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1. Introduction

Technological change and innovation respond to the price signals induced by
environmental regulations. Studies have highlighted the importance of
policy credibility, the design and architecture of the policy (Baker and Shittu
2006, Blanford 2009, Clarke et al. 2009, Bosetti and Victor 2010, Luderer et
al 2010, De Cian and Tavoni, 2011, De Cian et al. 2011), and the portfolio of
competing technologies (Clarke et al. 2007, Richels and Blanford, 2008,
Bosetti et al 2009b, Edenhofer et al, 2010, Tavoni et al 2011). Socio-economic
dynamics and the availability of natural resources can also influence the
pathway and direction of technological change, but integrated assessment
models have analyzed the implications of these factors to a lower extent.

Outlining possible tendencies for the evolution of technological change
throughout the century requires a reasonable modeling of technical change
paired with credible socio-economic scenarios. Given the length of the time
horizon considered it is hard to anticipate the future evolution of population
and economic growth, as well as the direction of technological change. New
technologies could make fossil fuels cheaper or lead to major breakthroughs
that will completely change the way we use and produce energy. The aim of
the RoSE project is to assess energy transformation global scenarios across
different reference assumptions for future socio-economic development as
well as exhaustible resources availability, and for this purpose a suite of
scenarios has been developed.

This paper uses an Integrated Assessment Model with endogenous technical
change in clean energy to examine how economic growth, economic
convergence, population trends, and fossil fuel scarcity affect clean energy
innovation and energy investments in baseline scenarios. Section 2 briefly
describes the set-up and the methodology, though the specific details of the
scenario design are provided in Kriegler et al. (this issue). Section 3 discusses
the role of economic growth, convergence, and population. Section 4 focuses
on the role of fossil fuel availability. Section 5 presents some considerations
regarding the impact of socioeconomic assumptions versus fossil fuel
scarcity. Section 6 concludes.

2. Set-up and Methodology

This paper examines the implications on technological change and energy
investments using the WITCH model (Bosetti et al. 2006) for a subset of the
global scenarios developed within the context of the RoSE project! ( see
Kriegler et al., this issue). Although policy implications are briefly discussed
in Section 5 and 6, we focus on the role of economic growth, population, and
exhaustible resources availability independently of climate policy. While the
effect of policy has been explored by a number of studies (for applications of

1 http: //www.rose-project.org/



http://www.rose-project.org/

the WITCH model see Bosetti and De Cian 2013, De Cian and Tavoni, 2012, De
Cian et al. 2012) to our knowledge the effect of growth and population
assumptions and of fossil fuel scarcity has not been assessed in the context of
integrated assessment models. Prior studies have mostly focused on the role
of economic growth but with no considerations for the role of fossil fuel
scarcity (Hiibler 2011, Hiibler et al. 2012, Hiibler and Steckel 2012,
Leimbach and Baumstark 2010). This paper aims at filling that gap.

The distinguishing features of the WITCH model have been described in
several studies (see Bosetti et al. 2006 for a description of the model
structure, while Bosetti et al. 2009 and De Cian et al. 2012 for technological
change) and details are available in the electronic supplementary material
(ESM) to the overview paper (Kriegler et al, forthcoming). The remainder of
this section briefly describes the features important for understanding the
results presented in the subsequent sections.

2.1 Brief model description

WITCH is a regional integrated assessment model. The top-down component
consists of an intertemporal optimal growth model in which the energy input
of the aggregate production function has been expanded to give a bottom-up
description of the energy sector. Equation (1) describes the aggregate
production assumed in the model. It has a Constant Elasticity of Substitution
(CES) structure and it aggregates the Cobb-Douglas nest between capital (K)
and labour (L) with energy services (ES), with an elasticity of substitution
equal to 0.5:
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i =1,...,13are the model regions
t =2005,...,2100 (Eq.1)

Energy services (ES) is a CES nest between the stock of energy efficiency
knowledge (EE_R&D) and the energy inputs, EN:
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ES;; = |a; EE_R&D,[** + a,EN ’ts . (Eq. 2)

Technological dynamics in the energy sectors are partly endogenous. Regions
can invest in energy R&D for incremental efficiency improvements in the use
of energy inputs. These investments lead to reduction in the energy intensity
of the economy. The knowledge stock (EE_R&D) can substitute energy inputs
(EN) with an elasticity of substitution equal to 4, oz = 4. Regions can also
invest in radical or breakthrough R&D, which lead to new discoveries that,
with a time lag of ten years, translate into full commercialization of non-fossil
technologies that partially or totally displace established technologies, such
as oil in the transport sector or nuclear in the power sector. More precisely,
two breakthrough technologies are considered. The breakthrough technology
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in the power sector is a linear substitute of nuclear power. The breakthrough
technology in the final sector is a linear substitute to oil. The process of
breakthrough innovation is modeled as a two-factor learning curve for the
costs of breakthroughs. Through Learning-By-Researching, the stock of
breakthrough knowledge (BT_R&D) reduces the cost of the technology (IC) as
shown in Eq. 3. Deployment (CC) contributes to further the cost reduction of
the technology (Learning-By-Doing) once this becomes commercialized:

—C -b
ICjit (BT_R&D j,i,t_2> (ch,t> (Eq.3)
— q.
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where j is the index for the two breakthrough technologies .

Knowledge production of energy efficiency and breakthrough R&D is
described by an innovation possibility frontier that exhibits both
intertemporal and international spillovers of knowledge (e.g. blueprints,
exchange of ideas between researchers, and imitation). New knowledge
cannot be fully protected by patents and therefore there is some unintended
diffusion. International knowledge spillovers are described by a relationship
that links the stock of energy knowledge in each country to the international
pool of knowledge. Foreign knowledge has a positive contribution to
domestic knowledge formation only if the recipient country has a sufficiently
high absorptive capacity, measured in terms of domestic knowledge stock.
The further away countries are from the technology frontier, defined as the
gap with the stock of knowledge in high-income countries, the higher the
potential for technology diffusion, ceteris paribus.

Macroeconomic growth is driven by exogenous total factor productivity
(TFP). Economic growth scenarios are simulated by calibrating the dynamic
path of TFP. Population scenarios are replicated by adopting the prescribed
projections for population, which coincides with the labor production factor
in Eq. (1).

2.2 Investments and energy prices in the WITCH model

In the WITCH model energy investments are endogenous. Regions choose
the entire sequence of investments in final good, which builds the physical
capital stock, K, in the aggregate production function in Eq. 1. Simultaneously
they optimally choose investments in energy supply technologies, which
include natural gas combined cycle, oil- and pulverized coal-based power
plants, integrated gasification combined cycle power plants equipped with
carbon capture and storage, hydroelectric power, nuclear power, and wind
turbines. These options build the energy nest, EN, in the energy services
production function in Eq. 2.

Global Learning-By-Doing also affects wind power investment costs. The cost
structure of wind power is described by a one-factor learning curve, as in Eq.
3 with the exponent of Learning-By-Researching set to zero, as this
technology is already on the market (e.g. b=0). The cost of wind and



breakthrough technologies in each given region is thus endogenous and can
be influenced by global investments.

Extraction costs are explicitly modelled only in the oil sector. The extraction
cost of oil includes three components, a fixed factor, a module that mimics
short-term frictions that arise in the market when demand increases too fast,
and a module that reflects the exhaustibility of oil. The price of coal and gas
is endogenously determined by the marginal cost of extraction, which is
linked to current and cumulative extraction by a reduced-form equation. A
regional mark-up mimics differences in regional costs. The capital costs of
other technology are exogenous.

3. The role of macroeconomic drivers. Economic
growth, convergence, and population

This section analyses the effect of macroeconomic drivers - economic growth,
economic convergence between developed and developing countries, and
population growth - on the energy investment mix and on indicators of
environmental performance - energy intensity of GDP and carbon intensity of
energy. All scenarios discussed in this section share the common assumption
of medium availability of fossil fuels.

Table 1 shows the annual average energy investments, computed throughout
the century, the fossil fuel prices in 2100, energy and carbon intensity in
2100 as a percentage change to 2005. In all scenarios the investment mix is
dominated by fossil fuels followed by wind and hydro, nuclear, and energy
efficiency R&D. Since the scenarios considered do not include climate
policies, all energy sources are used, including fossil fuels, to feed the
growing demand for energy.

R&D expenditure is increased to the extent this choice allows maximizing
welfare. High economic and/or population growth exert a pressure on
energy demand, raising the relative prices of energy to capital. The change in
relative prices induces an increase in investments in energy saving R&D as a
way to partly compensate the growing demand. However, high economic
growth does not stimulate new inventions (breakthrough R&D). As long as
fossil resources are expected to be abundant (with respect to high fossil
scenarios considered in Section 4) and no technology failure of traditional
technologies is anticipated, countries would not see the convenience of
developing non-fossil alternatives. Economic growth does not induce
breakthrough R&D because the medium availability of fossil fuels, together
with nuclear power, is expected to meet the growing demand for energy.

In the model the indicator of economic convenience is that of relative
technology costs and prices. We do not model issues such as energy security
concerns or employment benefits that could introduce a motive for green
investments. Is it also important to mention that the initial assumption about
breakthrough technology costs affects the threshold of the relative price to
oil at which the technology becomes competitive. We here assume that the



initial price of the breakthrough technologies is about ten times larger the
2005 price of commercial equivalents.

Demand-pull forces positively influence energy efficiency R&D. Non-fossil
investments also increase with economic growth (BAU FS Gr vs. BAU DEF) or
with high population growth (BAU HI Pop vs. BAU SL Gr SL Con), though the
ratio of dirty-clean investments (fossil plus oil extraction over nuclear plus
wind, hydro and R&D) remains unaffected. The carbon intensity of the
energy mix slightly increases with population and economic growth (see the
variation in carbon intensity in 2100 compared to 2005 in Table 1).

In contrast, the energy intensity of output is lower in the high growth (BAU
FS Gr vs. BAU DEF) and high population (BAU HI Pop vs. BAU SL Gr SL Con)
cases. This is driven by the larger energy efficiency R&D investments, but
also by the energy -capital substitution at the top-level nest of the production
function (see Eq.1).

In order to test the extent to which the reduction in energy intensity is due to
innovation, we consider an additional fast growth scenario in which R&D
investments are fixed to the slow growth case (BAU FS Gr case with R&D
investments as in the case BAU SL Gr SL Conv). In this way we exclude the
R&D channel and let only the substitution effect to play. We find that, in the
long run, factor substitution between capital and energy explains most of the
observed reduction in energy intensity. Although faster economic growth
has been implemented in a neutral manner by augmenting total factor
productivity (TFP in Eq. 1), and therefore without modifying the relative
marginal productivity of the two production factors, the endogenous change
in prices induces substitution between capital and energy. In the faster
growth scenarios, the economy is relatively more capital intensive. Another
effect at play is the change in fuel mix. In the BAU FS Gr all fossil fuel
investments increase, but the mix between oil, gas, and coal varies. While oil
is reduced, coal and gas go up by a comparable amount. Changes in the fuel
mix are reflect in the carbon intensity rather than in the energy intensity of
output. In fact, carbon intensity in the BAU FS Gr (BAU HI Pop) case is higher
than in the BAU DEF (BAU SL Gr SL Con).

A closer inspection of Table 1 shows that economic convergence also affects
the aggregate energy and carbon intensity. The variants with slow
convergence (BAU SL Conv versus BAU FS Gr and BAU SL Gr SL Con versus
BAU SL Gr ) exhibit a lower reduction in energy intensity. Slow convergence
(that is lower growth in emerging and developing countries) reduces all
investments, including efficiency R&D and wind power. Greater reductions
compared to the default case in percentage terms occur in the regions most
affected by the convergence hypothesis, namely East Asia, India, Sub-Saharan
Africa, and South Asia. The adjustment in developing countries induces an
indirect effect in developed countries, which also reduce some of their
investments in clean energy (wind) and clean energy R&D. Developing
countries demand less energy, dragging down the international price of fossil
fuels. As fossil fuels are cheaper, developed regions adjust their energy mix
by replacing non-fossil investments with fossil resources.

Higher population growth in developing countries would bring long-term
energy intensity back to the levels with fast convergence. In the model



population coincides with the labor force. Since production factors are gross
complements, faster population growth compensates for lower growth in
total factor productivity.

Figure 1 decomposes the global energy intensity into the structural
adjustment induced by the convergence hypothesis and the energy intensity
effect taking place within each region. The multiplicative logarithmic mean
Divisa index method (LMDI, Ang 2005) is used to decomposes the change in
aggregate energy intensity (El;) over time in the structural component and
the intensity or technology term. The structural effect (DStr:) describes
changes in the regional composition of the aggregate energy intensity. The
intensity technology effect (DInt:) describes the improvements in energy
intensity that occur within each given region. The product of the two effects
yields the total variation in energy intensity between 2050 or 2100 and 2005.

The decomposition is illustrated for the slow growth case?. The structural
effect (Str) reduces the energy intensity variation over time by lowering the
weight of energy intensive developing countries (grey dashed line). On
average, developing countries have higher energy intensity compared to the
developed ones. As a consequence, when they grow less, aggregate energy
intensity is also lower. The intensity effect, which represents the within
country improvement due to efficiency R&D and capital-energy substitution,
increases aggregate energy intensity variation over time. With slow
convergence (BAU SL Gr SL Conv), the efficiency improvement is lower (black
dashed line). The total effect that results from the combination of these two
factors indicates that the intensity effect prevails because aggregate energy
intensity is higher under slow convergence (red dashed line).

2 The same analysis can be carried out by comparing the effect of convergence under
the assumption of fast growth, namely BAU FS Gr versus BAU SL Con.



Table 1: Annual average energy investments (Billion 2005 US$/yr, computed throughout the
century), energy prices in 2100 ($/G]J), energy and carbon intensity in 2100 (as percentage
change to 2005) under different growth, convergence, and population scenarios.3

Supply-side investments
Fossil fuel power plants

BAU DEF BAU SL Gr BAU FS Gr BAU HI Pop BAU SL Con BAU SL Gr SL Con
423.15 345.48 511.70 404.92 448.27 306.67
Nuclear power plants
BAU DEF BAU SL Gr BAU FS Gr BAU HI Pop BAU SL Con BAU SL Gr SL Con
110.88 89.06 135.20 112.16 128.49 85.21

Wind and hydro power plants

BAU DEF BAU SL Gr BAU FS Gr BAU HI Pop BAU SL Con BAU SL Gr SL Con
147.65 139.52 157.02 148.42 153.74 136.23
Oil Extraction
BAU DEF BAU SL Gr BAU FS Gr BAU HI Pop BAU SL Con BAU SL Gr SL Con
1736.01 1585.10 1909.54 1579.88 1751.72 1457.02
R&D| Breakthrough substitute for oil

BAU DEF BAU SL Gr BAU FS Gr BAU HI Pop BAU SL Con BAU SL Gr SL Con

Demand-side investments
R&D| Energy efficiency and clean energy

BAU DEF BAU SL Gr BAU FS Gr BAU HI Pop BAU SL Con BAU SL Gr SL Con
24.44 19.48 31.58 27.35 26.90 17.51
Total
BAU DEF BAU SL Gr BAU FS Gr BAU HI Pop BAU SL Con BAU SL Gr SL Con
2442.14 2178.64 2745.04 2272.73 2509.12 2002.65

Fossil fuel prices in 2100 ($/GJ)

BAU DEF BAU SL Gr BAU FS Gr BAU HI Pop BAU SL Con BAU SL Gr SL Con
QOil 40.68 26.28 61.84 37.51 49.13 22.08
Gas 9.35 8.61 10.28 9.07 9.54 8.24
Coal 4.35 4.09 4.71 4.26 4.40 3.92
Energy intensity of GDP in 2100
BAU DEF BAU SL Gr BAU FS Gr BAU HI Pop BAU SL Con BAU SL Gr SL Con
-72% -62% -79% -61% -75% -55%
Carbon intensity of energy in 2100
BAU DEF BAU SL Gr BAU FS Gr BAU HI Pop BAU SL Con BAU SL Gr SL Con
23% 20% 25% 20% 23% 18%

BAU DEF=Med Pop-Medium Growth - Fast Convergence, med oil, med gas, med coal; BAU SL Gr=Med Pop -
Slow Growth - Fast Convergence; BAU FS Gr=Med Pop-Fast Growth - Fast Convergence; BAU SL Con=Med
Pop-Fast Growth-Slow Convergence; BAU SL Gr SL Con=Med Pop-Slow Growth-Slow Convergence; BAU HI
Pop=High Pop - Slow Growth - Slow Convergence

3 Although Table 1 shows wind and hydropower investments together for the
purpose of completeness only wind investments vary across scenarios. Hence the
variation reported is attributable only to wind investments. Wind investments
represent approximately one third of total (wind plus hydropower) investments.



Figure 1: Decomposition of energy intensity time variation into Structural (Str) and Intensity
effects (Int). Slow growth scenarios with fast convergence, medium population growth (BAU
SL Gr) and slow convergence, medium population growth (BAU SL Gr SL Con). The total
effect is the product of the Structural and Intensity effects.
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4. The role of fossil fuel resources availability

This section analyses the effect of fossil fuel scarcity on the energy
investment mix and on indicators of environmental performance - energy
intensity of GDP and carbon intensity of energy. Alternative futures
regarding fossil fuel extraction costs are embedded in the different scenarios
proposed in the ROSE project. Two scenarios vary the availability of all
resources (BAU LO Fos, BAU HI Fos) compared to the BAU DEF default case.
Scenarios BAU HI Coal, BAU LO 0Oil, and BAU LO OIL HI Gas lead to variations
in the relative prices of fossil fuels. The main caveat of our analysis is that
only technological change in clean energy is endogenous. Technological
change in the extraction sector is exogenous. As a consequence, this section
does not aim at fully assessing the trade-off between clean and dirty technical
change. It simply aims at showing to what extent fossil fuels availability
affects the incentive to invest in clean energy. All the scenarios considered in
this section assumes medium economic and population growth and fast
convergence.

Table 2 shows the annual average energy investments, computed throughout
the century, the fossil fuel prices in 2100, energy and carbon intensity in
2100 as a percentage change to 2005. The availability of fossil fuel resources
has significant impacts on investments in clean R&D and energy. Data
reported in Table 2 indicates that investments in breakthrough R&D would



occur only under the stimulus of high oil prices, triggered by oil scarcity (BAU
LO Fos, BAU LO 0il, BAU HI Coal, BAU LO Oil HI Gas vs. BAU DEF). The
anticipation that the oil price could almost treble compared to a case with
abundant resources (BAU HI Fos), reaching more than 63US$/GJ (390
US$\bb) in 2100, creates a strong price signal that would make it optimal to
allocate some of the productive resources to finance breakthrough R&D
programs. Differently from the stimulus that comes from economic growth,
which boosts incremental R&D programs for the improvement in energy
intensity, oil scarcity would require radical technological breakthrough to
develop alternatives to oil*. The expectation of low oil resources at the global
level will redirect ample financial resources from the oil extraction sector to a
clean energy R&D sector in order to introduce alternative energy sources. In
particular the developed countries - which are the innovation leaders in the
WITCH model, calibrated on 2005 data - will provide between half and two
third of global financial flows to R&D programs. Following deployment, the
Learning-By-Doing effect will further lower the price of breakthrough
technologies. It is interesting to note that major changes in investments occur
mainly on the supply side. Energy efficiency R&D investments will be also
affected but to a minor extent.

The structural change induced by the anticipation of fossil fuels, and in
particular or oil scarcity, shows up in lower energy intensity as well as lower
carbon intensity (BAU LO Fos vs. BAU DEF in Table 2). In order to test the
correlation between fossil fuel scarcity-driven R&D, decarbonization, and
energy intensity, we considered a second additional run in which fossil fuels
are scarce, but R&D investments are fixed to the level of the high fossil world
(case BAU LO Fos with R&D investments fixed to the BAU HI Fos case). This
test shows that R&D provides a significant contribution to decarbonization
(see discussion in Section 5). Changes in the energy mix also play a role, as
coal and gas are reduced relatively more compared to oil. We expect most of
the effect being shown in carbon intensity, which is in fact much lower in the
BAU LO Fos case.

4 R&D investments in the breakthrough technology are the same across the various
scenarios with low oil because oil scarcity pushes the breakthrough technology to its
upper bound. This model version features a deterministic representation of
endogenous technical change. We assume that breakthrough innovations occurs if
R&D investments are sufficiently high. The probabilistic nature of innovation is
analyzed in Bosetti and Tavoni (2008).

10



Table 2: Annual average energy investments (Billion 2005 US$/yr, computed
throughout the century), energy prices in 2100 ($/GJ), energy and carbon
intensity in 2100 (percentage change to 2005) under different fossil
scenarios.

Supply-side investments
Fossil fuel power plants

BAU DEF BAU HI Fos BAU LO Fos BAU LO Qil BAU HI Coal BAU LO Qil HI Gas

423.15 426.20 364.81 442.48 414.31 440.17
Nuclear power plants

BAU DEF BAU HI Fos BAU LO Fos BAU LO Oil BAU HI Coal BAU LO Qil HI Gas

110.88 106.54 128.15 108.27 115.87 108.80

Wind and hydro power plants

BAU DEF BAU HI Fos BAU LO Fos BAU LO Qil BAU HI Coal BAU LO Qil HI Gas
147.65 146.12 153.31 147.45 148.88 147.62
Qil Extraction
BAU DEF BAU HI Fos BAU LO Fos BAU LO Oil BAU HI Coal BAU LO QOil HI Gas
1736.01 1653.52 939.53 941.64 939.28 941.12
R&D| Breakthrough substitute for oil
BAU DEF BAU HI Fos BAU LO Fos BAU LO Oil BAU HI Coal BAU LO Oil HI Gas
- - 36.55 36.43 36.54 36.43

Demand-side investments
R&D| Energy efficiency and clean energy

BAU DEF BAU HI Fos BAU LO Fos BAU LO Oil BAU HI Coal BAU LO Oil HI Gas
24.44 18.74 30.35 28.14 29.63 28.19
Total
BAU DEF BAU HI Fos BAU LO Fos BAU LO Oil BAU HI Coal BAU LO Oil HI Gas
2442.14 2351.11 1652.70 1704.41 1684.50 1702.34

Fossil fuel prices in 2100 ($/G))

BAU DEF BAU HI Fos BAU LO Fos BAU LO Oil BAU HI Coal BAU LO Oil HI Gas
Qil 40.68 22.41 64.11 63.76 63.79 63.75
Gas 9.35 7.87 14.63 7.87 13.98 7.87
Coal 4.35 4.16 6.04 4.21 4.25 4.35
Energy intensity of GDP in 2100
BAU DEF BAU HI Fos BAU LO Fos BAU LO Oil BAU HI Coal BAU LO Oil HI Gas
-72% -67% -76% -72% -75% -72%
Carbon intensity of energy in 2100
BAU DEF BAU HI Fos BAU LO Fos BAU LO Oil BAU HI Coal BAU LO Qil HI Gas
23% 11% -2% 3% 9% 2%

BAU DEF=Med Pop-Medium Growth - Fast Convergence, med oil, med gas, med coal;
BAU LO Fos=BAU DEF low oil - low gas - low coal; BAU HI Coal=BAU DEF Ilow oil - low
gas - high coal; BAU LO Oil=BAU DEF low oil - high gas - high coal; BAU LO 0Oil HI
Gas=BAU DEF low oil - high gas - medium coal; BAU HI Fos=BAU DEF high oil - high
gas - high coal; BAU LO 0il HI Gas=BAU DEF low oil - high gas - medium coal.

The notion that the direction of technical change relates to factor scarcity
dates back to the induced innovation hypothesis formulated by Hicks (1932)
and revised by Ahmad (1966). More recent studies have examined the
response of innovation indicators, such as R&D expenditure or patenting
activity to changing energy pricesS. These studies suggest that increases in

5 Popp (2002) estimated a long-run elasticity of energy patenting with respect to
energy prices of 0.354. He also concluded that energy prices can stimulate
innovation pretty quickly. Newell, Jaffe, and Stavins (1999) examined the extent to
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relative prices induced by oil price shocks or policy regulations stimulate
green R&D and clean investments.

The fossil fuel sector could also respond to increasing energy prices with
more research and development in novel extraction methods in order to
make the exploitation of non-conventional resources cheaper. Historical time
series of patent counts and public R&D expenditure in the extraction sector
reveal a positive correlation with the major oil shocks. This suggests that the
oil shocks boosted not just green innovation, but also R&D and patenting in
the fossil fuel sector. Considering that overall patenting activity has been
increasing over time, the share of international patents in the extraction
sector and renewable energy over total patents has been increasing from
mid-nineties onward. As a matter of fact, over the past hundred years,
technological progress has greatly reduced the marginal costs of using fossil
fuels (Rogner et al 1993; Ruttan 2001). More recently, the diffusion of
hydraulic fracturing and horizontal drilling® have made unconventional gas
as cheap as the conventional one.

In a context of scarce oil, the different availability of gas and coal could also
affect investment decisions in non-fossil energy and clean R&D, though
marginally compared to the prevalent impact of oil price. To tease out the
effect of gas, Table 3 compares the two scenarios that differ only in the
availability of gas (BAU LO 0il with low oil, high gas, high coal and BAU HI
Coal, with low oil, low gas, high coal). Abundant gas would displace wind and
nuclear power plants (see Table 2). What if nuclear investments were for
some reason constrained? Table 3 also shows the same two cases with low
and high gas, but assuming nuclear phase out. Nuclear power would need to
be compensated with by renewables, but also with more fossil fuels, as there
are no carbon price penalties. However, the change in fossil fuel is small. To
meet the growing demand of energy new technologies would need to emerge.
Investments in breakthrough power R&D would increase to reach an average
amount of 14 billion USD/yr over the century. The larger increase in
breakthrough power investments as opposed to fossil fuel investments is also
driven by the production structure assumed. While fossil fuels are in CES nest

which the energy efficiency of the menu of home appliances available for sale
changed in response to energy prices between 1958 and 1993. They found that the
amount of innovation and energy efficiency improvement respond to changes in
energy prices within a time framework of five years. By now a large number of
papers also control for the inducement effect of some indicator of environmental
policy or pollution expenditure, see Popp, Newell and Jaffe (2009 ) for a review.

6 We talk about diffusion rather than invention because these technologies were
invented in the 1950s and 1960s. A quick search for patent data using “horizontal
drilling” and “hydraulic fracturing” as keywords, reveals that the 29 and 9 patents
were granted under these keywords, respectively, between 1950 and 1960. Source:
http://gb.espacenet.com/ viewed on December 30 2011.
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with nuclear power, the power breakthrough technology is a linear substitute
to nuclear. Other R&D and wind investments? would be only slightly affected.

Table 3: Annual average (over the century) energy investments (Billion 2005
US$/yr), under different fossil scenarios with and without nuclear power.

Supply-side investments W nuclear W/O nuclear
el s S BAU HI Coal BAU LO Oil BAU HI Coal BAU LO Oil
414 442 415 443
Nuclear power plants BAU HI Coal BAU LO Qil BAU HI Coal BAU LO Qil
116 108 - -
Wind and hydro power plants BAU HI Coal BAU LO Oil BAU HI Coal BAU LO Oil
149 147 150 148
R&D | Breakthrough substitute for nuclear BAU HI Coal BAU LO Qil BAU HI Coal BAU LO Qil
- - 14.22 13.63
R&D| Breakthrough substitute for oil BAU HI Coal BAU LO Qil BAU HI Coal BAU LO Qil
36.54 36.43 36.50 36.39
Demand-side investments W nuclear W/O nuclear
R&D| Energy efficiency and clean energy BAU HI Coal BAU LO Qil BAU HI Coal BAU LO Qil
29.63 28.14 29.55 28.03

BAU HI Coal=BAU DEF low oil - low gas - high coal; BAU LO 0Oil =BAU DEF low oil -
high gas - high coal

Although a glut in natural gas supply (BAU LO Oil case vs. BAU HI Coal) will
significantly increase gas power plant investments, the crowding out on
energy R&D and non-fossil investments would be negligible. The R&D sector
would continue to attract about 10 and 12% of total energy investments,
with and without nuclear power, respectively.

5. Growth impacts versus fossil scarcity impacts

When analyzing the effects of socio-economic trends and of fossil scarcity on
energy intensity we have highlighted two main mechanisms, the R&D effect
and the substitution effect between capital energy as well as between
different fuels.

Figure 2 decomposes the variation in energy intensity between 2100 and
2005 (dei) and carbon intensity (dce) into two effects, the R&D effect (in red)
and the substitution effect (in blue). In the left panel the substitution effect is
computed as the percentage point difference between dei and dce in the BAU
FS Gr scenario with R&D fixed to the BAU SL Gr case and the BAU FS Gr
scenario with R&D free to adjust as in the BAU FS Gr case. In the right panel
the substitution effect is computed as the percentage point difference between
dei and dce in BAU LO Fos scenario with R&D fixed to the BAU HI Fos case
and the BAU LO Fos scenario with R&D free to adjust as in the BAU LO Fos.

7 Investments in hydropower are not discussed because they do no vary
across scenarios.
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In both panels the R&D effect is the percentage point difference between the
total variation (percentage point difference between BAU FS Gr and BAU SL Gr
SL Con and between BAU HI Fos and BAU LO Fos ) and the substitution effect
just defined.

The R&D effect plays a negligible role in the growth scenario, where the main
driver of energy and carbon intensity changes is the substitution effect. In
contrast, in the fossil scarcity scenario the R&D effect plays a prominent role
in lowering the carbon intensity (dce). As fossil fuel scarcity looms, the
regions will invest in R&D order to satisfy energy demand with new and
cleaner sources of energy. The deployment of new non-fossil technologies
reduces the incentive to invest in energy saving technologies, which explains
the positive effect on the energy intensity indicator (dei).

Figure 2: Decomposition of the 2100-2005 variation in energy intensity of GDP and in the
carbon intensity of energy in the substitution (blue) and R&D (red) effect. The substitution
effect accounts for variations in both the capital-energy mix as well as in the fossil fuel
composition.

Growth Fossil scarcity
BAU FS Gr - BAU SL Gr 10.0% BAU HI Fos - BAU LO Fos

10.0%

0.0% 0.0%

-5.0%
-10.0% HR&D -5.0% ®R&D

W Substituti W Substitution

.15.0% ubstitution 10.0%
-20.0%

25.0% -15.0%
-30.0% -20.0%

Our analysis has illustrated how the portfolio of investments induced by
different socio-economic and the fossil scenarios translates into variations of
energy efficiency and carbon intensity of the energy mix. What would be the
ultimate impact in terms of CO2 emissions?

Figure 3 plots the relationship between per capita CO2 emissions8 and per
capita GDP in the various scenarios. The chart combines the macroeconomic
scenarios with solid lines (BAU DEF, BAU SL Gr, BAU FS Gr, BAU HI Pop, BAU
SL Con, BAU SL GR SL Con) and the fossil fuel scenarios with dashed lines
(BAU HI Fos, BAU LO Fos, BAU LO OIL, BAU HI Coal, BAU LO OIL HI Gas, BAU
HI Gas).

The macroeconomic scenarios never show a turning point and per capita
emissions increase with GDP per capita. Only in the low growth scenarios
(BAU SL Gr and BAU SI Gr SI Con), there is long-term growth with constant

8 CO2 fossil fuel emissions are considered.
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emissions. The fossil fuel scenarios display a turning point at about 31k USD
in 2080 per capita when scenarios envisage scarce oil resources After that
point, GDP per capita grows up to 42k USD in 20 years while emissions per
capita decline from the peak value of 6.5 to 6.3 ton CO2. In the low oil
scenarios, long-term per capita GDP can grow to levels close to the medium
case (43kUSD in 2100), but with much lower emissions (between 6.3 and 7.8
instead of 9.6 tCO2 per capita in 2100). The highest emission paths occur
when all fossil fuels are abundant (BAU HI FOS), assuming medium
population and economic growth, and when there is high economic growth,
provided fossil fuels availability is medium (BAU FS Gr). The fossil fuel
abundant scenario implies an additional GHG emissions of 1500 GtCO2 (up to
2100) compared to the scenario with low fossil fuels (BAU LO FOS), which
has a carbon budget of 5024 GtCO2 (CO2 emissions excluding land use)
considering all century. Cumulative GHG emissions in the fast growing
scenario (BAU FS Gr) amounts to 6826 GtCO2, which is similar to the BAU HI
FOS case (6524 GtCO2).

Economic growth and faster convergence across countries leads to a more
efficient use of energy inputs. Higher fossil fuel prices create an economic
opportunity for radical innovation in the energy sector. Yet, the induced R&D
and carbon-free investments are not sufficient to induce emission reductions
compatible with climate stabilization objectives, shown by the black lines in
Figure 3. In the absence of policies, emissions per capita can get at most close
to a moderate policy case, which is still inconsistent with the ambitious
objectives for slowing down global warming.

R&D investments would lag behind the levels observed in stabilization
scenarios, as shown in Figure 4. On average baseline total R&D investments
amount to about 67 Billion 2005 US$/yr, while they increase to almost twice
as much (113 Billion 2005 US$/yr) in the 450 stabilization scenario (450
DEF).

15



Figure 3: Fossil CO2 emissions per capita and per capita GDP throughout the century in
baseline scenarios and two policy scenarios (450 ppm and moderate policy scenario).? Each
marker represents a different year from 2005 to 2100.
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Figure 4: Annual average investments (Billion 2005 US$/yr) throughout the century,
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9 BAU DEF=Med Pop-Medium Growth - Fast Convergence, med oil, med gas, med
coal; BAU SL Gr=Med Pop - Slow Growth - Fast Convergence; BAU FS Gr=Med Pop-
Fast Growth - Fast Convergence; BAU SL Con=Med Pop-Fast Growth-Slow
Convergence; BAU SL Gr SL Con=Med Pop-Slow Growth-Slow Convergence; BAU HI
Pop=High Pop - Slow Growth - Slow Convergence; BAU LO Fos=BAU DEF low oil -
low gas - low coal; BAU HI Coal=BAU DEF low oil - low gas - high coal; BAU LO
0il=BAU DEF low oil - high gas - high coal; BAU LO Oil HI Gas=BAU DEF low oil -
high gas - medium coal; BAU HI Fos=BAU DEF high oil - high gas - high coal; BAU HI
Gas=BAU DEF medium oil - high gas - medium coal.
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6. Discussion and conclusions

This paper has examined the implications of macroeconomic assumptions
and fossil fuel resources availability on the patterns of energy investments
and clean energy innovation.

Economic growth and fossil fuel scarcity can both stimulate clean energy
innovation and non-fossil-fuel investments. When economies or population
grow faster, the increased relative energy-capital price induces a more
efficient use of energy resources, but the composition of the energy mix
would not be significantly modified. Innovation dynamics would not be
significantly affected and fossil fuels remain the prevalent source of energy.
These patterns are reflected in lower aggregate energy intensities, but almost
unaffected carbon intensity of the energy mix. Faster convergence across
countries also leads to a more efficient use of energy inputs.

Faster convergence across countries also leads to a more efficient use of
energy inputs globally. On the one hand, faster convergence increases
aggregate energy intensity by raising the weight of energy-intensive
developing countries. On the other hand, faster convergence improves the
use of energy resources via efficiency R&D and capital-energy substitution.
This second effect prevails, and overall energy intensity is lower when
convergence is faster.

High fossil fuel prices create an economic opportunity for decarbonizing the
energy mix even in the absence of a climate policy. When fossil fuel
resources are expected to become scarce throughout the century, ample
financial resources will be redirected to R&D in order to introduce
alternative energy sources. Developed countries will provide between half
and two third of the global financial flows to R&D programs.

We also argue that the availability of cheap gas resources would increase gas
investments, mostly to substitute coal especially in coal-intensive countries.
Yet, it would only marginally displace investments in renewables and clean
energy innovation. The R&D sector would continue to attract about 10 and
12% of total energy investments, with and without nuclear power,
respectively.

In terms of policy implications our study suggests that, although economic
growth and fossil fuel prices can create an economic opportunity for more
investments in non-fossil energy technologies and clean energy R&D, those
investments do not induce emission reductions compatible with climate
stabilization objectives. Only the simultaneous expectation of oil, gas, and
coal scarcity could set the per capita emission-GDP relationship on a path
that mimics a scenario with moderate and fragmented climate policies.

The main caveat of our analysis is that only technological change in clean
energy is modeled as an endogenous process. Future research should look at
the dynamics and determinants of clean innovation and technical change
versus technical progress in the fossil fuel extraction sector.
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