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Abstract
We introduce knowledge spillovers as an externality in the production

function of competitive firms operating in a finite spatial domain under ad-

justment costs. Spillovers are spatial as productive knowledge flows more

easily among firms located nearby. When knowledge spillovers are not in-

ternalized by firms spatial agglomerations may emerge endogenously in a

competitive equilibrium, however, they do not emerge at the steady state of

the social optimum.
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1. Introduction
The study of adjustment costs in the investment theory of the firm dates

back to the 1960s (e.g., Lucas (1967) etc.). A central result obtained by

Scheinkman (1978) indicates that in a perfect foresight competitive equilib-

rium, where firms take the perfect foresight price function as given and face

1This research has been co-financed by the EU —ESF and Greek national funds through
NSRF Research Funding Program: Excellence — AUEB ‘Spatiotemporal Dynamics in
Economics’
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convex adjustment costs in net investment, each firm’s capital stock con-

verges to a unique steady state which is independent of initial conditions.

When firms are identical all firms will converge in the long run to the same

stock of capital.

We revisit adjustment costs and the investment theory of the firm by con-

sidering a competitive industry operating in a finite spatial domain. Firms

can be located at any point in the domain but their production function

can be affected by knowledge spillovers stemming from firms located nearby.

Knowledge spillovers are regarded as positive intra-industry Marshalian ex-

ternalities which are bounded in space, the main idea being that innova-

tion and new productive knowledge flows more easily among agents which

are located within the same area (e.g. Krugman (1991), Feldman (1999),

Breschi and Lissoni (2001). We introduce these knowledge spillovers as a Lu-

cas/Romer type of externality in the production function. This externality

is modeled by a kernel defined over the stock of capital of the firms located

in the spatial domain.

We study whether the interplay between adjustment cost in expanding

the stock of capital and the knowledge spillovers generated from the ex-

panded capital stock induce endogenous agglomerations and spatial cluster-

ing of firms in a competitive industry where profit maximizing firms take the

price function and knowledge spillovers as parametric.

Our results suggest that endogenous agglomerations may emerge as a

long-run steady state of a perfect foresight rational expectations competitive

equilibrium (PF-RECE), where the distribution of capital stocks and outputs

across space is not uniform. On the other hand at a social optimum, where

a planner endogenizes spatial spillovers, agglomerations do not emerge, and

all firms converge to the same stock of capital irrespective of location.

Our contribution is twofold. First we provide a conceptual framework

that explains the dynamic endogenous emergence of spatial clustering in a

competitive industry. Second, we show how convexity arguments and spec-

tral theory can be used to study PF-RECE problems and social optimum

problems in spatiotemporal economies, by properly decomposing the spatial

and the temporal behavior. These provide valuable insights regarding the en-
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dogenous emergence (or not) of optimal agglomerations at a PF-RECE and

the social optimum of competitive industry. The possibility of a potential

agglomeration at a PF-RECE is related to the incomplete internalization of

the spatial externality by optimizing firms, while the “no agglomerations”

result at the social optimum stems from the full internalization of the spatial

externality by a social planner and the strict concavity of the production

function.

2. Spatial Knowledge Spillovers and Adjustment Costs
We consider an industry consisting of a large number of firms with each

firm located at point x of a one-dimensional bounded spatial domain X =

[−L,L].2 We assume that X is discretized, i.e., it is divided into N intervals

or cells Ii, i = 1, · · · , N , such that X = ∪Ni=1Ii, and to save space we will
denote by N := {1, 2, · · · , N} and use the compact notation i ∈ N . We con-
fine our analysis to a finite dimensional space, because studying a continuum

of firms would make the state space infinite dimensional and the mathe-

matical background necessary to study such a problem would exceed space

limitations. However, the problem studied here as well as other economic op-

timization problems are extendable to infinite dimensional state spaces using

our methods (e.g. Brock et al. (2012)).

Each firm produces at time t ∈ R+ and location x ∈ X a single ho-

mogenous output y (t, x). To simplify we assume that the output is uniform

within each cell or site, i.e. y(t, x) = yi(t) for every x ∈ Ii, so that the state
of the system at time t, is given by a vector y(t) = (y1(t), · · · , yN(t)) ∈
RN . Local output y(t, x) is produced by two factors of production, lo-

cal capital stock k(t, x) and accumulated knowledge K(t, x) according to

a strictly concave and suffi ciently smooth neoclassical production function

f : R+ × R+ → R+; y(t, x) = f (k (t, x) , K (t, x)) , with ∂2f
∂k∂K

> 0. We

also assume that k and K are uniform within each cell, so that k(t, x) is

replaced by a vector k(t) = (k1(t), · · · , kN(t)) ∈ RN , and K(t, x) is replaced

by K(t) = (K1(t), · · · , KN(t)) ∈ RN . Therefore, the production at time t
and at cell i is given by yi(t) = f(ki(t), Ki(t)).

2Most of our results can be estended to general domains of chracteristics X ⊂ Rd,
d ≥ 1.
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Knowledge represents and intra-industry positive externality and is de-

termined, at time t and cell i, by the existing capital stock at nearby cells

j. The local capital stock at each cell j, contributes to the total knowledge

spillovers at cell i according to a weight function wij, therefore, the total

effect at cell i is

Ki(t) =
N∑
j=1

wijkj(t).

We will also use the compact notation K = Wk where W = (wij), i, j =

1, · · · , N is an RN×N matrix. If wij = 0 for a pair (i, j), then cell j does not

contribute at all to the total knowledge spillovers at site i. For simplicity

we assume that wij = w̄(|i − j|) for some function w̄, which implies that
distance, and not the actual locations, is fundamental in determining non-

local effects. MatrixW defines the connectivity of the “knowledge network”.

If, for example, wij = δj,i+1 + δj,i−1 − 2δj,i, where δi,j is the Kronecker delta,

we have a linear connectivity of the knowledge network, according to which

site i interacts only with sites i + 1 and i − 1. The connectivity of sites 1

and N , in some sense is related with the choice of boundary conditions. If,

for example, periodic boundary conditions are imposed so that we consider

the network as situated on a circle, then site 1 interacts with site N that is

now considered as its neighbor. We wish to emphasize, however, that our

analysis is valid for a general choice of network, i.e., for a general choice of

matrix W .

An important class of networks are those that satisfy the condition
∑

j wij =

w̄, independent of the choice of i. A particular example for such a coupling is

the matrix wij = δj,i+1 + δj,i−1− 2δj,i which satisfies this condition for w̄ = 0.

We will call such couplings diffusive type couplings. It means that if the stock

of capital is uniform across all sites and equal to k then every site i is going

to experience an externality equal to w̄k. The adoption of this condition on

the network will allow us to establish some important and general results

concerning the possibility or not of emergence of spatial agglomerations in

the economy.

Knowledge externality Ki(t) will have different interpretations in differ-

ent contexts. If Ki(t) represents a type of knowledge which is produced
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proportionately to capital usage, it is natural to assume that the kernel w̄

considered as a function of ζ = i − j is single peaked and bell-shaped, with
a maximum at ζ = 0, and of suffi ciently fast decay to 0 for suffi ciently large

|ζ|. If Ki(t) reflects aggregate benefits of knowledge produced at (t, i) for

producers at (t, i) and damages to production at (t, i) from usage of capital

at (t, j), then non-monotonic shapes of w̄ with, for example, a single peak

at ζ = 0 and two local minima located symmetrically around ζ = 0, with

negative values indicating damages to production at i from usage of capital

at j, are plausible. This production function could be considered as a spatial

version of a neoclassical production function with Romer/Lucas externalities

modelled by geographical spillovers given by a Krugman (see e.g., Krugman

(1996)), or Chincarini and Asherie type specification (see e.g. Chincarini and

Asherie (2008)).

The temporal rate of change of capital stock is given by the derivative

with respect to time, k′, of the vector valued function k : R+ → RN . The
firm faces a cost of changing the capital stock, which depends on the value

of the function k′. This adjustment cost at time t and cell i is expressed

by a quadratic adjustment function Ci(t) = α
2
(k′i(t))

2, α > 0. Capital stock

depreciates at the same rate η in all sites.

The output of the firms is sold at a market price determined by a demand

function D : R→ R+.

p (t) = D(Q) = D (Q (k,K)) , D > 0, D′ < 0 (1)

Q := Q (k,K) =

N∑
i=1

f (ki(t), Ki(t)) . (2)

The k and K dependence is stated explicitly to emphasize that D can be

understood as a functional D : RN ×RN → R; given k, we obtain K = Wk,

and calculate the total output Q that determines the price p. Assuming

perfect capital markets and that the unit price of capital is q independent

of time, the objective of a firm located at i ∈ N is to maximize the present

value of profits by considering knowledge spillovers as exogenous Ki = Ke
i .
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The firm’s problem can be written as:

max
k′i

∫ ∞
0

e−rt
[
p (t) f (ki, K

e
i )−

α

2
(k′i)

2 − q (k′i + ηki)
]
dt (3)

ki (0) = ki0, ki (t) ≥ 0, i ∈ N . (4)

Given this set up we define the industry equilibrium and the social opti-

mum and explore conditions that could generate endogenous spatial cluster-

ing of firms.

3. Industry Equilibrium and Social Optimum
Following (Lucas and Prescott (1971), Brock (1974), Brock and Scheinkman

(1977)) we define a PF-RECE as the price function p (t) given by (1) where

ki (t) solves (3) for all i ∈ N with optimality conditions evaluated at Ke =

Wk. If the price path p (t) is predicted by the competitive firms, this path

will result in an aggregate output Q over the whole spatial domain such that

the market is cleared at each t by p (t.)

The long-run properties of the industry equilibrium can be obtained by

exploiting the technique of maximizing consumer surplus (Lucas and Prescott

(1971), Brock (1974), Brock and Scheinkman (1977)). Two optimization

problems leading to different concepts of equilibria can be defined in this

context:

(A) The problem of maximizing consumer surplus when firms are regarding

knowledge spillovers as exogenous, that is when they do not internalize

the spatial externality and they set Ki(t) = Ke, defined as:

max
k′

∫ ∞
0

e−rt
{
S (k,Ke)−

N∑
i=1

[α
2

(k′i)
2 − q (k′i + ηki)

]}
dt (5)

S (k,K) =

∫ Q(k,K)

0

D (u) du (6)

Thus the firm treats Ke as parametric, but the actions of all firms

generate the “actual”value of the realized knowledge externality which

is Wk and which determines the equilibrium outcome. The solution to

this problem for Ke = Wk determines the PF-RECE.
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(B) The problem of maximizing consumer surplus when a social planner

fully internalizes the spatial externality. This means

max
k′

∫ ∞
0

e−rt
{
S (k,Wk)−

N∑
i=1

[α
2

(k′i)
2 − q (k′i + ηki)

]}
dt (7)

The solution to this problem determines the social optimum.

The Euler equations for these two problem can be obtained in a straight-

forward manner, using e.g. the Pontryagin maximum principle. A straight-

forward analysis leads to expressing the Euler equations for the PF-RECE

problem (5) as

k
′′

i − rk′i +
1

α

[
∂

∂ki
S(k,Ke)

∣∣∣∣
Ke=Wk

− q (r + η)

]
= 0, i ∈ N , (8)

where the notation ∂
∂ki
S(k,Ke)

∣∣∣
Ke=Wk

means that we first take the gradient

of S(k,Ke) with respect to k, treating Ke as fixed, and then substitute

Ke = Wk in the resulting function to determine the PF-RECE. For the

social optimum, problem (7), the Euler equation is:

k
′′

i − rk′i +
1

α

[
∂

∂ki
S(k,Wk)− q (r + η)

]
= 0, i ∈ N . (9)

This leads to the following definition:

Definition 1 A solution k : R+ → RN of (8), with Ke = Wk is called a

PF-RECE. while a solution of (9) is called a social optimum.

Note that in the social optimum ∂
∂ki
S(k,Wk) are the components of the

true gradient of function S, treated as a function of k only, i.e., the true

gradient of the function S(k,Wk). This is in contrast to what happens

for the PF-RECE where ∂
∂ki
S(k,Ke)

∣∣∣
Ke=Wk

, no longer correspond to the

components of a “true” gradient of a function. This remark plays a very

important role to the qualitative long term behavior of the two systems and

leads to important differences between them.
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4. Long term behavior of the social optimum: A global result
We provide a global result concerning the spatial structure, i.e. the pos-

sibility of agglomerations, as a long run outcome at the social optimum.

Proposition 2 If the system of equations

∂

∂ki
S(k,Wk)− q (r + η) = 0, i ∈ N , (10)

admits the spatially uniform k1 = · · · = kN = k̄ solution, then no spatial

patterns are admissible in the long run equilibrium for the social optimum.

Proof: Define the functions S̄ : RN → R, by S̄(k) := S(k,Wk) −
q (r + η) k and Ŝ : R→ R by Ŝ(x) =

∫ x
0
D(u)du. The function Ŝ(x) is strictly

concave as the integral of a strictly decreasing function, and by the properties

of the production function the function S(k,Wk) a strictly concave function

of k. Therefore, function S̄(k) is strictly concave. The Euler equation can

be written as

k′′ − rk′ = −∇S̄,

and by the convexity of −S, the operator −∇S̄ is a monotone operator

on RN . By Theorem 3.3 of Rouhani and Khatibzadeh (2009) any bounded

solution of these systems converges to the steady state which is a solution

of (10).3 The solution of this equation is recognized as the minimum of the

function −S̄ respectively, which is unique by strict convexity. Therefore, the
result follows. QED
Finally we provide below conditions under which no agglomerations are

possible at the social optimum.

Assumption 3 The coupling is of diffusive type, i.e.
∑

j wij = w̄ for any

i ∈ N , and the production function is homogeneous of degree γ.

Proposition 4 Let Assumption 3 hold. If the scalar algebraic equation

γN
1−γ
γ ρ

1
γD(s)s

γ−1
γ − q (r + η) = 0, ρ := f(1, w̄) (11)

3This approach is readily extendable to infinite dimensional state spaces.
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admits a solution s∗ ∈ R+, then no agglomeration patterns may appear in
the long run equilibrium for the social optimum and the industry relaxes to a

spatially homogeneous state k1 = · · · = kN = k∗ =
(
s∗

Nρ

) 1
γ
.

Proof: The steady state is given by the solution of the system of equations

D(Q(k,Wk))

fk(ki,
∑
j

wijkj) +
∑
r

wrifK(ki,
∑
j

wrjkj)

− q (r + η) = 0, i ∈ N ,

which for a spatially uniform solution k1 = · · · = kN = k∗ and using

Assumption 3 reduces to single algebraic equation, which is equivalent to

(11), in terms of the variable s = Nρ(k∗)γ . Then using Proposition 2 we

obtain the stated result. QED
5. Agglomeration patterns in the perfect foresight rational ex-

pectations equilibrium
The situation is different for the PF-RECE, where the term ∂

∂ki
S(k,Ke)

∣∣∣
Ke=Wk

is no longer a gradient so that in general we may not have a result similar

to Proposition 2. Therefore, spatial agglomerations may emerge through the

perturbation of a spatially homogeneous steady state, in a fashion which is

similar (but different in mechanism) to the celebrated Turing instability. The

next proposition presents such a case.

Proposition 5 Let Assumption 3 hold, and define the real numbers ρk :=

fk(1, w̄), ρK := fK(1, w̄), ρkK := fkK(1, w̄).

1. If the scalar algebraic equation
(

1
Nρ

) γ−1
γ
ρkD(s)s

γ−1
γ − q(r + η) = 0

admits a solution s∗ ∈ R+, then a spatially homogeneous steady state k∗ =(
s∗
Nρ

) 1
γ
exists.

2. Suppose 1 is true and define the matrix T := C1I+C2W +C31, where
I is the N ×N identity matrix, 1 is an N ×N matrix consisting of 1’s and

C1 :=
1

α
kγ−2∗ D(s∗)ρkk, C2 :=

1

α
kγ−2∗ D(s∗)ρkK , C3 :=

1

α
k
2(γ−1)
∗ D′(s∗)ρk(ρk + w̄ρK),

(i) If the matrix T has eigenvalues greater than r2

4
, then pattern formation

(agglomerations) may appear, whereas (ii) if T has positive eigenvalues but
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less than r2

4
, then a temporally oscillating spatial agglomeration may appear

around the spatially homogeneous steady state k∗.

Proof: 1. The steady state will be a solution of

D(Q(k,Wk))

(
fk(ki,

∑
j

wijkj)

)
− q (r + η) = 0, i ∈ N ,

and the proof proceeds using similar arguments as in Proposition 4.

2. We now look for the evolution of a spatially non homogeneous pertur-

bation of this homogeneous steady state. Consider a solution of (8) of the

form ki = k∗ + εpi, i ∈ N , where ε is a small parameter. We substitute into
(8) and linearize with respect to ε. After some tedious algebra, and keeping

in mind the properties of the production function we obtain the linearized

system,

p′′ − rp′ + Tp = 0. (12)

The matrix T is symmetric, so there exists an orthonormal basis of RN

consisting of the eigenvectors of T . Projecting (12) along the eigenvectors,

the general solution of (12) can be expressed as p(t) =
∑N

`=1 q`(t)φ` where

q′′` − rq′` + λ`q` = 0, ` ∈ N , and now the system is decoupled, with its

behavior given in terms of the characteristic roots v±` = 1
2
(r ±

√
r2 − 4λ`),

` ∈ N which lead to 3 possibilities: (A) r2

4
< λ`, so that v±` = r

2
± iσ,

i.e., a pair of complex conjugate roots. (oscillatory behavior compatible with

the transversality condition - Hopf type behavior). (B) 0 < λ` <
r2

4
, so

that v−` < r
2
< v+` , i.e., a pair of real roots, one larger (thus rejected by

transversality) and one smaller than r
2
(leading to instability as long as it is

positive). (C) λ` < 0, so that v−` < 0 < r
2
< v+` , i.e., a pair of real roots,

one negative (thus stable) and one positive larger than r
2
(thus rejected by

transversality). Thus case B could lead to pattern formation. QED
Note that: In general k∗ 6= k∗, i.e. the steady state of the social optimum

problem does not coincide with the steady state of the RE-PFCE; case (i) is

reminiscent of a Turing instability with the major difference that is related

to a controlled system, which implies that all behavior has to be compati-

ble with the transversality condition; case (ii) is in turn related to a Hopf
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type bifurcation. Furthermore, the conditions for pattern formation in the

linearized problem are related to the spectrum of the symmetric matrix T ,

which is easily computed for concrete applications, numerically. The concav-

ity of the production function and the monotonicity of the demand function,

provide important information on the signs of the constants C1, C2, C3 and

thus allow us to obtain general information concerning the position of the

spectrum of the matrix T .

Finally, and most important for the economics of the industry, in the

PF-RECE, we do not expect in general an analogue of Proposition 2, since

as observed in the beginning of this section the term ∂
∂ki
S(k,Ke)

∣∣∣
Ke=Wk

is

no longer a gradient. The local behavior described for the linearized system

around the homogenous steady state k̄, by Proposition 5 suggests that it is

possible for some of the unstable modes leading to spatial patterns for the

linearized system to persist, leading thus the PF-RECE to long-run stable

agglomerations. It is interesting to note that this is in contrast to the socially

optimum, where agglomerations and clustering in the long run are definitely

ruled out by Proposition 2. In terms of economics this means that diminish-

ing returns in both the stock of capital and knowledge spillovers, expressed by

fkk (k,K) , fKK (k,K) , K = Wk respectively, eradicate any spatial patterns

when knowledge spillovers are internalized at the firm level. When, however,

knowledge spillovers are not internalized then interactions of the complemen-

tarity between the stock of capital and the knowledge spillover expressed by

fkK (k,K) , with the diminishing returns in the stock of capital, may induce

the emergence of spatial agglomeration which could become persistent.

6. Concluding Remarks
We revisit adjustment costs and the investment theory of the firm in a

spatial context where knowledge spillovers, which are regarded as a positive

externality in the production function, are determined by spatial proximity

of firms. We show that spatial agglomerations may emerge endogenously in

a PF-RECE where firms do not internalize spatial knowledge spillovers, how-

ever, they do not emerge at the social optimum when knowledge spillovers

are internalized. Our result suggest therefore that agglomerations are possi-

ble as a long run equilibrium outcome in a competitive industry with spatial
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knowledge spillovers without the presence of increasing returns.
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