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1 Introduction

Consider a committee or a parliament which has to make decisions. Usually,
players or parties with similar interests form coalitions which are able to
enforce their will. Based on possible coalitions a player might join, one can
make statements about his power in the committee or in a coalition he is
member of.

The measurement of a member’s power in a committee has been the
subject of many articles. Famous examples are the Shapley-Shubik power
index (SSPI, Shapley and Shubik, 1954) and various versions of the Banzhaf-
Coleman power index (BCPI, Banzhaf, 1965). However, these indices per se
do not consider players’ power in coalitions apart from the whole player set.
The same holds true for the values presented in de Clippel (2008) and Dutta
et al. (2010) which apply to games with externalities.

Shenoy (1979) introduced the power of players in each coalition based on
the Shapley-Shubik index. In particular, the author considered a coalition
formation game where players’ preferences over coalitions depend on their
power in coalitions. This concept has been further developed and generalized
by Dimitrov and Haake (2006, 2008a,b). However, these ideas of power within
a coalition did not take into account anything outside of this coalition.

The Owen value (OV, Owen, 1977) and the Casajus value (CV, Casajus,
2009) are adaptations of the Shapley-Shubik index which take into account
the partition of the player set into coalitions. The first one has been used by
Hart and Kurz (1983, 1984) to introduce a similar coalition formation game
as Shenoy (1979), but under consideration of the behavior of players outside
of a fixed coalition. Although the power of a player therefore depends on
other coalitions as well, the power a player has one coalition is completely
independent of his power in any other coalition.

We interpret power as a payoff of players, for instance in a parliament
where a government of several parties has to agree on the allocation of cabinet

seats among parties. In this case, a player can use the power in one coalition



to claim a certain power in another coalition. In other words: Power in
one coalition can be used to bargain about power in other coalitions. We

illustrate this idea in the following example.

Example 1.1. The German Bundestag currently consists of five parliamen-
tary parties, CDU/CSU (1), FDP (2), SPD (3), Linke (4), and B90/Griine
(5). A coalition has the absolute majority if and only if it contains at least
one of the following coalitions: {1,2}, {1,3}, {1,4}, or {2,3,4}. In the model
of Shenoy (1979) there is no stable outcome of this game; in the model of
Hart and Kurz (1984) each of these four coalitions is stable.

The current government consists of CDU/CSU and FDP. Under the as-
sumption that parties in the opposition do not collaborate, the above men-

tioned power indices deliver the following values for the governmental parties.

SSPI BCPI OV CV

CbU 5 5 & 5
FDP 5 5 4 3

The idea that these two parties are equally powerful, as SSPI and BCPI
suggest, is not very convincing, given that there are two other parties out-
side of the government which each have the absolute majority together with
CDU/CSU. OV distinguishes between the two parties, but if we assume that
the remaining parties work together, i.e. if the partition of the player set
changes, then we have OVeopy = OVepp = % although CDU has much bet-
ter chances to find a different party for a government coalition than FDP.
The cabinet consists of 16 ministers of which 11 are members of CDU/CSU
and 5 belong to FDP. Hence, in this example the outside option value is

closest to the actual distribution of power between parties.

The models mentioned thus far always made the assumption that the
power of players in coalitions is specified ex ante and leads to a coalition

formation game. Nevertheless, in reality power is a result from bargaining:



players identify their options in various coalitions use them to renegotiate.
Hence, a separation of the coalition formation process from the power distri-
bution does not seem convincing.

Our model brings together these two concepts; the power of a player

within a coalition depends on two things:

1. His marginal contribution: A player who is needed in a winning coali-
tion is more powerful than a player who could leave the coalition with-

out effect.

2. His outside option: A player who is very powerful in another coalition

is more powerful than a player who has no other options.

We assume that in each winning coalition a bargaining problem (Nash, 1950)
occurs and that the allocation of power in coalitions follows a fixed bargaining
rule which takes into account marginal contributions and outside options of
all players. After any negotiation, the outside options of players may have
changed and lead to a new negotiation. We do not focus on this dynamic
process, but on the question whether we can find an allocation which is stable
with respect to renegotiation. In this case an application of the bargaining
rule would not change the result. We will show in Section 2 that under
very weak conditions on a bargaining rule such an allocation exists. We also
consider a special bargaining rule and show that under some restrictions this
stable allocation is even unique.

We can interpret such an allocation as the result of exploratory talks
between all groups of parties. As this allocation will not be renegotiated, the
preferences of players over coalitions based on this allocation are very robust.
In Section 3 we give conditions for the existence of a coalition which is both
internally stable (i.e. no group of players would leave it to stay alone) and
Nash stable (no player would leave the coalition to join another one). We
also apply our model to the class of apex games. Karos (2012) considered the

coalition formation game after application of the Shapley-Shubik index or the



normalized Banzhaf-Coleman index. It has been shown that each coalition
contains a group of players which can improve by leaving and joining the
players outside of this coalition. In the model we develop in this article the
existence of a coalition which will not be left by any players is guaranteed
for various bargaining rules.

In Section 4 we further extend our model. Especially in parliaments not
all coalitions which could reach the absolute majority are likely to occur.
There are parties which will never collaborate due to their political interests.
Milchtaich and Winter (2002) introduced a model on which the distance
between players in a property space is used to develop a coalition formation
theory. In our case we consider only two cases. Either players in coalition
are similar enough to collaborate or they are not. In the latter case we speak
of an infeasible coalition. As the stable allocation in our model depends on
outside options, we have to ensure that the allocation in an infeasible coalition
does not affect the allocation in any other coalition. We show that if each
player can chose to stay alone, a stable allocation still exists. In particular,
if there is at least one possible winning coalition, then we can find a coalition
which is stable as before. We apply our model to the German parliament and
compare the results of different bargaining rules with the actual government
and the distribution of cabinet seats among them. In Section 5 we give some

concluding remarks and possible further developments of our model.

2 The Model

For : € N and S C N the marginal contribution of player ¢ to S in v is
defined by

di" (S) = v () —v(S\{i}).

Note, that d" (S) depends on v; we skip v in the notation for convenience,
though.

Definition 2.1. Let v be a simple game. A power configuration x = (7;),c
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for v is a vector of maps x; : P; — R such that z; (S) = 0 for all i € S if
v(S)=0and ), gx; (S) <v(S) forall S C N. A power configuration x is
called efficient if ), o x; () = v (S) for all S C N, and individually rational
if z; (S) > v ({i}) for all S € P;. The collection of all power configurations
for v is denoted by A (v) and the collection of all individually rational power

configuration is denoted by A, (v).

We can think of a power configuration as a set of agreements which clar-
ify in each coalition S how power is distributed in S. Let z be a power
configuration. The condition z; (S) = 0 for losing coalitions and all ¢ € S
reflects the idea that a player should not have any power if he is member of
a losing coalition. Let S be a winning coalition and let ¢« € S. Player i is
contained in many other coalitions (for instance (N \ S)U{i}), in particular,
each coalition 7' C (N \ S) U {i} with i € T ensures him power z; (T"). We

define player i’s outside option in S as

d; (S,x) = (TU{i}).
7 (S, 2) fnax o (T"U {i})
When the members of S are negotiating on how power within S should be
shared, the two values d" and d} are crucial for the bargaining position of i.

The next definition specifies what we mean by bargaining.

Definition 2.2. A disagreement point for S is a vector d = d(S) € R®. A
bargaining solution is a map F such that F (S,v(S),d(S)) € R5,

Y Fi(S,0(8),d(5)) <v(S)
i€S
for each proper monotonic simple game v, each coalition S C N, and each

disagreement point d for S; and F ({i},v ({i}),d({i})) = v ({i}).

The triple (S,v(5),d) is called a bargaining problem. It describes ex-

actly the situation discussed above: The players in S negotiate about how



to distribute v (S) where the disagreement point d represents their bargain-
ing positions. We have mentioned before that the bargaining position of
player i depends on two things, namely the marginal contributions d}" (S)
and the outside option df (S, z), given a power configuration z. In our model
we assume that disagreement points are convex combinations of d™ and d°.
Henceforth, let

d; (S,z) =ad" (S)+ (1 —«a)d; (S, )

be the disagreement point in the bargaining problem within coalition S where
a € [0,1]. It is clear that the outside option d¢ (S, z) of a player i € S can
be positive only if (N \ S) U {i} is winning. Because of properness of v this
can be the case only if S\ {i} is losing. Hence, a player ¢ € S can only have
a positive outside option if he is pivotal in S. The parameter « specifies how
this outside option shall be weighted. Many of the further results do not
depend on the choice of a. For convenience, we do not mention « in these
cases, having in mind that a € [0, 1] is fixed but arbitrary.

We are now facing the following problem: Given any power configuration
x, we have a set of bargaining problems with disagreement points depending
on x, hence, players renegotiate their power. After applying a bargaining
solution F', we end up with a new power configuration which leads to rene-
gotiation, again. We are looking for a power configuration which is stable

with respect to renegotiation. The next definition formalizes this idea.

Definition 2.3. Let I’ be a bargaining solution and v be a proper monotonic
simple game. A power configuration = € A (v) is called stable with respect to
F' if for all winning coalitions S C N and all ¢ € S the following holds.

2 (S) = F(Sv(5),d(S;2))
4 (S,2) = adr(S)+(1—a)d(5,2) 1)
d?(S,x) = maxpcnsz; (TU{i}).



Note that for all power configurations = € A (v), all winning S C
and all ¢ € S we have that d? (S,z) > v ({i}) > 0, hence, d; (S,z) >
For general bargaining solutions F' we cannot assume that a stable payoff
configuration exists for all proper monotonic simple games. The aim of the
remainder of this section is to find sufficient conditions on F' such that a

stable power configuration exists.

Remark 2.4. In classical bargaining theory we have that ) .o d; (S) < v (S5)
for each bargaining problem. We do not restrict our attention to this case. If
the disagreement point is such that it cannot be reached by any allocation of
v (9), one usually talks about a bankruptcy problem (see for instance Aumann
and Maschler, 1985; Curiel et al., 1987).

We can also interpret our bargaining problems as bargaining problems
with claims (Chun and Thomson, 1992). There in a coalition S each player
i has a disagreement point he could reach if he does not join the S (which in

our case would be v ({i})) and a claim point (in our case d; (S5, x)).

We will not distinguish between bargaining problems, bargaining prob-
lems with claims, or bankruptcy problems; henceforth we will talk only about
bargaining problems and disagreement points. The following properties a
bargaining solution might satisfy account for this and are therefore slightly
different from definitions which can be found in literature on bargaining

problems.
Definition 2.5. A bargaining solution F' is called

1. individually rational if we have F; (S,v (S),d) > v ({i}) for all bargain-
ing problems (S,v (S),d) and all i € S.

2. efficient if we have Y. _o F; (S,v (5),d) = v (S) for all bargaining prob-
lems (S,v (S),d) and all i € S.

3. symmetric if we have F; (S,v (S),d) = F; (S,v (5),d) for all bargaining
problems (S,v (S),d) with d; = d;.
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4. continuous if F'(S,v(5),.) is continuous for all coalitions S C N and

all proper monotonic simple games v.

5. fair if for all bargaining problems (S, v (S),d) there is a player i € S
with F; (S,v(5),d) > d;(S) only if F;(S,v(S),d) > d;(S) for all
players j € S.

Individual rationality does not guarantee that all players are satisfied
by their power in the sense that F; (S,v(S),d) > d;. It rather says that
no player should have less power than if he stays alone. Since we do not
assume that each player ¢ can receive at least d;, fairness ensures that all
players are on the same side of d: A player i cannot get more than d; if
in the same coalition another player j receives less than d;. Efficiency is
standard, it can be understood as a normalization such that the distributed
power in each winning coalition sums up to 1. Continuity ensures that a
small change in disagreement points cannot cause an arbitrarily large change

in the bargaining outcome.
Example 2.6. Let v be a proper monotonic simple game.

1. The egalitarian bargaining solution is defined as

1
for all i € N. Clearly, E is efficient, fair, and continuous. However, F
is not individual rational, as . ¢ d; () might be very large.

2. The constrained egalitarian bargaining solution (see for instance Curiel
et al., 1987) is defined as

E; (S,v(S),d(S)) = max {d; — \,0}

for all i € N, where A is such that >_, ¢ E; (S,v(S),d (S)) = v (S). E

is individual rational, efficient, and continuous. However, F is not fair.
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3. The proportional bargaining solution® is defined as

P, (S,v(S),d(S)) = { Zieshld

BBy (S), i Y,eqdi (S) #0,
ﬁv (), if 3 iesdi (S) =0

for all © € N. We see on the first sight that P is individual rational,

efficient, and fair. But P is not continuous at d = 0.

The following theorem focuses on continuous bargaining solutions and
gives sufficient conditions for the existence of a stable power configuration.
The proportional bargaining solution, which is not continuous, is considered

in the next section.

Theorem 2.7. Let F' be a continuous bargaining solution, let o € [0,1] be

fixed but arbitrary, and v be a proper monotonic simple game.

1. If F is individually rational then there is a stable power configuration
x € Air (U)

2. If F is fair and efficient then there is a stable power configuration
x € A(v).

Proof. Let F' be a bargaining solution and v be a proper monotonic simple
game. We define the map F : A (v) — A (v) as

EFig(x)=F(S,v(S),d(S,z)).

A power configuration z € A (v) is stable with respect to F' if and only if
F (x) = z. Hence, we have to show that F has a fixed point. Before we show
that F is in both cases a map from a compact convex set on itself, we show

that if F' is continuous then F is continuous as well. For this purpose we

!This is the proportional solution from bankruptcy games (Curiel et al., 1987); partic-
ularly, it is different from the proportional bargaining solution introduced by Kalai (1977)
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need the following construction. Let x € A (v), S C N and ¢ € S. Then let
7.5 () C P (N \ S) be such that

z; (TU{i}) >z (T" U {i})

for all T € T;° (x) and all 7" C N\ S. That is, given the power configuration
x, T;% (x) is the collection of optimal coalitions for player i outside of S. In
particular, we have d? (S, z) = z; (T;) for all T; € T;° (x). Note that

Fis(x) = F; (S,0(5), ad" (S) + (1 — ) (i (1)) e5)
for all T; € 7;° (). Let now
2] ={yeA@); T°(x)NT"(y) # 0 for al SC N,i € S}.

Then F is continuous on [z] for all z € A (v) as F is continuous. By definition
of T;% () it is straightforward that [z] is closed for all z € A (v). As further
N and P (N) are finite, there can only be a finite number of sets of this type,

i.e. there are x,...,x, such that

As F' is continuous on [z] and [zy] is closed for all k = 1,...,n, F is
continuous on A (v).

We show now that in both cases of the Theorem there is a compact convex
subset of A (v) such that F' maps this set on itself.

1. Let now F be individual rational. Then we have F (A;, (v)) C Ay (v).

2. Let F be fair and efficient. Since F; ({i},v ({i}),d) = v ({i}) > 0, we

11



have d; (S) > 0 for all S C N. Let now
Q={rxeAW); —(IN|—-1)<z;(S)<1lforall SC N,ieS}.

We show that F(Q) C Q. Let therefore z € Q and S C N. We

consider two cases:

(a) Let F; (S,v(S),d(S,z)) >d;(S,z) >0 for all i € S. Since

Y F(S0(8),d(Sx) <v(S) <1,
i€s
we have that 0 < F; (S,v (S),d(S,z)) < 1.
(b) Let F; (S,v(S),d(S,x)) <d;(S,x). Then

F(S,0(8).d(S,2)) = v(S)= > Fi(Sv(5),d(S,)

jes\{i}
> = ) d;(S)

jeS\{i}
> _jg\%@we Joax @ (TU{i})
> —(IN[-1).

Hence,

—(IN|=1) < F;(S,v(5),d(S,z)) <d; (S,z) < max ; (T) < 1.

So, we have that F (z) € Q.

As Ay, (v) and @ are both compact and convex, we can apply Brouwer’s fixed
point theorem. Hence, there is a fixed point x of F. Particularly, in the first

case we have x € A;, (v). |

Theorem 2.7 ensures the existence of stable power configurations for con-
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tinuous bargaining solutions under very weak conditions. Together with Ex-

ample 2.6 it implies the following corollary immediately.

Corollary 2.8. Let v be a proper monotonic simple game and let F' = E or
F = E. Then there is a stable payoff configuration © € A (v) with respect to
F.

Although the existence of a stable power configuration for all proper
monotonic simple games is a strong result, Theorem 2.7 does not guaran-
tee uniqueness of the stable power configuration. The next example shows

that in general the stable power configuration is not unique.

Example 2.9. Let « = 0 so that d (S, z) = d° (S, z), and let v be the proper
monotonic simple game on N = {1,2,3,4,5,6} with minimal winning coali-
tions {1,2,3}, {1,4,5}, {2,4,6}, and {3,5,6}. A stable power configuration
with respect to P, E, and E is for instance given by z; (S) = % for all
S C N and all i € S. However, this is not the only stable power configura-

tion. Let y be defined as follows:

/

0, ifv(S)=0o0ri¢s

I_é‘l’ if v(S)=1and |S|>5,

1, if (9=41,2,3,6} or S=1{1,4,5,6}) and i =1,
() 1, if (S=1{1,2,4,6} or S={1,3,5,6}) and i =6,

1, ifv(S)=1]5=3,i=1, and 1€ S,

0, ifv(S)=0,[9=3,i#1, and1e€ S,

1, ifv(S)=1,|5]=3,i=6, and 6 € 5,

0, ifv(S)=0,[S]=3,1#6, and6 € S.

\

Then we have P (z) = E (z) = E (z) = x, that is x is stable with respect to

P, E, and E, too.
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Although we cannot guarantee uniqueness of a stable power configuration,

we can state some properties it must have.

Lemma 2.10. Let v be a proper monotonic simple game, let F' be a bargain-

ing solution, and let x € A (v) be stable with respect to F.
1. If F' is efficient then x s efficient.
2. If F is individually rational then x is individually rational.

3. If F is symmetric and i,j are symmetric with respect to v then ',

defined as
2 (S) = z; (9), ifi,7 €85,
Z 5 (S\{ihu{j}), ifieSadj¢s,
o (S) = z; (9), ifi,je s,
’ z(S\{7HU{i}), ifjeSandig¢s,

and x;, (S) = x () for allk # 1,5 and all S C N, is stable with respect
to F' as well.

Proof. The first two parts of the lemma are obvious, we prove only the last
part. Let z € A (v) be stable with respect to F and let 7, j € N by symmetric
with respect to v. Let p*/ : N — N be the permutation defined by

i itk =
P (k) =<4, ifk=1i,
ko itk i

14



Then T € T2 (x) if and only if pI (T) € 7;221(2?) («"). Hence,

Fyeagy (17 (S),0 (07 (5)) ,d (07 (5) ,2)) = Fi (S0 (S), @ (T))

The first two parts of the Lemma need no further explanation. For the last
part one has to keep in mind that a stable power configuration need not to
be unique. In particular, not every stable power configuration is symmetric,
i.e. give the same to symmetric players. Lemma 2.10 guarantees that the set
of all stable power configuration is symmetric, though. An easy consequence

is the following corollary.

Corollary 2.11. Let v be a proper monotonic simple game and let F be a
symmetric bargaining solution such that there is a unique x € A (v) which is
stable with respect to F'. Then x; (S) = z; (S) for all S C N with i,j € S
and x; (SU{i}) =z; (SU{j}) for all S C N\ {i,j}.

We have already mentioned that the proportional bargaining solution P
is not continuous at d = 0, so that we cannot apply Theorem 2.7. Never-
theless, the following lemma already states some properties of stable power
configurations with respect to P, if they exist. We will later use it to prove

existence and even uniqueness under some additional conditions.

Lemma 2.12. Let v be a proper monotonic simple game let v € A (v) be

stable with respect to P.

1. If S C N is such that no v € S is pivotal in S with respect to v then

z; (S) = ”‘(5‘) foralli€ S.

2. If a >0 and if S C N is such that there is at least one player in S who
is pivotal in S with respect to v then x; (S) =0 for all j € S which are

15



not piwotal in S. If, additionally, there is only one player i € S who
is piwotal in S with respect to v then z; (S) = 1 and x; (S) = 0 for all

j €S\ {i}.
Proof.

1. Since no ¢ is pivotal, we have d* (S) = 0 for all i € S. Further, by
properness of v, we have v (N \ §) U {i}) = 0. Hence, d? (S, z) = 0 for
all z € A(v). Thus, d; (S,z) =0 for all z € A (v) and all i € S and

therefore P, (S,v (S),d(S,z)) = U|(5ﬁ)'

2. By the same arguments as in the first part we have that d; (S,z) = 0
for all z € A(v) and all j € S which are not pivotal. As d*(S) > 0
for each pivotal player i € S we have that d; (S,z) > 0 and thus,
P;(S,v(S)d(S,x)) = w = 0. If 7 is the only pivotal player, we
have P; (S,v(S)d(S,x)) =1 by efficiency of P.

Note that the last two results in Lemma 2.12 depend on the parameter
«a. For a = 1 the stable power would be unique and very easy to find: For
any winning coalition S let S” C S be the set of players who are pivotal in
S. Then
1 Y i
=, ifie s,
zi(8) = ¥ (2)
0, otherwise.
In the next theorem we show that for strictly positive o a stable power
configuration with respect to P always exists. Moreover, we give a lower

bound for « such that this stable power configuration is unique.
Theorem 2.13. Let v be a proper monotonic simple game.

1. Let o> 0. Then there is x € A (v) which is stable with respect to P.

2. Let o > L Then there is a unique x € A (v) which is stable with
respect to P.

16



Proof.

1. Let @ > 0. Tt has been shown in Lemma 2.12 that P, g is constant and
therefore continuous for all coalitions S € N which do not contain at
least two pivotal players. We show that p,-ﬁ is also continuous for all
coalitions S C N which contain at least two pivotal players. We see
that

byt~ L) 4:(5) v (5) |
S e (5) T a s (8)+ (1= ) Xy 5 (5)

As D icgdi" (S) > 2 and @ > 0, we have that P is continuous for all
z € A(v). Since P (A (v)) C Ay (v), there must be a fixed point of

P in A; (v) by Brouwer’s fixed point theorem.

2. Let a > % If v is a proper monotonic simple game such that there
is ¢ € N with v ({i}) = 1 then the only stable power configuration with

respect to P is

1, ifk=iandi€ s,
i (S) =

0, otherwise

by Lemma 2.12. So let v be such that v ({i}) = 0 for all : € N. We
show that P is a contraction on A;, (v). For this purpose, note that for

the partial derivatives of P we have

OP,s

da; (T) 0

for all S € N which do not contain at least two pivotal players and for
all S € N and all 7 € S which are not pivotal in S, for all T"C N and

all j € T. We also have aaf—(;) —0foralli e N,all T C N and all
J
7 € T as N does not contain any player with a positive outside option.

Let therefore S C N contain at least two pivotal players and let ¢ € S
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be pivotal. Let further T (x) € 7% () for all j € S. Then we have

((1-0) (@ X A () +(1-0) X s dz(g))’ 0o T =T (2),
oF (@ Thes A (S)+(1—a) Thes d2(S))
Fis (1=a) (ad? ()+(1—a)d2(5))
S =y — : : . i £, T=T°(x),
dx; (T) (0 Spes di () +(1-0) Ty d2(S))’ 7 (@)
\ 0, otherwise.
Hence,
Z 0P, 1—a
JENTCN dz; (T) ) hes it (S) + (1 —a) Y csdi (S)

(1—a) (S| = 1) (ad?" (S) + (1 — ) & (S))
(0 s @ (S) + (1= ) Xyes d2.(9))°
1l -«
O es ' (S) + (1= a) X pes 2 (S)
(1= a)[S] (ad (S) + (1 — ) & (S))
(0 X pes dp () + (1 — @) Xpes d7 (S))
(1—a) (adf" (S) + (1 — &) d? (5))

(O s A (9) + (1— ) Tyes &2 (9))°

< (1-a) (S| + 1)
N azkesd}f (S)+ (1 —a) Zkesd% (S)
l—a

(@D hes i (S) + (1= @) Yopes &7 (S))2
(I-a)(S[+1) 1-a
- 2a |SI°

For the Jacobian matrix Dp we therefore find

o,
IDplle = max > ax-z(’;)
RN SeNTCN J

(1-a)|N|  1-a
S (N[
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Since this bound is decreasing in « and since o > | A|” 12 we find

2
(IN]+2) (IN] = 1)*

IDplloe = 1=

As the matrix norm ||.|| is compatible with the vector norm ||.||  we
have that

P)-Pw)|_ < 1Dl le -yl

2
< (= g ) -

for all 2,y € A (v). Hence, P is a contraction on A, (v) and has

therefore a unique fixed point by Banach’s fixed point theorem.

3 Coalition Formation

A hedonic coalition formation game (Dréze and Greenberg, 1980) is a set N
together with a profile of preferences (=;),.y. For i € N and S,T € P; let
>~ be defined by

S =T if and only if z; (S) > xz; (T).

The outcome of a hedonic coalition formation game is a partition of the player
set. In our case we are interested in coalitions rather than partitions. There-
fore we slightly adapt the classical definitions of stability, for the original

versions see for instance Bogomolnaia and Jackson (2002).

Definition 3.1. Let v be a proper monotonic simple game, z € A (v), and
S C N be winning. S is called Nash stable (with respect to x) if for each
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i € S and each T C N\ S it holds that x; (T U {i}) < x;(5).2 S is called
individually stable (with respect to x) if for each i € S and each T'C N\ S it
holds that either z; (T'U {i}) < x; (S) or thereis j € T with z; (T'U {i}) < 0.

Roughly speaking, a winning coalition S is Nash stable if no player i € S
has an incentive to leave S and join any coalition " C N\S. The coalition S is
individually stable if it is Nash stable or if for each player ¢ who would like to
change his coalition from S to T, there is at least one player j € T" who would
not agree as he would be negatively affected by player i’s move. Clearly, Nash
stability implies individual stability; if x € A;, (v) the definitions are even
equivalent.

Let x € Ay, (v). It is easy to see that a winning coalition S which does
not contain any pivotal player must be Nash stable as no player can improve
by moving to a losing coalition. However, these coalitions do not always
seem credible in the following sense: Although no player can improve by
leaving the coalition, there might still be a group of players T inside of S
which could improve by excluding the remaining players. This motivates the

following definition.

Definition 3.2. A coalition S C N is called internally stable (with respect
to x) if for each 7' C S there is i € T such that z; (S) > z; (T).

The question is now: Can we find a coalition which is both Nash stable

and internally stable? The answer is yes, in the following set up.

Theorem 3.3. Let v be a proper monotonic simple game, let F' be an indi-
vidually rational and fair bargaining solution, let « = 0, and let xz € A (v) be
stable with respect to F'. Then there is a coalition S C N which is both Nash

stable and internally stable.

Proof. First we show that there is an internally stable winning coalition S.
For this purpose note that z; (N) > d? (N) = 0 for all i € N by individual

ZNote that we do not forbid the existence of a player j € N \ S who could improve by
joining S. See also Remark 3.7.
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rationality. Let now Sy = N and Sy C Sk_1 such that z; (Sx) > z; (Sk_1) for
all ©+ € Sg. If k is such that there is no Si;; then S = Sy is internally stable.
As N is finite, such S must exist.

We show that there is a Nash stable and internally stable coalition. For
this reason let S be internally stable. Since F'is fair and o = 0, we have
either z; (S) > d? (S,z) for all i € S or z; (S) < d? (S) for all i € S. In the

first case this means

. > . ;
z; (S) > TEIJ&\LJ}\CS z; (TU{i}),

hence, S is Nash stable. So, let i € S and let z; (S) < d?(5). Let T} €
T.° (z). Since d? (S) > x; (S) > 0, T} must be a winning coalition. Because
of individual rationality there is no losing 77 C Ty U {i} with z; (7") >
x; (Th U{i}) forall j € T". Asiis pivotal in T3, ¢ is contained in each winning
T' C TyU{i}. Since Ty € T;° (x), we have that x; (T} U {i}) > x; (T"). Thus,
Ty is internally stable. Now, either x; (T1) > df (11, ) or x; (T1) < df (11, x).
In the first case T is Nash stable as fairness implies z; (T1) > d3 (11, z) for
all 7 € T}. In the latter case we define

T € T, ()

for all £ > 2. Then all T} are internally stable and T}, is Nash stable if and
only if z; (Tx) > z; (Tx41). As N and therefore P (N) are finite, there is k
such that Ty =T} for some | < k. Let k* be the first such k*. Then

2i (Tre) 2 @i (1) = 23 (T 1) = d;* (S)

and we see that T~ is Nash stable. |

The remainder of this section is devoted to the class of apex games. An
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apex game a;y on a player set N = {i} U J, where |J| > 3, is defined by

1, if (€Sand SNJ#0) or JC S,

;g (S) =

0, otherwise.

We will show that for each apex game there are unique stable power
configuration with respect to the bargaining solutions E, E, and P. We also
investigate the induced hedonic coalition formation game. We already know
that we can find internally and Nash stable coalitions in case of @ = 0. Now,
we consider arbitrary a € [0, 1] and show under which conditions we can find

coalitions which satisfy core stability.

Definition 3.4. Let v be a proper monotonic simple game, let z € A (v),
and let S C N be winning. A deviation of S is a coalition T such that
x; (T) > x; (S) for alli € SNT and x; (T') > 0 for each i € T'\ S. S is called

with respect to x) if there is no deviation of S.

—~

core stable

So, T' is a deviation of S if each player in T prefers that T forms over the
formation of S: Those players contained in both coalitions have more power
in T than in S; and those which are only contained in T" are powerless if S
forms but have positive power in T'. If T' is a deviation of S, we also say that
T blocks S.

We already know that there is a stable power configuration with respect
to the proportional solution if a > 0. In case of apex games such a power
configuration exists also for & = 0. Moreover this power configuration is even

unique for arbitrary «, as the following theorem shows.

Theorem 3.5. Let a;; be an apex game. The unique x € A (a;y) which is
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stable with respect to P, is given by

/

ik if S=N,

i (S) = %, if |SnJl=1,
1, if2<|SnJ| < |J -1
ﬁ, if S = N,
1 ; _

) = 4,
Trouia S NJ={j},
0, if2<|SnJl<|J -1,

for all winning coalitions S C N and all minor players j € S.

Proof. It can easily be shown that x is stable with respect to P. We show
that = is the unique stable power configuration. Let therefore y € A (v)
be stable with respect as well. By Lemma 2.12 we have y; (S) = 1 for all
winning S C N with 2 < |[SNJ| < |J| — 1. Consequently, d; ({i,5},y) =1
for all j € J. Hence,

(o)) = o )y 1

l+a+(1—a)y; (J) _1—|—oz—|—(1—oz)yj(<])’

We also have that

e+ (-a)y (i)
o[ T+ (1= a) Sy e ([ E))

Let Y =3 ., yx ({i,k}). Then

yi (J)

1 — 1o
1+a+(1—a)y;(J)
. J — J

for all j € J. Hence, y; does not depend on j, so we must have y; (J) = yj (J)

for all j, k € J. By efficiency of P, y; (J) = |_=11| For the remaining coalitions
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S it can now easily be shown that zy, (S) = yi (S) for all k € S. [

We see immediately that the only candidates for core stable coalitions
are J and {i,j} for all j € J. Hence, the following corollary can easily be

derived.

Corollary 3.6. Let a;; be an apexr game on N and x € A (a;;) be stable
with respect to P. Then there is a core stable coalition withr espect to x. In

particular,

J is core stable if and only if |J| < \/g—i— 1,
{i,7} is core stable for all j € J if and only if |J| > \/g—i— 1,

and there are no other core stable coalitions.

The existence of a core stable coalition for each apex game is a very nice
feature of the power configuration z. In particular, for a power configuration
which is derived from the Shapley-Shubik index or the Banzhaf Coleman
index such coalitions do not exist (Karos, 2012).

Before we turn to the egalitarian solution we give the following remark

on the relation between different stability notions.

Remark 3.7. From Corollary 3.6 it becomes clear that core stability does
not imply individual stability: The coalition {i, j} can never be individually
stable as x; ({i} UJ\ {j}) > x; ({i,j}) for all j € J. Coalition J is Nash
stable if and only if |J| < \/g + 1. However, the original definition of Nash
stability (Bogomolnaia and Jackson, 2002) applies on a partition of N and
states that each coalition in this partition must be Nash stable in our sense. If
we apply this definition on the partition {{i}, J}, we see that player i would
prefer to join J. Hence, there is a discrepancy between the original notion
and our Definition 3.1. This is not the case when we talk about individual
stability: If S is a winning coalition and z; (S U {i}) > 0, coalition S would

never allow player ¢ to join .S as at least one player 7 € S would lose power.
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From Theorem 2.7 we know that there is a stable power configuration
with respect to E for each proper monotonic simple game. We will prove
that it is unique if an apex game is under consideration. For this purpose we

need the following upper bound for the power of a player ¢ in any coalition.

Lemma 3.8. Let v be a proper monotonic simple game and x € A (v) be
stable with respect to E. Then x; (S) <1 for all S C N and alli € S.

Proof. Assume that there is S C N and i € S such that z; (S) > 1 and let
e =ux;(S)— 1. Since

< a—l—(l—a)df(S)%—%(1—04—(1—04)26@’»(5))

jes
S| -1 S| -1
< 1—a)d}(S)+ — + o
S| ( ) S| S|
we find s
1+ e -« S
0 S 5]
: > )
dz(Sl)_ 1 _1+]S|—1€

Let Ty € 7% (2), ie. z; (Th) > 1+ |S‘|L_‘15 > x; (5). Then we find for the same

reasons as before d? (T}) > z; (T1). Let now Ty € T,"* (z) for all k > 1.
With the same arguments we have x; (Ty11) > z; (T}) for all £ > 1. But this

is impossible since there is only a finite number of coalitions. [ |

With this result at hand we can now calculate a stable power configuration

and show that it is unique.
Theorem 3.9. Let a;; be an apex game on N = {i} U J.

1. If |J| = 3, the unique x* € A (a;;) which is stable with respect to E is
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given by

;

L if S =N,
zi(S) = (L4255 fISnJl=1,
>§ Fote o if SNl =2,
L if S = N, (3)
L if S =,
ne) = v |
5_20[20:4_0[,47 ZfSﬂJ:{]},
§_ 2+§Zgo¢2’ Zf ’Sﬂ ’]‘ =2

\

for all winning coalitions S C N and all minor players j € S.

2. If |J| > 4, the unique x* € A (a;;) which is stable with respect to E is

given by
(L if S =N,
2 () — 1-% - 550 if |SNJ|l=1,
1, if2<|SnJ|<|J| -2,
1 (2 BB i sl = 1] -1
(L if S =N,
i if S =,
zi(S) = %—1—12'*—0", if |SNJ| =1,
0, f2<|SnJl<|J] -2,
\ \J||;|1 (a(l;a) _ (li?\)2> L if1SnJl=J] -1

for all winning coalitions S C N and all minor players j € S.
Proof.

1. Tt is easy to verify that x* is stable with respect to F, we show that z* is
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unique. Let therefore x be stable with respect to E. Since x; ({i,7}) <
1 for all j € J, we have

B UINGY = g+ ga+s-a)n(lig)

> ({6,7})

We show that there is no j € J such that z; ({,7}) > x; ({7, 7,k}) for
all k € J\ {j}. Assume that there is such j € J. In this case we have

zi ({1,5}) > i ({3, 5, k}) = i ({2, 1})

for all k,0 € J\ {j}, k£ # [. Hence, we have {i,j} € ﬁ{i’k} for all
ke J\{j}; thus d¢ ({i,k}) = x; ({i,j}). Therefore, z must solve the

following equation system.

vi({ig)) = 3+5% ({0 k1)) — 52 ()

v ({i,j}) = 1 =150 ({0, k1)) + 52, (J)

v ({i,k}) = L+ 50 ({i,5}) — 52 (J)

o ({ikY) = =52 ({i,5}) + 52 (J)

v ({i,0}) = L+ 5% ({i.g}) — 5% (J)
w({i,l}) = §—15% ({i.g}) + 522 (J)

i ({i,,k)) = 1+ 24 29g, ({i,1})

z ({i,5,1}) = 1424 200, ({i k})

i ({ik,0y) = 424 20y ({5}
%U)=%+MQ%HMD—E%MﬁH%JﬂﬂWG>
w(J) = 1- T‘HHD lammkb——mWG)
w(J) = L1500 ({i,5)) — 52 ({i, k}) +
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The unique solution of this system delivers

204 — 8a® — 9% + 22a + 11
200t — 1403 + 34a + 14
7at + 203 — 602 — 4000 — 17

304 —21a3 +5la+21

It can now be shown that z; ({4, j,k}) > =; ({4,j}) for all « € [0,1] in
contradiction to our assumption. Hence, there is no j € J such that
x; ({3,7}) > = ({3, j,k}) for all k € J\ {j}.

Assume now that there is j € J such that z; ({i,7,1}) > z; ({7,5}) >
x; ({i,j,k}) for j,0 € J\ {j}. In this case we have d? ({i,k}) =
x; ({i,4,1}) and d¢ ({i,1}) = z; ({i,7}). Hence, the only rows that

change in the equation system compared to (4) are

Lk ({Z> k}) = % - 1—704% ({i’ja l}) + 1_Taxk (*])
z ({i,1}) = 5+ 5% ({i,5}) — 52 (J).

In this case there is again for each a € [0, 1] a unique solution, in

particular we have

4o — 1303 — 602 + 23a + 10
4ot — 1903 + 302 + 35a + 13
8at 4+ 1902 — 21a? — 83a — 31
120% — 5703 + 902 + 105 + 39°

z; ({i,5}) =
v ({i,j,k}) =

It can now be shown that x; ({7,7,k}) > x; ({i,7}) for all a € [0, 1].

Again a contradiction to our assumption, that is there is no j € J such
that z; ({Zvjal}> > T ({Zaj}) > X ({27]7 k}) for .77l € ‘]\ {j}

After we ruled out the previous two possibilities, it must now be the
case that d¢ ({i,j}) = x; {i} UJ\ {j}) for all j € J. Hence, a stable
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power configuration must solve

v ({i.j}) = 3+ 5% {6k 1)) — 52, ()
v ({i,j}) = 53— 5% ({i,k1}) + 525 (J)
v ({i.k}) = 5+ %% ({i,5.1}) — 5% (J)
v ({i k) = 5= 5% ({04, 1) + 522 (J)
v ({6 1}) = 3+ 5% (i k) — 5 (J)
n({il}) = -5 {1, JJf}) + 5% (J)
v ({i g kY) = 5+ %+ 5% ({i 1))
({1} = 5+%+ 2(13a zi ({i, k})
v ({i k1)) = 4%+ 25 ({0, )
5 (J) = 5+ 25%{i J}) - —fﬂk ({i, k}) = Z2 ({5, 1})
v (1) = 53— 5% ({i )+ e ({7, k‘}) - —ﬂfz {i.1})
n()) = 3—5%{ig}) - —xk({l k}) + z ({4, 1}) -

We find that in this case the unique solution is given in (3).

. It is straightforward to verify that x* is stable with respect to F, we
show that z* is unique. Let therefore x be stable with respect to £ and
define

S={SCN;ieSs|SnJ =2}.

Let S; € S be such that z; (S1) > 2; () for all S € S and let S, € S
such that S; NSy = {i} and z;(S3) > 21 (5) for all S € S with
SNS; ={i}. Then d; (Sx) =0 for k =1,2 and all j € S N J. Hence,

x; (S1) > Oé‘l—(l—O{).TZ‘(SQ)—’—%(l—Oz—(1—Oé)$i(52))

1+2a0 2-2«

We also see for the same reasons that xz; (S3) > % + 2_326“@- (S1), so
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that

1+200 2—2a (1420 2-—2«
nisy > HI IRl 2ode, ()
5+8x —4a® 4-—38 402
= +a9 Oé+ O;_’_OZ.IZ(Sl)

Hence, z; (S1) > 1 and for the same reasons z; (S2) > 1. By Lemma
3.8 we have z; (S1) = 1.

If S is such that 2 < [SNJ| < |J| —2 then d; (S) =1, d; (S) = 0 for
all j € SN J, and hence, z; (S) = 1 and z; (S) = 0. Similar to the
proof of Theorem 3.5 we show that x; (J) =z, (J) for all j,k € J and

conclude z; (J) = 77~ Hence, we have

. 1 1 a l—a
xi({z,j}):1+§(1—1—@—(1—a)m>: ATV

for all j € J. Hence, z; ({,7}) = § + ﬁ Finally,

e N \J!—la |J] —1 W a l-a

)
B lJ|—1/a 1-a«
Sy Tl Ty

and therefore zj, ({i} U J\ {j}) = (1 —a) 22 (% + 12|_—J°r> for all k €
JA\A{7}

Note that in case of E we have that d (S) < 1 for all winning coali-
tions S and all £k € S. In particular, for each winning coalition S except
J we find that dy (S) > —ﬁ (1= s di(9)) for all k € S. Hence, we
have that for x € A (v) which is stable with respect to E it holds true that
z (S) = E; (S,v(S5),d(S)). With similar arguments as in the proof of The-
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orem 3.9 it can be shown that z; (J) = — for all j € J. Hence, stable payoft

IJ |
configurations with respect to £ and with respect to E coincide on all apex
games. We close this section with the following corollary on the existence of

core stable coalitions.

Corollary 3.10. Let a;; be an apex game on N = {i}UJ and let v € A (a;z)
be stable with respect to E.

1. Let |J| = 3. Then J is core stable if and only if o < f . In this case

J is the only core stable coalition. Further {i,j} is core stable for each

j € J if and only if « = 1. In this case there are no other core stable
V3-1

coalitions. If a € (T, 1) there are no core stable coalitions.

2. Let |J| > 4. Then J is core stable if and only if |J| < 2. In this case
J is the only core stable coalition. Further {i,j} is core stable for each
Jj € J if and only if « = 1. In this case there are no other core stable

coalitions. If a € (|J\+1’ 1) then there are no core stable coalitions.
Proof. Let x be the unique stable power configuration with respect to a; ;.

1. Let [J| = 3. Then z; ({i,j}) < 5 = ; (J) if and only if a < @ As
z; ({i,7,k}) < x; ({i,5}), we have that J is core stable if and only if
a < % In this case each coalition of type {i, 7, k} is blocked by J and
each coalition of type {i, 7} is blocked by {i}UJ\ {j}. If1 > a > %
then J is blocked by {i,7}, {4,j} is blocked by {i} U J \ {j}, and
{i} U J\ {j} is blocked by J. If @« = 1 then J is blocked by {i,j}
and {i} U J \ {j} is blocked by J. However, {i,j} is not blocked by

{i} UJ\{j}, since z ({i} U J\ {j}) =0forall ke J\ {5}

2. Let |J| =4. Then z; ({7,5}) < % = x; (J) if and only if o < \JI .. We
have that z; ({i} U J\ {k}) < z; ({i,j}) for all k € J\ {j}, hence, J

1
[J]-1

case each winning coalition which contains ¢ and at least two minor

is core stable if and only if a < or equivalently |J| < <. In this
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players is blocked by J and {i, 5} is blocked by {i} U J\ {j}. f a =1
then J is blocked by {4, j} and {i} U J\ {j} is blocked by J. However,
{i,4} is not blocked by {i} U J \ {j}, since z; ({i} U J\ {j}) = 0 for
all ke J\ {j}. If \J\;—l < a < 1 then J is blocked by {i,j}, {i,7} is
blocked by {i} U J \ {j}, and each coalition which contains ¢ and at

least two minor players is blocked by J.

4 Infeasible Coalitions

In many applications of simple games the formation of certain coalitions is
impossible. This might be because of legal issues (such as antitrust legis-
lation) or simply because some political parties have so different interests
that they cannot work together. So far, we ignored such restrictions. How-
ever, as the disagreement points of players depend on their outside options,
we should guarantee that a player cannot use his hypothetical power in a
coalition which will never form.

We say that R C P is a coalition restriction if {i} € R for all i € N.
This condition simply says that each player can stay alone, in particular,

each player has the outside option to stay alone.

Definition 4.1. Let F’' be a bargaining solution, R be a coalition restriction,
and v be a simple game. A power configuration z € A (v) is called stable
with respect to F' under R if for all winning coalitions S € R and all i € S
the following holds.

z; (S) = F;(S,v(S),d(S,x))
d; (S,z) = ad(S)+ (1 —a)d?(S,x) (5)
d? (S,x) = maxperrcns i (T'U{i}).

It is easy to show that the proofs in Section 2 hold true for each coalition

32



restriction R. Theorem 3.3 remains true as well: Let v be a proper monotonic
simple game. If R contains at least one winning coalition and if x is stable
with respect to a fair and individually rational bargaining solution for o = 0
then there is a winning coalition S € R which is both Nash and internally
stable.

In this section we do not focus on the adaptation of the respective proofs
but we will return to our initial Example 1.1. The political interests of the five
parties in the German Bundestag make it impossible that FDP and Linke,
or CDU/CSU and Linke will ever cooperate. Therefore, let

R={SCN;ifdeSthenl2¢S}.

It can be shown that a stable power configuration with respect to £ under

R must satisfy the equation system

x1 ({1,2}) = %+1_Ta531({1>375})
z1 ({1,3}) : + 5% ({1,2,5})
1 ({1,3,5}) = H2+2(1—a)z ({1,2})
r1({1,2,5}) = S*+i(1—-a)z({1,3}).

The unique solution of this system is

1 ({1,2)) = 21 ({1,3)) = pogts
21 ({1,3,5}) = 21 ({1,2,5}) = 575202

We can further calculate

1—2a 1 14a + 9a? — 402

——x; ({1,3}) = —= < 0.
5 3ni L3N =g 5T

Ts ({17 3, 5}) =I5 ({17 2, 5}) =

Hence, {1,3,5} and {1,2,5} are neither internally stable nor individually
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rational. Finally we have

_ 1.2
2 5

2+ 2 — 2

z2 ({1,2}) =23 ({1,3}) =1 -

and see that the coalitions {1, 2} and {1, 3} are the only core stable coalitions.
This is in line with reality as the current government consists of players 1
and 2.

The power configuration z is not individually rational since z5 ({1,3,5}) <
0. Hence, in this case E and E do not coincide. Let us now focus on E. Let
= be stable with respect to E under R. Then

1—

——di ({L.})

0 ({1l =5+

for j = 2,3. First, assume d ({1,2},2) = x; ({1,3}) and d5 ({1,3},2) =

x1 ({1,2}). In this case x must solve

n({1,2) = 5+ n {13
1
>

n({L3) = s+ 1% (L.

We find that in this case x; (S) = HL& for all winning coalitions S € R.
Further x; ({1,5}) = z; ({1,5,j}) = 135 for j = 2,3 and z5 (S5) = 0 for all
winning S € R. To verify that = is actually stable, we have to show that
the initial choice of outside options is consistent with x, i.e. that each player
uses his best outside option. But this is clear since the only player with a
positive outside option is player 1 and z; (S) = HLQ for all winning S € R.
We have mentioned before that we do not have evidence how «a should
be chosen. However, given the fact that the German cabinet consists of 16
ministers of which 11 are member of CDU/CSU, we can at least get an idea

of a. Under the assumption that the allocation of cabinets seats displays the
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power of the two parties, we find that o must solve

111
l+a 16

v ({1,2}) =

for the constrained egalitarian solution. This delivers a ~ 0.455. For the

egalitarian solution we can use the same argument to find a ~ 0.487.

5 Conclusion

Coalition formation in simple games contains two parts: The forming of coali-
tions and the distribution of power within coalitions. We built a model in
which these two parts are interdependent, the distribution of power depends
on the formation of coalitions and the formation of coalitions depends on the
distribution of power. We interpreted the distribution problem as a bargain-
ing (or bankruptcy) problem and showed that under very weak conditions
on the bargaining solutions we can find a power configuration which is stable
with respect to renegotiations.

We pointed out that essentially two issues are crucial for the power of
a player within a coalition. First, his marginal contribution, as a pivotal
player will always be more powerful than a player who is not necessary for
the surviving of a coalition. Second, and this is the new approach, his outside
option. We can also interpret the outside option as opportunity costs: A
player who has a chance to be in a very powerful position in a different
winning coalition must somehow be convinced not to leave. In the paper
we showed several results for specific convex combinations between these two
values. However, we do not have any empirical evidence yet, how they should
be weighted.

Besides the very natural motivation of this stable power configuration,
we showed that it has further useful properties: First of all, it allows to take

into account that there might be coalitions which will never form for any
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external reasons. Second, under some additional conditions it guarantees the
existence of a coalition which is both internally and individually stable for
each proper monotonic simple game.

We can think of several challenges which can now be targeted: Empirical
evidence for the applicability of the model is the first. In particular, it will
be interesting to investigate the implicit values of a. Second, the model
might be extended to general transferable utility games. In this case we
would interpret the outside option of a player in a coalition as opportunity
costs. Particularly, these costs will depend on the partition rather than on a
coalition. A transformation of the game in a hedonic version will therefore
lead to a hedonic game with externalities (Bloch and Dutta, 2011).
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