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Summary

The social cost of carbon (SCC), commonly referred to as the carbon price, is the monetized
damage from emitting one unit of CO2 to the atmosphere. The SCC is typically obtained
from large-scale computational Integrated Assessment Models (IAMs) that consolidate
interdisciplinary climate research inputs to obtain a carbon price estimate relevant for
policy-making. However, the climate economy interactions of IAMs remain inaccessible to
scientists in general. Here we develop a simple closed-form formula that captures the key
physical and economic determinants of the SCC in the IAMs. For a mainstream IAM, it
explains over 99 percent of the within-model variation originating from structural
uncertainties; in an inter-model comparison, the structural variation captured by the
formula matches closely a SCC distribution of previous SCC estimates. The precise
replication of the SCC estimates is strikingly free of details such as those on future policy
and technology options, or even carbon concentration levels; the size of the current
economy and the emissions-temperature-damage response are the dominant SCC
determinants in the IAMs. The structural interpretation given allows decision-makers to
disentangle the subjective and structural determinants of the carbon price. Structural
uncertainties alone lead to a strongly right-skewed density with median 15 €/tCO2, mean 31
€/tCO2, and more than 5 percent probability for higher than 100 €/tCO2 for year 2015.
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Abstract

The social cost of carbon (SCC), commonly referred to as the carbon price, is the
monetized damage from emitting one unit of CO2 to the atmosphere. The SCC is
typically obtained from large-scale computational Integrated Assessment Models
(IAMs) that consolidate interdisciplinary climate research inputs to obtain a
carbon price estimate relevant for policy-making (1). However, the climate-
economy interactions of [AMs remain inaccessible to scientists in general. Here
we develop a simple closed-form formula that captures the key physical and
economic determinants of the SCC in the [AMs. For a mainstream [AM, it explains
over 99 percent of the within-model variation originating from structural
uncertainties; in an inter-model comparison, the structural variation captured by
the formula matches closely a SCC distribution of previous SCC estimates (2).
The precise replication of the SCC estimates is strikingly free of details such as
those on future policy and technology options, or even carbon concentration
levels; the size of the current economy and the emissions-temperature-damage
response are the dominant SCC determinants in the IAMs. The structural
interpretation given allows decision-makers to disentangle the subjective and
structural determinants of the carbon price. Structural uncertainties alone lead
to a strongly right-skewed density with median 15 €/tCO2, mean 31 €/tCO2, and
more than 5 percent probability for higher than 100 €/tCO> for year 2015.



1. Introduction

The Social Cost of Carbon (SCC) monetizes the damage from releasing a ton of
CO2 to the atmosphere today. This is essential information for the determination
of optimal climate policies, as policies that price carbon according to the SCC will
give the correct economic incentive for reducing current emissions. The SCC can
be computed using large-scale computational Integrated Assessment Models
(IAMs) that obtain this value by optimizing current emissions in a model for the
global carbon cycle with temperature dynamics connected to a global economy
description. There are several widely used IAMs (3-9). While the IAMs overarch
the contributions from various disciplines in climate change research, they have
become inaccessible to scientists and policymakers in general; they can contain
hundreds or even tens of thousands lines of code, contributing to a distrust in
[AMs as policy tools. Here we provide one transparent equation that predicts the
SCC using a few principal relationships. Strikingly, this tractable and transparent
approach to SCC determination can explain the outcomes of a mainstream 1AM
with prodigious precision,’ and can also generate a distribution for the SCC from
primitive climate system-economy uncertainties that matches very closely the
existing distribution of SCC estimates (2).

The equation we develop offers a clear, intuitive understanding of the
core relationships that determine the SCC. As a case in point, where the formula
could have been useful as a guideline, we consider the Economic Report of the
President 2013, stating that carbon prices “rise over time because the marginal
damages increase as atmospheric CO; concentrations rise” (11, p191). But the
formula demonstrates, and tests with the benchmark model that we use
confirm,2 that carbon prices mainly rise over time because income rises, as the
size of the economy determines what is at stake.

The formula enables us to construct a distribution for the SCC from the
primitive climate-economy uncertainties, providing a structural interpretation
for the distribution obtained through surveys (2). This allows us to assess the
most important sources of SCC uncertainty and to disentangle positive
uncertainty from subjective disagreements. To illustrate the use of the formula
to assess sources of variation, we consider the SCC’s sensitivity to the discount
rate in closed form.

2. The simple formula

The SCC formula is expressed as
SCC(t) =A0(c)Y()W(a,y)

In this formula, a permanent increase of the atmospheric CO; by one unit leads to
an annual economic loss A8(c)Y (t). W(o,y) converts the stream of future income
losses associated with a permanent atmospheric CO; increase to a present-value
expression for an emission impulse. The variable Y(t) is the Gross World Product

1 Because of its public availability, conciseness, transparent documentation, and middle-of-the-
road assumptions, we choose DICE (10) for testing the accuracy of the formula.
2 DICE is one of the three models used to prepare the president’s report (11).



(GWP) at time t in nominal terms (e.g. dollars or euros). The parameter 6(c) is
the economically relevant measure for climate sensitivity c, i.e., the temperature
increase associated with a doubling of the pre-industrial atmospheric carbon
stock. As damages are often assumed to increase more than proportionally with
temperature deviations, 6(c) measures the temperature increase [Kelvin]
squared per unit of CO2 added to the atmosphere [K2/TtCOz], and its value is
approximately equal to c?/m where m is the pre-industrial atmospheric carbon
stock. The parameter A transforms temperature change into damages relative to
income; its unit is [K-Z]. Multiplying the first two terms, A8(c), gives the share of
output lost per unit of atmospheric CO2, when the atmospheric COz is permanent.
Multiplying the first three terms then gives the running costs of a permanent
increase, in nominal units [€/yr TtCO:].

The most intricate part of the formula is the last term, W(o,y).
Importantly, W(o, y) is measured in number of (effective) years [yr], so that the
SCC is measured in [€/TtCOz]. The damage-time aggregator W(.) depends on the
discount rate applied to future losses, described through o, and the climate
system parameters, described through vector y. When there is no discounting,
0=0, W(0,y) measures the mean lifetime of income lost due to a CO; impulse. For
positive discounting, W(o,y) measures the economic lifetime of losses. The
climate parameter vector y includes parameters for the carbon cycle; here we
consider a box representation as described in (12). For setI = {1, ..., n} of boxes,
a = (a;);e; is the vector of shares of emissions entering each climate box, and
n = (n1);e; are the respective decay rates. In addition to the carbon cycle, we
include parameter € > 0 for the global mean adjustment speed of temperature
squared. In the Appendix, we build the aggregator W(.) on a temperature
response that we derive from a closed-form representation for the global carbon
cycle and temperature adjustment, to arrive at:*

a; &
ier (0 +mn;) (0+¢)

W(o,a;,n;¢€) = Z

The typical temperature response is hump-shaped, with the peak impact lagging
60 to 80 years behind the date of emissions (Fig. 1a). Directly after the emissions
impulse, the temperature rises quickly, but then, as atmospheric CO2 decays, the
temperature response falls back. The aggregator W(.) cumulates the response
over time, with weights decreasing exponentially at rate o. Through the
aggregator W(.), the SCC formula captures the connection between emissions
and damages in IAMs, explaining the formula’s strong prediction power of the
IAM outputs considered next.*

3 Notice that the nominator has unit of measurement [/yr], while the denominator has unit [/yr?],
so that the aggregator is measured in number of years.
4 Gerlagh and Liski (2012) decompose W(.) in two parts. The first part,

ai
(o+m)
expected economic life-time of atmospheric CO2, where the discount rate and the physical

depreciation are added in the denominator. The second part, ﬁ, represents the decrease in the

net present value associated with the delay in the temperature rise. For a fast temperature
adjustment speed, € is large and the term converges to one.

, represents



The discount rate, o, transforms future impacts to their present value. It
measures the weight of future damages for given climate change, relative to
current damages for the same level of climate change. When we discount future
damages purely for their later arrival on the time-line, such considerations are
described through a pure rate of time preference, p. When more people are
affected in the future, because of population growth I, this growth rate is
subtracted from the pure discount rate. Economic models often add to these
considerations the principle that the marginal value of future damages decreases
with economic growth, as measured by productivity growth rate g, multiplied
with the elasticity of marginal utility a. But as the size of damages increases with
the size of the economy, we multiply the economic growth rate with a-1. Taking
all terms together, the discount rate o can be expressed in terms of parameters
that are typical in economic growth models:

c=p+(a—1)g -1

Fig. 1b presents the damage aggregator as a function of the discount rate, for the
same 3 carbon cycles as in Fig 1a. We see that for discount rates above 0.5%/yr,
the aggregator follows the order for the damage life-path over the first 100 years
as depicted in Fig 1a. For very low discount rates, the life-path after >500 years
becomes more important. Furthermore, we see that when we decrease the
discount rate from 3%/yr to 1%/yr, the damage aggregator doubles for each
percentage point. This is consistent with the peak of damages occurring after 70
years: a 1%/yr decrease in the discount rate increases the net present value by
about exp(70-0.01)=2.
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Figure la: The life-paths of damage responses following from one unit of
emissions. The paths are presented relative to the counterfactual response
that assumes that (i) the emitted CO, remains in the atmosphere forever
and (ii) the emitted CO, has immediate full temperature effects. Responses
shown for three different carbon cycle models M-RH (12), DICE (10), and
GL (13), where parameters of our reduced-form model are set to match the
three cited carbon cycle representations. M-RH does not include short-run
uptake of CO, by forests. The CO, millennial depreciation in the DICE



carbon cycle is more optimistic than scientific evidence suggests is
warranted (14).
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Figure 1b: Damage-time aggregator. The curves depict the value of W(.)
for three different carbon cycle models M-RH (12), DICE (10), and GL
(13), where parameters of our reduced-form model are set to match the
three cited carbon cycle representations. W(.) is highly nonlinear with
respect to the discount rate (see also Table 2). A comparison to Figure 1a
shows that for low discount rates, W(. ) is largest for the temperature
response with the lowest millennial depreciation.

3. Testing the formula

The formula sharply predicts that the SCC is proportional to the damage estimate
for given climate change, climate sensitivity squared and income, and that the
net present value associated with one unit of CO2 emitted about doubles when
the pure discount rate decreases from 3% to 2%.

We test if the formula predicts the SCC of DICE (10), perhaps the most
widely used IAM.5 We fix the carbon cycle parameters a=(0.029, 0.356, 0.615)
and n=(0, 0.0035, 0.0364) to match the DICE carbon cycle, but assume
distributions for 12 key climate and economic DICE parameters. We then draw
1,000 realizations for the DICE parameter vector, leading to 1,000 optimal
climate policy paths with associated SCC outputs produced by DICE. Each vector
draw defines also the parameters that enter our formula (4,60,¢,6). We can then
use the formula to predict the SCC for each draw (Fig. 2).

The realizations are clustered tightly along the 45-degree line; regressing
the log of the DICE SCC on the log of our formula SCC shows that the formula
explains more than 99 percent of the variation (R?>.99). The SCC formula, a
reduced-form approximation of the full model, employing only a subset of the

5To the knowledge of the authors, DICE is the only IAM that satisfies three conditions: (i) the
source code is publicly available and can be run easily, (ii) for each major version of the model,
an integrated and complete model description is publicly available, (iii) it is convenient in use.
For other 1AMs, either the model code is unavailable, or the model descriptions are scattered
over various publications, or the model is built using software for which only a few researcher
have the required skills.



parameters in DICE, can thus predict the DICE SCC with a remarkable precision.
Importantly, the chart shows that optimal climate policy, when implemented as a
carbon price, is driven by climate system primitives, climate damage estimates,
and rules for discounting future damages. The more detailed treatment of
abatement options and their development over time, the details on carbon
dioxide concentrations and temperature, all which enters DICE, do not enter the
formula; for the carbon price, the availability of cheap abatement options is of
lesser importance, relative to the climate change and costs fundamentals.
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Figure 2: The DICE and formula SCC in a scatter plot. Each dot
corresponds to one parameter vector realization with the horizontal and
vertical co-ordinates presenting the DICE and our formula SCC values for
the year 2015, in 2010 Euros. Parameter distributions are log-normal,
truncated at 2 standard deviations from the median (see Section 6).
Observations corresponding to the 10 percent lowest discount rates (in red)
represent the majority of deviations. Note that some systematic gap is
possible related to the period length of DICE (15).

4. Applications

The formula offers various possibilities for applications. We consider two here:
(i) uncertainty of structural parameters and replication of a distribution of
previous carbon price estimates, and (ii) an assessment of the sensitivity of the
SCC with respect to the discount rate.

Uncertainty

The closed-form for the structural determinants of the SCC allows us to construct
a distribution for the SCC from the primitive uncertainties: the carbon cycle,
climate sensitivity, damages and the economy. For uncertainty regarding the
carbon cycle representation, we include the three carbon cycles representations
underlying Fig. 1a, in addition to the uncertainty underlying Fig. 2. Then, Fig. 3
depicts the density distribution of the SCC, obtained from the SCC formula.
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Figure 3: Density distribution of the SCC. The distribution is obtained
from 100,000 realizations for the SCC formula parameters, including
randomization over the three carbon cycle representations M-RH (12),
DICE (10), and GL (13). The parameter vector includes the climate
sensitivity, damage estimate and rate of discounting. Values are reported
for the year 2015, in 2010 Euros. Tol’s distribution comes from the
database that supports his paper. SCC values in Tol were divided by 3.67
to convert 1995$/tC into 2010€/tCO2, and then increased by 3% for each
year between publication and 2015 to correct for the trend. Further
information on the parameters’ distributions is provided in the Appendix.

The resulting distribution is strongly right-skewed with a median SCC of 15
€/tCO2, mean 31 €/tC0O2, and more than 5 percent probability for a SCC higher
than 100 €/tCO;. A distribution from IAM outputs of 232 distinct studies results
in a very similar distribution when the numbers are converted to comparable
units (2). However, survey-based distributions have no hope of addressing the
source of the spread; they blur the structural and subjective parameter
uncertainties. Also, they cannot address the tail of the distribution as these are
defined by too few observations. Our SCC formula produces a thick-tailed
distribution as the low probability extreme values for climate sensitivity, damage
and discounting reinforce each other. Moreover, the formula allows evaluating
the contribution of each primitive type of uncertainty to the SCC (Table 1).
Carbon cycle uncertainty has a minor contribution to the SCC uncertainty but
climate sensitivity, damage, discounting all individually introduce considerable
spread and right-skewedness to the SCC distribution. The joint interaction of all
uncertainties leads to a distribution where the mean is twice as large as the
median.



Table 1: Sources of SCC variation.

Source of variation Median Mean St. deviation
€1CO, €1CO, €1CO,

None 16.0 16.0 0
Carbon cycle n.a. 15.9 2.0
Climate sensitivity 16.0 19.0 12.0
Damage 15.9 21.3 17.2
Discount rate 16.0 19.7 141

All 14.6 315 53.1

Each row presents results from the Monte Carlo experiment, where only
the first column parameters are varied. When varying the climate
sensitivity, damage, or discount rate parameter, we fix the carbon cycle at
the mean fit of three carbon cycle representations (see Table 4b).

Discounting

Progress in climate sciences will improve the precision of estimates for climate
sensitivity and damages over time, but very slowly (16). The term W(o,a,n,€) is
sensitive to the discount parameter, which is likely to remain partially subjective
and uncertain; the views among experts and policy makers on how to weigh the
far-future impacts will likely continue to differ. To provide a rule of thumb for
the sensitivity of the SCC to the discount rate, that is, the relative increase in the
SCC when the discount rate decreases by one percent point, consider only one
atmospheric CO2 box in the SCC formula (n = 1), and common values from the
literature for atmospheric CO2 deprecation and temperature adjustment,
(a,n,e)=(1,0.01,0.02) (1 and ¢ per year). At mean discount rate o, a discount rate
change do implies a relative SCC change that can be expressed as

W (o +do) W, (o) _do  —do
— I —— X exp ( da)zexp ( + )
W(O’—Edd) W (o) o+n o+¢

With central discount rate 6=0.02/yr, when the discount rate goes down by one
percentage point, that is do=-1%/yr, the SCC increases by factor exp(0.58)~1.8.
The formula also allows us to assess the sensitivity of the distribution to the
annual discount rate as part of the distribution analysis (Table 2). The mean and
median SCC almost double when the discount rate, o, falls from 3 to 2 percent
but they increase more than five-fold when o falls from 1 to .1 percent. Some
climate impacts, due to the non-depreciating climate boxes, are permanent,
fattening the tail of the SCC distribution when discounting falls towards zero. For
a discount rate converging to zero, the expected social cost of carbon is without
bound. This is in sharp contrast with the distribution and expectations obtained
through survey methods where tails remain bounded (2).



Table 2: Discount rate sensitivity of the SCC.

Discount rate Median Mean St. deviation
€/tCO, €1CO, €/tCO,
0.1% 175.9 316.0 421.3
1% 29.2 48.5 58.5
2% 13.7 22.1 25.5
3% 8.2 13.0 14.7

Each row presents outcomes from the Monte Carlo experiment, where only
the discount rate is fixed.

5. Conclusion

This study offers a simple, closed-form, formula for determining the SCC.
Contrary to leading IAMs, we took a reduced-from approach, modeling the key
climate-economic interactions, while taking processes such as savings decisions
and economic growth as exogenous. Despite its low informational requirement,
the formula explains more that 99% of the variation of the SCC in DICE, a
mainstream IAM. This same variation produces a SCC distribution that comes
very close to that in a comprehensive survey of previous SCC estimates,
supporting the relevance of the formula more generally. The result is important
for several reasons. First, it implies that the SCC, as presented by central [AMs, is
virtually independent of current or future policy choices and abatement options;
not even carbon concentration levels were invoked in our reduced form
replication results. Only a few core mechanisms are needed to understand the
current determination of the SCC. Second, given our simplifications but
maintained prediction power, the simple formula allows for a straightforward
assessment of the uncertainty surrounding the SCC value. Based on primitive
uncertainties, we constructed a SCC pdf and found a strongly right-skewed
distribution, with a median of 15 €/tCO2, mean 31 €/tCO2, and a 5% probability
of the SCC exceeding 100 €/tCO2. Uncertainty regarding the appropriate
discount rate, climate sensitivity and damages mostly contributed to SCC
uncertainty. Finally, the formula can easily be exploited to understand the effects
of subjective choices on SCC outcomes, and the derivation of the formula based
on the life-path of damages explains the effect of the discount rate: a reduction in
the effective discount rate from 2% to 1% approximately doubles the SCC
outcome, while the SCC increases more than 5-fold if this discount rate is
reduced from 1% to 0.1%.

6. Methods

For DICE we use the publicly available source code (10); the code for Monte
Carlo simulations is in the supporting information. The carbon cycle in DICE has
linear diffusion between carbon reservoirs and is transformed through linear
algebra to a climate box representation, in a similar vein as in M-RH (12) and GL
(13). All material is available through
https://www.dropbox.com/sh/1zz4wvs3h78800h/RIQCILKBTB.
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Derivation of the Social Costs of Carbon

Here we derive the Social Costs of Carbon formula for continuous time. The
discrete time version of the formula is derived in Gerlagh and Liski (2012) (13).
The atmospheric CO2 depreciation is approximated through a dynamic system of
‘boxes’, labeled by i € I = {1, ...,n}, where a = (a;);¢ is the vector of shares of
emissions entering each climate box, and n = (1););¢; are the respective decay
rates, as in Maier-Reimer and Hasselmann (12) and Hooss et. al. (17):

(1) S(t) = Xier Si (1),
(2) Si(®) = q;E(t) — n;S:(b),

where S(t) is the total atmospheric CO2 that is additional to the preindustrial
benchmark level. Solving the differential equations gives the dependence of the
future perturbation of the atmospheric carbon stock on current emissions:

dS(t"‘T) _ -n;T
(3) AE©) Yier a;e

The added atmospheric CO2 increases the equilibrium global mean temperature
specified through T = ¢(S), and subsequently the equilibrium damages,
D = y(T). For constant atmospheric CO2, damages in steady state as a function
of the atmospheric COz is then given by D = ¥ (¢ (S)).

In DICE (10) (and most other integrated assessment models), both
functions have a parametric form, and are characterized by a constant parameter
that describes the overall sensitivity of the function. For DICE, the equilibrium
temperature function is

(4) ©(S;c,m) = c %log (1+S/m)

where m is the pre-industrial stock of atmospheric CO2, and c is the climate
sensitivity. Damages are often characterized through

(5) W(T;4) = AT?

where A is the damage sensitivity of the economy. Uncertainty is described
through a distribution for parameters c and A. Damages are relative to output Y,
so that DY equals gross damages. The concave temperature sensitivity to
atmospheric CO2, ¢(.), in combination with convex damages, 1(.), can be proxied
linearly through dD = A8dS with A8 = y'¢’; we provide more details on the
determination of 6 in the section below. The feature that is key for the method is
the persistence of the climate system, which adjusts slowly, so that the level of
AB = '’ is not very sensitive to the policies in the immediate next decades.

The above relations hold in steady state. The carbon cycle slowly adjusts
through the dynamics for S(t) as above. Damages, D, also adjust slowly; they
converges at speed ¢ to their equilibrium level, and off-steady-state develop
according to

11



(6) D(t) = &(86S(t) — D(1))

Through linear algebra, we find that the level of relative damages depends on
past emissions through

dD(t+71) e Mit—g—¢T

(7) ED AB Y icra;e ——

ni—¢€

This formula combines the steady state damage through constants A and 6 and
the time profile through the carbon cycle and temperature adjustment
parameters a; 1;, €. The summation part of this formula is portrayed in Figure 1a.

Finally, consider discounting of future damages at rate o (see below for
details). This gives the NPV of the future damages associated with one unit of
present emissions at time t, as in the equation in the main text:

_ 0 _sr dD(t+1)
(8) SCCt)=Y(t) [, e 5O dr
ca;
= AOY (¢ Z :
© ier (0 +mn;)(0+¢€)

Parameters for the Monte Carlo experiment comparing DICE with the formula

We included 12 major parameters from DICE (10) in our Monte Carlo parameter
sample. These are listed in the table below. For each parameter, we derived
distributions from the literature as stated in the last column of the table below.
The central values are more or less in line with the typical values used for DICE,
apart from the elasticity of marginal utility. Compared to the parameters listed
for the sensitivity assessment for DICE (Table VII-1), we included the pure rate
of time preference, the elasticity of marginal utility, the decline rate of labour
productivity growth and decarbonization, and short- to long-term backstop
costs. We excluded the fossil fuel resources and a transfer coefficient in the
climate module. For consistency between the parameters and initial values, we
recalibrated the DICE model with respect to the initial capital stock, labour
productivity, population size and growth in the first decade 2005-2015.

12



Table 3: DICE parameter distributions.

Parameter [Units] Median Mean* ditjliggi;d* Iggrg)g glft%?‘; Source
value* value*

Climate sensitivity [K ] 3 3.218 1.222 1.3719 6.5601 (18)

Damage parameter 0.003 0.004 0.0032 0.0006 0.015 (2)

Pure rate of time preference [ yr?] 0.02 0.0248 0.0171 0.005 0.08 (19)

Elasticity of marginal utility 1 1.0845 0.4447 0.4305 2.3229

Asymptotic size of population [mn] 10,000 10,115 1,530 7,300 13,699 (20)

Productivity growth [dec™] 0.1537 0.154 0.0093 0.1345 0.1744 WDI°, OECD’

Decline rate of productivity growth [dec™] 0.001 0.0011 0.0004 0.0005 0.002 (10)

Decarbonization rate [dec™] 0.073 0.0745 0.0151 0.0479 0.1113 (wDl, 10,21)

Decline rate of decarbonization [dec™] 0.003 0.0033 0.0013 0.0013 0.007 (wDl, 10,21)

Backstop price [USD/(C] 1,170 1,194 242 768 1783 (10, 21)

Ratio initial to final backstop price 2 2.041 0.4142 1.3122 3.0482 (10, 21)

Decline rate of backstop price [dec™] 0.05 0.0521 0.015 0.0275 0.0909 (10, 21)

Parameter distributions are log-normal, truncated at 2 standard deviations from the median; *for
truncated distribution

The damage parameter A in DICE is directly applied to the formula. The
parameter 7 in our formula is derived from the climate sensitivity used for DICE
as follows. First, in DICE, equilibrium temperatures are logarithmic in
atmospheric COz concentrations, as specified above, and we find w(go( )) =

A[c “log (1 + S/m)]z, which implies

. Zlog (1+S/m

9) 0 ~ ' /A= 207 2N

The average value for m over the range S=1 to 2.2 TtCO: is about 5.5 K2/TtCO5,.

For the experiment, we take the predicted value for 6 in the year 2040 when

extrapolating past atmospheric CO; trends. This means that 8 in our formula is

linearly proportional to ¢ in DICE, and if c is log-normally distributed, so is 6.
The parameter ¢ in our formula is also taken from DICE, as follows. Let u

be the temperature adjustment speed in DICE, then we can establish the

adjustment speed of T2

2uT

(10) €= o

where ¢(S; ¢, m) is the equilibrium temperature perturbation given atmospheric
concentrations and T is the current temperature perturbation.

6 World Bank, World Development Indicators. (2012)
7 OECD, OECD Productivity Statistics. (2012)
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As population growth decreases exponentially in DICE, we derive an
explicit formula that connects population growth to the social costs of carbon.
Labour productivity growth enters our SCC formula as specified above.

Parameters for the Monte Carlo experiment using the SCC formula

For the second experiment, we vary the parameters 6, ¢, A, and o, and use 3
alternative carbon cycle representations (see Tables 4a and 4b). We calculate 6, ¢
and A as for the first Monte Carlo experiment, based on a distribution for the
climate sensitivity c and A. The parameter Y in the formula is fixed at the median
output in the DICE runs for the year 2015. The parameter o is drawn from a
lognormal distribution as specified in Table 4a, consistent with the values
obtained from the first Monte Carlo experiment.

The carbon cycle parameters are based on an annual representation of
the values that represent DICE as estimated by GL (13), the carbon cycle
estimated by MR-H (12) and the new estimation by GL (13). We generated a
Monte Carlo parameter set and derived the SCC using Stata; the full source code
is available online through
https://www.dropbox.com/sh/1zz4wvs3h78800h/RIQCILKBTB.

Table 4a: SCC parameter distributions.

Standard Lower Upper
Parameter [Units] Median Mean* deviation® cutoff cutoff Source
eviation
value* value*
Climate sensitivity [K ] 3 3.218 1.222 1.3719 6.5601 (21)
Damage parameter 0.003 0.004 0.0032 0.0006 0.015 (2)
Pure discount rate [ yr?] 0.018 0.0224 0.0154 0.005 0.072

Parameter distributions are log-normal, truncated at 2 standard deviations from the median; *for
truncated distribution

Table 4b: Carbon cycle parameters.

Framework Share of emissions entering climate box i (a) Climate box i carbon depreciation rate (n)
MR-H (0.142, 0.241, 0.323, 0.206, 0.088) (0, 0.0032, 0.0125, 0.0532, 0.5882)
DICE (0.029, 0.356, 0.615) (0, 0.0035, 0.0364)

GL (0.163, 0.190, 0.589) (0, 0.0076, 0.0618)

Mean fit~ (0.119, 0.308, 0.573) (0, 0.0047, 0.0470)

*obtained by minimizing the squared deviation from the mean of the MR-H, DICE and GL response
functions.
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