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Abstract

In the literature investigating the impact of uncertainty on short-run and long-run investment, the
most part of authors have used a log linear pro�t function. This functional form has been generally
considered a reasonable approximation for more general ones and has the advantage of providing closed
form solutions for both short-run investment rule and long-run rate of capital accumulation. In this
paper, we consider a �rm facing a linear demand function with additive shocks and present a technique
for the analytical approximation of the long-run average rate of capital accumulation for the case of an
inverted U-shape pro�t function. We then compare the long-run rates of capital accumulation calculated
under both assumptions within a plausible range of parameter values. We notice signi�cant di¤erences
and conclude that the choice of a log linear functional form has a non-trivial impact on the magnitude
of the long run rate of capital accumulation.
keywords: Investment, demand uncertainty, irreversibility.
jel classification: C61, D92, E22.

1 Introduction

In this paper, we compare the long-run average rate of capital accumulation determined under the assumption
of a �rm facing an isoelastic demand function with multiplicative shocks with the rate calculated under the
assumption of a linear demand function with additive shocks.
In the literature on investment under uncertainty, the most part of scholars, use an isoelastic pro�t

function where shocks enter multiplicatively (i.e., a log linear pro�t function).1 This form is consistent, for
instance, with a �rm facing an isoelastic demand function with multiplicative shocks and a Cobb-Douglas
production technology. The use of a log linear pro�t function has the advantage of leading to closed form
solutions for both the short-run optimal investment rule and the long-run average rate of capital accumulation
(see for instance Hartman and Hendrickson, 2002).2 Up to our readings, only few authors3 use a linear
demand function with shocks entering additively. In this case, handling the corresponding inverted U-shape
pro�t function is relatively straightforward when it comes to the derivation of a closed form solution for the
short-run optimal investment rule. In contrast, when investigating the long-run rate of capital accumulation,
it turns out to be problematic in that an analytical solution does not exist.
This paper has two aims. First, we derive and present an analytical approximation of the short-run

investment rule under the assumption of a linear demand function. We then show how to use such approxi-
mation in order to derive the corresponding 1) steady-state distribution of the optimal stock of capital and
2) the long-run average rate of capital accumulation. Second, we want to compare the long-run rates of

�Corresponding address: Department of Economics, Swedish University of Agricultural Sciences, Box 7013, Johan Brauners
väg 3, Uppsala, 75007, Sweden. Email: luca.di.corato@slu.se. Telephone: +46(0)18671758. Fax: +46(0)18673502.

yDepartment of Economics, University of Padova, Fondazione Eni Enrico Mattei and Centro Studi Levi-Cases, Italy.
zDepartment of Economics, University of Brescia, and Fondazione Eni Enrico Mattei, Italy.
1See among others Bentolila and Bertola (1990), Caballero (1991), Bertola and Caballero (1994), Dixit (1995), Abel and

Eberly (1997), Bertola (1998) and Guo and Pham (2005). We can add also the papers by Grenadier (2002) and Back and
Paulsen (2009), dealing with strategic investment in capital stocks under uncertainty.

2Hartman and Hendrickson (2002) derive the optimal investment strategy for a risk-neutral �rm under partial reversibility,
stochastic capital prices and random shocks to the capital�s marginal revenue product. The authors then examine the e¤ects
of increased uncertainty on both optimal investment strategy and long-run average growth rate of capital.

3See for instance Pindyck (1988), Dangl (1999) , Sarkar (2009), and Baldursson (1998) for an oligopoly.
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capital accumulation determined under both assumptions, i.e., isoelastic vs. linear demand. We do it within
a plausible range of parameter values and notice that there may be signi�cant di¤erences. This allows us
to conclude that the choice of a log linear functional form has a non-trivial impact on the magnitude of the
long run rate of capital accumulation.
The structure of this paper is as follows. In Section 2, we introduce a general model of irreversible

investment under uncertainty. Section 3 presents the long-run average rate of capital accumulation for the
case of an isoelastic demand function with multiplicative shocks and for the case of a linear demand with
additive shocks. In Section 4 we compare the rates obtained under both assumptions. Section 5 concludes.

2 The Basic Model

Let�s start by modeling a general �rm�s investment problem. Consider a risk-neutral �rm that costlessly
produces a �ow of non-storable goods (or services). The �rm is able to produce the good in proportion of
its capacity and sell it in a market at the instantaneous price pt: More speci�cally, we assume that inverse
demand takes the following form:4

pt = p(Kt; Yt) (1)

@p(Kt; Yt)=@Kt < 0; @p(Kt; Yt)=@Yt > 0

whereKt is the �rm�s capacity5 and Yt is an index shifting the direct demand curve according to the following
di¤usion process:

d ln[Yt] = [�� (1=2)�2]dt+ �dWt (2)

where � and � are the drift and volatility parameter for Yt and dWt is the increment of the standard Wiener
process satisfying E[dWt] = 0 and E[dW 2

t ] = dt.
The total instantaneous pro�t to a �rm with capital, Kt, is given by:

�(Kt; Yt) = p(Kt; Yt)Kt (3)

The �rm may increase its capacity at any time t > 0: Investment is irreversible and each unit of capital costs
c > 0. Hence, ignoring for simplicity depreciation,6 the �rm�s capital stock expansion at each t is given by
dKt � 0.
Let�s now determine the optimal investment policy to be set by the �rm. This entails the optimal

de�nition of two interrelated issues: how much to invest, and when.7 Such policy is de�ned by maximizing
the expected present value of its net bene�ts subject to (1) and (3) and given the initial values Y0 = Y > 0
and K0 = K > 0. Formally, the risk- neutral �rm must solve the following problem:8

V (Kt; Yt) = max
Kt

E0[

Z 1

0

e�rt�(Kt; Yt)dt� cdKt j K0 = K; Y0 = Y ]

s.t. dKt � 0 and (2) for all t (4)

where r > 0 is the discount rate and E0[:] is the expectation operator.9

By applying a standard dynamic programming approach, the �rm�s value function, V (Kt; Yt), solves the
following di¤erential equation:

rV (Kt; Yt)dt = �(Kt; Yt)dt+ E0[dV (Kt; Yt)] (5)

4Note that the general form given in (1) may include both additive or multiplicative forms of random demand functions.
Note also that under perfect competition (1) reduces to pt = p(Yt). See Leland (1972, pp. 278-279).

5Since the �rm produces the good in proportion to the capital endowment, Kt denotes both the �rm�s stock of capital and
the instantaneous production.

6The e¤ect of allowing for a constant capital depreciation rate is equivalent to that obtained by raising the discount factor.
7See Dixit & Pindyck (1994) for a review of the vast literature on incremental investment under uncertainty.
8 If no arbitrage opportunities exist and the market is complete, the assumption of risk-neutrality can be relaxed by substi-

tuting the drift � with the risk-adjusted one (Cox and Ross, 1976; Harrison and Kreps, 1979).
9Having not imposed any restrictions on the rate of investment, dKt; allows for a singular control.
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Using Ito�s Lemma, we can expand dV (Kt; Yt) and rearrange (5) as follows:

(1=2)�2Y 2t VKK(Kt; Yt) + �YtVY (Kt; Yt)� rV (Kt; Yt) + �(Kt; Yt) = 0 (6)

Standard arguments lead to a solution for (6) taking the following functional form (see Dixit and Pindyck,
1994, chps. 6 and 7):

V (Kt; Yt) = Z(Kt)Y
�
t + E0[

Z 1

0

�(Kt; Yt)e
�rtdt] (7)

where � > 1 is the positive root of the characteristic equation �(�) = (1=2)�2�(� � 1) + �� � r = 0 and
Z(Kt) is a constant to be determined. In order to determine Z(Kt) and Y �(Kt) some suitable boundary
conditions are required. These include a value matching condition:

VK(Kt; Y
�(Kt)) = ZK(Kt)Y

�(Kt)
� +

@E0[
R1
0
�(Kt; Yt)e

�rtdt]

@K

�����
Y=Y �(Kt)

= c; (8)

and a smooth pasting condition:

VKY (Kt; Y
�(Kt)) = �ZK(Kt)Y

�(Kt)
��1 +

@2E0[
R1
0
�(Kt; Yt)e

�rtdt]

@K@Y

�����
Y=Y �(Kt)

= 0: (9)

Substituting (7) into [8 -9] and solving the system yield:

Y �(Kt) = �(
@E0[

R1
0
�(Kt; Yt)e

�rtdt]

@Kt

�����
Y=Y �(Kt)

� c)=
@2E0[

R1
0
�(Kt; Yt)e

�rtdt]

@Kt@Yt

�����
Y=Y �(Kt)

(10)

ZK(Kt) = (c�
@E0[

R1
0
�(Kt; Yt)e

�rtdt]

@Kt

�����
Y=Y �(Kt)

)=Y �(Kt)
� (11)

3 Long-run rate of capital accumulation

In this section, we determine, using the results above, the optimal investment policy set by a �rm facing two
di¤erent types of demand shocks, namely isolestic demand with multiplicative shock and linear demand with
additive shocks. We will then study the e¤ects of increased uncertainty on the optimal investment policy
and the long-run average growth rate of capital accumulation.

3.1 Multiplicative shocks

Assume that the �rm faces the following constant elasticity inverse demand function subject to multiplicative
shocks:10

p(Kt; Yt) = Yt �K�

t (12)

where 0 < 
 < 1. By plugging (12) into [10 - 11], we obtain:

Y �(Kt) =
�

� � 1(r � �)
K

t

1� 
 c (13)

ZK(Kt) = � c

� � 1Y
�(Kt)

�� (14)

As one may easily see, Y �(Kt) is increasing in Kt. That is, the greater the capital stock, the less likely
additional investment becomes in expected terms. Further, (13) says that a marginal increase in the capital
stock makes sense only if the expected present value of future additional bene�ts, Y �(Kt)(1�
)K�


t =(r��),
is higher than the unit cost of capital, c, adjusted by the multiple �=(� � 1) to account for the e¤ect of
10Results in this section are standard for readers familiar with the theory of investment under uncertainty. So, we prefer to

provide only a brief discussion and address the interested reader to Dixit and Pindyck (1994, chp. 11).
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uncertainty on such irreversible decision. Finally, note that, as expected, ZK(Kt) is negative. This makes
economic sense since by ZK(Kt) we account for the marginal option value implicitly lost by investing in an
additional unit of capital. Once determined ZK(Kt), one may easily �nd Z(Kt) by integrating (14) on the
interval [Kt;1). Note, however, that for this integral to converge, we must have 
 > 1=� (or � > 1=
).
That is, returns on capital investment must decrease su¢ ciently quickly.
Using (13), let�s de�ne:

�t � �(Kt; Yt) = Yt(1� 
)K�

t =(r � �) for t � 0; and b� = [�=(� � 1)]c (15)

where the process f�tg represents the expected discounted net marginal pro�ts of capital and b� is the
marginal cost of a unit of capital adjusted by the option value multiple, �=(� � 1).11 As one can easily see,
(15) describes the dynamic of the optimal investment policy. Note that investment occurs as its pro�tability
�t, driven by an increase in Yt, rises to b�. However, an increase in the stock of capital, i.e. dKt > 0; prevents
�t from passing above the upper barrier b�.12
Although it is not possible to derive a �nite rate of capital investment using the re�ections at b� as

reference,13 taking a long run perspective we can determine the average rate of capital accumulation. As
�rst step, we need to check if a steady-state distribution for f�tg exists within the range (0;b�). If yes, since for
�t < b� the stock of capital is constant it is always possible to obtain the corresponding marginal probability
distribution for Kt. This, in turn, allows us to determine the long-run rate of growth of capital stock.
De�ning � � E(d lnKt)=dt as a measure of the long-run average rate of capital accumulation, it is easy

to show that (see Appendix A.2):

Proposition 1 Under an isoelastic demand function with multiplicative shocks, the long-run average rate
of capital accumulation � is given by:

� =

�
[�� (1=2)�2]=
 for � > (1=2)�2

0 for � � (1=2)�2 (16)

From the regulated process (15), when �t hits the barrier b� the equality 
 lnKt = ln[(1 � 
)=(r � �)] +
lnYt � lnb� holds. Since lnb� does not vary over time, it is evident that the expected evolution of Kt on
the boundary is driven only by the expected evolution of lnYt: Moreover, since below b� the stock of capital
remains constant, the long-run average growth rate of Kt must be equal to the average growth rate on the
boundary.

3.2 Additive shock

Let�s now study the case where uncertainty enters additively in the inverse demand function. For the sake
of simplicity, let�s consider the following functional form:14

pt(Qt; Yt) = Yt �K�
t (17)

where � > 0 represents the speed at which demand falls as the price increases. Note that for � = 1; (17)
corresponds to the standard linear function.15 Plugging (17) into [10-11], we obtain:

Y ��(Kt) =
�

� � 1(r � �)[(� + 1)
K�
t

r
+ c] (18)

ZK(Kt) = �
(� + 1)

K�
t

r + c

� � 1 Y ��(Kt)
�� (19)

11As standard in the real option literature, the multiple �=(� � 1) > 1 accounts for the presence of uncertainty and irre-
versibility (Dixit and Pindyck, 1994).
12 In the technical parlance, �t behaves as regulated process with b� as upper re�ecting barrier (Harrison, 1985).
13Note in fact that in general we may have long periods of inaction when �t < b� followed by short periods of rapid bursts of

investment whenever �t reaches b�. In the �rst case, no investment occurs and the average rate of capital accumulation is null.
In contrast, in the second case, since investment is instantaneous, then the rate of capital accumulation is in�nite (see Harrison,
1985).
14On the linearity of the demand function see Alperovic and Weksler (1996) studying a class of utility functions which yields

demand functions locally linear in prices.
15The demand elasticity is given by (YtK

��
t � 1)=�. The elasticity is non-increasing in � for YtK��

t (1 + � lnKt)� 1 � 0.
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where it is immediate to note that also in this case we may have a closed form solution for the optimal policy.
As above, the barrier, Y ��(Kt), is upward-sloping.16

For what concerns the impact of uncertainty, the e¤ect is qualitatively similar to the one discussed in
the previous section. The same arguments applies also when discussing sign and economic sense of ZK(Kt).
Note that in this case in order to determine Z(Kt) integral convergence requires � > 1 + 1=�.
As shown above, using (18), let de�ne:

�t � �(Kt; Yt) =
Yt
r � � � (� + 1)

�

� � 1
K�
t

r
for t � 0, and �̂ = [�=(� � 1)]c (20)

where the process f�tg and �̂ represent the expected net marginal pro�ts of capital and the marginal cost of
a unit of capital adjusted for uncertainty, respectively.
In contrast with the case of multiplicative shock, Kt and Yt enter additively in (20). This implies that

a steady-state distribution for the process f�tg can be obtained only by approximating �(Kt; Yt) so that
�(Kt; Yt; eK; eY ) 2 (0;b�) for any ( eK; eY ) with �( eK; eY ) � �̂. Hence, using �(Kt; Yt; eK; eY ); we can determine
the marginal distribution of Kt and the long-run average rate of capital accumulation. Denoting by ! the
long-run average rate of capital accumulation under a linear demand function and using (20), in the appendix
we show that

Proposition 2 Under a linear demand function with additive shocks, the long-run average rate of capital
accumulation ! is given by:

! '
(

�� 1
2�

2

�

eY
r��
r (�+1) �

��1
eK�

for � > (1=2)�2

0 for � � (1=2)�2
(21)

Note that when the process �t hits the barrier �̂, we have � lnKt = � ln
h
r��
r (� + 1) �

��1

i
+ln

h
Yt � (r � �)�̂

i
.

Since Yt� (r��)�̂ may also take negative values, it is then not possible to study the dynamic of the capital
stock using the expected evolution of Yt. In appendix A.3, we show how, by linearizing ln [Yt � (r � �)�t] ;
one may �x this problem.
By (21), it is straightforward to note that the average long-run rate of growth depends on the initial point

( eK; eY ). In this respect, by choosing eY such that �( eK; eY ) = �̂; the expected long-run rate at the boundary
becomes:

! '
(

�� 1
2�

2

� (1 + rc
�+1

eK��) for � > (1=2)�2

0 for � � (1=2)�2
(22)

4 Multiplicative vs. additive shocks: a numerical comparison

In order to provide a quantitative measure of the impact of di¤erent forms of uncertain demand function on
the long-run rate of capital accumulation, we rearrange (22) as follows:

! =

�
��( eK) for � > (1=2)�2

0 for � � (1=2)�2 (23)

where �( eK) = 
(1 + rc
�+1

eK��)=�. Note that �( eK) < 1 for 1 + rc
�+1

eK�� < �=
.17 This implies that for any

given eK; ! will be lower than � as � increases. Then, in order to better emphasize the di¤erence between
! and �, let�s consider the case where the linearization point (eY , eK) is such that the two demand functions
have the same elasticity. That is:

(eY = eK�) = (�=
) + 1 (24)

16Note that with a linear demand function the pro�t function takes an inverted-U shape. This has a straightforward im-
plication for the investment policy. Note in fact that, due to the rapid decline that marginal capital pro�tability may have,
investment slows down by getting closer to the maximum.
17The term �( eK) is decreasing and convex in eK; i.e. �0( eK) = �
 rc

�+1
eK�(�+1) < 0 and �00( eK) = �(� + 1)�0( eK)= eK > 0:
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Substituting (24) into (23) and imposing that �( eK; eY ) = �̂ yields:

 � !

�
=

� + 


�(� + 1) �
��1

r��
r

; for � > (1=2)�2 (25)

where 
 is the ratio between the two long-run average rate of capital accumulations. It is easy to see that 
 is

decreasing in � and increasing in 
; and that 
 � 1 only for � � �� � �(1=2)�2�+
p
[(1=2)�2�]2+4r
[r+(1=2)�2�]

2r+�2� <
1:
In Figure 1 we show some sensitivity analyses of (25). Our choice of parameter values follows numerical

examples provided within related �eld literature (see e.g. Bentolila and Bertola, 1990; Dixit and Pindyck,
1994; Bertola and Caballero, 1994; Bertola,1998): r = 0:1; � = 0:03; � 2 [0:1:0:25) and 
 2 [0:6; 1].18

Further, we impose � = 1 in order to stress the role of a linear demand function.

Figure 1: 
 as a function of � and 
, with � = 0:03; r = 0:1 and � = 1.

Note that 
 ranges from 0:52 (for � = 0:24 and 
 = 0:6) to 0:88 (for � = 0:1 and 
 = 1): Therefore, the
di¤erence between the two long-run capital accumulation rates may be signi�cant. In particular, setting

 = 0:6 and abstracting from the e¤ect of � we get 
 ranging from 0:71 to 0:52: On the other hand, setting
� = 0:1 and abstracting from the e¤ect of 
; we get 
 varying from 0:71 to 0:88:
Finally, in Figure 2 we plot 
 as a function of � for r = 0:1; 
 = 0:6, � = 0:03 and � = 0:1: Note that


 � 1 for � < �� = 0:67: The intuition behind the e¤ect of �� on 
 is that for low level of �; the demand (see
18The parameters and the intervals for � and 
 have been taken in order to respect the constraints � > 1

2
�2 and � > 1=
 for

integrals convergence of (14) and (19) in order to determine Z(Kt):
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Eq.(17)) becomes �at. This in turn requires a high level of eK for (24) to hold.

Figure 2: 
 as a function of �; with � = 0:03; r = 0:1; 
 = 0:6 and � = 0:1.

5 Conclusion

This note contributes to study the long-run average growth rate of capital for the case of a linear demand
function with a random shock entering additively. This case has not received much attention in the literature
of investment under uncertainty since the underlying issue has been generally bypassed by using isoelastic
pro�t functions. We present a technique for the analytical approximation of such rate and show that,
by comparing it with the rate determined under a standard log linear pro�t function, di¤erences may be
important.
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A Appendix

A.1 Long-run distributions

Let fht : t � 0g be a di¤usion process de�ned in the region R = (a; b) with a and b as left and right
boundaries and solving the following di¤erential equation:

dht = �dt+ �dWt (A.1.1)

where � and � are drift and volatility parameters, respectively, and dWt is the increment of a Wiener process
with E[dWt] = 0 and E[dW 2

t ] = dt.
Following19 Harrison (1985, pp. 90-92), the long-run density function for fht : t � 0g is given by the

following truncated exponential distribution:20

f (h) =

(
(2�=�2) exp(2�h=�2)

exp(2�b=�2)�exp(2�a=�2) for � 6= 0;
1=(b� a) for � = 0:

(A.1.2)

We are interested to the limit case where a! �1: In this case, from (A.1.1) a limiting argument gives:

f (h) =

�
(2�=�2) exp[�2�(b� h)=�2] � > 0;
0 � � 0: (A.1.3)

Once found its density function, we can now determine the long-run average of h as:

E [h] =

Z b

�1
hf (h) dh =

Z b

�1
h(2�=�2) exp[�2�(b� h)=�2]dh

= (2�=�2) exp(�2�b=�2)
Z b

�1
he(2�=�

2)hdh = b� (2�=�2) (A.1.4)

A.2 Proposition 1

By looking at (15), taking the logarithm of �, we obtain

ln �= ln[(1� 
)=(r � �)] + lnY � 
 lnK (A.2.2)

Note that, by using Ito�s lemma, the process fln �t : t � 0g evolves according to the di¤usion d ln � = d lnY =
[(�� 1

2�
2)dt+ �dW ] with lnb� as upper re�ecting barrier. Hence, setting h = ln �, the random variable ln �

follows a linear Brownian motion with � = � � 1
2�

2 and � as drift and volatility parameters, respectively,
and (A.1.3) as density function.
Taking the expected value on both sides of (A.2.2) and rearranging, we have

E [lnK] = (ln[(1� 
)=(r � �)] + E [lnY ]� E[h])=

= [ln[(1� 
)=(r � �)] + Y0 + [�� (1=2�2)]t� E [h]]=
 (A.3.3)

Since by (A.1.4) E[h] is independent on t, di¤erentiating (A.3.3) with respect to t, we obtain (16) in the
text.

A.3 Proposition 2

Let�s proceed by taking the logarithm of (20). This yields

ln � = ln

�
Y

r � � � (� + 1)
�

� � 1
K�

r

�
(A.3.1)

= ln[1=(r � �)] + ln [Y �X]
19See Dixit (1993, pp. 58-68) for an heuristic exposition.
20Note that hereafter we will drop the time index for notational convenience.
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where X = (�+1) �
��1

K�

r (r��) and Y > X. Rewriting ln [Y �X] as ln
�
elnY � elnX

�
and expanding it by

Taylor�s theorem around the point (glnY ; glnX) yields:
ln [Y �X] ' v0 + v1 lnY + v2 lnX

where

v0 = ln
h
e
glnY � eglnXi� " glnY

1� eglnX�glnY +
glnX

1� e�(glnX�glnY )
#

v1 =
1

1� eglnX�glnY ; v2 =
1

1� e�(glnX�glnY ) ;
v2
v1
=
1� v1
v1

< 0

By substituting the approximation into (A.3.1) it follows that:

ln � ' ln[1=(r � �)] + v0 + v1 lnY + v2 lnX (A.3.2)

Now, by Ito�s lemma, ln � evolves according to d ln � = v1d lnY = v1f[� � (1=2�2)]dt + �dWg with ln �̂ as
upper re�ecting barrier. Setting h = ln �, the random variable ln � follows a linear Brownian motion with
parameter � = v1[�� (1=2�2)] > 0 and has a long-run distribution with (A.1.3) as density function.
Solving (A.3.2) with respect to lnK we obtain:

lnK ' �(ln[1=(r � �)] + v0 + v1 lnY + v2 ln
�
(� + 1)

�

� � 1
r � �
r

�
� h)=�v2 (A.3.3)

Taking the expected value on both sides of (A.3.3) leads to:

E [lnK] ' �
ln[1=(r � �)] + v0 + v1fY0 + [�� (1=2�2)]tg+ v2 ln

h
(� + 1) �

��1
r��
r

i
� E [h]

�v2

Since by (A.1.4) E(h) is independent on t, di¤erentiating with respect to t, we obtain:

E [d lnK] =dt ' �[�� (1=2�2)](v1=�v2) = [�� (1=2�2)](e
glnX�glnY =�)

By the monotonicity property of the logarithm, eY must exists such that ln eY = glnY . Furthermore, by
plugging eY into (18), we can always �nd a capital stock eK and eX = (� + 1) �

��1
eK�

r (r � �) such that a
linearization along (glnX;glnY ) is equivalent to a linearization along (ln eX; ln eY ), where glnX = ln eX. This
implies that by setting (eY ; eK), the long-run average rate of capital accumulation can be written as:

! =
1

dt
E [d lnK] = f[�� (1=2�2)]=�g(eY = eX) = f[�� (1=2�2)]=�geY

(� + 1) �
��1

eK�

r (r � �)

= f[�� (1=2�2)]=�g
�
��1 (r � �)[(� + 1)

eK�

r + c]

(� + 1) �
��1

eK�

r (r � �)
= f[�� (1=2�2)]=�g

(� + 1)
eK�

r + c

(� + 1)
eK�

r

= f[�� (1=2�2)]=�g(1 + rc

� + 1
eK��) (A.3.4)
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