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Abstract

This article studies the e¤ects of tax competition on the provision
of public goods under business risk and partial irreversibility of in-
vestment. As will be shown, the provision of public goods changes
over time and also depends on the business cycle. In particular, under
source-based taxation, public goods can be optimally provided during
a downturn, in the short term. The converse is true during a recovery,
when they are underprovided. In the long term however, tax competi-
tion does not a¤ect capital accumulation and therefore, the provision
of public goods.
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1 Introduction

Capital mobility is relatively high (see the comprehensive survey by Zodrow,
2010). However, it is not fully cost free. For example green�eld and even
brown�eld investments are characterized by some irreversibility, which re-
duces mobility after the investment has been undertaken. Another related
cause of partial mobility is the existence of "location-speci�c capital", which
may be relevant when a resident resides in one place for some time (see, e.g.,
Wildasin and Wilson, 1996).
Despite these well-known characteristics, most of the existing literature

on tax competition treats capital as fully mobile. If this assumption �ts
well with paper pro�ts and intangible assets (see Devereux, 2007), it is less
realistic when tangible assets are considered.
There are a few articles that have dealt with the partial mobility of invest-

ment. Among these, Lee (1997) uses a two-period framework where �rms are
free to make an investment abroad and in the second period face exit costs.
This induces competing governments to intensify tax competition at time 1
and then raise tax rates at time 2. Lee (1997) also shows that time 2�s tax
rate increase is positively related to the amount of exit costs. Becker and
Fuest (2011) assume two types of �rms, mobile and immobile. They then
show that the optimal tax policy depends on whether the mobile �rms are
more or less pro�table than the average �rm in the economy.
Both articles use a deterministic framework to derive policy implications,

although risk is shown to a¤ect the interaction between taxation and invest-
ment (see, e.g., Ghinamo et al., 2010). Like partial mobility, volatility is
an important characteristic which is seldom considered. To our knowledge,
risk has been analyzed in terms of welfare and the main question raised by
the relevant literature is to what extent volatility undermines the welfare
state. For instance, Wildasin (2000) argues that increased capital mobility
reduces the Government�s ability to redistribute resources.1 On the other
hand, Lee (2004) states that capital taxation can be used as an insurance
against wage �uctuations. To our knowledge, no tax competition article
has studied strategic interactions when business conditions change over time
because of volatility.
The aim of this article is to investigate �scal policies under both volatility

and partial irreversibility (mobility). To do so, we will use an intertemporal

1On this point see also Wilson and Wildasin (2004).
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neoclassical model with investment irreversibility and depreciation. By let-
ting capital depreciate we make irreversibility partial, in that obsolescence
gives some degree of �exibility to �rms that can decide whether and when to
re-invest.
Moreover, we will apply this investment framework to the well-known

tax competition models, developed by Zodrow and Mieszkowski (1986) and
Wilson (1986). We will then show that, when a Government raises revenue by
means of a source-based tax on capital, the provision of public goods depends
on the state of nature and the time horizon. In particular, we will show that
in the short-medium term, during a downturn, public goods can be optimally
provided. The reasoning behind this is simple: when business conditions get
worse, �rms cannot disinvest because of irreversibility (they can only wait
for obsolescence). Since capital is given, the source-based tax is equivalent to
a lump-sum tax. When however a recovery takes place, taxation discourages
capital accumulation and the use of a distortive source-based tax leads to
the underprovision of public goods. Results change in the long term. In this
case, the distortive e¤ects of taxation vanish, and therefore, public goods can
be optimally provided. This �nding is in some ways similar to Sinn�s (1991)
vanishing Harberger triangle.
The is structured as follows. In Section 2, we introduce a standard neo-

classical model with investment irreversibility and depreciable capital. Sec-
tion 3 examines the provision of public goods, in the short term. Section 4
focuses on the long term. Section 5 summarizes our �ndings and discusses
some possible extensions.

2 The model

Let us focus on a representative �rm, which is subject to a unit tax. For
simplicity, we assume that the price of capital is equal to 1. Denoting capital
as Kt, we assume that the production function is �t	(Kt), where �t is a
stochastic productivity variable that follows a geometric Brownian motion

d�t
�t

= ��dt+ �dzt; (1)

where �� is the expected growth, � is the standard deviation of
d�t
�t
, and dzt

is the increment of a Wiener process satisfying the conditions E(dzt) = 0
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and E(dz2t ) = dt:Moreover, the function 	(Kt) follows the Inada conditions.
Finally, the installment of capital is assumed to be irreversible.2

In order to make our model more realistic, we also introduce capital risk.
By assumption therefore, capital lifetime will follow a Poisson process. This
means that over any short period dt; there is a probability �dt that the
activity dies. The importance of this assumption is twofold. On the one
hand, it makes our analysis more realistic, by adding an important source
of uncertainty, i.e., capital risk3 (e.g., related to obsolescence). On the other
hand, depreciation allows us to make the irreversibility assumption weaker.
In other words, we state that as long parameter � is positive, irreversible
investments is not eternal and that it may be �made�reversible by technical
obsolescence. When the investment project expires in fact, the �rm owns a
non-depreciable option to restart. As immediate restart may not be prof-
itable, the �rm may �nd it pro�table to wait until � rises. With such an
option therefore, at the expiration of the project the �rm regains a limited
degree of reversibility in its investment strategy.
Given these assumptions our representative �rm chooses the stock of cap-

ital that maximizes its after-tax pro�t function:

�(Kt;�t) = �t	(Kt)� �Kt; (2)

where � is a unit tax on capital. Denoting r as the risk-free interest rate, the
�rm�s investment activity is described by the following:

Lemma 1 The �rm invests when the following marginal condition holds:

��t	K(Kt) �
�1

�1 � 1
r + �+ �

r + �
(r + �� ��) (3)

where ��t is the maximum value of the stochastic variable reached until time t,

i.e., ��t = fmax0�s�t�sg ; 	K(Kt) � @	(Kt)
@Kt

and �1 =
�
1
2
� ��

�2

�
+
q�

1
2
� ��

�2

�2
+ 2 r+�

�2
>

1:

2This means that it owns a compound option to invest, which consists of a continuum of
American call options: For any increment dK the �rm can exercise a call option to expand
capital. After this exercise, the �rm obtains another American call option allowing it to
undertake a further increment.

3Bulow and Summers (1984) argue that capital risk is the most important source of risk
involved in holding an asset. Also, notice that the Poisson process may describe political
risk, i.e., the risk of expropriation by a foreign government.
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Proof. See Appendix A.
Lemma 1 derives the optimal investment policy under irreversibility. As

can be seen, investment is optimal when the marginal product ��t	K(Kt)
(on the LHS) equates to the marginal cost of investment. It is worth noting
that under full investment reversibility the term �1

�1�1
would vanish (as �1

would go to in�nity) and the optimal investment would be reached when the
equality ��t	K(Kt) � r+�+�

r+�
(r + �� ��) holds, irrespective of whether a

volatile business cycle exists or not. In this case, any business change would
lead to investment (disinvestment) when a recovery (recession) takes place.
When however, investment is irreversible the e¤ects of the business cycle are
asymmetric.
Since �1

�1�1
> 1 we can say that the marginal cost of investment is higher

under irreversibility. Moreover, volatility has an asymmetric e¤ect. During
a market expansion, i.e., when at time t, the variable �t is higher than ��t ,
investment is made so as to reach equality (3). During a recession, i.e.,
when �t < ��t , the installed capital exceeds the optimal one but cannot be
dismantled. In this case, no action takes place and so we can say that capital
is immobile.

3 Optimal provision of public goods in the
short/medium term

Let us now analyze the provision of public goods. To do so, we will use
the well-known models developed by Zodrow and Mieszkowski (1986) and
Wilson (1986) where many small countries compete to attract capital but
need to use a source-based tax to �nance the provision of public goods. By
assumption, each competing government chooses its optimal �scal policy by
maximizing the utility function of a representative citizen, i.e., U (Ct; Gt),
where Ct and Gt are a private and public good, respectively. The private
budget constraint is equal to

Ct = �(Kt;�t)� rKt + r�; (4)

where � is the capital endowment of our representative citizen. Assuming
a balanced public budget, the condition

�Kt = Gt (5)
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always holds. In order to address the government�s policy, let us �rst an-
alyze the e¤ect of taxation on capital accumulation. If the business cycle
is expanding and therefore the optimal condition (3) holds, taxation a¤ects
investment. This can be shown by di¤erentiating (3) and rearranging:

@Kt

@�
=

1

��t	KK(Kt)
< 0: (6)

Given 	KK < 0; we can therefore say that taxation deters capital accumu-
lation. In this case, the change in public spending, caused by a change in
� , is equal to dG = Ktd� + �dKt: If however a downturn occurs and so the
inequality �t < ��t holds, neither investment nor disinvestment is made (be-
cause of irreversibility). Since irreversibility makes capital immobile, we have
@Kt

@�
= 0: Therefore the change in public spending is equal to dG = Ktd� and

we can say that in this latter case, a source-based tax has the same e¤ect as
a lump-sum one. To sum up we can write the following�

dG = Ktd� + �dKt if �t = �
�
t ;

dG = Ktd� if �t < �
�
t :

(7)

More precisely, in the former case (when �t � ��t ) new capital, dKt, is
invested and, due to the absence of installment costs, the equality �t = ��t is
immediately reached. In the latter case, the productivity variable �t is less
than ��t . This means that taxation cannot a¤ect investment (and therefore
does not a¤ect the tax base) and the revenue change is simply due to the tax
rate change d� : Substituting (6) into (7) gives� dK

dG
= 1

[��t	KK(Kt)Kt+� ]
if �t = �

�
t ;

dK
dG
= 0 if �t < �

�
t :

(8)

Let us next calculate the national budget constraint. Using (4) and (5) we
have

Ct +Gt = Y (Kt (Gt)) ; (9)

where
Y (Kt (Gt)) � �t	(Kt (Gt))� rKt (Gt) + r�

is national income. Therefore, the government�s problem will then be:

maxCt;Gt U (Ct; Gt)
s:t: (9)

(10)

Using (22) and (23), we thus obtain the following:
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Proposition 1 Under investment irreversibility and uncertain obsolescence
the marginal rate of substitution between the public and the private good will
be equal to:

MRS � UGt (Ct; Gt)

UCt (Ct; Gt)
=

(
��t	KK(Kt)Kt� r

�1�1
[��t	KK(Kt)Kt+� ]

> 1 if �t = �
�
t ;

1 if �t < �
�
t :

(11)

Proof. See Appendix B.
The reasoning behind Proposition 1 is straightforward. If �t < ��t , no

investment is undertaken and given irreversibility no disinvestment occurs.
Thus capital is �xed. In this case, tax rate changes have no impact on capital
accumulation. Since the source-base tax has the same e¤ect as the one due
to lump-sum taxation, public good provision is undistorted. If �t = ��t ,
namely �t reaches or overcomes its previous maximum value, investment
is undertaken. In this case taxation discourages capital accumulation and
therefore leads to the underprovision of Gt.
Let us next study the e¤ect of risk on public goods provision. We can

prove that:

Proposition 2 If � > r; the derivative @MRS
@�

is negative. If � < r; the
derivative @MRS

@�
is negative (positive) if the absolute value of elasticity j"j ����@Kt

@�
�
Kt

��� ; is low (high) enough.
Proof. See Appendix C.
The reasoning behind this is that volatility has a twofold e¤ect. On the

one hand, it raises the threshold value: this means that, given an initial value
�t, the inequality �s < ��s (with s � t) holds for longer: in other words, the
public good is optimally provided for a longer time. On the other hand, for
a given threshold value ��t , the increase in � makes �s (with s � t) more
volatile. This implies that the equality �s = ��s (with s � t) is expected to
hold for longer. So the public good is underprovided. Proposition 2 therefore
shows that if the tax rate is high enough, an increase in volatility reduces
MRS. This is due to the fact that the former e¤ect dominates the latter, and
hence, the tax distortion is moderate. If however � is low, results depend
on the elasticity of capital with respect to taxation. If capital is moderately
sensitive to tax changes, again, the former e¤ect dominates the latter. The
converse is true when the absolute value of " is high enough. In this case, an
increase in volatility worsens the underprovision of our public good.
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4 The provision in the long term

So far we have focused on the provision of public goods for a given value
of �t. This implicitly means that we are focusing on short/medium-term
e¤ects. In order to analyze tax e¤ects in the long term, let us rearrange the
investment rule (3) as follows:

�t = �t	K(Kt) for �t < �̂; (12)

where the marginal product �t is a regulated process, according to Harrison

(1985, ch. 2), and �̂ = �1
�1�1

r+�+�
r+�

(r + �� ��) is its upper re�ecting barrier.
When, due to an increase in �t; �t reaches �̂; the �rm �nds it pro�table

to install new capital. New units of capital decrease the marginal product
	K(Kt): for this reason �t cannot overcome �̂.

4 If, however, the inequality
�t < �̂ holds, the level of �t is too low and no new investment is made. Notice
that the existence of a re�ecting barrier �̂ does not mean that there is a �nite
rate of accumulation over time. Rather, it can simply cause investment
inaction for long periods and sudden investment bursts over short periods.
If a steady state distribution for �t exists within the range (�1; �̂), then

it is always possible to obtain the corresponding marginal distribution for
Kt. As a consequence, we can �nd the long-term average growth rate of Kt.
Following Hartman and Hendrickson (2002) and Di Corato et al. (2013) we
can prove that:

Proposition 3 For any initial value of capital K0, such that �(K0;�t) � �̂;
the expected long-term average rate of capital accumulation can be approxi-
mated as follows:

1

dt
E [d lnKt] '

(
�(�� � 1

2
�2) 	K(K0)

	KK(K0)K0
for �� >

1
2
�2;

0 for �� � 1
2
�2:

(13)

Proof. See Appendix D.
Proposition 3 shows that the long-term average rate of capital accumula-

tion depends on both the dynamics of �t (i.e. ��; �
2); and the characteristics

4Since investment is instantaneous, the investment rate is in�nite at point �̂.This is due
to the fact that, at point �̂, neither �t nor Kt are di¤erentiable with respect to time t (see
Harrison, 1985, and Dixit, 1993).
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of the production function. In particular, if the production function 	(K)
follows the Inada conditions and the drift parameter is high enough (i.e.,
�� >

1
2
�2), the expected long-term growth rate of capital is proportional to

(�� � 1
2
�2): Otherwise it is nil.

As can be seen, if �� >
1
2
�2, the expected growth rate of capital accu-

mulation depends on the initial amount K0, unless the production function
is isoelastic. If 	(Kt) = K


t with 
 2 (0; 1); the long-term growth rate is
1
dt
E [d lnKt] =

(��� 1
2
�2)

1�
 and does not depend on K0.
Using the regulated process (12), we can see that when �t hits the barrier,

the equality:
ln	K(Kt) = ln �̂ � ln�t

holds. This means that, since ln �̂ is constant, the expected growth of Kt on
the boundary is driven by ln�t: Moreover, since ln �t � ln�t � ln �̂ � ln�t
for all t, we can say that in the long term, the average growth rate of Kt

cannot be greater than the average growth rate along the boundary.
It is worth noting that the rate in (13) is decreasing in the volatility of

future values of �t: A higher volatility has two distinct e¤ects. First, it
pushes the barrier �̂ upward; second, by increasing the negative skewness of
the distribution of �, it reduces the probability of the barrier being reached.5

Both e¤ects reduce the rate of capital accumulation in both the short and
long term.
As expected, if � � 1

2
�2, the process � drives away from �̂ and the rate

falls to zero.
It is worth noting that Proposition 3 has an important implication: i.e.,

in the long run, taxation does not a¤ect capital accumulation. This means
that, given the public budget constraint (5), the long-term level of public
goods provision is una¤ected by tax competition. Unlike previous work, we
have shown that, if �� >

1
2
�2 public goods are optimally provided. If however

�� <
1
2
�2, the long-term capital (tax base) is nil and this tax tool cannot raise

resources to �nance the provision of public goods. In neither case, taxation
matters and we therefore have a result that echoes Sinn�s (1991) vanishing
Harberger triangle.

5Appendix D shows that the higher the parameter value � the lower the probability
that � reaches �̂ is.
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5 Conclusion

In this article we have analyzed the provision of public goods over time, by
assuming the partial mobility of capital. More precisely, we have assumed
that investment is irreversible but is subject to stochastic obsolescence. In
this case, depreciation allows us to consider investments as not eternal. When
the investment project expires, the �rm indeed owns a non-depreciable option
to restart.
As we have shown the provision of public goods changes over time. In the

short term, public goods can be optimally provided during a downturn. In
this case, the capital stock is �xed and the source-base tax used in our frame-
work has the same e¤ect as a lump-sum one. Only during expansions, the
growth of capital is discouraged by taxation and this leads to underprovision.
In the long term, results are di¤erent. As we have shown, tax competition

a¤ects neither capital accumulation nor public good provision. Moreover,
only if the expected growth rate of productivity is high enough, public goods
are optimally provided.

A Proof of Lemma 1

The �rm�s problem is one of choosing the optimal amount of capital:

V (Kt;�t) = max
Kt

E0

�Z 1

0

(1� �dt) e�rt[� (Kt;�t)� dKt]dt+ 0 � �dt j K0 � 0; �0 � 0
�
;

(14)
with dKt � 0 for all t:Without installation costs, the rate of growth of capital
is unbounded and dK is therefore the investment process. The expectation
in equation (14) is conditional on the information available at time zero,
accounts for the joint distribution of Kt and �t and takes into account the
irreversibility constraint.6

Assuming that V (:) is twice continuously di¤erentiable, a solution can
be obtained starting within a time interval where no new investment occurs.
Applying dynamic programming to (14) and rearranging the equation we can
write the �rm�s value as

V (Kt;�t) = � (Kt;�t) dt+ e
�(r+�)dtE0 [V (Kt;�t + d�t)] ;

6As we know, at any interval dt, there is a probability �dt that the business value goes
to zero. In this case, the �rm can decide whether and when to invest.
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Expanding the right-hand side and using Itô�s lemma gives

(r + �)V (Kt;�t) = � (Kt;�t) + ���t
@V (Kt;�t)

@�t
+
�2

2
�2t
@2V (Kt;�t)

@�2t
:

(15)
Di¤erentiating (15) with respect to Kt we obtain

(r + �) v(Kt;�t) = [	K(K)�� � ] + ���t
@� (Kt;�t)

@�t
+
�2

2
�2t
@2� (Kt;�t)

@�2t
:

(16)
where v(Kt;�t) � VK(Kt;�t). The solution of (16) has the following form

v(Kt;�t) = c+�tf(Kt) +
2X
i=1

ai(Kt)�
�i
t ; (17)

where c is a constant to be found and

�1 =
�
1
2
� ��

�2

�
+
q�

1
2
� ��

�2

�2
+ 2 r+�

�2
> 1;

�2 =
�
1
2
� ��

�2

�
�
q�

1
2
� ��

�2

�2
+ 2 r+�

�2
< 0

are the roots of the characteristic equation �2

2
�(� � 1) + ��� � (r + �) = 0.

The interpretation of equation (17) is then transparent. The contribution of
the Kth unit of capital to the pro�t �ow, when the existing stock of capital
is K; is given by

�K (Kt;�t) � 	K(K)�� � :
Calculating the expected present value of this marginal contribution thus
gives:

v(Kt;�t) =
�t	K(K)

r + �� ��
� �

r + �
+

2X
i=1

ai(Kt)�
�i
t :

Let us next introduce the boundary conditions for (17):

v (Kt;�
�
t ) = 1; (18)

v� (Kt;�
�
t ) = 0; (19)

a2(Kt) = 0: (20)

where ��t = fmax0�s�t�sg : Equations (18) and (19) are the Value Match-
ing Condition and Smooth Pasting Condition for the �rm�s optimal policy,
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respectively.7 Moreover, (20) imposes the irreversibility constraint on cap-
ital dKt � 0:8 Substituting (17) into (18) and (19), we have the following
two-equation system:

�t	K(K)
r+����

� �
r+�

+ a1(Kt)(�
�
t )
�1 = 1;

�t	K(K)
r+����

+ �1a1(Kt)(�
�
t )
�1 = 0:

Rearranging gives the following investment rule:

�t	K(K) =
�1

�1 � 1
r + �+ �

r + �
(r + �� ��) :

This concludes the proof of Lemma 1.�

B Proof of Proposition 1

To solve problem (10) let us use the following Lagrangian function

L = U (Ct; Gt) + � [Y (Kt (Gt))� (Ct +Gt)] : (21)

The f.o.c. of (21) are

@L
@Ct

= UCt (Ct; Gt)� � = 0; (22)

and

@L
@Gt

= UGt (Ct; Gt) + �
h
@Y (Kt(Gt))
@Kt(Gt)

@Kt(Gt)
@Gt

� 1
i
= 0 if �t = �

�
t ;

@L
@Gt

= UGt (Ct; Gt)� � = 0 if �t < �
�
t :

(23)

where
@Y (Kt (Gt))

@Kt (Gt)
=

�
��t	Kt(Kt (Gt))� r if �t = �

�
t ;

0 if �t < �
�
t :

(24)

Substituting (24) into (3) gives

@Y (Kt (Gt))

@Kt (Gt)
=

� r
�1�1

+ � if �t = �
�
t ;

0 if �t < �
�
t :

(25)

7See Dixit and Pindyck (1994).
8In other words, when � is very small the expected present value of the last unit of

capital installed is close to zero. Therefore, the value of the marginal option to scrap it is
almost in�nite. For further details see Dixit and Pindyck (1994, Ch. 6).
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Using (23) and (25) we thus obtain

MRS =
UGt (Ct;Gt)

UCt (Ct;Gt)

=

(
1�

r
�1�1

+�

[��t	KK(Kt)Kt+� ]
=

��t	KK(Kt)Kt� r
�1�1

[��t	KK(Kt)Kt+� ]
> 1 if �t = �

�
t ;

1 if �t < �
�
t :

(26)

Proposition 1 is thus proven.�

C Proof of Proposition 2

Let us di¤erentiate (26) with respect to �: If �t = ��t ; we obtain

@MRS
@�

= @
@�

n
��t	KK(Kt)Kt� r

�1�1
[��t	KK(Kt)Kt+� ]

o
= @

@�1

n
��t	KK(Kt)Kt� r

�1�1
[��t	KK(Kt)Kt+� ]

o
@�1
@�
=

[
@��t
@�1

	KK(Kt)Kt+
r

(�1�1)2
][��t	KK(Kt)Kt+� ]�[��t	KK(Kt)Kt� r

�1�1
][
@��t
@�1

	KK(Kt)Kt]

[��t	KK(Kt)Kt+� ]
2 � @�1

@�

(27)
with @�1

@�
< 0: Therefore (27) is positive if

@

@�1

(
1�

r
�1�1

+ �

[��t	KK(Kt)Kt + � ]

)
= �

� r
(�1�1)2

[��t	KK(Kt)Kt + � ]�
�

r
�1�1

+ �
�
@��t
@�1
	KK(Kt)Kt

[��t	KK(Kt)Kt + � ]
2 < 0;

(28)
where given (3), we have

��t	KK(Kt)Kt =
�1

�1 � 1
r + �+ �

r + �
(r + �� ��)

	KK(Kt)Kt

	K(Kt)
; (29)

and therefore

@��t
@�1

	KK(Kt)Kt =
1

�1(�1 � 1)
��t	KK(Kt)Kt (30)

Using (30) and rearranging (28) gives�
� r

(�1 � 1)2
+

�
r

�1 � 1
+ �

�
1

�1(�1 � 1)

�
��t	KK(Kt)Kt <

�r

(�1 � 1)2

Simplifying this inequality we thus obtain

� � r
�1

��t	KK(Kt)Kt <
�r

�1 � 1
: (31)
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As can be seen, if � � r > 0; then @MRS
@�

< 0: If however � � r < 0; results
are ambiguous. Let us the write (31) as follows:

��t	KK(Kt)Kt >
�1

�1 � 1
�r

� � r (32)

Notice that, given (6) ,the elasticity of capital with respect to � is " �
@Kt

@�
�
Kt
= �

��t	KK(Kt)Kt
: Therefore, we can rewrite (32) as

��1 � 1
�1

r � �
r

< ";

or equivalently,
�1 � 1
�1

r � �
r

> j"j :

This concludes the proof.�

D Proof of Proposition 3

D.1 Long-term distributions

Let ht be a linear Brownian motion with parameters � and � that evolves ac-
cording to dht = �dt+�dzt. Following Harrison (1985, pp. 90-91, and Dixit,
1993, pp. 58-68), the long-term density function for h �uctuating between
a lower re�ecting barrier, a 2 (�1;1), and an upper re�ecting barrier,
b 2 (�1;1), is given by the following truncated exponential distribution:

f (ht) =

8<: 2�
�2

e
2�

�2
ht

e
2�

�2
b�e

2�

�2
a
� 6= 0;

1
b�a � = 0:

(27)

Let us next focus on the limit case where a ! �1: In this case, from (27),
a limiting argument gives:

f (ht) =

�
2�
�2
e�

2�

�2
(b�ht) � > 0;

0 � � 0:
for �1 < ht < b (28)

Hence, the long-term average of ht can be evaluated asE [ht] =
R
�
htf (ht) dht,

where � depends on the distribution assumed. In a steady-state this gives:

E [ht] =

Z b

�1
htf (ht) dht =

Z b

�1
ht
2�

�2
e�

2�

�2
(b�ht)dht =

2�

�2
e�

2�

�2
b

Z b

�1
hte

2�

�2
htdht = b�

2�

�2

(29)
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D.2 Long-run average rate of accumulation

Let us next take the logarithm of (12):

ln �t = ln [�t	K(Kt)] = ln�t + ln [	K(Kt)] (30)

By Ito�s lemma, ln �t evolves according to d ln �t = d ln�t = [(��� 1
2
�2)dt+

�dzt] with ln �̂ is its upper re�ecting barrier. Setting ht = ln �t, the random
variable ln �t follows a linear Brownian motion with parameter � = (��� 1

2
�2)

and has a long-run distribution with (28) as density function. Solving (30)
for ln	K(Kt) we obtain:

ln	K(Kt) = ht � ln�t: (31)

Let us next calculate the expected value of (31):

E [ln	K(Kt)] = E [ht]�
�
�0 + (�� �

1

2
�2)t

�
Using Taylor�s theorem, we can expand	K(Kt) around the pointK0, thereby
obtaining:

E [ln(	K(K0)�	KK(K0)K0 +	KK(K0)Kt)] = E [ln[	KK(K0)(Kt ��(K0))]]
' E [ht]�

�
�0 + (�� � 1

2
�2)t

�
;

(32)
where �(K0) =

	KK(K0)K0�	K(K0)
	KK(K0)

: Given this result we obtain:

E [ln[(Kt ��(K0))]] = E [ht]�
�
�0 + (�� �

1

2
�2)t

�
� ln	KK(K0)

Rewriting ln(Kt��(K0)) as ln [x� x̂] and expanding it by Taylor�s theorem
around the point (gln x̂;glnx) gives

ln [x� x̂] � ln
�
elnx � eln x̂

�
' v0 + v1 lnx+ v2 ln x̂

where

v0 = ln
h
e
glnx � egln x̂i� " gln x̂

1� eglnx�gln x̂ +
glnx

1� e�(glnx�gln x̂)
#
;

v1 =
1

1� egln x̂�glnx ; v2 =
1

1� e(glnx�gln x̂) ;
v2
v1
=
1� v1
v1

< 0:
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Substituting this approximation into (32) we have:

E [lnKt] =
E [ht]�

�
�0 + (�� � 1

2
�2)t

�
v1

� v0 + v2 ln�(K0) + ln	KK(K0)

v1
:

(33)
Since by (29) E(ht) is independent on t, di¤erentiating with respect to t, we

obtain:

1

dt
E [d lnKt] =

�(�� � 1
2
�2)

v1
(34)

= �(�� �
1

2
�2)(1� e ^ln�(K0)�glnK):

By the monotonicity property of the logarithm, a level K0 must exists such

that lnK0 = glnK and ln�(K0) = ^ln�(K0): Therefore, we obtain:

1

dt
E [d lnKt] = �(�� �

1

2
�2)(1� K0

�(K0)
) (35)

= �(�� �
1

2
�2)

	K(K0)

	KK(K0)K0

for �� >
1

2
�2:
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