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Abstract

We consider a game of information transmission, with one informed decision

maker gathering information from one or more informed senders. Private infor-

mation is (conditionally) correlated across players, and communication is cheap

talk. For the one sender case, we show that correlation unambiguously tightens

the existence conditions for a truth-telling equilibrium. We then generalize the

model to an arbitrary number of senders, and we find that, in this case, the effect

of correlation on the incentives to report information truthfully is non monotone,

and correlation may discipline senders’ equilibrium behavior, making it easier to

sustain truth-telling.
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1 Introduction

The importance of strategic information transmission in economic contexts has long

been recognized. Following the seminal work of Crawford and Sobel (1982), a large

body of literature has studied the conditions under which information is transmitted

truthfully in equilibrium and the impact of different informational and strategic condi-

tions on such equilibria. Few papers (e.g. Ottaviani and Sørensen (2006) in a model

with reputation) have dealt with the quality of information and none has investigated

the impact of quality on truth-telling behavior when information is transmitted between

more than two players.

The quality of information is usually measured by its accuracy. However, when

different pieces of information come from multiple sources, correlation also affects their

informative content in an intuitive way. In the limit case of perfect correlation, observing

one single piece of information is equivalent to observing any number of pieces, and

communication becomes worthless. Correlation is, indeed, a common feature of many

problems where the strategic transmission of information is a relevant issue: a legislative

commission audits several experts on a given matter and the experts have partially

coincident information sources; a perspective voter wants to form an opinion and joins

an online political discussion group whose members lean towards the same party and

form their opinions sourcing from similar media; witnesses in a cross-examination may

have information that overlaps to different extents; etc. In general, correlation of private

information may be caused either by external factors (e.g. a small number of information

sources is available) or by preferences (e.g. people with similar views and preferences

may source from similar sources and have similar acquaintances).

While it is clear that correlation weakens the welfare gains from information trans-

mission, the way in which it affects the incentives to strategically disclose truthful

information is not a priori clear. In this paper we address this problem in the context

of a cheap talk game where a partially informed receiver (she) gathers information from

one or more partially informed senders before taking action. To model strategic commu-

nication we follow the literature and adopt the binary signals framework introduced by

Morgan and Stocken (2008) in the context of information aggregation. In their paper,

the signals of the sender and the receiver are conditionally independent. To incorpo-

rate correlation into their binary signals framework, we rely on the work of Bahadur
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(1961) that first discusses correlation among binary signals. Correlation is measured by

a single parameter, denoting the probability that both players observe signals from the

same source, while with complementary probability they access independent sources.

For the model with one sender, we show that correlation unambiguously tightens

the existence conditions for a truth-telling equilibrium: credibly revealing information

becomes more difficult as correlation increases. The intuition is straightforward: by

decreasing the informational content of each signal, correlation weakens the impact

of information transmission on the receiver’s decision and minimizes the risk of an

excessive reaction (overshooting), enabling the sender to move the receiver’s action in

a profitable way.

We then generalize the information structure to the case of more than two players, by

introducing a multinomial distribution over signals with a single correlation parameter.

Again, the receiver possesses a prior belief on the likelihood that signals come from

either a perfectly correlated or from an independent binomial process. We find that the

effect of correlation on the incentives to reveal information is non monotone, and that

there exists a critical level of correlation such that truth-telling is always an equilibrium.

Moreover, this critical level is decreasing in the number of players. This characterization

is driven by two conflicting forces that shape each sender’s incentives to misreport his

observed signal. The first is the direct effect that one additional piece of information

has on the receiver’s action, also at work in the case of two players. The second is

an indirect effect we refer to as discipline: any report not in line with the rest of the

senders causes the receiver to believe that information sources are independent. As a

consequence, the perceived informational content of the rest of the signals grows larger,

decreasing or even reverting the sender’s incentives to misreport the observed signal

and favoring the emergence of truth-telling. For an interval of values of the correlation

parameter, the indirect effect is strong enough to offset the direct one and deter any

sender from telling a lie, thereby acting as a disciplining force supporting truth-telling.

The paper is organized as follows: Section 2 lays down the model with two play-

ers, introduces our information generating structure and characterizes the truth-telling

equilibrium. Section 3 generalizes the model to more than two players, presents the

non monotonicity result and discusses the discipline effect. Section 5 concludes.
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2 Two Players

Players. There are two players, a Sender i (he) and a Receiver j (she). The receiver

takes an action y ∈ R which affects both players’ utilities. These also depend on the

state of the world θ, which is unknown to both players. Before the receiver takes action,

each player observes a binary signal about the state θ. Let the signal of the sender be

si and the signal of the receiver be sj with si, sj ∈ {0, 1}. After observing si, the

sender sends a message t ∈ {0, 1} to the receiver. After hearing t and observing sj, the

receiver takes action y. We consider quadratic loss utility functions: the utility of the

receiver is U j (y, θ, bj) = − (y − θ − bj)2 and the utility of the sender is U i (y, θ, bi) =

− (y − θ − bi)2, with bi and bj representing individual preferences.

Information structure. The state of the world is known to be uniformly distributed,

θ ∼ U (0, 1). To generate a simple one parameter correlation structure we make the

following assumptions:

A1 There are (at least) 2 sources of information, each generating an informative and

independent signal according to the binomial distribution Pr (s = 1|θ) = θ.

A2 Players either collect information from independent sources with probability 1−k
or, with probability k, they collect information from the same source.

In words: before the game is played, each player independently picks one information

source among those available and observes the corresponding signal. While each player

is not aware of the source picked by the other, it is known that the probability that each

player picks the same source is k ∈ [0, 1). Since with some probability players collect

information from the same source, their signals are correlated.

The information acquisition process just described leads to the joint distribution

of players’ signals conditional on the state Pr (si, sj|θ), which was first discussed by

Bahadur (1961) and is summarized in Table 1.

Since θ is uniformly distributed, the marginals are Pr (si = 1) = Pr (sj = 1) =
∫ 1

0
θ dθ =

1/2 and, similarly, Pr (si = 0) = Pr (sj = 0) =
∫ 1

0
(1− θ) dθ = 1/2 = 1 − P (si = 1).

Notice also that, because of the uniform assumption on the state θ, its density is f (θ) =

1 which implies that Pr (si, sj|θ) =
f(si,sj ,θ)

f(θ)
= f (si, sj, θ) where f (si, sj, θ) is the joint

density function of signals and state. Thus, the joint distribution of players’ signals

conditional on the state equals the unconditional joint density on signals and state.
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Table 1: Signals’ joint distribution conditional on θ

sj = 0 sj = 1

si = 0 (1− θ) k + (1− θ)2 (1− k) θ (1− θ) (1− k)

si = 1 θ (1− θ) (1− k) θk + θ2 (1− k)

Conditionals can be easily derived from Table 1: the probability of the receiver

observing signal sj given the sender observed signal si and the state θ is:

Pr (sj|si, θ) =
Pr(sj ,si|θ)

Pr(sj ,si|θ)+Pr(1−sj ,si|θ) .

To understand the conditionals, take the state θ and let the sender have observed si = 0.

Then, on the one hand, the receiver may observe sj = 0 from the same source — which

happens with probability k — or from an independent source — which happens with

probability 1−k —, in which case the probability she observes sj = 0 is 1−θ. Hence, the

receiver observes sj = 0 with probability Pr (sj = 0|si = 0, θ) = k+ (1− k) (1− θ). On

the other hand, the receiver can only observe sj = 1 from a source different from that

of the sender — which happens with probability 1− k — in which case the probability

she observes sj = 1 is θ, from which it follows that the receiver observes sj = 1 with

probability Pr (sj = 1|si = 0, θ) = (1− k) θ. Similar reasoning apply for the case of

si = 1. By symmetry of the information structure, the same conditionals hold for the

sender.

Notice that k denotes the Pearson’s correlation coefficient between the random bi-

nomial variables si and sj, i.e.

k =
Cov (si, sj)

σsiσsj
.

Finally, it is important to notice that the information structure we have introduced

allows for non-negative correlation only, i.e. it must be k ∈ [0, 1). Indeed the NE and

SW quadrants of Table 1 are non-negative for all θ only if k ≥ 0, while the NW and SE

quadrants are non-negative for all θ only if k ≤ 1.

Equilibrium. Since the game is sequential and involves asymmetric information, the

equilibrium concept is weak Perfect Bayesian Nash Equilibrium (see, e.g., Mas-Colell,

Whinston, and Green (1995)). Such equilibrium is defined by the strategies t(si) of the

sender and y(t, sj) of the receiver such that:
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• t(si) maximizes the expected utility of the sender, i.e.

t (si) = arg max
t∈{0,1}

∑
sj={0,1}

∫ 1

0

− (y (t, sj)− θ − bi)2 f (sj, θ|si) dθ

• y(t, sj) maximizes the expected utility of the receiver, i.e.

y (t, sj) = arg max
y∈R

∫ 1

0

− (y − θ − bj)2 f (θ|t, sj) dθ.

2.1 Truth-telling Equilibrium

As it is common in cheap talk games, multiple equilibria exist and, in particular, a

babbling equilibrium in which no information is transmitted is always an equilibrium.

We focus, however, on truth-telling equilibrium t (si) = si because such equilibrium

Pareto dominates all other equilibria.1 In a truth-telling equilibrium the receiver cor-

rectly learns the signal si from the sender. Letting ysi,sj ≡ y(si, sj) to simplify notation,

the utility maximizing action of the receiver after observing her own signal sj and being

truthfully informed about signal si from the sender, is:

ysi,sj = arg max
y∈R

∫ 1

0

−(y − θ − bj)2f(θ|si, sj) dθ

= bj +

∫ 1

0

θf(θ|si, sj) dθ

= bj + E[θ|si, sj] (1)

where

f(θ|si, sj) =
Pr(si, sj|θ)∫ 1

0
Pr(si, sj|θ)dθ

.

Simple algebra (see appendix) yields:

y0,0 = bj +
1 + k

2(2 + k)
, y0,1 = bj +

1

2
= y1,0, y1,1 = bj +

3 + k

2(2 + k)
. (2)

Notice that only the actions based on identical signals depend on k. In fact, when the

receiver receives from the sender the same signal she has observed, she believes that

with probability k she has acquired information from the same source as the sender.

To the contrary, when the receiver hears a different signal from the sender, she infers

1See, e.g., Galeotti, Ghiglino, and Squintani (2013).
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that their information certainly comes from independent sources. Notice also that, as

expected, y0,0 < y0,1 < y1,1 for all k ∈ (0, 1).

We now study the sender’s incentives to report truthfully the observed signal. the

sender reports signal si instead of the false signal 1− si if∑
sj∈{0,1}

∫ 1

0

−
(
ysi,sj − θ − bi

)2
f (sj, θ|si) dθ ≥ (3)

≥
∑

sj∈{0,1}

∫ 1

0

−
(
y1−si,sj − θ − bi

)2
f (sj, θ|si) dθ,

which, substituting f (sj, θ|si) = f (θ|si, sj) Pr (sj|si) by Bayes rule and integrating,

simplifies to ∑
sj∈{0,1}

−
(
ysi,sj − Ef [θ|si, sj]− bi

)2
Pr (sj|si) ≥

≥
∑

sj∈{0,1}

−
(
y1−si,sj − Ef [θ|si, sj]− bi

)2
Pr (sj|si) .

Since ysi,sj = bj+Ef [θ|si, sj] from (1), condition (3) further simplifies to:

∑
sj∈{0,1}

Pr (sj|si)
(
y1−si,sj − ysi,sj

)2
2

≥ (bi − bj)
∑

sj∈{0,1}

Pr (sj|si)
(
y1−si,sj − ysi,sj

)
. (4)

We now use f (si, sj, θ) = Pr (si, sj|θ) and Pr (si) = 1
2

and rewrite Pr (sj|si) as:

Pr (sj|si) =

∫ 1

0

f (sj, θ|si) dθ =

∫ 1

0

f (si, sj, θ)

Pr (si)
dθ = 2

∫ 1

0

Pr (si, sj|θ) dθ.

We then substitute ysi,sj from (2) and Pr (sj|si) using Table 1 in the truth telling

condition (4). Whenever si = 0 truth-telling requires

bi − bj ≤
1

8 + 4k
,

while, when si = 1, it requires

bi − bj ≥ −
1

8 + 4k
.

The following proposition characterizes the truth-telling equilibrium.

Proposition 1. Under A1 and A2 a truth-telling equilibrium exists if and only if

dij ≤
1

8 + 4k
(5)
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where dij = |bi − bj| and k ∈ [0, 1). It follows that the maximal distance in preferences

consistent with truthful information revelation decreases as the correlation between in-

formation sources increases.

To understand Proposition 1 it is useful to refer to the so called overshooting effect —

see Morgan and Stocken (2008) p.871 — which pins down threshold (5). The sender’s

incentive to lie comes from his desire to drag the receiver’s action closer to his bliss

point. However, when the displacement in the receiver’s action caused by a lie is large

compared to the distance in preferences, her action may end up being even further away

from the sender’s bliss point than in case of truth-telling. This concern prevents senders

who are close in preferences to the receiver from lying.

Once the overshooting mechanism is clear, the intuition behind Proposition 1 is

straightforward. The strength of the overshooting effect depends on how informative

the signal is for the receiver. When k is large, the informative content of a message is

low. Accordingly, its impact on the action will be lower on average, reducing the risk of

overshooting. This, in turn, increases the incentives to tell a lie and makes truth-telling

an optimal strategy only for senders with close preferences.2

3 More than Two Players

We now generalize the model to n players: a receiver j (she) and n − 1 senders i 6= j.

Players observe each a binary signal, si, sj ∈ {0, 1}, and their utility depends on the

action y ∈ R taken by the receiver, on the state of the world θ and on the individual

preference parameter. The game goes as follows: first players observe signals, then

each sender independently reports a message ti ∈ {0, 1} to the receiver, who then takes

action y. Utilities are loss quadratic: U j (y, θ, bj) = − (y − θ − bj)2 for the receiver and

U i (y, θ, bi) = − (y − θ − bi)2 for sender i.

The information structure is such that the world is again known to be uniformly

2Finally, notice that when k = 0, we have dij ≤ 1
8 corresponding to Corollary 1 in Galeotti,

Ghiglino, and Squintani (2013). Moreover, the general principle that more informative signals sustain

truth-telling equilibrium for larger distance in preferences is behind other results in the literature

such as Morgan and Stocken (2008) and, more recently, Hagenbach and Koessler (2010) and Galeotti,

Ghiglino, and Squintani (2013) — all featuring conditionally independent signals.
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distributed, θ ∼ U (0, 1). As to the information sources and the signals acquisition

process we retain assumption A2 and we change assumption A1 to:

A3 There are (at least) n sources of information, each generating an informative and

independent signal according to the binomial distribution Pr (s = 1|θ) = θ.

Assumptions A1 and A3 allow us to generate a multinomial distribution of correlated

signals with a single correlation parameter. We now illustrate its basic properties.

The joint probability distribution of signals conditional on the state is now
Pr (1n|θ) = θn (1− k) + θk

Pr (0n|θ) = (1− θ)n (1− k) + (1− θ) k

Pr (1l,0n−l|θ) = θl(1− θ)n−l (1− k) if 0 < l < n

where 1x (resp. 0x) is a vector of ones (resp. zeros) of dimension x and 1x,0y is a

vector of x + y signals containing x ones and y zeros in any ordering. Notice that, by

the information acquisition process we have introduced, a mixed sequence of signals

can only realize when signals come from independent sources, which happens with

probability 1 − k. To the contrary, a full string of zeros or ones may be the result of

a series of independent draws as well as the outcome of players observing the same

source. This is why, in the last raw, the k-weighted term does not appear, because the

probability of a mixed sequence of signals coming from the same source is zero.

Given the integers a, b, c and d with a + b + c + d ≤ n, define the conditional

probability Pr (1a,0b|1c,0d, θ) as the probability that a string of a one-signals and b

zero-signals is observed given a string of c one-signals and d zero-signals has already

been observed and the state is θ. Such probability is

Pr (1a,0b|1c,0d, θ) =
Pr (1a+c,0b+d, θ)

Pr (1c,0d, θ)
=


θa (1− θ)b if c 6= 0 ∧ d 6= 0

Pr(1a+c,0b|θ)
Pr(1c|θ) if c 6= 0 ∧ d = 0

Pr(1a,0b+d|θ)
Pr(0d|θ)

if c = 0 ∧ d 6= 0

(6)

The first line of (6) has a straight interpretation: once (at least) two different signals

have been observed (c 6= 0 and d 6= 0) it is immediately inferred that the information

sources are independent, hence the simple binomial expression. To the contrary, when

either c = 0 or d = 0, the conditional probability depends on the marginals as reported
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in lines two and three of (6). The following Lemma provides an expression for the

marginal probability of any subset of signals given the state θ. It also shows that the

probability structure of a generic subset of signals is “regular” in that it follows the

behavior of a standard binomial probability distribution.

Lemma. Assume A1 and A3 and consider a (n− l)-tuple of signals, 0 < l < n. Its

joint probability distribution is
Pr (1n−l|θ) = θn−l (1− k) + θk

Pr (0n−l|θ) = (1− θ)n−l (1− k) + (1− θ) k

Pr (1j,0n−l−j|θ) = θj(1− θ)n−l−j (1− k) if 0 < l < n

where Pr (1j,0n−l−j|θ) is the probability of an unsorted sequence of signals containing j

ones, n− l − j zeros and l other one or zero signals.

A natural question arises: what does the parameter k represent in the model with n

players? It turns out that, as in the two players case, k denotes the Pearson’s correlation

coefficient of the joint probability distribution of any two signals. To see this, apply the

Lemma to any couple of signals: their probability distribution is exactly as in Table 1.

Thus, the interpretation of k is unaltered in the model with n-players.

3.1 Truth-telling Equilibrium

A Perfect Bayesian Nash Equilibrium (PBNE) of this game is defined in the same way

as for the case of two players except that the senders and the receiver now take into

account the messages of other senders when maximizing their utility functions.

Let t denote the vector of all messages sent by senders, and t−i denote the same

vector without the i-th component. A PBNE of this game is defined by a strategy ti(si)

for each sender i, and a strategy y(t, sj) for the receiver, such that:

• ti(si) maximizes the expected utility for all i:

ti(si) = max
ti∈{0,1}

∑
(t−i,sj)∈{0,1}n−1

∫ 1

0

−(y(t, sj)− θ − b)2f(t−i, sj, θ|si) dθ.

• y(t, sj) maximizes the expected utility of the receiver, i.e.

y(t, sj) = max
y∈R

∫ 1

0

−(y − θ)2f(θ|t, sj) dθ
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Letting s be the vector of signals, we focus on truth-telling equilibrium, where

(t, sj) = s. Let also y(s) ≡ ys be the utility maximizing action of the receiver after

observing the vector of signals s−j, defined as follows

ys = max
y∈R

∫ 1

0

−(y − θ)2f(θ|s) dθ

⇒ ys = E[θ|s] =

∫ 1

0

θf(θ|s) dθ

where f(θ|s) = f(s|θ)∫ 1
0 f(s|θ) dθ

. It can be shown that the optimal action takes the following

values depending on s:

y0n =
6 + k(n− 1)(n+ 4)

3(n+ 2)(2− k + kn)
, y1l,0n−l

=
1 + l

n+ 2
, y1n =

2(n+ 1)(3− k + kn)

3(n+ 2)(2− k + kn)
. (7)

Note that, while y1l,0n−l
does not depend on k as expected, y1n decreases and y0n

increases when k grows larger. In other words, as the correlation increases — reducing

each signal’s informative content — the distance between the optimal actions following

two strings of one and zero signals shrinks.

In a truth-telling equilibrium, the incentive compatibility constraint for player i is

the following:∫ 1

0

−
∑

s−i∈{0,1}n−1

(ysi,s−i
− θ − bi)2f(s−i, θ|si) dθ

≥
∫ 1

0

−
∑

s−i∈{0,1}n−1

(y1−si,s−i
− θ − bi)2f(s−i, θ|si) dθ.

Expanding squares and rearranging terms as we did in equation (4), the above constraint

simplifies to:∑
s−i∈{0,1}n−1

Pr(s−i|si)
∆2(s−i|si)

2
≥ (bi − bj)

∑
s−i∈{0,1}n−1

Pr(s−i|si)∆(s−i|si)

where ∆(s−i|si) ≡ y1−si,s−i
− ysi,s−i

measures the displacement of the optimal receiver’s

action following a lie.

The following proposition characterizes the truth-telling equilibrium for the case

with n players.

Proposition 2. Assume A1 and A3 and let k ∈ [0, 1).
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1. If k is such that
∑

s−i∈{0,1}n−1 Pr(s−i|si)∆(s−i|si) 6= 0, then a truth-telling equilib-

rium exists if and only if dij ≤ d∗i,j (n, k), where:

d∗i,j (n, k) ≡ 1

2

∣∣∣∣∣
∑

s−i∈{0,1}n−1 Pr(s−i|si)∆2(s−i|si)∑
s−i∈{0,1}n−1 Pr(s−i|si)∆(s−i|si)

∣∣∣∣∣ .
2. If k is such that

∑
s−i∈{0,1}n−1 Pr(s−i|si)∆(s−i|si) = 0, then a truth-telling equilib-

rium exists for any distance in preferences di,j.

Proposition 2 extends and qualifies the result of Proposition 1 to the case of more

than two players. The presence of more than one seller brings new and qualitatively

different features in the truth-telling conditions. There exists a specific value of k such

that truth-telling is consistent with arbitrarily distant preferences. We will discuss this

in full detail in the next section, where we also analyze the role of n and its interplay

with k.

3.2 The Disciplining Effect of Correlation

Figure 1 presents a plot of the thresholds that define the maximum distance in prefer-

ences allowing for truth-telling, for various levels of n. As we can see, for more than

three players the maximal distance d∗ij is a non monotonic function of the correlation

index k, decreasing for low values of k, and then increasing up to a critical value k̄ at

which any distance is consistent with truth-telling (point 2 of proposition 2). Moreover,

the critical correlation level k̄ is lower the larger the number of senders. These graphical

insights are proved in the next proposition for any arbitrary number of sellers.

Proposition 3. For n ≤ 4, d∗ij is bounded for all k ∈ [0, 1). For n ≥ 5, d∗ij is unbounded

if and only if k = k̄, where

k̄ =
1

2 (1 + n)

(
1 +

√
1 + 24

n(1 + n)

(n− 2)(n− 1)

)
is a decreasing function of n such that limn→∞ k̄ = 0. Finally, d∗ij is strictly decreasing

in k at k = 0.

To understand the forces behind the non monotonicity of d∗ij, we need to consider the

details of the random process that governs the observation of signals and the reaction

of the receiver to the available information.
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Threshold for truth telling for n = 3

k

1
20

b

− 1
20

b

1
24

− 1
24

The threshold for truth telling for n = 4

k1

b

1
28

− 1
28

Threshold for truth telling for n = 5

k0.735

b

1
48

− 1
48

k

Threshold for truth telling for n = 10

0.325

Figure 1: Threshold bands di,j ≤
∣∣d∗i,j∣∣ for n = 3, 4, 5, 10.

Consider sender i pondering whether to report truthfully his signal, taking as given

all the other signals learnt by the receiver in a truth-telling equilibrium. When antici-

pating the expected equilibrium action, sender i finds himself in one of two situations

about the signals s−i reported by the other senders: either s−i contains at least two

different signals, in which case the receiver infers that signals come from an independent

distribution, or s−i contains n − 1 identical signals, in which case the receiver’s belief

(after learning all senders’ reports) crucially depend on sender i’s choice. In particular,

if sender i’s report is in line with that of the other senders, the receiver will believe that

signals are independent with probability 1−k and perfectly correlated with probability

k; if sender i’s report contradicts the other senders’, the receiver will believe that all

signals come from an independent process.

Sender i’s incentives to tell the truth depend on the extent and direction of the

displacement in the receiver’s action caused by i’s misreport. This displacement is in

turn affected by the update that the receiver makes on the signal generating process.

To fix ideas, consider the case in which sender i observes si = 0 and bi > bj.
3 Suppose

all other senders’ have reported t = 0, and that also sender i has observed si = 0. A

3A symmetric analysis applies when si = 1.
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misreport by sender i has two effects. First, it provides one additional bit of information

to the receiver - a direct effect which tends to displace the action to the right. Second,

it modifies the (perceived) informational content of the 0 signals of the other senders

through the updating process described above - an indirect effect. As a result, the

receiver’s action may move in either direction, depending on the relative strength of

each effect. The larger k, the stronger the indirect effect (due to a stronger revision

of the sender’s beliefs), and the weaker the direct effect, due to the lower informative

content of the extra signal (as explained in Proposition 1). This trade off is novel, and

directly stems from the presence of correlation in the signals’ generating process.

The interplay of direct and indirect effects, together with the fact that the prob-

ability of identical reports from the other senders increases with k, accounts for the

U-shaped pattern of the threshold d∗ij in Figure 1. The threshold for truth-telling is in

fact defined in (1) as (half) the ratio of two terms: the expected displacement in case of

lying (the denominator) and the expected squared displacement (the numerator). As

k increases, the denominator decreases as the indirect (negative) effect counteracts the

direct (positive) one, and tends to zero as k approaches k̄ from the left. The numerator

is, instead, bounded away from zero being a sum of squares, in which some elements

(those relative to the case in which other senders have reported contradictory signals)

are constant in k and strictly positive. As a result, as we approach k̄ from the left, the

value of the threshold increases, and tends asymptotically to infinite in the limit.

To sum up, adding senders has qualitative implications for our understanding of

information transmission. While in a model with two informed players correlation be-

tween information sources always weakens the incentives to truthfully reveal private

information (and this is due to the reduced informational content of messages as corre-

lation increases), in a model with three or more players, correlation has additional and

non monotonic effects on truthful information transmission. Non homogeneous strings

of reports from the senders are interpreted (in equilibrium) as evidence of independent

sources. When reporting a signal not in line with the other reports, each sender takes

this into account and anticipates the possibly averse effect on the receiver’s action, fac-

ing, as a result, weaker incentives to misreport. In this sense, correlation disciplines the

sender’s reporting behavior by increasing the relative profitability of consistent reports.

Due to the mechanics discussed above, this discipline becomes stronger as k approaches

14



k̄.

4 Choosing Who to Audit

In this final section we wish to discuss some implications of our analysis for how an

informed receiver would select a sender to audit from a given population. The distinctive

feature of this section is the assumption that the amount of (conditional) correlation

between the sender’s and the receiver’s signals is negatively related to their distance in

preferences. We use this assumption as a reduced form of a model where players with

closer preferences are more likely to refer to the same source. This assumption seems

to apply well to political discussion, were people with similar ideology generally read

the same newspapers, refer to the same media and talk to a common pool of friends to

acquire information.

Formally, we assume that the distribution of preferences is associated with the dis-

tribution of signal correlations according to the linear function b(k) = B − ak, where

both B, a > 0. The slope a measures how much additional distance in preferences is

needed to generate sensitive given decrease in correlation. We interpret this parameter

as an index of polarization of society: a large a indicates that very distant preferences

do not imply a very different correlation of information. This would be the case if,

for instance, all agents acquired information from similar sources, regardless of their

preferences — a case of weak polarization. The position of the line b(k), given by the

intercept B, measures the general level of correlation of information: a parallel shift to

the right captures an increase of correlation for each possible distance in preferences. We

interpret B as an index of correlation in the information disclosed by primary sources

(e.g., newspapers) to the senders.

We address the simple problem of a receiver that chooses a sender to audit within the

set of feasible alternatives, given the exogenous constraint b(k) = B−ak. One important

issue that we can address in this framework is the distance in preference (and therefore

the level of correlation) that characterizes information transmission. The inverse of this

distance can be thought of as an index of “homophily” in information transmission,

being the outcome of the voluntary choice of who to audit.

In addressing this problem, we restrict to choices that allow for a truth telling equi-
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librium, that is, for distance in preferences that satisfy the condition in Proposition 1.

Among such equilibria, those with lowest correlation level k are preferred by the receiver,

as they bear higher informational content. We conclude that for B = B1, B2, B3 in Fig-

ure 2, the receiver would chose to obtain information from a sender whose preferences

lie at the intercept B with the y-axis, with k = 0.

B6

B5

B4

b = 1
8

slope = −a

Threshold of b
for truth telling

B3

B2

B1
O1 O2 O3

shift

k
Selecting Correlation for two players case

b

Parallel

Figure 2: The effect of change in B fixing a with B, a > 0

In contrast, for B = B4, the lowest available correlation among senders is the level

corresponding to the point O1, at the intercept of the linear constraint and the truth-

telling equilibrium threshold.

Note how the effect on homophily of an increase in the general correlation parameter

B crucially depends on the current level of correlation. At low levels of B, we observe

that the optimal choice of the receiver displays lower and lower degrees of homophily as

correlation increases, while the transmitted information is totally uncorrelated (points

B1, B2, B3). However, at higher levels of B, the equilibrium is found on the intercept

of the two loci, and further increases in B shift the equilibrium to the right along the

truth-telling threshold, progressively increasing the degree of homophily in information

transmission. At the same time, also the degree of homophily in information transmis-

sion tends to increase. These insights are summarized in the following proposition.
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Proposition 4. An increase in the correlation of information sources (B) has the effect

of decreasing homophily (with no effect on the receiver’s welfare) when B is small, and

to increase homophily (with a decrease in the receiver’s welfare) when B is large.

5 Conclusion

We have studied the role of conditional correlation of private information for truth-

telling in a cheap talk game. We have found that in a model with only one sender,

correlation of the sender’s and the receiver’s signals shrinks the interval of biases that

support truth telling as an equilibrium. With more than one sender, correlation has

non monotonic effects on truth-telling, and around a specific value of the correlation

parameter truth-telling is an equilibrium regardless of the distance in preferences. A

wide range of applications of the cheap talk game have correlation as a natural ingre-

dient, including auditing of experts, political discussion, cross questioning in criminal

investigations, etc. In such context, it would be possible to explicitly model the origins

of correlation as a result of either scarcity of information sources or of the directed

information acquisition by senders. We leave this and other developments for future

research.
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Appendix

Proof that k is the Pearson correlation coefficient for the distribution of

Table 1. Notice first that:

E (si) = 0 · Pr (0|θ) + 1 · Pr (1|θ) = θ

and

σsi =
√

E
[
(si − E (si))

2]
=

√
(0− E(si))

2 Pr (0|θ) + (1− E(si))
2 Pr (1|θ)

=
√
θ (1− θ)

implying E(si) = E(sj) and σsi = σsj . The covariance between signals is:

Cov (si, sj) = E [(si − E (si)) (sj − E (sj))]

= E [(si − θ) (sj − θ)]

=
∑

(si,sj)∈{0,1}2
Pr (si, sj|θ) (si − E (si)) (sj − E (sj))

= θ (1− θ) k.

It follows that
Cov (si, sj)

σsiσsj
= k.

Derivation of f (θ|si, sj) and ysi,sj . Applying Bayes rule and noticing that f (θ) = 1

because θ ∼ U (0, 1), the general expression for the conditional distribution of θ given

a pair of signals (si, sj) is:

f (θ|si, sj) =
Pr (si, sj|θ) f (θ)∫ 1

0
Pr (si, sj|θ) f (θ) dθ

,

=
Pr (si, sj|θ)∫ 1

0
Pr (si, sj|θ) dθ

.

Using Table 1 we calculate the conditional density functions given all possible pairs of

signals:

f (θ|si = 0, sj = 0) =
6

2 + k

[
(1− θ)2 + θ (1− θ) k

]
,

f (θ|si = 0, sj = 1) = 6θ(1− θ) = f (θ|si = 1, sj = 0) , (8)

f (θ|si = 1, sj = 1) =
6

2 + k

[
θ2 + θ (1− θ) k

]
.
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The optimal action of the receiver when she observes the pair of signals (si, sj) is:

ysi,sj = bj + E [θ|si, sj] ,

= bj +

∫ 1

0

θf (θ|si, sj) dθ,

which, using (8), yields:

y0,0 = bj +
1 + k

2(2 + k)
, y0,1 = bj +

1

2
= y1,0, y1,1 = bj +

3 + k

2(2 + k)
.

Proof of Lemma (3). Using the notation introduced in Section 3 and letting sl be a

generic l-dimensional vector of zero or one signals, we can write:

Pr (0n−l|θ) =
∑

sl∈{0,1}l
Pr (0n−l, sl|θ) ,

= Pr (0n) +
l−1∑
j=0

Pr (0n−l, (0j,1l−j)) ,

= (1− θ) k + (1− θ)n (1− k)︸ ︷︷ ︸
Pr(0n)

+ (1− θ)n−l (1− k)
l−1∑
j=0

(1− θ)j θl−j︸ ︷︷ ︸∑l−1
j=0 Pr(0n−l,(0j ,1l−j))

,

= (1− θ) k + (1− k) (1− θ)n−l .

In a similar fashion it is easy to show that Pr (1n−l|θ) = θk + (1− k) θn−l. As to

the conditional probability of a string of signals containing both ones and zeros, let

(0n−l−q,1q) sn−l be an unsorted vector containing n − l − q zeros and q ones where

n > l + q > q > 0. Then,

Pr(0n−l−q,1q|θ) =
∑

sl∈{0,1}l
Pr (0n−l−q,1q, sl|θ) ,

= (1− θ)n−l−q θq (1− k)
l∑

j=0

(1− θ)j θl−j,

= (1− k) (1− θ)n−l−q θq.

Proof of Proposition (2). We proceed as we did in the text for the model with two

players, the only difference being that expectations are taken over a vector of n − 1

signals rather than on a single one. Thus, given s−i in a truth-telling equilibrium,

sender i reports his signal truthfully if:∑
s−i∈{0,1}n−1

Pr (s−i|si) ∆2 (s−i|si) ≥ 2 (bi − bj)
∑

s−i∈{0,1}n−1

Pr (s−i|si) ∆ (s−i|si) (9)
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where ∆(s−i|si) = y1−si,s−i
− ysi,s−i

(corresponding to relation (4) in the two players

model).

Let us first focus on the ∆-terms and notice that:

∆ (s−i|si) = −∆ (s−i|1− si) . (10)

Using (7) and (10), the ∆-terms of (9) are

−∆ (0n−1|0) =
−6 + k (2− 3n+ n2)

3 (2 + k (n− 1)) (2 + n)
= ∆ (1n−1|1) , (11)

−∆ (0n−1−l,1l|0) = − 1

2 + n
= ∆ (0n−1−l,1l|1) (l 6= 0, n− 1) , (12)

which we shall write as:

∆1 (si) = ∆ (0n−1|si) = ∆ (1n−1|si) ,

∆2 (si) = ∆ (0n−1−l,1l|si) (l 6= 0, n− 1).

Turning to the probability terms in (9), we shall notice that, given Pr(si) = 1
2
, the

conditionals can be rewritten as

Pr (s−i|si) =
Pr (s−i, si)

Pr (si)
= 2 Pr (s−i, si) , (13)

and unconditional probabilities are:

Pr (0n) =
2 + k (n− 1)

2 (n+ 1)
= Pr (1n) , (14)

Pr (0n−l,1l) =
(1− k) (n− l)! l!

(n+ 1)!
= Pr (0l,1n−l) (l 6= 0, n− 1) . (15)

Notice further that
l=n−2∑
l=1

Pr (0n−l−1,1l|si) = 1− Pr (0n−1|si)− Pr (1n−1|si) ,

= 1− 2 Pr (0n−1, si)− 2 Pr (1n−1, si) ,

where the latter follows from (13). Now define

P ∗ ≡ Pr (0n−1, si) + Pr (1n−1, si) ,

and notice that it can be easily shown that P ∗ is equal across si = 0, 1. Summing up,

we can rewrite the RHS and LHS sums of equation (9) respectively as:∑
s−i∈{0,1}n−1

∆ (s−i|si) Pr (s−i|si) = 2P ∗∆1 (si) + (1− 2P ∗) ∆2 (si) , (16)

∑
s−i∈{0,1}n−1

∆2 (s−i|si) Pr (s−i|si) = 2P ∗∆2
1 (si) + (1− 2P ∗) ∆2

2 (si) . (17)
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While (17) is clearly positive, (16) may be either positive, negative or equal to zero

for si ∈ {0, 1}. From (9) define now:

Ti,j (n, k) ≡ 1

2

∑
s−i∈{0,1}n−1 Pr(s−i|si)∆2(s−i|si)∑
s−i∈{0,1}n−1 Pr(s−i|si)∆(s−i|si)

, (18)

(notice that d∗i,j (n, k) = |Ti,j (n, k)|).
Suppose the sender observes si = 0: if Ti,j (n, k) ≥ 0 truth-telling requires bi − bj ≤

Ti,j (n, k); if Ti,j (n, k) < 0 then it must be bi − bj > Ti,j (n, k). Suppose instead the

sender observes si = 1: then if Ti,j (n, k) ≥ 0 truth-telling requires bi− bj ≥ −Ti,j (n, k);

if Ti,j (n, k) < 0 then it must be bi − bj < −Ti,j (n, k). Recalling dij = |bi − bj|, it

is easy to see that the observations just made, taken altogether, imply point a of the

Proposition. As to point b, it is clear that, whenever the denominator of Ti,j (n, k) is

equal to zero, condition (9) is always satisfied, no matter how large dij is.

Proof of Proposition (3). Using (11), (12), (14) and (15) it is just a matter of algebra

to show that

Ti,j (n, k) = 36n+k(n−2)(n−1)(12+k(−17+k(n−5)(n−1)(n+1)+n(2n−9)))
12(2+k(n−1))(2+n)(6n−k(n−2)(n−1)(k(n+1)−1)) .

Further algebra shows that the denominator equal to zero when k = k̄ with

k̄ ≡ 1

2 (1 + n)

(
1 +

√
1 + 24

n(1 + n)

(n− 2)(n− 1)

)
.

It is easy to show that the term n(1+n)
(n−2)(n−1) inside the square root is decreasing in n so

that k̄ is clearly decreasing in n as well. The main claim of the Proposition follows from

the observation that k̄ < 1 for n ≥ 5, while k̄ ≥ 1 for n ≤ 4. It is also easy to check

that limn→∞ k̄ = 0.

Finally, noticing that k̄ > 0 for any finite n and that it holds d∗ij (n, k) = Ti,j (n, k)

for k < k̄, tedious algebra yields:

∂d∗ij (n, k)

∂k
=
(
n2 − 1

)
·

· k(n−2)(k
3(n−2)(n−1)2(n(n−7)−2)+8k2(n−1)2(2(n−4)n−1)+4k(n−1)(13(n−3)n−1)+48(n−4)n)−144n

12(n+2)(k(n−1)+2)2(k(n−2)(n−1)(k(1+n)−1)−6n)2 ,

and

lim
k→0

∂d∗ij (n, k)

∂k
= − n2 − 1

12n (n+ 2)
< 0,

which proves the last claim of the Proposition.
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