*** 8.859*** 8.225*** 9.025***

Observations 393 393 393 393 393 393 393

Adjusted R-

squared
0.052 0.044 0.233 0.218 0.232 0.619 0.619

Robust p-values in brackets

*** p<0.01, ** p<0.05, * p<0.1
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Figure 2 RD&D and technology cost with and without observable expert, technology and study characteristics. 

Axes in logarithmic scales.  

 

The SI includes additional specifications, all of which produced results in line with those above.  

These include: a normalized cost variable (calculated dividing the 2030 estimate by the 2010 

estimate for the observations in the FEEM and Harvard studies) in both the linear, log-log and 

semi-log model; diminishing marginal returns to RD&D investments (RD&D
2
); interacting 

dummies with RD&D and with each other; and Box-Cox transformation to further investigate the 

most appropriate functional form. 

4.2. Predictors of dispersion in costs 

Here we test whether dispersion in technology costs is affected by the level of RD&D funding 

and the observable expert, technology and study characteristics. Table 3 reports specifications in 

line with those included in Table 2but where the dependent variable is now the measure of the 

range of uncertainty, (P90-P10)/P50.   

 

We find that public RD&D investments are not statistically significant predictors of the 

uncertainty range provided by the experts.  That is, higher or lower levels or investments are not 

systematically associated with narrower or wider uncertainty ranges under any of the seven 

specifications tested. US experts have significantly wider uncertainty ranges when compared to 

EU experts, approximately 16% larger according to model 5.  In this case, the in-person variable 

is significant, and suggests that the uncertainty ranges for experts providing answers in person for 

the BAU RD&D scenario were about 40% lower, although the sign of this effect is not robust to 

the inclusion of expert fixed effects.  The uncertainty range for SMRs is around 14% smaller than 

that for large scale Gen. III/III+, suggesting that experts are relatively confident about their cost 

estimates on these systems, which are expected to be delivered to the site fully constructed from 

the manufacturing facilities, even though the current experience is limited and no operating 

licenses have been issued in the United States or the EU.  The group workshop conducted by the 

FEEM and Harvard teams also shed some light regarding the uncertainties they considered when 

making their estimates, which included the costs of materials, increased safety requirements, 

differences in contract structures, and the outcomes of RD&D on materials and fuel fabrication. 

As shown in the SI, the results on the uncertainty range are generally robust to changes in the 

functional form used in the empirical estimation.  



The future costs of nuclear power   Anadon, Nemet, and Verdolini 

12 

 

Table 3 Estimates of effects on variation in nuclear costs. Y=ln[(p90-p10)/p50]  

 
 

 

5. Conclusion 

Because nuclear power is one of the few large-scale low-carbon power technologies available, 

understanding its future cost is important for the design of climate change mitigation efforts.  As 

expert elicitations and models relying on expert elicitation data are increasingly used in science 

policy contexts, scrutiny of their reliability is certain to increase.  But at present, knowledge about 

the impact of design factors on the probabilistic estimates emerging from these studies is scarce. 

In this paper we combined three recent elicitations on the future (2030) cost of three types of 

nuclear power reactor types: large-scale Gen. III/III+ systems, large-scale Gen. IV systems, and 

small modular reactors. We provide insights about: (a) how the design of the elicitation and the 

selection of the experts affect nuclear elicitation results—thereby providing guidance for future 

elicitations; and (b) the expected returns to government nuclear RD&D.  The results show that 

sector and geographic location of the expert, reactor type, and RD&D investment are statistically 

significant factors affecting experts’ estimates of overnight capital cost and are robust to the two 

specifications supported by the literature: a ln-ln specification and a linear specification with a 

quadratic term. 

 

Controlling for expert characteristics increases the estimated public RD&D elasticity of expected 

costs by 25%. We also show that academic experts are the most optimistic about the future costs 

(1) (2) (3) (4) (5) (6) (7)

ln(R&D) 0.0119 0.0207 0.0162 -0.00128 -0.00128

[0.599] [0.366] [0.480] [0.925] [0.925]

R&D 0.0108 0.0189

[0.877] [0.788]

R&D high -0.0279 -0.0228

[0.717] [0.766]

public 0.0629 0.0692 0.0689 -0.620*** -1.463***

[0.371] [0.323] [0.328] [6.62e-11] [0]

industry 0.0619 0.0601 0.0905 -0.883*** -0.993***

[0.441] [0.455] [0.254] [0] [4.90e-06]

USA 0.154** 0.151** 0.163*** 0.405*** -0.439**

[0.0136] [0.0152] [0.00914] [0] [0.0264]

GEN IV -0.0433 -0.0335 -0.0793 -0.0544 -0.0544

[0.551] [0.649] [0.278] [0.247] [0.247]

SMR -0.101 -0.0925 -0.139* -0.0821* -0.0821*

[0.163] [0.209] [0.0573] [0.0876] [0.0876]

in-person -0.398* 0.843***

[0.0615] [2.30e-05]

Expert FE NO NO NO NO NO YES YES

Constant -0.770*** -0.678*** -0.913*** -0.765*** -0.857*** -0.0648 0.778***

Observations 389 389 389 389 389 389 389

Adjusted R-

squared -0.002 -0.005 0.009 0.005 0.018 0.694 0.694

Robust p-values in brackets

*** p<0.01, ** p<0.05, * p<0.1
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of nuclear reactors.  On average public and industry experts expect costs to be approximately 

14% and 32% higher, respectively than academics. Since academic experts are typically more 

removed from technology commercialization than their counterparts, this may be expected, 

although the significance and magnitude of the effect had never been estimated.  US experts were 

more optimistic than their EU counterparts, with expected costs that were on average about 22% 

lower.  This could be related to the fact that the EU has more recent experience building nuclear 

power plants than the USA, and that these projects have suffered from cost overruns.  Both of 

these findings indicate that expert selection has a large impact on elicitation results.   

 

This result applies beyond expert elicitations to other efforts to estimate the cost of meeting 

climate change targets, which inevitably rely on assumptions about technology costs.  It suggests 

that more transparency about the source of the estimates in integrated assessment models and 

other policy analysis models may be necessary.  If academic experts are indeed more optimistic 

about future costs, current efforts that emphasize academic assessments could underestimate 

costs. Sensitivity analysis thus becomes paramount.  

 

In the elicitations included in this study, the normalized uncertainty range—defined by the 

difference between the 90
th
 and 10

th
 percentile estimates divided by the 50

th
 percentiles—is on 

average 58% of the experts median estimates, highlighting the large uncertainty around future 

nuclear costs.  Further, public RD&D investments do not affect uncertainty ranges, but experts 

provided lower uncertainty ranges for SMRs when compared to Gen. III/III+ and Gen. IV 

reactors.  This seems somewhat surprising given the greater level of experience with Gen. III/III+ 

systems, but could be explained by a greater confidence of experts in the ability of centralized 

manufacturing of SMRs to deliver reactors on time and on budget when compared to large scale 

projects, which have had widely varying costs in the past.  Gen. III/III+ systems are expected to 

still be cheaper than Gen. IV and SMRs by 2030.  In fact, even though the uncertainty around 

future SMR costs is lower, overnight capital costs are expected to be on average about 23% 

greater than that of Gen. III/III+ systems and only a little above large-scale Gen. IV systems.   

 

These differences indicate that the specificity with which technologies are defined is an important 

elicitation design characteristic to consider. We find no evidence that the method of administering 

the survey (in-person) has a significant impact on costs, although our analyses have low power 

since so few observations involved in-person interviews.  We do see that the uncertainty range 

decreases when the elicitation was administered in-person when compared to online, although it 

is possible that differences in the background information of the survey or the online displays 

have contributed to this.  Finally, even though academic experts had lower estimates of costs, 

their uncertainty ranges were not different from those of industry and public institution experts. 

 

We also find strong evidence that public RD&D investments present decreasing marginal returns.  

This indicates that when experts assess the impact of RD&D on cost their mental model includes 

considerations of depletion of improvement opportunities within a limited period of time.   

 

Overall, this study shows quantitatively the importance of expert selection and elicitation design 

and of the need to increase transparency in modeling and policy analysis exercises about the 

source of technology assumptions.  More precise estimates are likely to become available as a 

larger body of elicitation study results is included into this type of analysis.  The RD&D elasticity 

estimates condense the literature available and could be used in modeling exercises.  This work 

also provides a condensed view of central estimates that may be useful directly for research 

program managers and policy makers.  On average, a doubling of public RD&D is expected to 

result in cost reductions around 8% in 2030, but uncertainty is very large. Overall, these insights 

regarding future costs, their uncertainty, the expected returns to public RD&D, and the 



The future costs of nuclear power   Anadon, Nemet, and Verdolini 

14 

 

importance of the source of estimates are important for more efficient and transparent analysis 

about technology strategies to meet climate challenges. 
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